
Adaptive terrain rendering with
smooth subdivision surfaces on the

GPU
Bachelor thesis

Felix Heide

Computer Graphics and Multimedia Systems Group

Faculty 12: Electrical Engineering and Computer Science

University of Siegen

Supervisor: Prof. Dr. Andreas Kolb
Second supervisor: Dr.-Ing. Christof Rezk Salama

Advisor: Dipl. Math. Martin Lambers

6th July 2009



Eidesstaatliche Erklärung
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Prüfungsbehörde vorgelegt und auch nicht veröffentlicht. Ich bin mir bewusst,
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Abstract

This bachelor thesis presents two new methods for effective parallel ter-
rain rendering.

First, a new parallel adaptive terrain rendering method on the GPU,
named “Parallel adaptive refinement” (PAR), is presented. The method
generates view-dependent meshes consisting entirely of right-isosceles tri-
angles. In a top-down refinement, a coarse input mesh is refined directly
in the rendering pipeline until a freely adjustable upper bound on the
screen-space error is no longer exceeded. The algorithm produces guar-
anteed error bounds and does not imply any prerequisites on the error
metric or the terrain elevation data.

Second, a new adaptive interpolatory smooth subdivision scheme,
named “4pt-hermite scheme”, is developed. The positive feature of sub-
division surfaces, namely that they naturally support infinite continuous
levels-of-details due to their recursive structure and deliver a visually ap-
pealing smooth surface, is exploited for terrain rendering on the GPU.
The scheme has a local triangular support and can thus be applied fully
parallel. It does not produce degenerate or near-degenerate triangles.

The two methods can be used as standalone algorithms. Plugging
them together results in a fast CPU-independent terrain rendering al-
gorithm which provides the visualization of terrain elevation data at a
freely to define rate of accuracy while still enabling an infinite continuous
range of levels-of-detail combined with a visually appealing surface.
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1 Introduction

In recent years a lot of research has been done on the interactive visualization
of massive terrain data. This is because of many emerging uses of terrain ren-
dering algorithms, ranging from aerospace industry and scientific applications
to education and entertainment purposes. These applications call for the de-
tailed rendering of terrain data at interactive frame rates. With the rapidly
improving remote sensor technology, the resolution and hence size of terrain
data sets increases enormously. So, the challenging task in the field of terrain
rendering is to display as much detail as possible of a visible section of a large
data set while still enabling interactivity. A central concept to address this task
(beneath exploiting all available new hardware capabilities) is to efficiently cal-
culate the coarsest geometry representing the terrain that satisfies a perceptual
image quality - the idea behind the level-of-detail (LOD) methods. Smooth
subdivision surfaces naturally support infinite continuous-level-of-detail ren-
dering (CLOD) because of their recursive structure. Additionally, the visual
appeal of the terrain is improved for free, using that technique in the context
of terrain rendering. So, plugging in smooth subdivision surfaces at the end
of existing terrain rendering algorithms seems to be a natural conclusion.

At the beginning of this thesis, in Sec. 2, a requirements analysis is presen-
ted. Starting with a definition of the problem addressed in terrain rendering,
the focal requirements on terrain rendering algorithms are examined. This
requirements analysis represents the starting point for the design of the new
methods and delivers criteria for evaluating existing algorithms.

Sec. 3 presents a new parallel adaptive terrain rendering method on the
GPU, named “Parallel adaptive refinement” (PAR). The method generates
view-dependent meshes consisting entirely of right-isosceles triangles. The
requirements analysis is exploited to define features of the new method. After
the concepts of the new approach were presented in detail, problems of the
method are discussed and a convergence analysis is done.

Sec. 4 begins with an analysis on which existing smooth surface subdivision
methods can be optimally integrated into the parallel processing environment
on the GPU. Based on that analysis a new interpolatory smooth subdivision
scheme, named “4pt-hermite smooth subdivision”, is developed. After the
concepts were described in detail, the integration into the PAR method and a
convergence analysis are presented.

Sec. 5 considers the practical results of the complete terrain rendering
algorithm presented in this thesis - consisting of the PAR algorithm followed
by the 4pt-hermite subdivision. Advisable parameter values and performance
measurements with a sample implementation are presented.

Finally, in each conclusion at the end of the descriptions for both methods,
it is evaluated to what extent the respective requirements are fulfilled. In
Sec. 6, an overall conclusion and the presentation of future work, which could
follow this thesis, round off this thesis.
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2 Top requirements on terrain rendering algorithms

Starting with a definition of the problem addressed by terrain rendering, this
section considers the central requirements on a new terrain rendering method.
This is necessary before beginning with the development of a new method
because of two reasons: First, the examined top requirements defined in this
section guide the design process. These indicate what the optimal goal for
a terrain rendering algorithm is. Second, the requirements can also be un-
derstood as criteria on which a terrain rendering method can be evaluated.
Problems in existing or new developed algorithms are marked and hence it is
clearly shown where additional work should be invested.

A starting point for the requirements analysis could be a survey on the
research in terrain rendering in the recent years. A survey on selected terrain
rendering algorithms is presented by Schmiade in [5]. An overview of cat-
egorized papers in this subject from the early 1990s up to date can be found
on http://www.vterrain.org/ [6]. As summarizing these algorithms would
not let enough space left to describe the new methods in this thesis, only the
results of my survey are presented in the form of this requirements analysis.

2.1 Motivation and goals

When considering focal requirements, a central question is: What is the prob-
lem addressed by terrain rendering ?

Terrain rendering algorithms shall solve the problem of synthesizing an exact
image of a given terrain data set from an arbitrary point of view (POV) with
minimal memory access and minimal calculation time - that means to display
as much detail as possible at a given time for rendering.

This defines the central features of an optimal terrain rendering method:

1. Accuracy: To visualize the terrain data as exact as possible can be
regarded as the most central task for an optimal terrain rendering al-
gorithm.

2. Optimal mesh topology: The topology of the generated mesh has great
impact on exactness, visual appeal and speed of a terrain rendering.

3. Parallel approach: To enhance performance terrain rendering should be
approached as a parallel computing problem.

4. Small memory footprint: Only the fastest available memory should be
accessed for exclusively the data which is needed.

These four general design criteria are presented more concretely in the follow-
ing sections.
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2.2 Accuracy

In a terrain rendering algorithm an exact image of the input data, given in the
form of a heightmap, has to be generated. The exactness should be measured
in dimensions of the synthesized image - called the screen-space error. The
screen-space error is defined as the distance between the middle of a first
pixel on the rendered image and the position on this image where the first
pixel should be if the exact terrain surface defined by the heightmap would be
projected on the image plane.

As it depends on the application how exact the image of the rendered ter-
rain image is required to be, the allowed screen-space error should be freely
adjustable. The accuracy of a mesh generated by a terrain rendering algorithm
can be measured by the mesh’s upper bound on its screen-space error, the
method can solidly guarantee. An optimal terrain rendering method can guar-
antee an upper bound towards 0.

A lack of accuracy does not only influence the quality of the approximation
of the heightmap elevation data - it also might cause visual artifacts. Meshes
generated from the same section of a terrain surface with a large upper bound
on the screen-space error are allowed to differ from the heightmap data and
thus from each other to a great extent. Therefore, viewing the same terrain
section from a changing POV can reveal these differences as so-called ”pop-
ping”. This emphasizes the claim for a guaranteed upper screen-space error
bound near to zero.

Lindstrom and Pascucci in [3] as well as others simplify the calculation
of the screen-space error with heuristics of the projection transformation. To
formulate founded statements about the quality of a rendered image, this
error should be measured exactly using the model, viewing and projection
transformations.

2.3 Optimal mesh topology

Considering the topology of the mesh generated by an optimal terrain render-
ing algorithm, several goals can be formulated.

The generated mesh should not contain any gaps. These can result from
T-junctions or missing primitives. First, gaps cause rendering artifacts, as
objects behind the gap or the background color is drawn in the section of
the gap. Second, in the rendered image the information of the exact terrain
elevation data set is completely lost at a gap. So, gaps in a terrain surface
influence the exactness and the visual appeal of the displayed image to a great
extent.

The mesh outputted by an optimal terrain rendering method should not
contain degenerate or near-degenerate triangles. A degenerate triangle is a
triangle whose three points are collinear. A near-degenerate triangle is then
a triangle whose three points are nearly collinear. The area of a degenerate
triangle is zero, as its height equals zero. This non-existing area often causes
rendering artifacts: The rasterizer does not produce any fragments for degen-
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erate triangles. Near-degenerate triangles result in small clusters of fragments.
But as the rasterizer can have only a limited resolution, it is possible that these
clusters can be associated with several adjacent degenerate triangles - hence
causing flickering artifacts at such triangles.

2.4 Parallel approach

As the minimization of the calculation time is a primary goal for an optimal
terrain rendering algorithm, it is necessary to distribute the calculations over
as many processing units as possible. The full acceleration of a parallel ap-
proach to a specific problem is only unleashed, if the calculation on the pro-
cessing units are completely independent of each other. A processing unit
waiting for the result of another processing unit, will produce a latency period
for the complete solution of the problem.

For that reason, an optimal terrain rendering algorithm should be comput-
able fully parallel. Current graphics hardware delivers with the appearance of
the stream-processor the environment for the fastest parallel floating point cal-
culations available also on consumer-hardware. Therefore, the graphics card
can be regarded as the optimal runtime environment for a fast terrain render-
ing algorithm (this statement takes only effect for the hardware available till
the publishing date of this thesis). This conclusion has a strong impact on the
concept of a fast terrain rendering as the flexibility of the runtime environment
affects the freedom of design to a great extent.

2.5 Small memory footprint

Because of the high costs of low-latency memory (graphics memory or system
memory) and the rapidly improving remote sensor technology, a majority of
terrain data sets do not fit into system memory. This becomes obvious with
considering current satellite technology, which can record various data of the
earth at a resolution of 1-2 cm (ESAs GOCE Mission [4]). Data sets of similar
sizes are not manageable as a single portion. In addition, it is not likely that
in the future, fast system memory will be cheap enough to host the steadily
exploding amounts of data recorded with continuously improving sensors.

That is why a hierarchical data management should be integrated (or pos-
sible to be integrated) in an optimal terrain rendering algorithm. The domain
in which the height information is stored in the heightmap is 2D. Therefore,
well-researched quadtree-like 2D data management structures are a suitable
choice.
Assuming such a quadtree of heightmaps (see Fig. 1), a terrain rendering
algorithm which handles only one heightmap texture in a fast memory location
can be easily extended to use hierarchical data management:

Before generating the mesh on the GPU, in a first step on the CPU it can
be calculated which knots of the quadtree are needed to render the section of
the terrain surface visible from the current POV with the desired resolution.
These nodes are a layer of the red subtree in Fig. 1 (for the best resolution, the
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Figure 1: A heightmap quadtree. Each level of the quadtree delivers a doubled
resolution of the data.

leaves of the subtree). These textures can then be put in a texture array and
transferred to the graphics memory, where the terrain rendering algorithm can
access the data. The algorithm can be run for each texture in the texture array
independently. Special attention has to be given to the borders of a texture, in
order to guarantee gap-free mesh transitions between the meshes generated for
each texture. One solution would be to subdivide to the maximal refinement
level at the borders.

In consequence, the algorithms presented in this thesis do not make any
further considerations about hierarchical data. They are designed using one
heightmap, which can be stored entirely in the graphics memory.

Beneath the hierarchical data approach, to enhance performance, there
are two criteria under which memory usage has to be carefully considered in
terrain rendering:

• Memory transfers: Memory transfers should be done entirely within the
fastest accessable memory from the processing unit executing the terrain
rendering algorithm - this is the graphics memory. Any transfer over
busses will result in a latency and should therefore be avoided.

• Memory accesses: Only the graphics memory should be used for memory
accesses. As little as possible height values should be retrieved from
memory. This is because even a texture lookup in the fast graphics
memory is expensive when interactivity is aimed for. Especially duplic-
ate memory accesses for the same data should be eliminated.
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3 Parallel adaptive refinement

This section presents a new parallel adaptive terrain rendering algorithm run-
ning entirely on the GPU, named PAR for “Parallel adaptive refinement”. In
a top-down refinement, a coarse input mesh is subdivided by inserting new
vertices with elevation retrieved from a heightmap. The refinement is done
recursively directly in the rendering pipeline using the geometry shader stage.
It is repeated until a freely adjustable upper bound on the screen-space er-
ror between the exact terrain surface and the generated mesh is no longer
exceeded. The algorithm produces guaranteed screen-space error bounds and
does not imply any prerequisites on the error metric or the heightmap.

At first, the requirements analysis of the preceding section is exploited to
define the motivation and goals for the new terrain rendering method. After
that, the concepts of the new approach are outlined. Especially the central
ideas in the tesselation of the mesh are depicted in detail. In a convergence
analysis it will be investigated if the algorithm terminates. Finally, it is de-
scribed what benefits for the new method result from culling techniques and
which problems occur with the new approach.

3.1 Motivation and goals

In the preceding requirements analysis, the requirements accuracy, optimal
mesh topology, parallel approach and small memory footprint for an optimal
terrain rendering algorithm were presented. The consideration of these re-
quirements as design criteria clearly marks the three central features the new
method should possess:

Features aimed for in the new method

First, because of the desired exactness of the rendered image of a terrain, the
method should guarantee an upper bound on the screen-space error. This
bound should be freely adjustable to any value greater or equal to zero.

Second, the mesh generated by the new method should fulfill the following
qualities. It should contain only right-isosceles triangles, as then no degen-
erate triangles can be generated. This property is discussed in detail in the
description of the tesselation stage of the new method. The generated mesh
should also contain no cracks.

Third, the new terrain rendering algorithm should run entirely on the
GPU. It should be executed fully parallel on the stream-processors on current
graphics hardware. The memory used by the algorithm - to store the height-
map, temporary data and the generated mesh - should be located entirely on
the graphics board.

Finally, no restrictions on the input data should be made to achieve the
features above.
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3.2 Concept

An algorithm with the features outlined above shall be designed. A starting
point for the design is existing research on terrain rendering algorithms, which
achieve a large part of these features:

Ulrich presents in [1] a triangle-based recursive refinement algorithm for
a CPU runtime environment. A coarse input mesh is subdivided until the
screen-space error between the mesh and the terrain elevation data measured
at the triangles’ edges falls below a user-defined threshold. The input mesh
is right-isosceles and one recursion step the algorithm produces exclusively
right-isosceles triangles from right-isosceles input triangles. Consequently, the
meshes generated by Ulrich’s algorithm consist only of right-isosceles triangles.
To achieve this continuous right-isosceles mesh topology, Ulrich like Duchai-
neau et al. in [2] (and many other publications on terrain rendering) use a
tree-like data structure to communicate splits recursively over sequences of
adjacent triangles.

Ulrich’s concept delivers a good entry point for designing a new terrain
rendering algorithm as it possesses the demanded accuracy and mesh topology
features. It is not parallel, runs on the CPU and uses exclusively system
memory. The Nvidia SDK 10.5 Example ”Transform Feedback Fractal” [8]
demonstrates the use of the geometry shader stage to do a parallel subdivision
of an input mesh directly in the graphics pipeline. Through the use of VBOs as
a buffer storage for the generated mesh and Transform Feedback - a technique
which allows to store primitives generated by the geometry shader stage in
VBOs - this subdivision can be applied recursively. Schmiade [5] adopts this
method to transfer a restricted version of Ulrich’s concept on the GPU. The
central problem pronounced in Schmiade’s work is that a purely right-isosceles
triangulation is dropped causing near-degenerate triangles.

The concept of the new PAR method utilizes the positive features of Ulrich’s
and Schmiade’s methods as a starting point. The following paragraph presents
an overview of the core concept:

Coarse
input mesh

Heightmap

Storage

Calculation unit

quality
mesh
Desired

achieved ?

Tesselation stage

Mark edges which have to
be split in order to guarantee

Edge marks

Tesselate
yes

no

Rendering stage
a right−isosceles triangulation

(Edge error map)

Figure 2: The core concept of the new method.

The algorithm is initiated on the GPU with the tesselation of a coarse input
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mesh (see Fig. 2). A triangle of this mesh is subdivided into smaller right-
isosceles triangles directly in the tesselation stage of the graphics pipeline if
at least one of its edges exceeds a specified screen-space error threshold. The
elevation of the inserted vertices is retrieved from the heightmap, thus creating
a mesh which approximates the input data more exact. These new vertices
are inserted at the triangle edges, resulting in an edge-based algorithm. The
tesselation is applied repeatedly until every edge in the mesh falls under the
screen-space error threshold and the desired mesh quality is reached. Finally,
the mesh is rendered.

To tesselate a coarse input mesh exclusively with right-isosceles triangles
fully parallel on the GPU, the tesselation stage is split into two parts: The
idea is to force additional edge-splits in order to ensure a right-isosceles trian-
gulation. In a first step, for all edges which shall be forced to be split later,
marks are generated (see also Fig. 2). These marks are stored in a storage
location freely accessible from every tesselation unit - a texture (referred to
as the ”edge error map” later on). In a second step, the mesh is tesselated.
An edge is tesselated if it exceeds a specified screen-space error threshold or
was marked in the previous step. As the edges necessary for a right-isosceles
triangulation have been marked, only right-isosceles triangles are output.

In the following detailed description on the concept of the new method,
only new inserted vertices and not normals are discussed. As an arbitrary
normal sampling algorithm could be integrated into the presented solution,
this is a completely orthogonal topic.

3.2.1 Error metric

The goal of the presented algorithm is to guarantee an user-defined accuracy of
the generated mesh representing the terrain surface. Consequently, many parts
of the calculations performed by the algorithm are dependent on accuracy.
Therefore, the description of the new method begins with the error metric -
which defines the measurement of this accuracy.

One of the outlined requirements was that the accuracy of the mesh gener-
ated by the new algorithm should be measured in dimensions of the synthesized
terrain surface image - the screen-space error. The exact accuracy of a given
mesh can only be retrieved if for every point lying on the mesh surface, its
screen-space error would be calculated. This would mean an infinite amount of
points. Therefore, the accuracy can only be estimated with a limited number
of sampling locations. It is open at what exact sampling locations in the mesh
this screen-space error should be measured:

In the new PAR method, the screen-space error is measured at the edges
of the primitives in the mesh. This has the advantage that adjacent primitives
receive the same screen-space error on their sharing edges. This property
can be utilized to design an edge-based tesselation. The shared screen-space
error value on the edges results in sharing tesselations, which guarantees a
continuous mesh topology.

8



Considering a single edge whose screen-space error should be measured,
the error calculations could be done for an arbitrary number of sampling loc-
ations, only limited by the hardware resources. With the number of disjunct
sampling locations, the calculation time increases as well as the quality of the
result. Therefore, this number is a compromise between performance and an
exact accuracy measurement. In practice, Ulrich’s and Duchaineau’s works
[1], [2] show that one error sampling location per edge delivers already pleas-
ing results. Analogous to their methods, the presented algorithm in this thesis
calculates the screen-space error of an edge at the locations where new ver-
tices are inserted eventually in a tesselation step. This ensures that these new
vertices are inserted exactly at the positions where the measured screen-space
error in the synthesized image exceeds a given threshold.

The PAR method inserts one new vertex at the midpoint of an edge with
elevation retrieved from the heightmap (which will be justified in the following
Sec. 3.2.2). The distance δ between this new point and the middle of the edge
is measured in object-space and then projected to screen-space. Be h : R2 7→ R
a function that maps a vertex position in R2 to its corresponding height value
from the heightmap, ssc : R3 7→ R2 a function that maps from object-space to
screen-space and a, b the end vertices of an edge. Then the screen-space error
δsse(a, b) for the edge ab is calculated as follows:

δ(a, b) =

∥∥∥∥∥∥∥
a + b

2
−




ax+bx
2

ay+by

2

h
(

ax+bx
2 ,

ay+by

2

)




∥∥∥∥∥∥∥
=

∣∣∣∣
az + bz

2
− h

(
ax + bx

2
,
ay + by

2

)∣∣∣∣

δsse(a, b) = ssc (δ(a, b))
(1)

3.2.2 Tesselation

The problem which shall be solved by the tesselation stage in the presented
algorithm is the following: A given coarse mesh shall be subdivided into a
new mesh with smaller primitives - containing new vertices with elevation
retrieved from the heightmap - which thus approximates the heightmap to a
higher extent. Because a continuous regular mesh topology shall be achieved,
there are restrictions on a single subdivision step. The generated mesh is
required to consist entirely of right-isosceles triangles and not to contain any
gaps.

Reasons for a right-isosceles triangulation

Presenting the overview of the new method’s concept, it was glossed over the
justification why to demand a right-isosceles triangulation. There are several
reasons for meshes consisting entirely of this type of triangle. The decisive
ones for the algorithm presented in this thesis are:
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• Non-degenerate triangles: Right-isosceles triangles are not degenerate
and can only become near-degenerate, if the length of at least one edge is
smaller than an ε → 0 with ε > 0 (then all triangle points can be assumed
to be nearly collinear). Consequently, a subdivision of a right-isosceles
triangle only with right-isosceles triangles cannot introduce degenerate
triangles.

• Lineary decreasing area: The area of right-isosceles triangles decreases
linear with the length of their edges. Thus the speed and convergence of a
recursive mesh refinement method are assumed to benefit in comparison
to arbitrary shaped triangles.

• Compositing: Adjacent right-isosceles triangles can be easily composed
to quads or rectangles, which are a common input primitive type for
many algorithms which could be applied to the mesh after the execution
of the presented algorithm.

Edge-based split operator

This paragraph describes the split operation, which is executed in a single
refinement pass on the inputted mesh primitives. This split operator is edge-
based. A given triangle is tesselated by splitting its edges using the screen-
space error at an edge to decide whether it should be split or not. The meas-
urement at the edges with the presented error metric had the advantage that
sharing edges of adjacent triangles receive the same tesselation, thus ensuring
a continuous tesselation.

It is open how many vertices with elevation retrieved from the heightmap
should be inserted at which locations on an edge. The PAR algorithm inserts
one new vertex at the midpoint of an edge. Inserting the new point at the
middle and not elsewhere is a prerequisite for a right-isosceles tesselation. The
central reason why only one vertex is inserted is simplicity. There are 23 = 8
possible tesselations for a triangle which can be split at maximum one time
at its edges. Already for two possible splits this number increases to 33 = 27.
The considerations ensuring a right-isosceles triangulation later in this thesis
as well as the tesselation itself would get more complex and require more
hardware resources with a greater number of inserted vertices.

Finally, the split operator can be formally defined: An edge ab is split into
the two edges am, mb where m =

(
ax+bx

2 ,
ay+by

2 , h
(

ax+bx
2 ,

ay+by

2

))
, if

δsse(a, b) > τ where τ ∈ R and τ ≥ 0 (2)

and τ is an user-specified screen-space error threshold in pixels.

Ensuring a right-isosceles triangulation

To ensure a triangulation purely based on right-isosceles triangles, all pos-
sible triangulations with the edge-based split operator have to be considered.
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Figure 3: Left: all possible tesselations with the edge-based split operator. The blue
circles mark the edges which have to be split. Right: Problem cases can
be handled by forcing a split of the hypotenuse.

Fig. 3 depicts that in the cases 1, 2 and 3 the given triangle cannot be split
into right-isosceles triangles. Without splitting additional edges only oblique
triangles can be inserted. The idea is now to force an additional split of the
hypotenuse in the problem cases. As illustrated in the right of Fig. 3, the three
problem cases can then be handled as the regular cases 5, 6 and 7. Before ap-
plying the actual tesselation to an input mesh, the whole mesh - that means
all triangles in parallel - is scanned for the problem cases. Every hypotenuse
which has to be additionally split, is marked for a later split in the edge error
map. The edge error map is described in detail in the following Sec. 3.2.3.

Figure 4: Forced splits can require further splits. These further splits are indicated
by green arrows. Blue circles: Splits due to an exceeded screen-space
error. Brown circles: Forced splits.

But one pass of searching for the problem cases 1,2 and 3 is not enough
because forced splits can force further splits. Is a marked edge a hypotenuse
for two adjacent triangles, this is not the case (see top left of Fig. 4). But
if a marked edge is a hypotenuse and a cathetus for two adjacent triangles,
the problem cases can be produced again (see bottom left of Fig. 4). As this
constellation can appear repeated in a mesh, recursive sequences of further
splits can occur. The right side of Fig. 4 illustrates a recursive split sequence
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of 4 hypotenuses. For that reason the edge marks have to be successively
increased in a sequence of parallel marking passes, adding further forced splits,
until no new edge marks are generated. This recursive process terminates, as
the number of triangles in the input mesh is limited.

Altogether, the process of ensuring a right-isosceles triangulation can be
done directly in the graphics pipeline using the geometry shader stage. If
we assume the edge error map, storing the marks, to initially contain no edge
marks, the following listing gives a pseudo-code version of the geometry shader
program for one pass of generating the edge marks from a given input mesh.

void main( Triangle T, EdgeErrorMap eem, float tau )
{

// Calculate the number of the tesselation case
int case =
( [ delta_sse( T.edge2 ) > tau || eem.isMarkedForSplit( T.edge2) ] * 4 ) |
( [ delta_sse( T.edge1 ) > tau || eem.isMarkedForSplit( T.edge1) ] * 2 ) |
( [ delta_sse( T.edge0 ) > tau || eem.isMarkedForSplit( T.edge0) ] );

if( case == 1 || case == 2 || case == 3 )
eem.markForSplit( T.edge2 );

}

This geometry shader program is applied repeatedly to the input mesh until
the number of outputted edge marks reaches zero.

Tesselating the mesh

After all necessary forced splits are marked in the edge error map, exclusively
the tesselation cases 0, 4, 5, 6 and 7 can occur. Triangles corresponding to
these cases can be tesselated with right-isosceles triangles according to Fig. 3.

3.2.3 Edge error map

The problem addressed by the idea of an edge error map is that a bijective map
from the set of edges to R is searched for. For the application in the presented
algorithm the codomain needs to be only the set M = {0, 1} representing the
information if an edge is not marked or marked for a later split operation. The
function should be available from within a geometry shader program.

Concept

After defining the given problem, it stands to reason to use a texture for storing
all function values. Texture maps can be randomly accessed from within a
shader program and deliver a range of R for the texture values in a 2D domain.
The open question is how to encode an edge of a given mesh unambiguously
into a 2D texture coordinate value. A property of the meshes generated with
heightmap elevation data can be used to solve this. Consider a mesh with one
component of its vertices exclusively retrieved from the heighmap function (for
example the z-component as no. 1 in Fig. 5). The heightmap is a function.
This means every input value in the 2D domain maps to only one height value
of the represented terrain surface. Therefore, the projection of the mesh onto
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the plane spanned by the unit-vectors of the other two components (respective
the xy-plane) is unambiguous - no vertex, edge or primitive covers another one
(see no. 2 in Fig. 5). In this projected mesh, an edge can be uniquely identified
by an arbitrary 2D point on it except the end points which are shared by more
than one edge. The 2 coordinates of a point on the edge can then be used to
access the edge error map.
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Figure 5: The process of marking an edge. 1: Terrain mesh with edges, which
should be marked (green). 2: The projection of 1 onto the xy-plane
3: Points (blue) with coordinates equal to the marked edges midpoint
texture coordinates. 4: The orthogonal projected points rendered to a
FBO texture.

The presented algorithm uses the midpoint of an edge for its identification.
This guarantees that two congruent edges of adjacent triangles whose end-
points are defined in a differing order are identified as the same edge. The
projection described above can be done by simply calculating the texture co-
ordinate of the midpoint - this is actually the projection of the midpoint
position onto the xy-plane (assuming that the height values are stored in the
z-component) with a scaling to the range [0, 1] × [0, 1]. Therefore, an extra
projection step from no. 1 to no. 2 in Fig. 5 can be omitted as indicated by
the red arrow.

Altogether, an edge’s midpoint texture coordinate can finally be used to
store and retrieve information from the edge error map for the edge. In the
case of the presented algorithm, this information is a flag which is encoded in
a color channel of a single texel.

Realization

In the realization of the described idea, retrieving texture information in a
shader program can easily be done by the OpenGL texture fetch mechanism.
But OpenGL natively supports no method to directly write data to a texture
from a geometry shader program. First, GPGPU-languages like OpenCL or
Nvidia’s CUDA could be used to do this task or second, it can be done directly
within the OpenGL rendering pipeline. In the research implementation of the
presented algorithm the latter was done, since at the moment of writing this
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thesis, it guarantees the highest possible platform independency. For every
edge which is chosen to be marked in a geometry shader program, the program
generates a 2D point with coordinates equal to the edges midpoint texture
coordinates (no. 3 in Fig. 5). The outputted points are then rendered with
an orthogonal projection to the according pixels in a texture via the use of a
FBO (no. 4 in Fig. 5). To ensure that a generated point will cover exactly one
pixel on the texture map, the OpenGL point size has to be set to 1.0, point
smoothing and point distance attenuation have to be switched off.

Dimensions of the edge error map

The only open parameters of the presented idea are the dimensions of the edge
error map. A lower bound of the texture size is searched for, which still ensures
that all values of the bijective function described above can be stored. To figure
out this size, the triangle with the smallest possible area has to be considered.
In the convergence analysis two properties of the presented algorithm will be
shown: First, the minimal length of an edge in texture-coordinate-space is
the size of one texel of the heightmap measured in texture-coordinate-space.
Second, it can be ensured that every vertex in a mesh generated by the al-
gorithm has texture coordinates lying exactly on a heightmaps texel position.

Figure 6: Left: Triangle with the smallest possible area in texture-coordinate-space.
The grey points represent the exact texel positions of the heightmap.
Right: smallest triangle which can be split again.

Because of these two reasons, the triangle with the smallest possible area has
the dimensions in texture-coordinate-space as depicted in the left of Fig. 6.
But in the edge error map only edges, which can be further split may need
a mark. As the outlined split operator splits edges at their midpoint, the
smallest possible triangle which can be split has the doubled dimensions as
illustrated on the right of Fig. 6. In this case, every midpoint of an edge can
be mapped bijective to a heightmap texel, as indicated by the yellow pixels,
whereas in the left case the heightmaps resolution would not be sufficient. For
that reason, the heightmaps dimensions are a lower bound for the edge error
maps size.

3.2.4 Putting it all together

Until now, the components of one step of the recursive mesh refinement method
have been described. This section explains how all parts of the algorithm
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collaborate with each other and how recursion is introduced. Fig. 7 gives an
overview of the complete functionality, which is executed exclusively on the
GPU:
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Figure 7: Complete workflow of the presented algorithm.

The algorithm is initiated with a coarse input mesh. After the input of this
mesh it can be divided into three units:

1. The edge error map generation: In this unit all edges, which have to be
split to ensure an exclusively right-isosceles triangulation, are marked
for a later split. These marks are generated within the geometry shader
stage in this unit. Describing the generation of these marks it was glossed
over a problem with the implementation of this idea which becomes
obvious with the overview of the complete algorithm. As depicted in
Fig. 7, to generate the edge error map, the according geometry shader
program has both, to read and to write from a texture attached to a
framebuffer object, which is not possible in OpenGL. Therefore, the
marks are temporary buffered and in a second pass rendered to the
texture. As a forced split of an edge can force further splits in a recursive
sequence, edge marks have to be successively increased until no new
edge marks are added (n=0 in Fig. 7). The recursive application of a
shader program is done by the use of Transform Feedback [9], which is
not further explained as its use in the domain of terrain rendering is
well-documented in Schmiade [5]. When no further marks are generated
in the geometry shader stage, the edge error map is complete and the
refinement of the mesh is started.

2. The refinement of the mesh: With the forced splits from the edge er-
ror map, this unit can subdivide the inputted mesh entirely with right-
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isosceles triangles. After one refinement step is completed, the difference
between the generated primitives in the previous refinement pass and the
current pass is measured (named δ in Fig. 7). If no new primitives have
been created (δ = 0) in the current pass, the screen-space error of all
edges in the mesh falls under the user-specified threshold and the mesh
can be rendered. If not, the whole refinement process has to be restar-
ted with the refined mesh - again first creating the new edge error map
followed by a further application of the refinement unit. The recursive
application of the refinement unit is realized with the use of transform
feedback as above.

3. Rendering: After the execution of the second unit, the desired mesh
quality is reached and the mesh can be rendered. In the rendering pass,
an arbitrary shading model can be applied to the geometry.

The whole process of generating the refined terrain mesh has not to be
reinitiated for every rendered frame. A restart of the refinement with the
coarse input mesh has to be done only if the POV or the user-defined screen-
space error threshold is changed.

Coarse input mesh

After overviewing how all components of the PAR algorithm collaborate, the
coarse input mesh is a parameter which has not been defined in the preced-
ing sections. As the terrain elevation data in the heightmap is defined in a
2D-domain, this input mesh should be rectangular and have the heightmaps’
aspect ratio. To ensure the generation of right-isosceles triangles, this mesh is
further required to be composed of right-isosceles triangles exclusively. There-
fore, the mesh does not neccessarily consist of more than 2 triangles. But
a higher resolution has the following advantage: The number of refinement
passes is decreased by a pre-refined input mesh. For a mesh with very few
triangles using the presented shader-based approach is not very effective, as
due to the low number of primitives, the parallelism of the method cannot be
exploited.

3.3 Convergence analysis

This section analyses if the recursive PAR algorithm terminates.
As defined with the edge-based split operator, the algorithm terminates if

every edge in the mesh falls under a given screen-space error threshold. As this
threshold can lie arbitrarily near to zero, the algorithm shall subdivide until
the mesh’s resolution has reached the heightmap’s resolution. That means
for a screen-space error threshold of exactly zero a maximal refinement of the
entire mesh should be done until the heightmaps resolution is reached. In
the following paragraphs, it is first presented how the algorithm ensures that
only vertices with texture coordinates exactly on heightmap texel midpoints
are produced. Based on that the properties of a mesh which has reached
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the heightmap’s resolution are derived. Finally, it is shown that an arbitrary
coarse input mesh fulfills after a limited number of subdivision steps these
properties, thus the algorithm terminates.

22 + 1

22 + 1

Figure 8: Left: The coarsest possible input mesh (yellow) and a possible tesselation
(red) with texture coordinates exactly on texels of the heightmap (the grey
points). Right: Maximal subdivided triangle. The blue lines represent the
according elevation values.

In order to ensure that only vertices with texture coordinates exactly on
heightmap texel midpoints are generated, the idea is to use heightmap sizes
of (2n + 1) × (2n + 1) texels where n ∈ N. Then, the texture coordinates of
the input mesh’s vertices can be assigned to the their according texels of the
heightmap as depicted on the left in Fig. 8. The size of the initial control
mesh in texture-coordinate-space is then 2n × 2n texelwidth1. Therefore, bi-
secting an arbitrary edge of the coarsest possible control mesh k times with
k ≤ n produces new vertices lying in texture-coordinate-space exactly on texel
midpoints (see Fig. 8). This is because the s,t components of the texture-
coordinate-space lengths ls,t of the k times subdivided edges can be expressed
by ls,t = 2n · (1

2)k ⇒ ls,t ∈ N.
It can now be defined when the refined mesh’s resolution has reached the

heightmap’s resolution. That is the case if for every edge the components s
and t of the edge’s length ls,t in texture-coordinate-space are 1 texelwidth. On
the right of Fig. 8, a triangle with three maximal refined edges is depicted. As
the heightmap delivers no further information for the line section covered by
a maximal refined edge, the algorithm explicitly breaks further subdivisions
on an edge whose ls,t become equal to one. Consequently an arbitrary edge
of the coarse input mesh will be subdivided at most n times. That is because
the edges resulting from its subdivision fulfill ls,t = 2n · (1

2)n = 1. For every
new edge inserted for a triangle in the presented tesselation stage (as depicted
in Fig. 3) its ls,t is the half of one edges’ ls,t of the triangle for which the edge
was inserted. That means, the ls,t of every new inserted edge decreases with
a single subdivision step.

1texelwidth = 1.0
2n+1

is the size of one texel of the heightmap in texture-coordinate-space
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Altogether it can be concluded: As the coarse input mesh has only a limited
number of edges which are subdivided at most a limited number of times (n)
and for every new inserted edge this number decreases, the whole algorithm
terminates after a limited number of subdivision steps.

After it has been proven, that the algorithm terminates, it can now be form-
ally shown that the presented method does not produce degenerate or near-
degenerate triangles. These can be defined as triangles with a length of at
least one edge smaller than an ε → 0 with ε > 0. Assuming that position
coordinates are chosen greater or equal to texture coordinates, the smallest
possible length of a right-isosceles triangle’s leg is 1 texelwidth. Regarding
the value 1 texelwidth as ε, the presented algorithm produces no degenerate
or near-degenerate triangles, as every edge has a length greater than ε.

3.4 Culling

This section describes how the PAR algorithm benefits from culling meth-
ods. These techniques are used to determine the visible primitives from a
given POV. To enhance performance, the presented algorithm should discard
any calculation on primitives which are completely not visible. The following
classical culling algorithms can be used:

First, view frustum culling can be applied to every part of the presented
algorithm. The calculation of the edge error map, the refinement and the ren-
dering unit are completely disabled for triangles entirely outside the viewing
frustum. View frustum culling is done in the presented algorithm by calcu-
lating the minimal bounding sphere of a triangle and comparing the sphere’s
distance to the six clipping planes defined by the view frustum with its radius.
These calculations are done in the geometry shader stage. Ericson [7] gives a
detailed description on view frustum culling.

Second, occlusion culling can be used to discard calculations for triangles
occluded by others. Occlusion culling can only be executed after the complete
refinement process - thus only in the rendering of an already refined mesh. An
intermediate mesh in the refinement process represents only a coarse sampled
approximation of the heightmap elevation data. Therefore, the problem is
that triangles of an intermediate mesh occluded by others might in a further
refinement step be subdivided into triangles which are then no longer occluded.

3.5 Problems

At the date of writing this thesis the only known problem are under-refined
primitives. This is a common problem of many recursive refinement algorithms.
Due to the coarse sampling of the terrain elevation data in early steps of the
refinement process, only low frequencies in the heightmap are approximated
well. Therefore, it is possible that some primitives may be rejected for fur-
ther subdivision which would be necessary to approximate high frequencies
of the terrain data in the domain covered by the primitives. Schmiade gives
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in [5] an detailed overview on the problem making a further description of the
problem redundant. In practice, a sufficient small screen-space error threshold
increases the probability that under refined triangles of a coarse mesh will be
refined, thus minimizes the problem. At a screen-space error threshold of 1.0
pixel, no under-refined triangles could be measured with sample terrain data
sets and testing environment as described in the results Sec. 5. A more exact
calculation of the screen-space error on an edge with more than one sample
would make under-refined triangles more unlikely to occur. A measurement
of the heightmaps frequencies would be a complete solution. When the resol-
ution of the coarse input is adjusted so that every frequency in the heightmap
is represented, under-refined primitives cannot occur.

3.6 Conclusion

A new parallel terrain rendering method on the GPU has been presented.
The central features of the method can be overviewed on the basis of the
four central requirements on terrain rendering algorithms pronounced in the
requirements analysis:

1. Accuracy: The presented algorithm guarantees an upper screen-space
error bound τ , where τ ≥ 0 can be freely adjusted by the user.

2. Optimal mesh topology: The meshes generated by the algorithm have
a consistent continuous topology without degenerate or near-degenerate
triangles. They contain no gaps and consist exclusively of right-isosceles
triangles.

3. Parallel approach: The presented algorithm is designed parallel and is
executed entirely in a parallel GPU runtime environment. The adaptive,
view-dependent refinement is done directly in the rendering pipeline.

4. Small memory footprint: Only the fastest available memory - the graph-
ics memory - is used. Solely necessary immediate mesh data and the
edge error map as well as the terrain elevation data is stored in this
memory.
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4 4pt-hermite smooth subdivision

In this section, a new adaptive interpolatory smooth subdivision scheme,
named “4pt-hermite smooth subdivision”, is presented. The method is com-
pletely local on triangle basis and can thus be applied fully parallel directly
in the rendering pipeline. Furthermore, no preprocessing or topology data
structures are needed. The new subdivision scheme is a generalisation of the
classical 4-point subdivision method for curves and the cubic hermite inter-
polation. It is applied adaptively only to sections of a mesh, where further
subdivision adds detail. These details are measured in screen-space. The new
scheme does not produce any degenerate or near-degenerate triangles during
the adaptive subdivision.

Starting with a definition of the problem addressed by smooth subdivi-
sion surfaces, a set of criteria for the classification and comparison of existing
smooth subdivision schemes is presented in this section. From these criteria,
requirements on the new method are derived. Following, in an overview of ex-
isting subdivision schemes it is investigated which existing methods fulfill the
pronounced requirements to what extent. Based on these considerations, the
concept of the new method is developed and presented in detail. It is presen-
ted how the new method can be integrated into the PAR terrain rendering
algorithm of the previous section. In a convergence analysis it is investig-
ated if the 4pt-hermite subdivision terminates. Finally, it is shown how a
non-degenerate triangulation is be achieved.

4.1 Motivation and goals

In the previous section, a new parallel terrain rendering method on the GPU
was outlined, which fulfills the requirements presented at the beginning of
this thesis. Consequently, at a first glance the development of a new method
addressed to the problem of terrain rendering seems to be superfluous. But
in that requirements analysis exclusively the core requirements on a terrain
rendering algorithm were outlined. The application of smooth subdivision
results in a variety of improvements on the presented PAR method, which
were not covered there.

These improvements can easily be named after the problem addressed by
smooth subdivision surfaces is defined:

Smooth subdivision schemes shall give a representation for a smooth surface
generated from a control mesh. This representation is specified in the form of
refinement rules. The smooth surface is then defined as the limit of a recursive
refinement of the control mesh with these rules.

Now, two central benefits of using smooth subdivision surfaces in the context
of terrain rendering can be pronounced:

20



Silhouette preservation

The contours of an object represent an essential property for the human visual
system to identify the object’s shape and position in 3D-space. The applic-
ation of smooth subdivision schemes to a terrain mesh retains more detail
near silhouettes. Therefore, with a higher resolution on object edges, smooth
subdivision improves the observed image quality of the rendered terrain.

Infinite continuous levels-of-detail

Through their recursive structure, smooth subdivision surfaces provide an
infinite fine resolution of the limit surface in the refinement process. Con-
sequently, smooth subdivision surfaces can be exploited as a representation of
the heightmap elevation data with an unlimited resolution. If the mesh gener-
ated in a terrain rendering algorithm has reached the heightmap’s resolution,
smooth subdivision surfaces offer still further levels-of-details. This has the
following benefits:

• Close-up POVs: The terrain can be viewed from an arbitrarily close
POV while still enabling the construction of a fine mesh. This is an ad-
vantage when terrain information other than elevation data (for example
color information) is available in a higher resolution as the heightmap or
further algorithms should be applied on very small sections of the mesh.

• Large slope changes are smoothened: Large slope changes in a terrain
surface mesh - at the edges of cliff areas or summits - can be noticed
as sharp creases or darts. Large differences in adjacent elevation values
cause these terrain features. As there is no continuous transition between
the adjacent height values, the resolution of the heightmap is too low
in the affected terrain sections. The application of smooth subdivision
surfaces solves this problem by generating a smooth transition between
the adjacent height values.

4.2 Criteria for the analysis of smooth subdivision schemes

This section presents criteria for the classification and comparison of smooth
subdivision schemes. These are used first, to develop requirements on the new
method and second, to structure the variety of existing subdivision schemes.
The central criteria are presented in the following listing:

• Interpolation/Approximation: Interpolating schemes have limit surfaces
which float through the vertices of the control mesh. In the approximat-
ing case, the control mesh vertices do not have to lie on the subdivision
surface.

• Continuity: Parametric continuity describes the smoothness of a para-
meter’s change along a curve. In the case of a surface, Cn-continuity with
n ∈ N defines that n partial derivatives of the surface are continuous.
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• Subdivision rules: A subdivision rule describes how an input mesh is
related to the refined mesh resulting from a single subdivision step. The
split operator - how and where vertices and faces are inserted - as well as
the application of the rules are distinguishing features of smooth subdivi-
sion schemes. The application can be categorized as follows: In uniform
schemes, all sections of an input mesh are subdivided with the same
rule, while in non-uniform schemes, various rules for different sections
exist. Stationary schemes apply the same set of rules to a mesh in every
subdivision step, while non-stationary schemes possess several rules for
different subdivision steps.

• Mesh type: The way how vertices are combined to face polygons is a
central feature of the mesh, smooth subdivision schemes are applied to
and which they output. In practice, nearly exclusively quadrilateral and
triangular schemes are distinguished.

• Support: The support of a smooth subdivision surface defines how large
the adjacency of vertices is, needed for the application of the scheme to
a single primitive.

4.3 Requirements

After the criteria in the preceding section have been presented, the follow-
ing requirements on a smooth subdivision scheme for application in terrain
rendering can be pronounced:

As the scheme shall be applied on meshes generated from terrain eleva-
tion data, the subdivision method has to be interpolating. An approximat-
ing scheme would alter the original data, thus decreases the accuracy of the
rendered terrain scene. To generate the smoothest possible surface, the limit
surface should be Cr-continuous with a greatest possible r ∈ N. In order not
to produce any holes in the surface it should at least be C0-continuous. To
make an application of the subdivision method fast and simple to implement,
in the best case the scheme should be uniform and stationary.

Beneath these requirements derived directly from the criteria above, the
positive features of the PAR terrain rendering method shall be applied and
the new smooth subdivision method should be compatible and easy to integ-
rate with this method. This defines the following additional requirements:
The new smooth subdivision method should be executable fully parallel in a
stream-processor environment on the GPU. Therefore, its support should be
as small as possible - in the best case on the vertices of one primitive. As PAR
generates meshes consisting of triangles, the scheme should be triangular. The
subdivision scheme is demanded to insert non-degenerate triangles (in the best
case it inserts exclusively right-isosceles triangles). Finally, to effectively ap-
ply the smooth subdivision method, the scheme should be adaptive. Only in
mesh regions where a subdivision adds detail, which can be measured by a
difference in screen-space, the scheme should be applied.
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4.4 Existing smooth subdivision methods

The starting point for the design of a new method, which fulfills a maximal
subset of the requirements described above, is a look at the features of existing
smooth subdivision methods. Zorin and Schröder in [10] cover many aspects
of smooth subdivision theory. As a detailed survey on the vast number of
existing schemes would exceed the scope of this work, an overview of the
classical interpolating schemes is given:

Scheme Mesh type Continuity Support Split operator
Butterfly [13] triangular C1 subset of

1-adjacency
of an edge

1-to-4 for every
triangle

Kobbelt [15] quadrilateral C1 1-adjacency
of a quad

1-to-4 for every
quad

Ternary subdivi-
sion [18]

triangular C2 1-adjacency
of a triangle

1-to-9 for every
triangle

Interpolatory√
3-Subdivision [16]

triangular C1 1-adjacency
of a triangle

special√
3-split

Interpolatory√
2-Subdivision [17]

quadrilateral C1 1-adjacency
of a quad

special√
2-split

Table 1: Interpolating smooth subdivision schemes. All listed schemes are stationary
and uniform.

All schemes presented in table 1 are at least C1-continuous, which guar-
antees a fair smooth limit surface. But none of the listed subdivision methods
has a completely local support on single primitives. This is problematic be-
cause of the following reason: To use adjacency information, a topology data
structure would be needed. After one primitive is processed in a subdivision,
the adjacency information for all adjacent primitives has to be updated, what
means that these cannot be processed in the same pass. Therefore, a fully
parallel approach is prohibited.

A completely local support on a single triangle solves this problem. In [21]
Broubekeur and Schlick pursue this approach to present a GPU-based ap-
proximation of existing smooth subdivision schemes. Beneath this work, Niel-
son [20], Vlachos [22] and Karbacher [14] describe methods for local triangular
subdivision methods. These methods have in common that the vertices and
normals of a flat triangle are used to construct a curved Bézier patch for
this triangle. This approach produces at least C0-continuous meshes, as ad-
jacent triangles have identical vertices and normals on their sharing edges.
It can be applied straightforwardly to a complete mesh. But these methods
do not include an adaptive application without degenerate or near-degenerate
triangles and exclusively in mesh regions where a subdivision adds detail in
screen-space.

Therefore, a new smooth subdivision method is developed, which has fea-
tures that enable a non-degenerate triangulation while still being fully local
on triangle basis. The idea is to derive the new scheme from the classical
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subdivision schemes outlined in table 1, to acquire as much of the continuity
properties as possible. Ideas of the local triangular schemes shall be applied
to enable a completely parallel approach. In a detailed view at the schemes
in table 1, the observation can be made that all schemes are directly derived
from the 4-point scheme [12] for curves or a modification of it - that means
these subdivision schemes can be understood as a generalization of the 4-point
scheme for the case of a surface. This scheme is chosen as a starting point for
the development of the new 4pt-hermite scheme presented in this thesis. An
overview of the 4-point scheme for curves is given in the following paragraph.

4-point subdivison scheme

The classical 4-point subdivision scheme [12] defines for a given set M0 =
{p0

i }i=n+2
i=−2 of n + 4 initial control points a C1-continuous curve G, which in-

terpolates all p ∈ M . The curve G is represented as the limit of the recursive
application of the following rule:

Mk+1 =

{
pk+1
2i = pk

i −1 ≤ i ≤ 2kn + 1
pk+1
2i+1 =

(
1
2 + w

) (
pk

i + pk
i+1

)− w
(
pk

i−1 + pk
i+2

) −1 ≤ i ≤ 2kn

G = Mk→∞

(3)
The geometric interpretation is depicted in Fig. 9. The new inserted points
are the midpoints of a control polygons’ edge pipi+1 shifted by a vector 2w~e
where ~e is the vector from the midpoint of the secant pi−1pi+2 to the midpoint
of pipi+1. Consequently, w ∈ R is a tension parameter, which controls the
tightening of the resulting limit curve to the control polygon. Dyn and Levin
in [12] introduce the special value w = 1

16 more as a heuristic value for a
visually smooth curve and prove that this value is in a range of w-values
which produce a C1-continuous limit curve.

pi+1pi

~e

p
i+ 1

2

= 1

2
(pi−1 + pi+1) + 2w~e

2w~e

pi−1 pi+2

Figure 9: Geometrical interpretation of the interpolatory 4-point subdivision
scheme.

4.5 Concept

Based on features of existing smooth subdivision methods overviewed in the
preceding section, in this section a new adaptive interpolatory smooth subdi-
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vision scheme is designed.
As the new method is demanded to be completely local on a single prim-

itive, the input to the new algorithm is for every mesh triangle exclusively
its three points and normals. Consequently, the method does not receive any
information about a triangle’s adjacent vertices. To apply concepts of smooth
subdivision methods which use adjacency information, the idea is to approx-
imate the position of adjacent vertices through the primitive’s normals. With
these premises a smooth boundary curve is constructed for every triangle edge
in the input mesh. This curve is directly derived from the 4-point subdivision
scheme for curves. It is proven that exactly the same curve can be constructed
with cubic hermite interpolation. In a single subdivision step one new point
lying on this curve is chosen for a possible insertion. To achieve a good tradeoff
between modeling range, simplicity and a fair limit surface, the new normals
are calculated through an adaptive linear interpolation. As altogether the
new vertices and normals inserted at an edge can be computed exclusiveley
with the edge’s point-normals, the new scheme is completely edge-based. To
apply the 4pt-hermite subdivision adaptively only to the sections of a surface
where further subdivision adds detail, a new point is only inserted if the dis-
tance between the edge and the new point exceeds a user-defined screen-space
difference threshold.

4.5.1 New inserted vertices

This section describes how the new vertex inserted on an edge in a single
subdivision step is calculated. First the 4-point subdivision is used to calculate
a smooth curve for every edge of a triangle in the coarse input mesh. This
curve interpolates the edges end-vertices. As depicted in Fig. 9 the calculation
of a smooth curve for an edge pipi+1 uses the edges’ neighboring points pi−1

and pi+2. As only the points and normals of that edge are accessible for the
calculation, pi−1 and pi+2 are approximated by the new smooth subdivision
method through the normals. The idea behind this approach is that the
points lying on a smooth curve and interpolating a given set of control points
converge fast with a decreasing distance from a given control point to its
tangent. Consequently, the points on the considered tangent, which can be
calculated with the according control point’s coordinates and normal, can be
interpreted as an approximation of points on adjacent control polygon edges.
The left of Fig. 10 illustrates an edge p1p2 with the edge vector ~E = p2 − p1

and the length d = ‖ ~E‖ = ‖p2 − p1‖. p0 and p3 are chosen that they lie on
the tangent of the according control point and have a distance of d to that
control point. The value d is chosen as the control polygon is supposed to
be regularly spaced. This is justified because of two reasons: First, the mesh
outputted by the PAR algorithm fulfills this requirement nearly complete as
adjacent triangles can differ only by one level of refinement. That is because
the introduced mechanism of forced split sequences makes sure that sharing
edges of triangles differing by more than one refinement level are split. Second,
it will be shown in the convergence analysis of the new smooth subdivision
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Figure 10: A segment p1p2 of a control polygon for a smooth curve subdivision
scheme. The hat on a vector v̂ means that v̂ is normalized. Left: The
construction of adjacent points p0, p3. Right: Ambiguity for a normal
vector collinear to the edge vector.

method that the adaptive application will not insert triangles in mesh sections
where normal variation is very small. Therefore also at the borders of these
sections where differing subdivision levels can occur, the normal variation
has to be small. Thus intermediate meshes in the refinement process can be
expected to have little tangent variation at triangles with differing subdivision
levels. Therefore, suggesting an equally spaced control mesh at triangles with
large differences in their refinement levels introduces no large errors.

After the points p0 and p3 have been defined, they can now be expressed
with the end-points and normal vectors of edge p1p2. First, p0 shall be calcu-
lated. The idea is to determine a point x as depicted in Fig. 10. If x is not
identical to p1, the line through p0 and p1 is unambiguously defined through x
and p1. The point z is chosen as the intersection of the normal n (red) through
p1 with the Thales’ semicircle (green) around the midpoint of p1p2 with the
radius d

2 . Therefore, the triangle 4p1p2z is right-angled at z. Consequently,
the length lp1z of the triangles edge p1z can be calculated by the length of the
projection of ~E on n̂1, so that

lp1z = − ~E · n̂1 and z = p1 − n̂1 · lp1z (4)

As it is chosen α2 = α1 as depicted in Fig. 10 these are corresponding angles
and the quadrilateral p1p2zx is a parallelogram. As parallelograms have par-
allel opposite sides of equal length, it is:

z − x = ~E ⇔ x = z − ~E =
with (4)

p1 − ~E + n̂1

(
~E · n̂1

)
(5)

Consequently, the tangent vector ~t1 = p1 − p0 and with that p0 can be calcu-
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lated as follows:

~t1 = d
p1 − x

‖p1 − x‖ = ‖ ~E‖
~E − n̂1

(
~E · n̂1

)

‖ ~E − n̂1

(
~E · n̂1

)
‖

p0 = p1 − ~t1 = p1 − ‖ ~E‖
~E − n̂1

(
~E · n̂1

)

‖ ~E − n̂1

(
~E · n̂1

)
‖

(6a)

Completely analogue the following can be derived for ~t2 = p3 − p2 and p3:

~t2 = ‖ ~E‖
~E − n̂2

(
~E · n̂2

)

‖ ~E − n̂2

(
~E · n̂2

)
‖

p3 = p2 + ~t2 = p2 + ‖ ~E‖
~E − n̂2

(
~E · n̂2

)

‖ ~E − n̂2

(
~E · n̂2

)
‖
(6b)

It follows that ~t1,~t2 and p0, p3 cannot be calculated if ‖ ~E − n̂i( ~E · n̂i)‖ = 0 ⇔
~E = ~0 ∨ n̂i ‖ ~E with i ∈ {1, 2}. If the respective normal vector is collinear
with the edge vector ~E, the information about the curvature of the control
polygon is ambiguous (see right side of Fig. 10). Considering the point p1 in R2

space, two adjacent points p
′
0, p

′′
0 and consequently two smooth curves (red and

green) could be constructed. In R3 space, an infinite number of curves can be
constructed. As no unambiguous smooth subdivision curve can be generated,
in this case it is explicitly set ~ti = ~0 and p0 = p1, p3 = p2 which guarantees
that the smooth curve will be identical to p1p2 - that can be derived from the
subdivision rules presented in the following sections.

Application of the 4-point subdivision scheme

After all necessary points for a given edge p1p2 are derived, the 4-point scheme
with equation (3) can be applied straightforward to this edge. The new point
Pnew

4pt inserted at p1p2 by one subdivision step in the new scheme is:

Pnew
4pt =

(
1
2

+ w

)
(p1 + p2)− w (p0 + p3)

=
with (6)

1
2

(p1 + p2) + w‖ ~E‖



~E − n̂1

(
~E · n̂1

)

‖ ~E − n̂1

(
~E · n̂1

)
‖
−

~E − n̂2

(
~E · n̂2

)

‖ ~E − n̂2

(
~E · n̂2

)
‖




(7)
For the same reasons as described in the context of the PAR method (para-
graph “Edge-based split operator” in Sec. 3.2.2) the new smooth subdivision
method inserts only up to one new vertex at an edge per subdivision step.
Therefore, no further applications of the 4-point scheme have to be calculated
for equation (7).
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Application of cubic Hermite curves

In this paragraph an interesting property of the outlined scheme is presented.
The curve generated by the application of the 4-point scheme above is equal to
a cubic hermite interpolation with weighted tangent vectors. To show that, in
the following paragraph the new subdivision scheme is now derived from cu-
bic hermite interpolation applied to the considered edge with its approximated
tangents. Cubic hermite interpolation constructs a smooth curve which inter-
polates the given positions and derivatives in the endpoints of the curve. As
Farin gives in [11] a detailed description of hermite interpolants (and hermite
curves can be regarded as a well-researched topic in computer graphics) only
the definition used in this work is presented. The cubic hermite curve H
interpolating the points p1, p2 and tangent vectors ~t1,~t2 is given through:

H(u) = p1h0(u) + ~t1h1(u) + ~t2h2(u) + p2h3(u) with u ∈ [0, 1];u ∈ R and

h0(u) = 2u3 − 3u2 + 1 h1(u) = u3 − 2u2 + u

h2(u) = u3 − u2 h3(u) = −2u3 + 3u2

(8)

With the value u = 1
2 it becomes h0(1

2) = h3(1
2) and h1(1

2) = h2(1
2). Con-

sequently, in this case both end-points and end-tangents contribute equally
to the point H(1

2) on the cubic hermite curve. As the subdivision scheme de-
signed in this section shall be symmetric for an inputted edge - that means the
scheme should not depend on the order of an edges’ point-normals inputted
to the scheme - the value u = 1

2 is chosen for the hermite curve point inserted
on an edge in a single subdivision step. For a given edge p1p2 this point Pnew

can be expressed with equation (6) as follows:

Pnew = H

(
1
2

)
= p1h0

(
1
2

)
+ lt~t1h1

(
1
2

)
+ lt~t2h2

(
1
2

)
+ p2h3

(
1
2

)

=
1
2

(p1 + p2) +
1
8
lt~t1 − 1

8
lt~t2

=
1
2

(p1 + p2) + lt
‖ ~E‖
8




~E − n̂1

(
~E · n̂1

)

‖ ~E − n̂1

(
~E · n̂1

)
‖
−

~E − n̂2

(
~E · n̂2

)

‖ ~E − n̂2

(
~E · n̂2

)
‖




(9)
In the equation above, the value lt ∈ [0, 1] with lt ∈ R is introduced as a
weight for the lengths of both end-tangent vectors at the considered edge. The
influence of the tangent vectors to the point Pnew on the curve is thus linear
dependent on lt. Therefore, an increase of lt makes the curve converge faster to
the end-tangents - the curve is “pulled” towards the edges end-tangents. The
tangent vectors encode the information on the approximated adjacent control
points of an edge. By making lt freely adjustable, the user or application of
the smooth subdivision scheme can decide to what fraction this approximated
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data or the original input data should contribute to the curve in a single
refinement step. That means lt = 1.0 produces a maximal smooth curve for a
given control polygon, lt = 0.0 results in a curve identical to the given control
polygon and lt = 1

2 would deliver a good tradeoff.
Comparing equation (9) with equation (7), it becomes clear that with

lt = 8w both schemes are equal (with w = 1
16 it is lt = 1

2). Therefore, the
presented scheme is named “4pt-hermite scheme”. In the following sections
equation (9) is meant regarding the 4pt-hermite scheme.

Continuity

The 4pt-hermite scheme generates for triangle edges smooth boundary curves.
At sharing edges of adjacent triangles the identical curve is constructed as the
vertices and normal vectors are identical there. Therefore, the smooth subdi-
vision scheme can guarantee C0-continuous limit surfaces. As in completely
local schemes, the exact adjacency of a primitive can only be approximated, it
is not possible to ensure a higher continuity without assumptions on the input
mesh.

The generated smooth boundary curves meet at sharing end-points with
tangents on the same tangent plane, because the normals are identical for the
curves meeting there. Therefore, at a control mesh vertex, the limit surface
is C1-continuous and in small areas around, it is nearly C1-continuous. With
one subdivision step, the number of control mesh vertices for a following pass
is increased. Therefore, the area in which the generated surface is nearly
C1-continuous increases with every subdivision pass. Consequently, the limit
surface represents an approximation of a C1-continuous surface.

4.5.2 New inserted normals

This section describes how the normal of the new point inserted at an edge
in a single subdivision step is defined. With the subdivision rules presented
in the preceding section a cubically varying geometry has been defined. But
the 4pt-hermite scheme, presented in this thesis, does not calculate the exact
cubically varying normals. That is because of two reasons: First, the exact
normals are expensive to calculate. Second, often interpolating schemes with
tangent-continuity produce, just because of the tangent-continuity and inter-
polation constraint, ripples or creases unwanted in a visually appealing fair
limit surface. To weaken this effect, the normal variation over an edge should
be as small as possible while still enabling a large modeling range.

Consequently, the central goal for the normal calculation is to find a good
tradeoff between the modeling range, simplicity and a fair limit surface. There-
fore, the 4pt-hermite scheme approximates the exact normals by an adaptive
linear interpolation similar to Vlachos et al. [22] as well as Mao et al. [19].

With the outlined cubically varying smooth subdivision geometry, it is
possible to model archs or serpentines at an edge. As depicted in the top
of Fig. 11 for edge e1, a linear interpolation approximates the arch cases of
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quadratic or cubic curves, but it ignores the serpentine cases for edge e2. For
these cases in [22] and [19] a quadratic normal interpolation is introduced.

a)

p1 p2e1

b)

e1

n̂1

n̂2

n̂1

n̂2

p1 p2 e2

n̂1

e2

n̂1

p1 p2

p1 p2

n̂2

n̂2

Figure 11: Linear normal interpolation (a) and quadratic normal interpolation (b).
The blue curves represent the smooth limit curve.

Therefore, analogous to [19], the 4pt-hermite subdivision handles serpentine
cases and quadratic cases seperate. A given edge p1p2 with the according
normals and the edge vector ~E = p2 − p1 (as depicted in Fig. 11) represents
the arch case, if:

[(
n̂1 · ~E ≥ 0

)
∧

(
n̂2 · (− ~E) ≥ 0

)]
∨

[(
n̂1 · ~E ≤ 0

)
∧

(
n̂2 · (− ~E) ≤ 0

)]

⇔
(
n̂1 · ~E

)(
n̂2 · (− ~E)

)
≥ 0

(10)

In the following, both, the arch and serpentine case, are described in detail:

Arch case

For the arch case, the new normal vectors are calculated by linear interpola-
tion. For a given edge p1p2 with the normalized end-normals n̂1, n̂2 the new
arch case normal n̂new

arch is calculated from ~nnew
arch = (1− l)n̂1 + ln̂2 with l ∈ [0, 1].

p1

n̂1

n̂2

p2

M

Pnew

k

n̂new

arch

k

Figure 12: Calculation of the arch case normal vector n̂new
curve.

The weight l is set to l = k
‖ ~E‖ . As depicted in Fig. 12, k is the length of the

perpendicular (dashed) from the new inserted point Pnew (red) on the plane
M (green). M = {p ∈ R3|(p − p1) · ~E = 0} is the plane through p1 with
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the normal vector ~E. Consequently, k can be calculated as the projection
k = (Pnew − p1) · ~E

‖ ~E‖ . By inserting equation (9), it can be shown that k ∈[
1
4‖ ~E‖, 3

4‖ ~E‖
]
:

k =
~E

‖ ~E‖
· (Pnew − p1)

=
1
2

~E2

‖ ~E‖
+ lt

‖ ~E‖
8‖ ~E‖

~E




~E − n̂1

(
~E · n̂1

)

‖ ~E − n̂1

(
~E · n̂1

)
‖
−

~E − n̂2

(
~E · n̂2

)

‖ ~E − n̂2

(
~E · n̂2

)
‖




︸ ︷︷ ︸
~x

=
1
2
‖ ~E‖+ lt

1
8

~E · ~x with ‖~x‖ ∈ [0, 2]

=
1
2
‖ ~E‖ − lt

1
8
‖ ~E‖‖~x‖cos](~x, ~E)

=
1
2
‖ ~E‖ − 1

8
‖ ~E‖ω with ω = lt‖~x‖cos](~x, ~E) ⇒ ω ∈ [−2, 2]

=
(

1
2
− ω

8

)
‖ ~E‖ ⇒ k ∈

[
1
4
‖ ~E‖, 3

4
‖ ~E‖

]

(11)

It was demanded that l ∈ [0, 1]. As it was shown that k ∈
[

1
4‖ ~E‖, 3

4‖ ~E‖
]

it

is even l = k
‖E‖ ∈

[
1
4 , 3

4

]
. Altogether, a closed form of n̂new

arch can finally be
formulated:

~nnew
arch = (1− l)n̂1 + ln̂2 =


1−

(Pnew − p1) · ~E
‖ ~E‖

‖ ~E‖


 n̂1 +

(Pnew − p1) · ~E
‖ ~E‖

‖ ~E‖
n̂2

= n̂1 +
(Pnew − p1) · ~E

‖ ~E‖2
(n̂2 − n̂1)

n̂new
arch =

~nnew
arch

‖~nnew
arch‖

(12)

Serpentine case

Analogous to [22] and [19], in the serpentine case, the interpolated normal
~nnew

arch from equation (12) is reflected across the plane perpendicular to the edge.
As it is proven that l ∈ [

1
4 , 3

4

]
this can be regarded as a good approximation

for the serpentine case.
For a given edge p1p2, as depicted in Fig. 13, the new serpentine case normal
~nnew

serp can be calculated with the following equation (13):
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Figure 13: Calculation of the serpentine case normal n̂new
serp. The green dashed line

represents the plane across the interpolated normal ~nnew
arch is reflected. r

is the length of the projection of ~nnew
arch on ~E.

~nnew
serp = ~nnew

arch + 2
~E

‖ ~E‖
r = ~nnew

arch − 2
~E

‖ ~E‖

(
~nnew

arch ·
~E

‖ ~E‖

)

n̂new
serp =

~nnew
serp

‖~nnew
serp‖

(13)

Finally, it shall be proven that the serpentine case has only to be handled in the
first pass of the subdivision scheme. That is because every edge resulting from
subdivision of a serpentine case edge represents then the curve case: It follows
from equation (10) that a smooth limit curve for a given edge p1p2 is serpentine
if both projections (n̂1 · Ê) and (n̂2 · Ê) have the same sign. The interpolated
normal was defined as ~nnew

arch = (1− l)n̂1 + ln̂2. Consequently, the projection of
the interpolated normal on ~E expressed by (~nnew

arch · Ê) = (1− l)n̂1 · Ê + ln̂2 · Ê
with (1 − l), l both positive, has also the same sign. In equation (13), from
~nnew

arch this projection (the brown line in Fig. 13) is twice substracted (the length
of the red vector). Therefore, the sign of the projection on ~E is inverted for
~nnew

serp. Consequently, both edges resulting from a single subdivision of an edge
representing the serpentine case, then represent the curve case.

4.5.3 Tesselation

A central goal of the subdivision method presented in this section is adaptivity.
Only in mesh regions where further subdivision adds detail, which can be
recognized in screen-space, subdivision should be applied. To achieve this,
for every edge the distance between the new vertex to insert and the edge
is measured in screen-space. This distance represents a measurement of the
detail added for the edge in screen-space by a single subdivision step. If it
exceeds an user-defined bound, this edge should be subdivided.
With distance between a point and an edge, the length of the perpendicular
from the point on the line through both edge points is meant. As depicted
in Fig. 14, for a given edge p1p2 and the new point Pnew this distance δ in
object-space and δssc in screen-space can be calculated as follows:
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Figure 14: Measurement of the difference δ (blue) between an edge p1p2 and a new
point Pnew (red).

δ = ‖~a− ~k‖ =

∥∥∥∥∥(Pnew − p1)− k
~E

‖ ~E‖

∥∥∥∥∥ with k = (Pnew − p1) ·
~E

‖ ~E‖

=

∥∥∥∥∥∥
(Pnew − p1)−

(
(Pnew − p1) · ~E

)
~E

‖ ~E‖2

∥∥∥∥∥∥
δssc = ssc(δ)

(14)
where ssc : R3 7→ R2 maps from object-space to screen space.

Altogether, the edge-based split operator for the 4pt-hermite scheme can
be finally summarized as follows: Be σ the user-defined screenspace difference
threshold in pixels, then an edge p1p2 should be split, if δssc > σ. The edge is
subdivided with the already outlined new point Pnew and new normal n̂new

arch

or n̂new
serp into the two edges p1Pnew and Pnewp2.

Ensuring a non-degenerate triangulation

A central requirement on the smooth subdivision method presented in this
section is to produce meshes without degenerate or near-degenerate triangles.
In equation (11) it was shown that k ∈

[
1
4‖ ~E‖, 3

4‖ ~E‖
]
. Therefore, if every edge

of an input mesh is subdivided in a single subdivision step, no degenerate or
near-degenerate triangles can be generated (unless the inputted mesh already
contains triangles of that type). Recapitulating the paragraph “Ensuring a
right-isosceles triangulation” in Sec. 3.2.2, the problem occurs when only a
subset of a triangle’s edges has to be subdivided. This requires the insertion of
oblique triangles and resubdividing these oblique triangles again with oblique
triangles can produce near-degenerate triangles. To prohibit oblique triangles,
the idea was to force additional edge splits which transform the problem cases
the cases 1,2,3 (see Fig. 3) to the cases 5,6,7 where no oblique triangles are
necessary.

This concept is now applied to make the 4pt-hermite scheme adaptive.
The idea is the following: Additional edge splits, introduced to ensure a non-
oblique triangulation, are done by inserting an interpolating point on the edge.
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All edges, resulting from further subdivisions of that edge, are explicitly forced
to lie on the original edge. Therefore, an adjacent triangle, which shares this
edge, does not need to know about the split (the green triangle in Fig. 15).
Thus a forced split in a triangle can be done local on that triangle. First this
approach will be justified, and second, the realization will be presented.

Figure 15: Two different refinement levels of adjacent triangles. In the first refine-
ment level (solid grey) the blue circles represent an exceeded screen-space
difference. Thus the black triangle forces a split (thick red circle). In
the second refinement level (dotted grey) the brown circles represent an
edge flag.

In the convergence analysis of the 4pt-hermite subdivision, it will be shown
the following: For an arbitrary edge the distance of the new inserted point to
the interpolating midpoint of the edge decreases with every subdivision step.
That means the smooth subdivision curve for the edge approaches with every
subdivision step more to the edge itself. Consequently for an edge, which
does not exceed a user-defined screenspace difference threshold, the Hausdorff
distance between the smooth curve for this edge and the edge can be assumed
to be sufficiently small enough to justify that the curve can be approximated
well by the edge itself. Therefore, when subdividing an edge although it would
not be subdivided due to its screen-space difference, it is a good approximation
to insert new vertices lying exactly on the edge. As described above, this
approximation enables that a forced split can be done local on a triangle.
In contrast, an approach using a memory lump for saving forced splits and
multiple rendering passes to execute this splits (as introduced by the “edge
error map concept”) is less parallel and more expensive. Therefore, the local
approach as described above delivers a good tradeoff between the performance
of the method and the accuracy of the limit surface. That is the central
reason why for the 4pt-hermite subivision not the memory-lump/multiple-pass
technique was chosen.

In the realization, a forced edge split is done by inserting the according
midpoint of the edge. Edges resulting from a forced subdivision are explicitly
forced to lie on the original edge through the following idea: A flag is assigned
to every edge of a triangle. If the flag is set, the edge is allowed to insert only
new points lying on itself in further subdivision steps. This is achieved in the
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tesselation of a triangle. Every edge inserted for a flagged edge recieves also
the flag (illustrated by the brown arrows and brown circles in Fig. 15). One
possible implementation is to encode the 3 edge flags in the color channels of
one triangle vertex.

4.5.4 Putting it all together

This section describes how the 4pt-hermite smooth subdivision method can
be integrated into the existing realization of the PAR algorithm. Fig. 16
illustrates this integration.

ping−pong
buffer

buffer
shader /

code block

fragment
shader framebuffer

1. pass: rendering

Rendering

geometry
shadervertex

shader
Intermediate

mesh

read as buffer texture

read as vertex attribute

transform feedback

raster operation
write through

write through

Output mesh...

algorithm

Refinement

Subdivision with
new vertices and
new normals

1. pass: subdivision

4pt−hermite smooth subdivision

no

yes

ColormapParameter

PAR

δssc

δssc > 0

lt

Figure 16: Integration of the 4pt-hermite subdivision into the existing solution.

A smooth subdivision unit is inserted after the refinement of the PAR terrain
rendering algorithm is finished and before rendering is done. Thus it is directly
feeded with the mesh outputted by the PAR method. For one smooth subdivi-
sion step beneath the input mesh and the parameter lt no further information
is necessary. Consequently, it can be done entirely in one geometry shader
pass. Only in the first subdivision pass, serpentine edges have to be handled.
Analogous to the PAR algorithm, recursive application is introduced by the
described Transform Feedback techique [9]. The recursive subdivision is ap-
plied until for every edge in the generated mesh it is δssc ≤ σ, thus no further
detail would be added by following passes. Finally, the mesh is rendered.

4.6 Convergence analysis

This section analyses the recursive 4pt-hermite subdivision about, if the al-
gorithm terminates after a limited number of passes.

The algorithm terminates if every edge in the mesh falls under the user-
defined screen-space difference threshold σ. Consequently, it has to be proven
that for an arbitrary edge, the edges produced by the smooth subdivision fall
under a σ > 0 after a limited number of subdivisions. The idea is to first show
that the angle between the two edge-normals decreases with every subdivision
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step for the inserted edges. Second, from this property it is derived that every
σ > 0 can be can be undershot by the method.

p1 p2

pn

l

n̂1

n̂1

~nn

n̂2

n̂n

n̂2

Figure 17: Left: A single subdivision step of an edge p1p2. Right: Linear normal
interpolation.

On the left of Fig. 17 a single subdivision step of an edge p1p2 into the edges
p1pn, pnp2 is illustrated. As the serpentine case is exclusively handled in
the first subdivision pass, only the curve case has to be considered in this
convergence analysis. In this case the new normal is linear interpolated by
~nn = (1 − l)n̂1 + ln̂2 = n̂1 + l(n̂2 − n̂1). This interpolation is depicted in the
right of Fig. 17, where the red vector is (n̂2 − n̂1). As it is l ∈ [

1
4 , 3

4

]
the

vector ~nn must split the angle ](n̂1, n̂2) into two positive angles (light blue
and yellow in the right of Fig. 17). Therefore, it is ](n̂1, n̂2) > ](n̂1, n̂n)
and ](n̂1, n̂2) > ](n̂n, n̂2). That means in a single subdivision step the angle
between the normals decreases.

With a decreasing angle between normal vectors, it decreases the absolute
difference γ = |](n̂1, ~E) − ](n̂2, ~E)| between the normal-edge angles at an
edge’s end points. Therefore, rewriting equation (9) as:

Pnew =
1
2

(p1 + p2)

+ lt
‖ ~E‖
8


 ~E − n̂1‖ ~E‖cos](n̂1, ~E)∥∥∥ ~E − n̂1‖ ~E‖cos](n̂1, ~E)

∥∥∥
−

~E − n̂2‖ ~E‖cos](n̂2, ~E)∥∥∥ ~E − n̂2‖ ~E‖cos](n̂2, ~E)
∥∥∥




︸ ︷︷ ︸
~ε

=
1
2

(p1 + p2) + lt
‖ ~E‖
8

~ε

(15)
shows that ‖~ε‖ decreases with γ in every subdivision step. The following equa-
tion (16), shows that the first new edge p1Pnew resulting from the subdivision
of an arbitrary edge p1p2 has a smaller length as the original edge.
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∥∥p1Pnew
∥∥ = ‖Pnew − p1‖

=

∥∥∥∥∥∥∥∥∥∥∥

1
2

~E + lt
‖ ~E‖
8




~E − n̂1

(
~E · n̂1

)

‖ ~E − n̂1

(
~E · n̂1

)
‖
−

~E − n̂2

(
~E · n̂2

)

‖ ~E − n̂2

(
~E · n̂2

)
‖




︸ ︷︷ ︸
~x

∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥
1
2

~E + lt
‖ ~E‖
8

· ~x
∥∥∥∥∥ with ‖~x‖ ∈ [0, 2]

⇒ ∥∥p1Pnew
∥∥ ∈

[
0,

3
4
‖ ~E‖

]
as

∥∥∥∥
lt
8
~x

∥∥∥∥ ∈
[
0,

1
4

]

(16)
It can be shown analogue that also the second new edge Pnewp2 has a smaller
length than the original edge. Consequently the edge-length ‖ ~E‖ decreases in
a single subdivision step guaranteed. As ‖~ε‖ and ‖ ~E‖ decrease in every sub-
division step, it follows from (15) that the distance between the new inserted
points Pnew and the interpolating midpoint 1

2 (p1 + p2) decreases in every sub-
division step for the new produced edges. Therefore, δ undershoots any value
greater zero after a limited number of subdivision steps. Consequently, also
after a limited number of subdivision passes the value δssc must undershoot
an arbitrary value σ > 0, which had to be shown.

4.7 Conclusion

At the beginning of this section the requirements on smooth subdivision meth-
ods in the field of terrain rendering have been presented. Based on that and
an overview of existing schemes, a new smooth subdivision scheme has been
designed. Guided by the pronouced requirements, the scheme can be summar-
ized by 5 central features:

1. Limit surface properties: The limit surface interpolates the control points.
It is guaranteed at least C0-continuous and approximates in large areas
C1-continuity. With the introduced parameter lt it is freely adjustable
to what extent the limit surface approaches to the control mesh. It was
proven that the scheme does not produce degenerate or near-degenerate
triangles.

2. Parallel approach: The scheme has a local triangular support and can
thus be executed fully parallel on a triangular input mesh.

3. Small memory footprint: In a single subdivision pass, refinement is done
without any memory usage. Solely immediate meshes necessary for a
recursive application of the scheme is stored in graphics memory.
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4. Adaptivity: The presented method is executed adaptively in every re-
cursive subdivision step. Only in mesh regions where a further subdivi-
sion adds detail, which can be measured by a difference in screen-space,
the scheme is applied.

5. Compatibility with the PAR algorithm: The method can be comfortably
integrated into the existing solution via an additional recursive geometry
shader pass.
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5 Results

This sections describes the results of this thesis. An overview of the prac-
tical results of both new methods (as seperate algorithms or in conjunction)
is presented on the basis of synthesized images with sample data sets. Follow-
ing, advisable parameter values and performance measurements with a sample
implementation are presented.

First, the results of the PAR terrain rendering algorithm are overviewed.
Fig. 18 gives an impression of the overall functionality of the method.

Figure 18: Refinement with the PAR method. The yellow lines represent the view-
ing frustum. Left: coarse input mesh. Right: refined mesh.

The refinement is done adaptively on the terrain section in the viewing frustum
- exclusively on edges which exceed the screen-space error threshold of 20 pixels
in this sample. Outside the viewing frustum cracks in the mesh can be noticed,
as the method does not communicate forced splits to edges of triangles lying
entirely outside the viewing frustum (for example the red colored one). The
forced splits ensure that all subdivided triangles in the viewing frustum are
allowed to differ only by one refinement level.

Fig. 19 gives an overview of the functionality of the 4pt-hermite subdivi-
sion method. On both meshes only 4 subdivision passes lead to a visually
appealing smooth surface. The left two images illustrate that only one ser-
pentine capturing pass is necessary. The right two sample images reveal that
the limit surface approximates in large areas of the mesh C1-continuity. In
addition with a smooth shading, nearly no C1-inconsistency can be noticed.
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Figure 19: 4 subdivision passes of the 4pt-hermite scheme (lt = 0.5). The yellow
lines are the exact normal vectors. Left: Single triangle. Right: Elong-
ated isosceles triangle with pyramids at its ends.

The adaptive application only of the 4pt-hermite smooth subdivision scheme
is illustrated in the left of Fig. 20. As forced splits do not have to be commu-
nicated over sequences of adjacent triangles, triangles with a sharing edge can
have differences larger than one in their refinement levels (see, for example,
the red colored one).

Figure 20: Left: adaptive application of the 4pt-hermite scheme. Right: Application
of the PAR algorithm without/with further smooth subdivision (lt =
1.0).

Finally, one profit of using both methods in connection is depicted in the right
of Fig. 20. The mesh in the first figure was refined with the PAR algorithm
with an allowed screen-space error of 5 pixels. A smooth silhouette is achieved
by applying to that mesh the 4pt-hermite smooth subdivision up to a screen-
space difference of 0.3 pixels which is depicted in the second image.

Parameters

The freely adjustable parameters of the presented methods are the screen-
space thresholds, the coarse input mesh and the parameter lt. If accuracy is
the primary goal, the screen-space error threshold of the PAR algorithm should
be chosen as small as available hardware resources allow. In the tests with the
research implementation of the method (test environment is described in the
next paragraph), values in the range from 0.5 to 1 pixel represented a good
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compromise between accuracy and the number of refinement passes, which
still enable interactivity. Due to its highly parallel design, the screen-space
difference of the 4pt-smooth-subdivision method could be set to values in the
range from 0.1 to 0.5 pixels without loosing an interactive framerate. To elim-
inate under-refined triangles, the resolution of the coarse input mesh should
be adjusted according to the frequencies measured in the terrain heightmap.
In general, on a very coarse input mesh, using the presented shader-based
approach is not very effective as due to the low number of primitives, the par-
allelism of the method cannot be exploited. Therefore, the coarse mesh should
be prerefined - 20 × 20 turned out to be a compromise in the experimental
implementation. Finally, as described in Sec. 4.5 choosing lt = 1

2 delivers a
good tradeoff between the smoothness and a minimal distance of the limit
surface to the control mesh.

Performance measurements

In this paragraph a scale of both presented methods’ interactivity and scalab-
ility is given, which allows to classify the performance of the algorithms in
comparison to other methods. Measurements were done on a PC with an In-
tel Core 2 Duo E6850 processor, 3 Gb main memory and a Nvidia GeForce
GTX 285 graphics card. A sample heightmap of the city of Siegen with a size
of 2025×2025 pixels and a quadratic 20×20 coarse input mesh was used. The
complete refinement process with a screen-space error of 1.0 pixels, a screen-
space difference of 0.3 pixels and lt = 0.5 was restarted for every new frame.
In this testing environment, random flights over the scene resulted in framer-
ates not under 30 FPS. Thus the presented method delivers interactivity with
current graphics hardware, while not loosing a high accuracy.

To examine the scalability of the research implementation, a method de-
scribed in Zhou et al. [23] was adopted. Using the NVStrap-driver in Riva-
Tuner, the number of stream-processors available on a Nvidia Geforce 8800
GTX GPU have been successively decreased, while the framerate was meas-
ured. As expected due to their parallel design, both methods are scalable to a
great extent. A decrease of over 1

3 (PAR) / nearly 1
2 (4pt-hermite scheme) of

the framerate could be measured at two consecutive halvings of the number
of available processors.
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6 Conclusion

Two new methods for effective parallel terrain rendering have been presented.
First, at the beginning of this thesis, the requirements on terrain render-

ing algorithms have been analysed. Based on that, a new parallel adaptive
refinement method on the GPU has been developed. The algorithm provides
adaptive, view-dependent, continuous levels-of-detail while generating meshes
consisting exclusively of right-isosceles triangles. It produces guaranteed error
bounds in screen-space.

Second, an overview of existing smooth subdivision schemes has been ex-
ploited for the design of a new interpolatory, local triangular, smooth subdi-
vision scheme. The method is adaptive and highly parallel, while it is still
guaranteed that no degenerate triangles are produced.

Plugging both methods together (besides they can also be used as seperate
algorithms) results in a fast effective parallel terrain rendering algorithm which
provides freely adjustable accuracy while enabling an infinite continuous range
of levels-of-detail and a visually appealing surface.

In the according conclusion sections, each algorithm has been evaluated, if
it meets the pronounced requirements. Finally, problems, advisable paramet-
ers and performance measurements have been presented.

Due to its high accuracy, interactivity and CLOD-approach, the complete
method is suited for various applications ranging from digital land surveying,
demanding primarily a high accuracy, to entertainment applications, which
call for an interactive visualization.

Future work

To solve the problem of under-refined triangles, it was suggested to adjust
the resolution of the coarse input mesh according to the frequencies measured
in the heightmap. Consequently, a very interesting target for future research
would be an algorithm which addresses this task.

Considering the design of parallel algorithms in general, a more flexible par-
allel hardware structure as on current graphics hardware would be desirable. A
central challenge for the PAR algorithm and other not fully parallelizable prob-
lems is that the parallel processing units cannot exchange information during
one execution pass. If a program executed in a single parallel processing unit
could stall another unit for several cycles, by using a shared memory lump
the communication of information between these units would be possible in
one parallel execution pass. It would be interesting to see to what extent
such a softening of the parallel hardware architecture would enable a parallel
execution of the class of not fully parallelizable problems.

Finally, the effects of inserting more than one vertex at an edge in the
PAR terrain rendering algorithm could be investigated. Especially the impact
on performance, with expected lesser refinement passes and larger calculation
time for all possible tesselations, would be interesting.
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