
Real-Time Rendering and Acquisition

of Spherical Light Fields

Echtzeit-Rendering und Akquisition
sphärischer Lichtfelder

Vom Fachbereich Elektrotechnik und Informatik der
Universität Siegen

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
(Dr.-Ing.)

genehmigte Dissertation

von

Dipl.-Inf. Severin Sönke Todt

Siegen – Juni 2009

1. Gutachter: Prof. Dr. A. Kolb
2. Gutachter: Prof. Dr. G. Greiner
Vorsitzender: Prof. Dr. V. Blanz

Tag der mündlichen Prüfung: 16. Juni 2009

Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier.

Abstract

Image-based rendering techniques have proven to be a powerful alternative to
traditional polygon-based computer graphics. This thesis presents a novel light
field rendering technique which performs per-pixel depth correction of rays for
high-quality light field reconstruction. The technique stores combined RGB
and depth values in a parabolic 2D texture for every light field sample being
acquired at discrete positions in a uniform spherical setup. Image synthesis
is implemented on the graphics processing unit within a customized fragment
program which extracts the correct image information from adjacent cameras
for each fragment by applying per-pixel depth correction of rays.

This dissertation demonstrates that the presented image-based rendering
technique provides a significant improvement compared to previous approaches.
Two different rendering implementations are explained which make use of the
uniform parametrization to minimize disparity problems and ensure full six
degrees of freedom for virtual view synthesis. While one rendering algorithm
implements an iterative refinement approach for rendering light fields with per-
pixel depth correction, the other approach employs a raycaster which provides
superior rendering quality at moderate frame rates.

Graphics processing unit based per-fragment depth correction of rays, used
in both implementations, helps reducing ghosting artifacts to a non noticeable
amount and provides a rendering technique that performs without exhaustive
pre-processing for 3D object reconstruction.

The presented light field techniques open up for the implementation of ef-
ficient and flexible rendering approaches. This work presents an efficient level
of detail rendering approach for light fields and introduces a flexible render-
ing technique for remote access to light field representation in a web-based
client-server application.

For the acquisition of spherical light fields with per-pixel depth a new ac-
quisition system is presented which makes use of recent advances in 3D sensor
technology to acquire combined RGB and depth images directly.

iii

Zusammenfassung

Bildbasierte Renderingmethoden haben sich in der Vergangenheit als ef-
fiziente Alternative zu traditionellen Renderingmethoden auf Polygonbasis er-
wiesen. Diese Doktorarbeit präsentiert eine neue Lichtfeld-Renderingmethode
die unter Ausnutzung von pro Pixel Tiefenwerten eine hochqualitative Bildsyn-
these in Echtzeit ermöglicht. Für einen diskreten Satz an gleichmässig auf
der Oberfläche einer Kugelrepräsentation angeordneter Samplepositionen spei-
chert die Technik kombinierte RGB und Tiefenwerte in einer gemeinsamen
parabolischen Textur. Die Bildsynthese erfolgt auf dem Grafikprozessor und
ist in einem angepassten Fragment Program umgesetzt, das zur Bestimmung
der Fragment Farbe korrekte Bildinformationen aus benachbarten Samplepo-
sitionen extrahiert.

Im Vergleich zu denen in der Vergangenheit vorgestellten Lichtfeldverfahren
stellt die in dieser Arbeit präsentierte Technik eine signifikante Verbesserung
dar. Es werden zwei unterschiedliche Renderingverfahren dargestellt, die beide
die gleichmässige Samplingstruktur nutzen, um Disparitätsprobleme zu ver-
meiden und virtuelle Ansichten mit sechs Freiheitsgraden zu ermöglichen.
Während das eine der Verfahren einen iterativen Ansatz zum Rendering von
Lichtfeldern mit Tiefenkorrektur implementiert, verfolgt das andere einen Ray-
casting Ansatz und erzielt im Vergleich zum erst genannten Verfahren deut-
lich bessere Ergebnisse. Mit Hilfe der in beiden Verfahren zur Anwendung
kommenden pro Pixel Tiefenkorrektur werden bei gleichzeitigem Verzicht auf
umfangreiche Geometrieverarbeitung Ghosting Artefakte signifikant reduziert.

Die präsentierten Lichtfeld-Renderingverfahren ermöglichen die Umsetzung
weiterer effizienter und flexibler Renderingmethoden. Diese Doktorarbeit
demonstriert einen effizienten Level of Detail Ansatz für die Synthese von Licht-
feldern und stellt ein neues flexibles Verfahren für den Remote Zugriff auf Licht-
feldrepräsentationen auf Basis einer Web basierten Client-Server Anwendung
dar.

Für die Akquisition sphärischer Lichtfelder wird im Rahmen dieser Arbeit
ein Verfahren vorgestellt, das neueste 3D Sensorsysteme nutzt, um kombinierte
Farb- und Tiefendaten direkt zu akquirieren.

v

Contents

Abstract iii

Zusammenfassung v

Table of Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Light Field Rendering . 2
1.2 Scientific and Technological Challenges 2
1.3 Contributions . 3
1.4 Outline . 4

2 Related Work 7

2.1 The Plenoptic Function . 7
2.2 The Light Field . 8
2.3 Light Field Acquisition . 10
2.4 Light Field Classification . 11
2.5 Survey of Light Field Rendering Approaches 15

2.5.1 Two Plane Light Field Rendering 15
2.5.2 The Lumigraph . 18
2.5.3 Spherical Light Field Rendering 21
2.5.4 Unstructured Light Fields 29

2.6 Conclusion . 35

vii

viii CONTENTS

3 Spherical Light Field Parametrization with
Per-Pixel Depth 39
3.1 Spherical Camera Space Parametrization 40
3.2 Parabolic Image Space Parametrization 42

3.2.1 Environment Mapping Techniques 42
3.3 Geometric Representation . 46
3.4 Sampling Analysis . 47
3.5 Storage Efficiency and Light Field Compression 48
3.6 Conclusion . 50

4 Spherical Light Field Rendering with Per-Pixel Depth 53
4.1 Spherical Light Field Rendering 54
4.2 Iterative Refinement . 56

4.2.1 Iterative Refinement Process 56
4.2.2 Implementation Details - Iterative Refinement 58
4.2.3 Rendering Quality - Iterative Refinement 62
4.2.4 Rendering Performance - Iterative Refinement 65

4.3 Raycasting Approach . 66
4.3.1 Raycasting Process . 66
4.3.2 Implementation Details - Raycasting 69
4.3.3 Rendering Quality - Raycasting 71
4.3.4 Rendering Performance - Raycasting 73

4.4 Level of Detail for Light Field Rendering 74
4.5 Progressive Light Field Rendering 77
4.6 Conclusion . 82

5 Acquisition of Spherical Light Fields with Per-Pixel Depth 85
5.1 Light Field Acquisition from Physical Objects 87

5.1.1 Light Field Acquisition Device 87
5.1.2 Pose Tracking . 92
5.1.3 Light Field Acquisition Pipeline 95
5.1.4 Acquisition Results . 104

5.2 Light Field Generation from Synthetic Scenes 107
5.3 Conclusion . 108

6 Conclusion and Future Work 111

A Appendix 115
A.1 Iterative Refinement Fragment Shader 115
A.2 Raycasting Fragment Shader 120

CONTENTS ix

Bibliography 125

List of Figures

2.1 Radiance: Light traveling along a ray 8
2.2 Redundant information in the 5D plenoptic function and the

two plane 4D light field parameterization 9
2.3 Categorization catalog for light fields 14
2.4 Displaying 4D light fields . 16
2.5 Light field interpolation . 17
2.6 Depth correction of rays . 18
2.7 Lumigraph rendering results 20
2.8 Spherical light field parameterizations 24
2.9 Two sphere rendering results 26
2.10 Sphere plane rendering results 28
2.11 Unstructured lumigraph rendering 30
2.12 Free form light field rendering 34
2.13 Categorization of light field approaches 37

3.1 Spherical camera space parametrization 40
3.2 Recursive subdivision scheme 41
3.3 Parabolic environment mapping 44
3.4 Parabolic light field sampling 45
3.5 Parabolic sample images . 46
3.6 Sampling per-pixel depth . 47
3.7 Categorization of the sphere-hemisphere light field

parametrization . 51

4.1 Iterative refinement overview 55
4.2 Spherical proxy rendering with interpolation colors 55
4.3 Iterative refinement flow chart 56
4.4 Iterative refinement rendering 57
4.5 Iterative refinement principle 61
4.6 Iterative refinement failure . 62

xi

xii LIST OF FIGURES

4.7 Iterative refinement results 63
4.8 Raycasting flow chart . 66
4.9 Raycasting concept . 67
4.10 Raycasting error from epsilon skip 68
4.11 Raycaster results . 72
4.12 LOD for light field rendering 76
4.13 LOD quality gain . 77
4.14 Progressive refinement - first steps 79
4.15 Progressive tessellation strategy 80
4.16 Progressive rendering: Level exponent 81

5.1 Time-of-flight principle . 89
5.2 PMD camera . 90
5.3 RGB and depth data fusion 91
5.4 Optical tracking principle . 94
5.5 light field acquisition pipeline 95
5.6 Mesh generation from RGBz image 98
5.7 Camera pose evaluation . 101
5.8 Acquisition results stuffed animal light field 104
5.9 Acquisition results Christof light field 105
5.10 Acquisition results for complex scenes 107

6.1 Light field rendering of Michelangelo’s David statue 113

List of Tables

3.1 Spherical parametrization sample distances 41
3.2 Light field data size . 49

4.1 Per-pixel error iterative refinement 64
4.2 Rendering performance iterative refinement 65
4.3 Per-pixel error raycasting . 73
4.4 Rendering performance raycasting 74

xiii

List of Code Samples

4.1 Iterative refinement - first intersection 60
4.2 Raycasting - initial sample position 70
A.1 Iterative refinement fragment program 119
A.2 Raycasting fragment program 123

xv

1

Introduction

With the invention of the SKETCHPAD, the first man-machine graphical com-
munication system, Sutherland fathered interactive computer graphics and
graphical user interfaces in 1963 [112]. Since then research in the field of
computer graphics focused on achieving photo realistic rendering results from
statically growing geometric input data at real-time frame rates. A decade
after the birth of interactive computer graphics, Blinn’s and Newell’s invention
of Texture Maps [11] and Bump Maps [12] revolutionized the visual quality of
computer graphics. Their concept of images being used as input data to render
compelling scenes is basis of today’s image-based rendering techniques [55].

Image-based rendering (IBR) describes a set of techniques that allow three-
dimensional graphical interaction with objects and scenes whose original spec-
ification began as images or photographs [74]. IBR approaches solve three-
dimensional graphics problems by designing data structures that can be ro-
bustly computed from images and can subsequently be used to create high
quality images at minimal computational cost [50].

Light field techniques adapt the idea of using image based representations
of a scene to generate new virtual views by sampling the amount of light trav-
eling through space. The idea behind light fields dates back to the year 1846
when Faraday was the first to propose that light should be interpreted as a
field [26]. Faraday’s idea combined with discoveries about the properties of
light, including the transport and scattering of light, led to pregnant insight in
theoretical photometry. With the idea of surface illumination by artificial light-
ing in mind, Gershun defined the light field concept, which defines the amount
of light traveling through every point in space in every direction [32]. Gershun
recognized that the amount of light arriving at points in space varies smoothly
from place to place and could therefore be characterized using calculus and
analytic geometry [62].

This thesis present a sophisticated solution to capture, store and display
Gershun’s light field using state-of-the-art digital imaging devices and computer
graphics technology. The thesis provides a powerful technique to generate
artificial photo-realistic renderings of arbitrary complex scenes in real-time.

1

2 1. Introduction

1.1 Light Field Rendering

Light field techniques sample the amount of light traveling along rays in space
(radiance) from pre-defined sample positions. If a bounded 3D observation
space is free of occluders, the radiance along rays through space can be assumed
to be constant. Under this assumption, and for an object being placed within
that region and being illuminated by a static illumination environment, the
radiance along all rays in space can be measured for locations outside the
convex hull of the object. Thus, light field techniques sample a discrete subset
of the radiance along rays in observation space.

The positions from which the radiance is sampled is defined by the light
field parametrization of the 3D observation space. For each of these sample
positions, the parametrization further defines the sampling pattern being ap-
plied to sample the radiance along individual rays. The parametrization is one
of the individual features of light field rendering techniques. Data represen-
tation and light field synthesis algorithms are steered by the definition of the
parametrization. If the set of defined sample positions is chosen to be dense
enough, new perspectively correct images can be constructed for virtual view-
ing positions which have not been acquired before. This idea is called light field
rendering [63].

1.2 Scientific and Technological Challenges

The optimal tradeoff between rendering quality and storage efficiency has been
in focus of light field research in the past [105] and still is today. Three major
challenges have been identified to be crucial for the successful implementation
of light field techniques. The storage efficiency which is steered by the light
field parametrization, the rendering performance and quality as well as the
complexity and accuracy of the light field acquisition process define these major
challenges.

Parametrization and Representation The parametrization of the obser-
vation space defines the light field representation and thus has high impact on
storage efficiency, rendering performance and -quality as well as the techniques
applicable for light field acquisition. The parametrization is to be chosen dense
enough to allow arbitrary virtual views to be reconstructed without noticeable
artifacts but sparse enough to open up for efficient storage schemes.

Ideally, the light field parametrization defines a sampling structure which
is invariant in both, the positional and the directional domain. For a light

1.3. Contributions 3

field representation to fulfill the demand on a uniform representation, sam-
pling positions are to be defined to be equally distributed on the surface of
a bounding volume around the object from which the light field is to be cap-
tured. Additionally, the radiance along rays is to be sampled uniformly, i.e. a
uniform sampling pattern is to be applied in the directional domain to sample
the radiance along rays for a set of rays for each sample position.

Rendering Performance and Quality The tradeoff between quality and
rendering speed is the key factor to the overall performance of a light field ren-
dering technique. To some degree it is steered by the parametrization of rays.
Interpolation schemes applied within the synthesis, are the most important as-
pects of quality and performance. Given a set of light field samples, virtual
views are resampled by interpolating the rays from nearby samples. The key
to correct interpolation and therefore for best rendering results, is to extract
corresponding rays from the nearby light field samples. Non corresponding rays
lead to ghosting artifacts in the synthesized view.

Acquisition and Generation Given a defined parametrization, the acqui-
sition of light field samples using digital imaging devices is a challenging task.
The demands on acquisition techniques are steered by the factors precision,
usability, and availability. Precision in the placement or localization of a cap-
turing device is essential to the successful acquisition of light field samples from
positions being defined by the chosen parametrization. To sample a complete
light field, either the digital imaging device can be moved to varying position or
multiple cameras can be setup in an arrangement according to the parametriza-
tion.

1.3 Contributions

The major challenges of light field rendering techniques from representation
over rendering to acquisition are in focus of this thesis. This thesis presents
an alternative representation for light fields and techniques to exploit this rep-
resentation for both, efficient rendering and acquisition. In this work these
different parts are discussed in detail. Parts of this work have been published
by the author in several scientific articles [92,113,114,116–118,120]. The main
contributions of this thesis are:

Spherical Light Field Parametrization with Per-Pixel Depth
This thesis presents a new light field parametrization which imple-
ments a uniform sampling of the observation space and allows for virtual

4 1. Introduction

view synthesis with full six degrees of freedom (DOF). For each light field
sample a combined RGB and depth image is stored which represents the
light field information as well as an implicit geometry representation of
the captured scene in a single image. This new representation provides
a storage efficient parametrization which makes high quality rendering
approaches applicable.

High Quality Rendering of Spherical Light Fields Two light field ren-
dering approaches are presented in this thesis, both of which exploit per-
pixel depth values to achieve high quality light field rendering at real-time
frame rates. The first rendering method implements an iterative render-
ing technique which implements a runtime efficient approach. The second
approach is based on raycasting techniques and implements a less run-
time efficient approach which provides best rendering quality at moderate
frame rates.

Level of Detail for Light Field Rendering This thesis presents an inno-
vative rendering concept which carries traditional level of detail (LOD)
techniques over to light field rendering approaches. With the LOD light
field rendering a powerful solution for rendering performance manage-
ment is presented in this work.

Progressive Light Field Rendering For remote network based access to
light field representations a progressive light field rendering technique has
been developed. This technique implements a rendering approach which
is focused on minimizing data transmission and successive refinement
of light field image synthesis. From a sparse light field representation
a render client progressively refines local data in order to provide high
quality results for selective areas of interest.

Acquisition of Spherical Light Fields A complete prototype system that
is capable of sampling a spherical light field with per-pixel depth is pre-
sented in this work. The proposed system acquires depth and RGB im-
ages synchronously, without the need for additional geometry processing,
and provides immediate visual feedback even for incomplete light field
representations.

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 reviews previous
light field rendering approaches in detail and discusses the techniques with

1.4. Outline 5

respect to the three main technological challenges. Chapter 3 describes the
new spherical light field parametrization with per-pixel depth in detail. In
Chapter 4 the developed light field rendering techniques are presented which
exploit per-pixel depth information in order to achieve sophisticated rendering
results. Chapter 5 describes the prototype system setup and the data processing
pipeline for the acquisition of spherical light fields from physical objects. It
explains how spherical light fields can be generated from synthetic objects
efficiently. This thesis is concluded in Chapter 6.

2

Related Work

This chapter introduces the concept of light field rendering. It reviews light
field rendering in general and related light field rendering techniques presented
in the past in detail. 4D light field approaches aiming at the virtual view
synthesis with six DOF are discussed and evaluated based on critical light field
issues.

2.1 The Plenoptic Function

The problem of how light interacts with surfaces in a volume of space can
be interpreted as a transport problem, the transport of photons along paths
through space. The radiant energy or flux in a volume V is denoted as φ. The
flux describes the amount of energy flowing through a surface per unit time
and is measured in Watts. The energy is proportional to the wavelength λ.
The flux therefore should be notated as φλ, the radiant energy φ at wavelength
λ. For the rest of this thesis, however, λ is dropped and φ is considered for a
specific wavelength λ.

The flux that leaves a surface is described by the radiance, denoted by L and
measured in Watts (W) per steridian (sr) per meter squared (m2). Steriadians
measure a solid angle of direction, and meter squared are used here as a measure
of projected area of surface.

Let dA be the surface area from which the radiant energy is emitted in
direction θ relative to the normal �n of dA through a differential solid angle dω
(see Figure 2.1, left). The radiance (L) leaving the area dA then is expressed
by:

L
d2φ

cos θdω
(2.1)

Considering dA and dω to be vanishing small, d2φ then represents the flux
along a ray in direction θ.

The radiance along all rays in a region of 3D space is denoted the plenoptic
function [1]. The plenoptic function is defined as a 7D function of the radiant

7

8 2. Related Work

Figure 2.1: Left: Radiance is flux per unit projected area per unit solid angle. Right:
Reduced 5D representation of the plenoptic function based on position and direction.

energy passing through a point in space V (Vx, Vy, Vz)
T from angle (θ, ϕ), for

wavelength λ, at a certain moment in time t:

P7 = P (Vx, Vy, Vz , θ, ϕ, λ, t) (2.2)

Considering the radiance for a certain wavelength only, eliminating λ and
limiting observation to static scenes, erasing the time factor t, the plenoptic
function is reduced to a 5D function of position and direction [42] (see Fig-
ure 2.1, right):

P5 = P (Vx, Vy, Vz , θ, ϕ) (2.3)

The plenoptic function reduces to a 2D function of direction for the evalu-
ation of radiance for a fixed location:

P2 = P (θ, ϕ) (2.4)

Thus, a regular image taken from a certain position with a limited field of
view, can be regarded as an incomplete plenoptic sample at a fixed viewpoint. A
complete sample is captured by taking multiple images from the same viewpoint
for all possible directions [19].

2.2 The Light Field

Under the assumption of the air being transparent, the radiance along a ray
in space remains constant. If we further restrict our interest to light leaving

2.2. The Light Field 9

s

t

u

v

L(s,t,u,v)

Figure 2.2: Left: Radiance along a ray in space remains constant from point to point
for regions free of occluders. Right: Two plane 4D light field parametrization of oriented
lines in space. Each ray is parameterizable by its intersection with the camera plane (s,t)
and the image plane (u,v).

an object’s surface, the plenoptic function can be measured along some surface
surrounding the object of interest. Thus, for locations outside the convex hull of
an object the plenoptic function can be measured easily using a digital imaging
device. With the radiance being constant along rays from point to point (see
Figure 2.2, left), the plenoptic function contains redundant information. At
any point in space, the radiance along a ray in any direction is determinable
by tracing backwards along that ray through empty space to the surface of
the convex hull. This redundancy is exactly one dimension, leading to a 4D
function to parameterize the surface points and directions of the convex hull.
The reduction of dimensions to a 4D function has been used before to simplify
the representation of radiance emitted by luminaries [6, 57]. In 1981 Moon
called this 4D function the photic field [76]. In 1996, however, Levoy and
Hanrahan introduced this function of radiance along rays in empty space as
light field to the computer graphics community [63]. In the remainder of this
work only this kind of 4D light field is considered.

For bounded geometric objects being placed within a 3D space free of oc-
cluders, all views of an object from outside its convex hull may be generated
from a previously captured 4D light field. Virtual views are generated from the
representation of the 4D light field as parameterized space of oriented lines. As
originally presented by Levoy and Hanrahan the parametrization of oriented
lines is defined by the lines’ intersections with two planes in arbitrary positions.

10 2. Related Work

Two local coordinate systems are defined for theses two planes: (s, t) for the
first, the camera plane and (u, v) for the second , the image plane. An oriented
line L passing through the bounded 3D space is then parameterized by the
intersection with these two planes (L(s, t, u, v)) (see Figure 2.2, right). The
two plane representation of the 4D light field is called a light slab [63].

To display an arbitrary view of the captured object which has not previously
been acquired, a 2D slice of the 4D light field is resampled. For each image ray
passing through a pixel center on the 2D slice the radiance is then approximated
by interpolating the 4D plenoptic function from the nearest samples on both,
the camera and the image plane.

2.3 Light Field Acquisition

A major burden in the use of light fields is the acquisition of dense samples of
the plenoptic function in order to approximate the continuous 4D light field.
First approaches aiming at the acquisition of light field samples made use of
mechanical gantries. With this acqusition technique a camera is attached to
the end of a gantry arm and the arm is subsequently moved to multiple posi-
tions. Two useful gantry configurations are the planar and spherical ones. The
planar configuration allows the end effector of the gantry arm to move within
a planar working space in order to acquire light field samples for a two-plane
parameterized light field as described in Section 2.2. A famous example of such
a configuration was also used to acquire a light field of Michelangelo’s David
statue [64]. In a spherical configuration, the end-effector can travel on the sur-
face of a sphere, allowing multiple light slabs and spherical parameterized light
fields to be acquired. While these gantries can capture a dense sampling of a
light field very precisely, they assume a static scene, are bulky and extremely
costly [18].

Dynamic scenes may be captured using arrays of cameras. With the abil-
ity to capture dynamic scenes, light fields of complex dynamic objects can be
acquired. Available camera arrays in the research area of light field acquisition
include the video camera array in the Virtualized Reality Project at CMU [49],
the 8x8 webcam array at MIT [135], the 48 pantranslation camera array [137],
and the Stanford Multi-Camera Array [59, 129, 130]. Such camera array sys-
tems, however, are costly and include a huge amount of equipment. Thus, these
systems are hard to move and are mainly useful in a laboratory setting.

Recently, research has been focused on exploiting optics to trade of the
spatial resolution of a single camera for multiple viewports in order to build
mobile devices for light field acquisition. These techniques mount a planar

2.4. Light Field Classification 11

arrangement of microlenses in a camera body (Plenoptic Camera) [80] or con-
struct a multiple lens gadget that is mounted to a conventional single-lens reflex
(SLR) camera (Adobe light field camera lens) [31] to capture a scene from many
slightly varying viewpoints. Using such a system, a light field is captured at
a single exposure. However, these devices are capable of acquiring two plane
parameterized light fields, only. Until now, none of these devices is publicly
available.

2.4 Light Field Classification

Since light field rendering was introduced to the computer graphics community,
research in this field has brought up various parameterizations and rendering
techniques. With the evolution of light field techniques several taxonomies
have been introduced for categorization. No common classification, however,
has been standardized. Kang [50] classified light field rendering approaches by
the technique being applied for ray interpolation. The intermediate data rep-
resentation of the light field is chosen as categorization taxonomy by McMillan
and Gortler [74]. Most prominently the amount of geometric data applied to
assist the view synthesis has been proven to be well suited as a criteria for the
classification of light field techniques. The IBR–Continuum [104] categorizes
existing approaches based on the amount of geometry.

In this thesis the idea of the IBR–Continuum and the intermediate data rep-
resentation are picked up to formalize a catalogue for categorization. Addition-
ally the aspect of sampling uniformity is taken into account, as it significantly
influences overall quality of synthesis techniques. Sampling uniformity in this
thesis refers to two aspects of light field sampling. A light field is regarded to
be uniformly sampled, if the sample positions from which the individual light
field samples are acquired are uniformly distributed in space. To guarantee the
light field representation to be invariant under both, translation and rotation,
the 2D sampling of rays passing through each individual sample position is to
be performed by applying a uniform sampling pattern (see Section 1.2). Thus,
the aspect of sampling uniformity does consider the distribution of sampling
positions in space as well as the pattern being utilized to sample the radiance
along rays passing through an individual sample position. The categorization
criteria, namely Geometry, Intermediate Data Representation, and Uniformity
are described in detail in the following paragraphs.

Geometry Light field rendering techniques differ in the amount of geometric
data being applied to assist the image synthesis process in order to determine

12 2. Related Work

correspondences for rays being captured from different sample positions. The
more detailed a geometric representation, the more precisely correspondences
are established. A more precise geometry representation, however, effects stor-
age costs to a high degree. The light field acquisition process is driven by
the type and level of detail of geometric data which is required by a certain
light field technique. Acquisition devices and the acquisition process have to
be designed with respect to the geometric requests. The process of captur-
ing detailed geometric scene representations from physical objects exhibits a
challenging task which involves extra effort for capturing and processing the
geometric data. These preprocessing steps put an extra burden on the acqui-
sition process and effect the usability of a light field representation to a high
degree.

Light field approaches are differentiated in three categories, according to the
type of geometry being accounted for within the light field rendering technique:

• No Geometry: Approaches that do not rely on any geometric data.

• Implicit Geometry: Geometry assisted light field approaches relying
on implicit geometry data expressed as image correspondences, binary
volumes, or depth information per pixel.

• Explicit Geometry: Image based synthesis techniques which exploit
explicit geometry representations such as polygonal geometry descriptions
for image synthesis.

These three distinct characteristics define the first dimension of the classifica-
tion taxonomy, shown in Figure 2.3.

Intermediate Data Representation Approximate polygonal scene geom-
etry, depth images, plenoptic samples captured as digital input images, and
images as reference scene models have been identified as intermediate data rep-
resentations by McMillan and Gortler [74]. The type of intermediate data rep-
resentation is the steering component of an image based rendering approach’s
capability to interactively synthesize new virtual views.

A technique’s intermediate representation is crucial to the synthesis’ ability
to generate new virtual views without costly pre- or post-processing operations
being applied to the input data. The availability of direct data visualization
methods is one of the main features requested by the computer graphics com-
munity for real-time rendering techniques. Direct access to light field data,
however, requires the data to be efficiently stored. Thus, the light field repre-
sentation must provide efficient storage schemes which grant immediate access
to light field data and, if present, geometric details. Ideally, the acquisition

2.4. Light Field Classification 13

technique directly supports the intermediate data format such that captured
data can be visualized directly.

Light field rendering approaches are categorized in three distinct charac-
teristics according to the complexity and the runtime efficiency of the data
processing being required for view synthesis:

• Direct Rendering: Image based rendering approaches that take advan-
tage of efficient data representations which allow virtual view synthesis
based on the data representation directly, without the need for further
data processing.

• Data Processing on Rendering: Rendering methods that apply on-
the-fly processing of the input data in order to optimize data structures or
adjust rendering parameters according to analysis results of the captured
scene.

• Data Pre-Processing: Light field techniques which are in need of ex-
tensive pre-processing steps to extract additional data components from
the input data such as scene reference models, parametrization charac-
teristics or camera- and image parameters.

The intermediate data representation is chosen as the second dimension of the
classification taxonomy illustrated in Figure 2.3.

Uniformity Light field rendering techniques should not restrict the virtual
viewpoint selection by limiting the viewing direction or viewpoint positions.
Rather, they should allow to synthesize arbitrary views without noticeable ar-
tifacts or resolution changes for freely chosen viewpoints around an object. This
requires the representation to be invariant under both rotations and transla-
tions. Remember, for a light field representation to be invariant under both,
rotation and translation, the sample positions are to uniformly distributed in
3D space and the radiance along rays has to be sampled using a uniform sam-
pling pattern for each individual sample position. Such kind of representation
uniformly parameterizes the set of rays intersecting the object’s hull [14, 15].
With the set of lines and thus the light field being uniformly sampled, disparity
problems can be avoided within light field synthesis. Especially the uniform
parametrization of rays per sample position, the mapping of radiance along
rays to a uniform image representation, open up for efficient storage and com-
pression schemes to be applied. Compact storage schemes commonly assume
a regular data structure to exploit compression techniques for data reduction
and intelligent accessing strategies. With acquisition techniques being applied

14 2. Related Work

Data
Representation

Geometry
Representation

Sampling Uniformity

Uniform
Orientation

Non
Uniform

Uniform
Position

Direct
Rendering

Processing
on Rendering

Pre-
processing

Uniform
Position &
Orientation

No
Geometry

Explicit
Geometry

Implicit
Geometry

Figure 2.3: Categorization of light fields defined by the geometry representation, inter-
mediate data representation, and uniformity of sampling positions and direction.

which support a uniform sampling of light fields, uniform representations can
efficiently be generated.

Different categories of light field representations are identified by the degree
of uniformity:

• Non Uniform Sampling: The parametrization does not represent a
uniform sampling structure, neither in position nor in direction.

• Uniform in Position: Uniform sampling is provided for the position
domain.

• Uniform in Orientation: Uniform sampling of the direction is achieved
by the representation.

• Uniform in Position and Orientation: The representation is invari-
ant under both, rotations and translations.

The four specificities of uniformity are symbolized using icons which are shown
to the right in Figure 2.3.

2.5. Survey of Light Field Rendering Approaches 15

2.5 Survey of Light Field Rendering Approaches

This section surveys existing light field techniques according to the scientific
and technological challenges depicted in Section 1.2 and categorizes these ap-
proaches with respect to the categorization taxonomy presented in Section 2.4.
This survey, however, cannot justice the large body of light field techniques
that have been presented in the past. Note, that this review is limited to those
light fields that are based on the 4D plenoptic function. For a more complete
review of light field techniques the reader is referred to [50, 102,104].

2.5.1 Two Plane Light Field Rendering

Light field rendering as proposed in the original paper by Levoy and Hanra-
han [63] restricts objects to lie within a convex cuboid bounded by two planes,
the camera plane and the image plane. Rays passing through the observation
space are parameterized by their intersection points with these two planes. The
two plane light field technique captures a subset of such rays in order to syn-
thesize new virtual views by interpolating the radiance being captured from
discrete sample positions.
Parametrization
For a discrete set of uniformly distributed sample positions on the camera
plane, the radiance along rays is captured for each sample position. The rays
passing through the bounding region are captured. These rays converge in
an individual sample position and intersect the image plane in discrete, pre-
defined, and uniformly distributed positions. As each ray is parameterized by
its intersection point with both planes, the amount of rays and the angular
distance between rays is determined by the the image plane’s sampling resolu-
tion. Obviously, the storage footprint is steered by both, the amount of sample
positions and the image plane resolution. In general, a sampling resolution is
chosen for the image plane with a significant higher sampling rate, compared
to the sample positions on the camera plane.

This approach provides a representation that is invariant under translations
as the sample positions are uniformly positioned on the camera plane. Taking
the solid angle of individual image samples into account, it can be shown that
the solid angle covered by a single pixel representing the radiance along an indi-
vidual ray does vary significantly over the overall image representation. Thus,
a light slab does not provide a uniform sampling structure for the directional
domain.
Geometric Representation
No additional geometric data is being included in the two plane light field rep-
resentation.

16 2. Related Work

s

t

u

v

s

t

u

v

y
y

xx

Figure 2.4: Left: A 2D slice of the 4D light field is resampled to generate new virtual
views by interpolating the radiance from nearby samples for each pixel. Right: Texture
based light field synthesis reduces the interpolation scheme to a simple determination of
texture coordinates on a per fetch basis.

Data Representation
Without any geometric data being integrated, the complete light field sampling
can be regarded as a collection of 2D digital images which are accessible di-
rectly without the need for further data processing. Note, however, that for
light field samples being acquired from physical objects using digital camera
devices, only these parts of the input images contribute to the final image base
light field sample representation which cover the area of the opposing image
plane representation.
Synthesis
Light field synthesis is performed on a per-pixel basis by interpolating the light
field samples of adjacent sample positions. For each virtual viewing ray being
defined by its intersection with the two planes L(s, t, u, v) adjacent sample po-
sitions are identified from the camera plane intersection at coordinates (s, t).
To determine the final color, light field sampling data is extracted and inter-
polated for the image plane intersection point at (u, v) for each of the adjacent
sample positions (see Figure 2.4, left). Here, quadralinear interpolation gener-
ates virtual views with only a few aliasing artifacts, whereas nearest neighbor
and linear interpolation result in noticeable artifacts (see Figure 2.5).

The overall visual quality, however, is effected by the amount and density
of light field samples being available for view interpolation. With the increase
of samples, the rendering quality enhances whilst the storage efficiency suffers
from dense sampling patterns. The rendering performance of this direct inter-
polation scheme based on per-ray interpolation is limited by the virtual view’s
target resolution as a ray is being evaluated for each target pixel.

Using texture mapping techniques the interpolation can be implemented

2.5. Survey of Light Field Rendering Approaches 17

(d)(a) (b) (c)

Figure 2.5: The effects of interpolation on ray synthesis. a: Light field rendering of
the Happy Buddha model with quadralinear interpolation. b: Closeup rendered with no
interpolation. c: Linear interpolation on the (s, t) plane. d: Quadralinear interpolation in
(s, t, u, v). All images courtesy of Levoy and Hanrahan [63].

more efficiently [105, 123]. For this rendering approach a polygonal represen-
tation of the camera plane quadrilateral is drawn with the virtual viewpoint’s
viewing transformation being applied. The quadrilateral is defined by multiple
fetches such that a single fetch (F (C0, C1, C2, C3)) is defined by four sample
positions on the camera plane Cn = (sn, tn); n = [0, 3]. For each fetch, texture
coordinates Tn = (un, vn); n = [0, 3] are determined by intersecting the rays
from the virtual viewpoint through the sample positions with the image plane.
The texture coordinates are then being applied to map the image representa-
tion of a light field sample to the rendered camera plane fetches (see Figure 2.4,
right).

While increased rendering performance is achieved using the fetch based
interpolation technique, image synthesis quality suffers. Visible seams are vis-
ible at the fetch boundaries. If overlapping fetches are rendered and blended
towards the edges, partial synthesized views are smoothly blended and thus,
noticeable visible edges in the final composed image are avoided. At the bor-
ders of the fetches, however, the blending results in slightly ghosting artifacts
due to incoherent visual information being blended in these regions.

Although full 6 DOF are available for virtual viewpoint selection, the virtual
viewing position is limited to lie within a viewing cone, defined by the size and
the arrangement of the camera- and the image plane. Thus, it takes multiple
light slabs to represent all possible views of an object. Therefore line space
may be tiled using a collection of light slabs.

It has been shown that light field rendering as described above will provide
satisfactory rendering results, if the observed object is positioned exactly on
the image plane. In the general case, noticeable ghosting artifacts will appear

18 2. Related Work

Ci Ci+1Ci-1

Image Plane

Camera Plane

Pcami+1

Pobj

Pcami

Image Plane

Camera Plane

Pobj

Ci Ci+1Ci-1

Figure 2.6: Depth correction of rays. Without depth correction, the intersection points
observed from adjacent cameras do not necessarily correspond to an identical surface
point. With depth correction, camera rays passing through a common surface point are
used for interpolation.

due to incoherent light field information for adjacent rays. Such incoherency
is due to rays hitting the object at a surface point far from the image plane,
resulting in deviating intersection points on the image plane (see Figure 2.6,
left).
Acquisition
For the acquisition of light field samples a variety of acquisition devices is ap-
plicable. Gantries as well as camera arrays can be used to acquire two plane
light fields. With multi-lense and multi-camera setups dynamic light fields are
acquirable.
Categorization
The two plane light field rendering technique represents a light field approach
which implements image synthesis based on previously acquired samples of the
plenoptic function without the need for additional geometric data. It provides
a uniform sampling pattern which is invariant in translations but shows varia-
tions in the directional domain. Using state-of-the-art acquisition techniques,
light field samples can be exploited for image synthesis directly without further
processing.

2.5.2 The Lumigraph

The Lumigraph approach samples the plenoptic function along a cubic surface
around an object of interest [35]. It provides all information that is needed
to simulate the light transfer from one region of space on the surface of the
cubic setup to all other regions [65]. This cubic representation of the plenoptic

2.5. Survey of Light Field Rendering Approaches 19

function is equivalent to a representation defined by six light slabs as proposed
by Levoy and Hanrahan [63]. It allows to synthesize virtual views with full 6
DOF without any constraints concerning the positions and orientation of the
virtual viewpoint, as long as it is chosen to lie outside the region bounded by
the six light slabs.
Parametrization
As the lumigraph representation is built from six two plane setups. Conse-
quently, the uniformity characteristics of the two plane approach also apply
for the combination of six light slabs. Thus, the lumigraph setup does provide
uniformly distributed sample positions on the surface of cubic bounding vol-
ume around an object, but does exhibit non uniform sampling of directions, as
the solid angle covered by a single pixel within an image representation varies
significantly over the overall image.
Geometric Representation
Gortler et al. have shown that, while improving the quality of radiance inter-
polation, the amount of input samples can significantly be reduced if geometric
information about the scene is taken into account to identify ray correspon-
dences. The geometric information can take the form of a coarse triangle
mesh, a binary volume [16], or per-pixel depth information [96,124]. However,
Gortler et al. suggest storing an explicit polygonal approximation of the ob-
served object.
Data Representation
As the geometric data is essential for the lumigraph rendering approach, ge-
ometry processing is indispensable for image synthesis. While the light field
samples are stored according to the two plane light field approach, the explicit
geometric 3D model is processed and stored independently. In practice, the ge-
ometric model is processed prior to the image synthesis process in a separated
task.
Synthesis
To avoid ghosting artifacts which result from incoherent light field samples
being interpolated, the geometric scene representation is exploited to ensure
rays consistency. Without the object’s geometry being considered, a virtual
viewing ray is reconstructed from sample rays which intersect the image plane
at the same position. These sample rays, however, are likely to intersect the
object at different positions and thus, represent incoherent light field data (see
Figure 2.6, left).

With additional geometric information about the observed object being
available, the ray-object intersection point PObj can be determined for a ray
L(s, t, u, v). Then, for the ray L and a given Ci(si, ti) one can compute cor-
responding I ′(u′, v′) for a ray L′(si, ti, u

′, v′) that intersects the object at the

20 2. Related Work

Figure 2.7: Lumigraph rendering results of a stomach data set. Left: View synthesis
without depth correction of rays. Right: Rendering results with depth correction of rays
being applied for image synthesis based on depth maps. Image courtesy of Vogelgsang
and Greiner [124]

same surface point PObj (see Figure 2.6, right).

Improved rendering results showing less ghosting artifacts for the same (s, t)
sample resolution are observed with the depth correction being applied (see
Figure 2.7). The effectiveness of the depth correction of rays is dependent on
the geometry’s level of detail. On the one hand, more precise geometry rep-
resentations result in improved depth correction. On the other hand, complex
raytracing techniques are to be applied to establish ray-object intersections for
detailed geometry representations and storage cost are effected by the geome-
try’s precision to a high degree. Rendering efficiency can be improved if fetch
based rendering approaches are applied to the lumigraph representation, com-
parable to the fetch based technique described in Section 2.5.1. In contrast to
the straight forward lumigraph rendering approach the fetch based approach’s
performance is not effected by the target resolution but the amount of fetches
being drawn [20, 106]. Notice that disparity artifacts [16] occur for situations
in which the virtual view spans over a boundary edge of the cubical setup.
In these situations the non uniform sampling of direction becomes visible and
appears as visible discontinuities along the edge.
Acquisition
Gortler et al. suggest storing a rough polygonal approximation of the observed
object in order to allow for depth corrections. To recover a geometric model
of the scene, however, additional effort has to be spent. 3D scanning tech-
nology [95] as well as sophisticated stereo vision [93] and image based feature

2.5. Survey of Light Field Rendering Approaches 21

extraction methods [8, 24] are applied to extract the geometric representation.
Light field samples can be acquired similar to the two plane representation
described in Section 2.5.1.

For flexibility reasons Gortler et al. have presented an acquisition approach
which accept input images from arbitrary placed cameras. If a geometric scene
representation is available prior to light field sampling and intrinsic as well as
extrinsic camera parameters can be evaluated for each input image, an input
image can be projected onto the geometry and re-projected into the pre-defined
sample position. This technique, known as rebinning [61], then allows to gen-
erate a lumigraph representation using commodity imaging devices.
Categorization
The lumigraph representation implements a uniform sampling of the plenoptic
function which is invariant in translations, but exhibits non uniform sampling
of directions. Explicit geometric representations are utilized for depth correc-
tion of rays to optimize rendering quality and reducing sampling complexity.
The geometry representation, however, is extracted and processed in a separate
task. Thus, image synthesis cannot be performed without the geometry being
processed in advance.

2.5.3 Spherical Light Field Rendering

Spherical light field rendering techniques overcome the problem of disconti-
nuities observed with multi light slab setups by parameterizing rays using a
spherical representation. The use of spherical parametrization schemes pro-
vides a symmetric representation of the complete flow of light, which allows for
handling arbitrary viewpoints and directions [47]. Several flavors of spherical
parameterizations have been published in the past under various names. All
of these approaches define the bounding volume around an object of interest
to be a spherical volume. Commonly they implement a parametrization which
define sample positions to be equally distributed on the surface of the bound-
ing sphere. The parametrization of direction, the representation of individual
light field samples, as well as the rendering process, however, differ significantly
between approaches. This section discusses different spherical representations.

Spherical Light Fields Spherical light fields have been introduced to the
computer graphics community by Ihm et al. in 1997 [47]. Spherical light fields
define a representation scheme that is based on two spheres. Sample positions
are defined by uniformly distributed discrete surface points on the first, the
camera sphere. For each of the sample positions, a second, so called directional
sphere, is utilized to parameterize the directional domain for a certain sample
position. Using these two spheres, a ray is defined by its intersection with both

22 2. Related Work

of these spheres (see Figure 2.8, left).
Parametrization
Sample positions are defined on the surface of the camera sphere using a lon-
gitudinal parameter (θp) and a latitude parameter (φp). Discrete values of
(θp, φp) are applied to formalize sample positions on the camera sphere’s sur-
face. Discrete directions are defined using the directional variables (θd, φd) to
define surface points on the directional sphere. The directional sphere is posi-
tioned tangential to the sample position. Thus, a ray passing through a sample
position is explicitly defined by the sample positions and its intersection with
the directional sphere (L(θp, φp, θd, φd)).

As L can be expressed as a combination of two functions
L(θp, φp, θd, φd) = fd(θd, φd) = (fp(θp, φp))(θd, φd), the task of sampling
the 4D spherical light fields is reduced to the finite approximations of two
spheres. Discretization of both, the positional and the directional sphere, is
initialized based on an octahedron, where each triangle face corresponds to the
eight regular patches on the sphere. Each triangular face is then successively
subdivided into four finer triangles. Following this approach arbitrary fine
discretizations of the positional- and the directional sphere are achieved. For
the positional sphere, each of the vertices of the polyhedron represents a
discrete sample position. On the directional sphere, the values of a plenoptic
sample is associated with the barycentric center of a triangular face. For
effective storage, the discrete samples are recorded into a two dimensional
array. The subdivision process guarantees the parametrization to be invariant
in position and direction, thus providing a uniform parametrization of both
domains.
Geometric Representation
The two sphere representation does not integrate any geometric details about
the scene.
Data Representation
In practice, up to 65K vertices are generated for the positional sphere and
a level 5 subdivision is applied to discretize the directional sphere. With
24 bit color coding this results in about 1.5 GB data storage. The uniform
representation, however, allows wavelet compression schemes to be applied
to the image data [25, 100, 136]. With wavelet compression being applied a
compression ratio of up to 22.4 : 1 has been achieved by Ihm et al. [47].

Synthesis
Light field synthesis is performed using a raycasting approach based on the
spherical representation by rendering the smooth shaded triangles of the
positional polyhedron. For each vertex a ray is casted from the virtual viewing

2.5. Survey of Light Field Rendering Approaches 23

position through the vertex position. From the intersection of this ray with the
directional sphere, which is associated with the current vertex, the plenoptic
sample is resampled using neearest neighbor interpolation techniques. The
interpolation result is applied as vertex color to the current vertex. For the
final result, per-pixel color values within the triangles are interpolated based
on barycentric weights form the vertex colors.

The quality of this rendering approach is limited by both, the chosen reso-
lution of the directional sphere, as it defines the sample image resolution, and
the subdivision level chosen to parameterize the positional sphere. Reducing
the amount of sample positions will result in visual details not being sampled
and additional loss in image synthesis quality due to interpolation techniques
being applied to relatively large triangles. Without the actual scene geometry
being taken into account, ghosting artifacts appear for sparsely sampled light
fields [47].
Acquisition
With up to 65K positions being used in practice, this spherical approach is
suited for artificial light fields to be generated from synthetic data. The acqui-
sition of physical objects, however, is a challenging task. Spherical light fields
as proposed above have not been acquired in the past. Nevertheless, spherical
gantries as described in Section 2.3 could be utilized to acquire such type of
light field.
Categorization
The spherical light field parametrization represents a uniform sampling of posi-
tion and direction. Image synthesis is performed directly on the input samples
without any pre- or post-processing being applied to the input data. With a
dense sampling of position and direction, good rendering results are achievable
at high storage costs but without geometric assistance.

Two Sphere Parametrization The two sphere parametrization implements
a spherical parametrization of sample position and direction using two identical
uniform spherical representations. Both of these are defined as the spherical
bounding volume of a scene which is to be captured. The two sphere repre-
sentation was first introduced to the computer graphics community in 1998 by
Camahort et al. [16].
Parametrization
The spherical representation chosen for position and direction is akin to the
one chosen by Ihm et al. [47] to parameterize camera space as described in the
previous paragraph. Discrete sample positions are achieved by subdividing a
spherical approximation based on a polyhedra which provides the most popu-
lar subdivision of the unit sphere [30]. However, Camahort et al. construct a

24 2. Related Work

Spherical Sphere - Sphere Sphere - Plane

Figure 2.8: Left: Spherical Light Fields use intersection with a positional sphere (large
circle) and directional sphere (small circle). Middle: Two-Sphere parameters are deter-
mined by intersecting the same sphere twice. Right: Sphere-Plane coordinates consist of
the intersection with a plane, and the normal direction of the plane.

special polyhedral generator by initially subdividing the 20 faces of an icosa-
hedron. The generator being used for the subdivision process then provides
60 identical faces. By successively applying the subdivision process L times,
4L×60 faces are generated. In practice, L = 5 or L = 6 yielding 61K and 245K
faces are chosen to create a spherical parametrization for position and direc-
tion. Usually, both parameterizations are chosen to be of the same granularity
(see Figure 2.8, middle).

In contrast to the camera space parametrization presented by Ihm et al.,
Camahort et al. define discrete sample positions as well as sample directions
to be represented by the barycentric center of the triangular fetches.
Geometric Representation
No geometric information is being represented in the two sphere light field rep-
resentation.
Data Representation
The huge amount of sample positions and -directions effects storage efficiency to
a high degree. Assuming a 24bit RGB color scheme, a total of N ×N ×3Bytes
is consumed (with N being the patch count). Thus, a total of approximately
10.4 GByte of memory is consumed to store a 61K parametrization. With
spherical wavelets [99] being applied, storage costs can be significantly reduced
by a compression ration of up to 60:1.
Synthesis
Light field synthesis is implemented using a ground truth ray tracing ap-
proach [33]. For each synthesized ray, the intersection points of the ray and
the unit sphere are computed. In a second step the two intersected patches

2.5. Survey of Light Field Rendering Approaches 25

of the positional and the directional sphere are identified. As the barycentric
centers of the patches define discrete sample positions on the positional sphere
and represent discrete plenoptic samples on the directional spehere, the final
pixel color value is computed efficiently using nearest neighbor interpolation
schemes. Rendering performance is thus proportional to the desired image size.
In comparison to light field rendering introduced by Levoy and Hanrahan, this
rendering approach takes up to three times longer than rendering a single light
slab [16]. The two sphere rendering approach, however, achieves improved ren-
dering quality compared to Levoy’s and Hanrahan’s approach. Discontinuity
artifacts which are observed at light slab boundaries for surround light fields as
implemented for the lumigraph by Gortler et al. do not appear. However, im-
proved rendering quality comes at the price of densely sampled light fields and
thus increased data volume. Best rendering quality is achieved for spherical
parameterizations yielding 20K and above sample positions (see Figure 2.9).
Acquisition
For synthetic scenes, two sphere light field representations are built using a
ray tracer which can be instructed to shoot individual rays, joining pairs of
points on the sphere to determine the light transport between two fetches. The
acquisition of physical objects has not been in focus of Camhort et al.’s work.
It could, however, theoretically be implemented using spherical gantries and
digital imaging devices.
Categorization
The two sphere parametrization of light fields yields a light field approach that
is capable of producing high-quality virtual views from densely sampled light
fields without the need for geometric data for depth correction of rays. The
uniform sampling of direction and position abet constant rendering quality for
the overall surrounding of the scene.

Sphere - Plane Parametrization The sphere plane parametrization was
introduced by Camahort et al. [16] as an alternative approach to the two sphere
light field representation. Thus, the sphere plane parametrization adopt some
of the parametrization issues being introduced with the two sphere approach
(see Figure 2.8, right).
Parametrization
Discrete sample positions on the spherical surface of the convex hull around
an object are determined by subdividing an icosahedron. Each barycentric
center of a triangular fetch then represents a sample position. A planar image
is associated with every sample position. The planar image represents a light
field sample for a discrete position. The associated image is generated by
parallel projection along the inward looking normal direction of the triangular

26 2. Related Work

Figure 2.9: Rendering results of the two sphere light field rendering approach. Light
field rendered from a two sphere light field sampled at a sample resolution of 65K sample
positions. Image courtesy of Camahort et al. [16].

fetch which defines the concrete sample position. The image plane is defined
to be oriented orthogonal to the fetch normal and positioned at the center of
the unit sphere. For each defined sample position a parallel projection of the
synthetic scene is stored. Additionally, depth maps storing per-pixel distances
are stored with each light field sample. The depth map captures orthogonal
signed distances of the visible object surface to the image plane on a per-pixel
basis.

While the sample positions are uniformly distributed on the surface of the
spherical bounding volume, a uniform sampling pattern is not applied to rep-
resent the radiance along rays. Only rays with directions parallel to the inward
looking normal of a sample position are captured. Considering the image rep-
resentation of this parallel projection and the solid angle being covered by
individual pixels, it can be shown that the solid angle varies significantly be-
tween pixels for the overall image. Thus, this sphere plane representation does
not provide a uniform parametrization for the directional domain.
Geometric Representation
Light field samples and depth images are stored as separate textures. While
the RGB representation of the captured scene is stored in the light field images,
the depth images store an implicit geometric scene representation as orthogonal
distances of the object’s surface to the image plane.
Data Representation
With two textures being stored for each sample position, the data volume is
effected by the amount of sample positions and the sampled image resolution
to a high degree. In practice, thousands of light field samples are utilized to
represent a complete light field. However, a compression ration of up to 60:1

2.5. Survey of Light Field Rendering Approaches 27

is achieved with JPEG [84] compression techniques being applied to the im-
age data and Lempel-Ziv [138] compression schemes being applied to the depth
map. Then, a light field sampled from 20K positions at a resolution of 256×256
is roughly about 170 MBytes, including the depth maps.
Synthesis
Light field rendering is implemented based on texture mapping techniques.
Each sample image is assigned as texture to the vertices of the triangular fetch
from which’s barycentric center it has been captured. Within the light field
synthesis the vertices of each triangle fetch are projected onto the fetch’s image
plane to determine each vertex’s texture coordinates, using the virtual view-
point as center of projection. The texture samples of vertices being shared
by adjacent fetches will in the general case provide incoherent visual informa-
tion as adjacent samples represent orthogonal projections with varying central
viewing direction. Thus, this incoherence is exposed as visual seams at the
triangular edges of the spherical approximation (see Figure 2.10, left). Apply-
ing texture blending on overlapping fetches, the visual discontinuity of sharp
edges is omitted at the price of slightly blurring artifacts in these regions (see
Figure 2.10, right).

With the available depth map being exploited for depth correction of rays,
visible seams and ghosting artifacts are reduced to a reasonable amount (see
Figure 2.10, bottom row). For depth correction of rays the depth image
is traced to establish a ray-object intersection for three vertices of a single
fetch [127, 128]. If the disparity of the determined depth values, however,
exceeds a pre-defined threshold the fetch is subdivided at rendering time to
account for geometric details of the captured object. This subdivision process
is iteratively repeated, until a predefined minimal fetch size is achieved or the
depth disparity does not further exceed the given threshold. In the worst case,
the subdivision is repeated until the fetch size narrows down to the size of a
single pixel.

The subdivision process is driven by the current viewing parameters. Thus,
the final topology of the triangle mesh being used for image synthesis varies
with changing virtual viewpoints. As a consequence, moving the viewpoint
around will lead to noticeable artifacts resulting from topology changes. The
overall rendering quality of the sphere plane light field approach is dependent
on both, the resolution of the depth map and the resolution of the images. In
contrast to the two sphere light field rendering approach the performance is
not limited by the target resolution but by the amount of sample positions.
Acquisition
As stated by Camahort et al. this representation is especially suited to gener-
ate light field representations from complex synthetic scenes. Although being

28 2. Related Work

Figure 2.10: Rendering results of the sphere plane light field rendering approach. Top
row: Light field synthesized from a dataset containing 1280 sample images at 256 × 256
pixel resolution. The left image was rendered without blending being applied to fetches.
Notice the seams at the fetch boundaries. The right image shows rendering results with
blending being applied. Notice the ghosting artifacts a the boundaries of the fetches.
Bottom row: Light field of the Stanford Bunny, rendered from a light field containing
20480 samples each at a resolution of 256×256 pixel with depth correction of rays (Left:
Without blending, Right: With blending) Image courtesy of Camahort et al. [16].

theoretically possible, physical objects have not been acquired in the past. For
synthetic scenes the images are generated with any standard rendering engine
by adjusting the view settings and rendering the scene with parallel projection
from the desired sample position. Depth maps are easily generated by extract-
ing the z-Buffer depth information and evaluating the distance to the image
plane.
Categorization
The uniform representation of sample positions being utilized in this approach
allows to continuously synthesize arbitrary views from any position around the
object. However, the parallel projection being associated with each sample
position does not provide a uniform sampling of directions. With the depth
correction of rays being applied based on the implicit geometry representation

2.5. Survey of Light Field Rendering Approaches 29

the structure of the spherical approximation is adjusted according to the input
data’s depth complexity at rendering time. The depth information stored in the
depth maps of adjacent fetches steer the subdivision process at run-time. Thus,
the final appearance of the subdivided spherical proxy can first be established
with all of the depth maps being available.

2.5.4 Unstructured Light Fields

In the past, two major contributions in the field of unstructured light field ren-
dering have been published. Both approaches implement a light field rendering
technique which does not require a predefined setup of sample positions and
associated input images to synthesize new virtual views. However, both ap-
proaches implement different sample representation and image synthesis tech-
niques.

Unstructured Lumigraph Rendering The basic idea of Unstructured Lu-
migraph Rendering is to implement a geometry assisted light field rendering
technique that accepts input images from cameras in general positions which
are not restricted to a plane or to any specific manifold. It should, however,
be general enough to also implement special setups such as the two plane
parametrization, a cubic arrangement of light slabs or any sort of spherical
parametrization [13]. The work on unstructured lumigraphs has been inspired
by View Dependent Texture Mapping techniques [22, 23, 87] which apply pro-
jective texture mapping for efficient real-time image synthesis [39]. It picks
up recent enhancements and extensions to the basic light field rendering tech-
niques, for rendering digitized three-dimensional models in combination with
acquired images [89, 103,131].
Parametrization
Unstructured lumigraphs define the sample positions to be free of any restric-
tions in position or orientation as long as they are chosen to lie outside the
convex hull of the object of interest. As the sample positions are to be chosen
freely without any given constraints on the sample arrangement, uniformity
cannot be guaranteed in the general case. If, however, an acquisition device
like a gantry is used to acquire light field samples from predefined positions,
according to the spherical parametrization, uniformity can be achieved. Then,
of course, the benefit of flexible acquisition process is lost.
Geometric Representation
In addition to the light field samples acquired from arbitrary sample positions
an explicit polygonal approximation of the scene is to be generated and stored
with the set of input images. Typically the polygonal representation is gener-
ated in separate task independent of the light field acquisition process. Buehler

30 2. Related Work

C1

C2

Figure 2.11: Top: Triangulation of the image plane. Bottom Left: Camera blending field.
Bottom Right: Rendering results of ”Hallway” data set based on the camera blending
field. Image courtesy of Buehler et al. [13].

et al. [13] have declared an explicit geometry approximation of the scene to be
best suited for unstructured lumigraph rendering.
Data Representation
Light field synthesis is dependent on the knowledge of sample positions and
imaging parameters. As these are not defined for the unstructured parametriza-
tion a priori, internal projection parameters as well as external transforma-
tion parameters are to be stored with every sample being acquired. With the
amount of sample positions not being defined a priori, assumptions on the
memory consumption cannot be made. As a rule of thumb, less samples have
to be acquired if a precise geometric representation is available. The granular-
ity of the geometry proxy, however, effects the storage costs to a high degree.
Synthesis
For a virtual view to be synthesized from the input images, the positions of
the source cameras’ centers are projected into the desired virtual image plane.
The projected vertices are then being triangulated and used to reconstruct

2.5. Survey of Light Field Rendering Approaches 31

the interior pixels, according to Heigl et al. [42]. The unstructured lumigraph
rendering approach calculates a camera blending field for the desired image
plane in a first step and applies projective texture mapping techniques in a
second step to synthesize a virtual view. A pixel’s blending weight represents a
sample camera’s contribution to the pixel’s final color. The blending weight is
calculated with respect to a virtual viewing ray through an image plane pixel
rp. The weight is determined from the angular distance of rp to the sample
camera’s central view direction, the sample camera’s distance to the observed
object, and the sample camera’s field of view (FOV). A sample camera’s weight
is reduced with rising angular distances, increasing distance to the object and
with the specific pixel being observed in boundary regions of the FOV.

To efficiently compute the blending field for a certain image plane the blend-
ing weight is determined at a set of discrete points on the image plane, only.
The discrete points are then triangulated over the image plane and the blend-
ing weights are being interpolated. The triangulation of the image plane is
performed by projecting the edges of the polygonal proxy to the image plane.
All edge-edge crossings are inserted as vertices in the image plane. Addition-
ally, all sample camera positions are projected to the image plane and inserted
as vertices. Finally, a dense regular grid of vertices is included on the desired
image plane [13]. A constrained Delaunay triangulation is then applied to the
vertices of the image plane [101]. For each vertex a set of cameras and their
associated blending weights are stored (see Figure 2.11, top and bottom left).

The final image is rendered as a set of projectively mapped triangles. Each
triangle is rendered multiple times according to the different sample cameras
associated with each of the triangle’s vertices and their different textures being
mapped to the triangle fetch. Multiple renderings of the same fetch are finally
composed by alpha blending according to per-pixel blending weights from the
blending field. Since each polygon is treated independently, smooth transition
across polygon edges is not guaranteed. This rendering approach provides so-
phisticated rendering results for detailed polygonal approximations only. With
only a sparse geometric approximation being available, ghosting artifacts be-
come visible in the synthesized image (see Figure 2.11, bottom right).
Acquisition
The acquisition of detailed geometric representations, is a major burden on the
acquisition process. For the acquisition of real objects, complex 3D geometry
extraction methods are to be employed to generate detailed models of the cap-
tured scene. While commodity camera equipment can be used to capture light
field samples from arbitrary positions, extra effort has to be spent to capture
the scene’s geometry. For this reason, only very simplified versions of the ge-
ometry are used for image synthesis. In practice geometry representations like

32 2. Related Work

boxes or planes are used to represent a captured scene [13]. This simplification
comes at the price of visible ghosting artifacts in the final image. If not a very
simple representation is chosen, but a detailed model is used instead, complex
geometric processing techniques are to be applied prior to the image synthesis
process in a separated task to make the geometric representation available.
Categorization
Unstructured lumigraph rendering provides a flexible light field rendering tech-
nique that may be used to provide uniformly sampled light fields. But the aim
of this approach is targeted at the free-hand acquisition of light fields. For this
general case uniformity cannot be guaranteed. The explicit geometric repre-
sentation of the scene effects all aspects of this light field synthesis approach.
Rendering quality is improved by applying detailed geometric representations,
whilst it effects pre-processing and storage costs to a high degree.

Free Form Light Field Rendering Free Form Light Field Rendering was
published by Schirmacher et al. [97] as an alternative light field rendering ap-
proach to unstructured lumigraph rendering. With this approach, however,
the optical centers of the sample cameras are considered to lie on a common
arbitrary free form surface, while the camera position and orientation can be
chosen freely [97].
Parametrization
The free form surface is defined by a convex triangulated polygonal mesh, also
called the camera mesh. The camera mesh is built from the sample positions,
each defining a vertex of the polygonal mesh. For each camera position an in-
dividual image plane is defined. Thus, the camera space is defined globally by
the camera mesh, while the image space is defined separately on a per camera
basis by their image planes. Each ray passing through the bounding volume
of the observed object can then be defined by the intersection with the camera
mesh and the image plane of the associated camera. To ensure each viewing
ray to be reconstructible, each camera is to be placed such that the complete
silhouette of the observed object is captured. Under this restriction, arbitrary
viewing rays passing through the convex hull do always intersect the camera
mesh and at least one camera image plane (see Figure 2.12, left). However,
uniformity in position and direction cannot be guaranteed, as the sample po-
sitions and their orientation is not pre-defined in a uniform manner.
Geometric Representation
The free form light field approach exploits geometric scene details for depth
correction of rays. The technique can operate on a variety of geometric repre-
sentations, such a explicit polygonal representation [35], binary volumes [16],
or depth maps [125].

2.5. Survey of Light Field Rendering Approaches 33

Data Representation
Light field samples are stored separately from the geometric representation.
For each light field sample the camera parameters, namely camera transforma-
tion and intrinsic camera projection parameters have to be stored in addition.
With the camera arrangement to be chosen freely to lie anywhere outside the
convex hull of the observed scene, uniformity in position and direction cannot
be guaranteed, as well as storage costs are not determinable in advance. Thus,
while the free form parametrization opens up for a flexible light field represen-
tation, rendering quality cannot be guaranteed. Without a uniform sampling
scheme being essential part of this representation, rendering artifacts resulting
from varying sampling resolution and sample position density are likely to ap-
pear within the light field synthesis.
Synthesis
Image synthesis is implemented by rendering the front faces of the textured
polygonal camera mesh. Each triangle fetch of the camera mesh is textured
according to the input images of the three corresponding cameras which define
the vertices of the current triangle. To obtain a triangle’s final appearance, its
projection onto each of the three camera image planes is rendered separately
and alpha blended. If we assume the triangle to be defined by the vertices
V0, V1, V2, the triangle is projected to the image plane corresponding to V0

first, with an alpha value of 1 assigned to V0, alpha value 0 assigned to V1, V2,
and the alpha values being linearly interpolated over the triangle. With this
procedure being applied accordingly to V1 and V2 the resulting three samples
are interpolated using the assigned alpha values for the final appearance of the
triangle.

If the sampling density is not high enough, this approach leads to serious
blurring and ghosting artifacts. With depth correction being applied, these
artifacts can be compensated to some degree. With an approximation of the
geometry to be known, a ray-object intersection can be determined for each ray
emerging from a virtual viewpoint and passing through a vertex. With depth
information being available on a per-vertex basis, the vertices of a triangle are
then projected onto the approximate geometry surface. An additional depth
is estimated for the triangle’s center. If the overall depth disparity of the four
depth estimations within a triangle exceeds a certain threshold, the triangle is
subdivided. This depth estimation and subdivision procedure is repeated until
the depth threshold or a minimum triangle size is reached (see Figure 2.12,
middle). The minimum triangle size is specified by the target image resolution.
Thus, subdivision is repeated recursively until a minimum triangle size of one
pixel is reached in the worst case.

With the depth correction being applied to four discrete positions of a

34 2. Related Work

C1 C2

C3

I1
I2

I3

M

Figure 2.12: Left: Camera Mesh M built from input camera positions Cn, displaying
image planes In associated with each camera. A viewing ray is defined by the intersection
with the camera mesh and the image plane. Middle: Refined camera mesh utilized to
determine camera blending weights with depth correction being applied. Right: Rendering
results of light field containing 107 input samples with depth correction being applied.
Image courtesy of Schirmacher et al. [97].

triangle, only, high-frequency changes between these depth samples are not
accounted for by the depth correction, leading to ghosting artifacts in the final
image (see Figure 2.12, right).

The depth correction being applied to the camera mesh results in improved
rendering quality. Rendering quality, however, comes at the cost of a perfor-
mance drop caused by the recursive subdivision process. As the subdivision
is steered by per-vertex depth values, which are in turn determined along the
ray from the current viewpoint, the topology of the subdivided mesh varies
with changing viewpoints. This inconsistent reconstruction of viewing rays is
also observed for unstructured lumigraph rendering [13]. While moving the
virtual viewpoint around the object, the inconsistence may lead to noticeable
artifacts. With the subdivision process being applied to the complete camera
mesh at run-time, rendering is performed solely after the acquisition process
has been completed.

2.6. Conclusion 35

Acquisition
To allow for depth correction of rays, a geometric representation of the scene is
to be generated during the acquisition task. The limitations of the acquisition
process being known for unstructured lumigraphs also hold for free form light
fields. The acquisition of a scene’s geometry is one of the major burdens, while
light field samples can be acquired with commodity digital cameras for which
the extrinsic and intrinsic camera parameters are known.
Categorization
The free form light field rendering approach implements an efficient way for
rendering new virtual views based on a flexible parametrization. Uniformity
of this parametrization, however, cannot be guaranteed. With additional
geometric information of the scene being acquired, depth correction of rays is
applicable. With depth correction of rays being applied, high-quality images
can be synthesized. Synthesis then includes a view dependent recursive sub-
division process performed at run-time which effects rendering performance.
Performance drop and quality gain are strictly coupled with the geometry’s
level of detail, the minimal triangle fetch size, and the sampling density of the
representation.

2.6 Conclusion

Light field rendering techniques have been first introduced to the computer
graphics community in 1996 by Levoy and Hanrahan. Since then several en-
hancements and extensions to the original two plane light field approach have
been presented in the past. Each of which is contributing an enhancement or
extension to the two plane parametrization. Originally, the two plane light field
rendering approach (see Section 2.5.1) implements a parametrization based on
two planes. Good rendering results are achieved for very densely sampled light
fields, while ghosting artifacts are visible for sparsely sampled ones. The two
plane representation implements a uniform parametrization in the positional
domain, only. Virtual view positions are limited to a small viewing cone de-
fined by the size and arrangement of the two planes. Two plane light fields are
acquirable using a variety of equipment. Camera arrays, gantries and upcom-
ing multilense camera systems can be used to acquire this kind of light fields.
Light field samples can be used directly for image synthesis purposes without
the need for further processing.

The lumigraph representation extends the two plane approach by using six
light slabs to allow the virtual viewing position to be chosen to lie anywhere
outside the convex hull of the observed object with 6 DOF. Depth correction

36 2. Related Work

of rays is implemented based on a sparse geometric approximation of the scene
to reduce ghosting artifacts. However, lumigraph rendering shows noticeable
disparity artifacts at the boundaries of two adjacent light slabs. This effect is
directly related to the non uniform sampling of directions which becomes visible
as artifacts in these regions. While the light field samples can be acquired
according to the two plane approach, effort has to be spent on the acquisition
of the geometric scene representation. As the geometry is fundamental to the
lumigraph rendering technique, it is to processed prior to the rendering task in
a separate task. Thus, samples being acquired during the acquisition process
can be visualized directly, only, if the geometry has already been processed
before.

Spherical light field techniques overcome the problem of visible discontinu-
ities at the boundary regions of two adjacent light slabs by implementing a
uniform sampling of positions and directions in a spherical parametrization.
All of the spherical approaches presented in Section 2.5.3, however, are in need
of a dense sample distribution on the spherical alignment in order to synthesize
high-quality virtual views. With depth correction of rays being applied by the
sphere plane parametrization, the amount of samples is drastically reduced.
But still, thousands of sample positions are required. Thus, the spherical tech-
niques are especially suited to extract light fields from synthetic objects.

Unstructured light field approaches are focused at accepting input samples
from cameras in arbitrary positions. With the sample positions being freely
chosen during acquisition, it opens up for a flexible acquisition of light fields, if
the camera’s intrinsic and extrinsic parameters are known. With the granted
flexibility, however, a uniform parametrization cannot be guaranteed for these
approaches in the general case. Rendering artifacts resulting from varying
sampling density are likely to appear for these approaches. These artifacts are
especially prominent while interactively adjusting the virtual viewing pose as
these approaches are variant under both translation and rotation. As both
approaches rely on some knowledge about the scene geometry, extra effort is
to be spent on the acquisition of geometric details which reduces the benefit
of easy to use light field acquisition. Extra equipment has to be utilized and
costly geometry processing has to be performed prior to virtual view synthesis.
With depth correction of rays being applied, high quality rendering results can
be achieved for densely sampled light fields.

All of the light field approaches presented in this chapter are capable of
synthesizing new virtual views from light field representation at high quality.
The achievable quality, however, comes at the high price of extremely dense
sampling patterns, very detailed geometric representations or computational
costly processing techniques. These issues effect the usability of the presented

2.6. Conclusion 37

Two
Plane

Data
Representation

Geometry
Representation

Sampling Uniformity

Uniform
Orientation

Non
Uniform

Uniform
Position

Direct
Rendering

Processing
on Rendering

Pre-
processing

Uniform
Position &
Orientation

No
Geometry

Explicit
Geometry

Implicit
Geometry

Lumigraph

Spherical

Two
Sphere

Sphere
Plane

Unstructured
Lumigraph

Freeform
Light Field

Figure 2.13: Light field rendering approaches categorized by the amount of geometry
used for depth correction of rays, data representation and sampling uniformity.

approaches to a high degree. Two plane light field rendering provides sophisti-
cated rendering results for a restricted region of virtual viewpoints, only, if the
light field is sampled very densely. While reducing the sampling count signifi-
cantly and resolving the virtual point restriction, the lumigraph approach is in
need of detailed explicit polygonal geometry to achieve high quality synthesis
results of non constant quality. Overall quality is limited by disparity artifacts.
Spherical approaches eliminate these artifacts but demand both, densely sam-
pled light fields and detailed geometry to achieve sophisticated quality. While
the unstructured light field techniques are aiming at providing a straight for-
ward approach for light field acquisition and rendering, these approaches do
not provide a uniform parametrization and exhibit visible artifacts resulting
from topology adjustments within the light field synthesis.

This thesis presents a new spherical light field parametrization which com-
bines the benefit of uniformity being implemented by spherical light field tech-
niques and the advantage of geometry assistance in order to reduce sample
density. The proposed approach implements a new technique that is capable

38 2. Related Work

of synthesizing high-quality virtual views from as few as 42 light field samples
based on an implicit geometric representation of the scene. Thus, the presented
technique opens up for the acquisition of spherical light fields from physical ob-
jects which is not available for spherical approaches presented in the past. A
new acquisition technique is presented which captures both, a light field sample
and a depth map of the scene in a single exposure and thus opens up for direct
data access without the need for costly geometry processing which has been
the limiting factor for geometry assisted techniques presented in the past.

3

Spherical Light Field
Parametrization with

Per-Pixel Depth

This chapter presents a new spherical light field parametrization which pro-
vides a uniform sampling pattern. The proposed approach efficiently represents
combined light field samples and implicit geometric information in a texture
based storage format.
Sample positions are arranged in a spherical setup based on a spherical ap-
proximation being derived from the icosahedron as initial representation. The
spherical arrangement of sample positions allows the virtual viewpoint to be
chosen with 6 DOF during the light field synthesis process. Light field synthesis
can be performed in absence of discontinuity artifacts which are observed for
the lumigraph approach and those, which potentially occur for unstructured
light fields for non uniform sampled scenes.

The image space parametrization exploits existing environment mapping
techniques to represent the radiance along rays passing through a pre-defined
sample position. Light field samples are represented as a parabolic environment
map which stores combined RGB and depth values on a per-pixel basis. This
representation of both, radiance along rays and geometry in a single texture,
provides a compact storage scheme, which can be exploited efficiently within
light field rendering to generate new virtual views. With the implicit geometry
representation being accessible directly as a fundamental part of the proposed
parametrization, virtual views can be synthesized precisely at real time frame
rates without the need for further geometry processing.

The spherical light field parametrization with per-pixel depth is discussed in
detail in this chapter. The spherical parametrization of camera space is outlined
in the first section followed by an in detail discussion of the parabolic image
space parametrization in the second section. The per-pixel depth representation
is explained in the third section. The chapter is closed with an analysis of the
sampling scheme and the storage costs followed by a conclusion.

39

40
3. Spherical Light Field Parametrization with

Per-Pixel Depth

Figure 3.1: Spherical proxies are generated by successively subdividing the 20 faces of
an icosahedron (left) into spherical approximations with 42 vertices (m = 1, middle) and
162 vertices (m = 2).

3.1 Spherical Camera Space Parametrization

Uniform camera space parametrization is achieved by arranging equally spaced
sample camera positions on a spherical approximation. Thus, a good spherical
approximation has to be generated to map the sample positions to discrete 3D
positions for efficient storage and rendering. Platonic solids are known to be
well suited for the approximation of a sphere [30]. The most complex platonic
solid is the icosahedron, a 20-sided polyhedron with identical faces and vertex
valences, providing an absolutely uniform distribution of vertices on the unit
sphere. The icosahedron is thus a good choice as a generator for uniform spher-
ical approximations [29,34]. In contrast to Camahort et al. [16] who construct
a special 60 face generator from an icosahedron for the spherical parametriza-
tion (see Section 2.5.3) the icosahedron is taken as generator directly for the
subdivision process. As will be shown in the next paragraphs, the subdivi-
sion scheme being applied to the icosahedron directly provides a flexible and
uniform spherical representation.

The subdivision scheme applies a recursive interpolatory subdivision on the
solid mesh of the icosahedron (see Figure 3.1). With every iteration each trian-
gle is divided into four (nearly) equilateral spherical triangles. For a top-level
triangle Tm defined by vertices Vi, with i = 1, 2, 3 which has been subdivided m
times a prior, each of its edges Ej , with j = 1, 2, 3, are split into sub-edges Ejk

of equal length, with k = 1, 2 (see Figure 3.2). New vertices Vl, with l = 4, 5, 6
are generated at the split points of the edges. The positions of these vertices Vl

are adjusted by projecting the vertices on the unit sphere to maintain a solid
spherical approximation. The vertices Vi of the top level triangle Tm and the
generated vertices Vl then define the triangulation of the next subdivision level.

Applying the subdivision process m times, a spherical approximation with
20× 4m faces is obtained. In practice, m = 1 or m = 2 are chosen, yielding 80

3.1. Spherical Camera Space Parametrization 41

E1

E2

E3

V1

V2 V3

V1

V2 V3

V4

V5

V6

E11

E12

E21 E22

E31

E32

T0

V1

V2 V3

V6V4

V5

T0

Figure 3.2: The triangle subdivision scheme. A top-level triangle is subdivided into
equilateral subtriangles by applying an interpolatory subdivision scheme. The positions of
vertices resulting from subdiving an edge into equal sub-edges are adjusted by projecting
the vertices on the unit sphere to maintain a solid spherical approximation.

or 320 faces and 42 or 162 vertices, respectively. Note that finer triangulations
include all of the vertices of the top level triangulation. Thus, a coarsening of
a previously refined spherical approximation is easily achieved afterwards by
dropping the inner vertices and adjusting the topology accordingly.

The quality and thus the uniformity of this spherical approximation can
be evaluated by means of the triangle fetch aspect ratio, i.e. the ratio of the
longest triangle edge and the shortest triangle edge within the spherical ap-
proximation. The ideal spherical approximation defines discrete vertices to
be positioned on the surface of the sphere such that a perfect equilateral tri-
angulation can be established which yields an overall optimal triangle aspect
ratio of 1.0. As the subdivision process presented above is initiated based on
an icosahedron yielding an equilateral triangulation based on 12 discrete posi-
tions, this representation provides good spherical approximations. An average
fetch aspect ratio of 1.12 is achieved using the proposed subdivision process
(see Table 3.1). Compared to spherical parameterizations being presented in

Sphere Maximum Minimum Average
Resolution Sample Distance Sample Distance Sample Distance

12 1.051462 1.051462 1.051462
42 0.618034 0.546533 0.582284

162 0.324920 0.275904 0.299332
642 0.164647 0.138283 0.15073

Table 3.1: Sample distances of spherical parameterizations at different subdivision levels

42
3. Spherical Light Field Parametrization with

Per-Pixel Depth

the past (see Section 2.5.3) only a fractional part of discrete spherical sample
positions is being used in this spherical representation.

The spherical approximation is stored explicitly as an indexed face set, with
each of the vertices defining a sample position. For each vertex, a 4×4 viewing
matrix is stored which represents the transformation of world to sample camera
coordinates. This matrix is interpreted as extrinsic sample camera parameter
for light field acquisition as well as for reconstruction purposes. This spherical
approximation of camera positions is denoted as camera sphere in the following.

3.2 Parabolic Image Space Parametrization

To capture the spherical light field according to the spherical camera space
parametrization, the radiance along rays has to be captured at each of the
discrete sample positions defined by the camera sphere (see Section 3.1). The
use of environment maps to capture the incoming light in a texture map has
been proven to be an efficient way for representing the radiance along rays
passing through a certain point in space [11]. As environment maps record the
incident light passing through a single point in space from different directions,
each individual environment map of a scene describes a concrete sample of
the plenoptic function [73]. In the presented image space parametrization, a
raster image of the opposing hemisphere is stored using environment mapping
techniques for each camera of the camera sphere.

3.2.1 Environment Mapping Techniques

Various environment mapping techniques have been published in the past. The
approaches, however, differ in sampling quality and applicability in the context
of light field sampling.

Cubic Environment Maps Cubic environment maps [37, 126] utilize six
independent perspective images to capture the environment for a predefined
position in 3D space. Each of these six images is captured from the center of
a cubical setup through each of its faces [36]. Cube maps are either stored
using six independent textures or in a single texture using texture atlas tech-
niques [81] to merge these images into a single image based representation.
This cubic representation shows fairly good sampling rates. 2D sampling rates
differ by a factor of 3

√
3 (≈ 5.2) over all directions. This can be easily shown

through the following considerations. If a cube map sample has a differential
area dA which corresponds to the pixel area of a single pixel within the cubical
map, the solid angle covered by this pixel is thus the projection of dA onto

3.2. Parabolic Image Space Parametrization 43

the unit sphere. With n̂ being a unit vector from the origin, dA being the
differential areas of a pixel, and r being the distance from the origin to the
pixel, the solid angle of a pixel (dω) is given by:

dω =
n̂dA

r2
(3.1)

To compute the solid angle explicitly, equation 3.1 is rewritten in cartesian
coordinates using

n̂dA = cosφ dx dy

r2 = x2 + y2 + z2

and

cosφ =
z

r

=
z√

x2 + y2 + z2

Considering the planar patch which is located at z = 1 and has its sides parallel
to the x and y axes, the solid angle is calculated as follows.

dω =
z dx dy√

x2 + y2 + z2
· 1
x2 + y2 + z2

=
z dx dy

(x2 + y2 + z2)
3
2

Thus, for the central pixel of a single patch of the cubic map, with x = 0, y = 0,
and z = 1 the solid angle is dω = 1sr. For the corner pixel with x =+

− 1, y =+
− 1,

and z = 1 however, the solid angle is dω = 1
3
√

3
sr. Pixels in the corner regions

of the cubical environment map cover only 1
3
√

3
of the solid angle covered by

center pixels. This means that these corner regions are sampled at a higher
rate than the central directions [40].

Spherical Environment Maps A wide spread environment map
parametrization used in the computer graphics community is called spheri-
cal environment mapping [38, 75]. Spherical environment maps are based on
the analogy of a small, perfectly mirroring metal ball centered around an ob-
ject of interest. A single image that an orthographic camera captures when
focusing on such a ball from a certain viewing direction can be interpreted as
the spherical environment map. Thus, spherical environment maps are more
efficient with respect to memory consumption compared to cube maps, as only

44
3. Spherical Light Field Parametrization with

Per-Pixel Depth

Figure 3.3: Left:The rays of an orthographic camera reflected off a paraboloid sample a
complete hemisphere of directions. Middle and Right: Sample textures of a parabolically
mapped synthetic environment. Images courtesy of Heidrich [41].

one single image is needed to represent the environment. However, this spher-
ical parametrization exhibits areas of poor sampling [40]. Spherical environ-
ment maps show maximum sampling rates for directions opposing the viewing
direction and reach sampling rates close to zero for directions similar to the
viewing direction. Additionally, a singularity is observed with the spherical
parametrization. All points on the sphere with a viewing vector tangential to
the sphere show the same point of the environment.

Parabolic Environment Maps Parabolic environment mapping utilizes
two environment textures to perform a parabolic environment mapping [41].
The idea behind the parabolic environment mapping technique is similar to that
of spherical mapping. Instead of generating the texture by recording the reflec-
tion of the environment off a sphere, however, two paraboloids are used, each
of which covering an environment hemisphere [2]. For the proposed geometry
it can be shown that the reflected rays in each point of the the paraboloid all
originate from the a single point, the focal point of the paraboloid (see dashed
lines in Figure 3.3). Thus, the complete environment can be stored in two
separate circular textures, each containing the information of one hemisphere.
Then, the reflection vectors are mapped to parabolic texture coordinates (u, v)
according to Equation 3.2.1, 3.2.1. Note, that the sign of the z-component
of the reflection vector is used to decide which of the two textures is to be
accessed.

3.2. Parabolic Image Space Parametrization 45

Image
Hemisphere
of current camera

Object
Bounding
Sphere

current
camera

Camera
Sphere

Figure 3.4: Left: Sphere-Hemisphere parametrization of the light field. The object is
enclosed in the blue bounding sphere. Virtual cameras are positioned at the vertices of the
camera sphere (green). Each camera is recording the opposing hemisphere. Middle and
Right: RGB and color values are sampled simultaneous from spherical sample positions
on the camera sphere. The camera sphere is to chosen

√
2 times larger than the bounding

sphere of the object to ensure that all rays from the current camera through the object
boundary sphere will intersect the opposite hemisphere

u =
rx

2(1 + rz)
+ 0.5 (3.2)

v =
ry

2(1 + rz)
+ 0.5 (3.3)

The sampling rate varies by a factor of 4 over the complete image, i.e. pixels
in the outer regions of a single parabolic map cover only 1

4 of the solid angle
covered by center pixels (See Equation 3.1). Directions perpendicular to the
viewing direction are sampled at a higher rate than directions parallel to the
viewing direction [40].

As only the opposite hemisphere is to be parameterized for each of the
predefined spherical sample positions within the light field parametrization
presented in this work, parabolic environment maps provide an efficient solution
for image space parametrization. Only one of the paraboloids is utilized for the
parametrization of the hemisphere on the opposite side of a sample position.
The paraboloid covering the hemisphere in the opposite view direction is not
used (see Figure 3.4). Thus, storage costs are minimized by neglecting the
second parabolic texture.

Note that for this approach, the camera sphere must be chosen to be larger
than the object’s bounding sphere by a factor of

√
2 to ensure that all rays

from the current camera through the object boundary sphere will intersect the

46
3. Spherical Light Field Parametrization with

Per-Pixel Depth

Figure 3.5: Five image samples taken for a spherical light field with 42 cameras. Each
image represents a parabolic mapping of the hemisphere for color (top row) and depth
(bottom row).

opposite hemisphere (see Figure 3.4). For each of the spherical camera positions
the opposite hemisphere is then mapped to a parabolic representation. For each
ray emerging from a sample camera position and intersecting the camera sphere
at the opposite hemisphere at point S the radiance is mapped to parabolic
texture coordinates (u, v) as follows:

(
u
v

)
k

=
1
2

⎛
⎝ sx

1 + sz
+ 1

sy

1 + sz
+ 1

⎞
⎠

k

with Sk =

⎛
⎝ sx

sy

sz

⎞
⎠

k

(3.4)

In practice, a resolution of 256 × 256 or 512 × 512 pixels is chosen for the
parabolic texture. Examples of source images for the light field are displayed
in Figure 3.5.

3.3 Geometric Representation

The light field samples acquired from the spherical arrangement of sample
positions is supplemented by a representation of the captured scene’s geometry.
For efficiency reasons a depth map is stored with every light field sample being
acquired. Depth maps store the geometry distance for individual rays on a
per-pixel basis. The depth map is generated with a resolution according to the
light field sample resolution. Using the alpha channel of a captured parabolic
light field sample, the depth can efficiently be stored in the fourth channel of

3.4. Sampling Analysis 47

zmax
z'

Figure 3.6: The depth value is obtained by dividing the bounding-object distance z′ by
the bounding sphere’s secant length zmax.

the RGBA parabolic map (see Figure 3.5). In the remainder of this work RGB
textures with a depth value stored in the alpha channel are referred to as RGBz
textures.

Per-pixel depth values are calculated for each ray as the distance z′ from
the first intersection point with the object’s bounding sphere to the object
surface. The ratio of z′ to the bounding sphere’s ray secant length zmax is
then stored as the final depth in the alpha channel of the parabolic texture
according to Figure 3.6. This results in a depth value between 0 and 1, which
can efficiently be stored as 8 bit value in the alpha channel [86]. Applying an 8
bit quantization on the geometric domain with a depth complexity of 1 yields
256 depth layers, each of which covering a depth interval of 1/256(≈ 0.004).

3.4 Sampling Analysis

According to the Nyquist theorem, in order for a signal to be reconstructed
without aliasing the sampling frequency needs to be greater then the Nyquist
rate. Chai et al. [17] determine the maximum distance for adjacent sample
camera positions (Δscmax) from the maximum sample rate in the image domain
(Δsi), according to:

Δscmax =
1

2Δsi
(3.5)

Thus, while limiting the acquisition of light field samples to a uniform image
space sampling resolutions in both directions (Δsi) of 256, 512 and 1024, a
maximum geometric distance of ≈ 0.002, ≈ 0.0009 and ≈ 0.0005, respectively
for adjacent sample positions is not to be exceeded in order for the light field

48
3. Spherical Light Field Parametrization with

Per-Pixel Depth

synthesis to be performed without aliasing artifacts (see Equation 3.2).
While Chai et al. defined the maximum distance for adjacent sample posi-

tions from a spectral analysis of a 4D light field parameterized using the two
plane approach, it can be shown that this analysis also holds for the spherical
parametrization presented in this work. Considering the polygonal approxi-
mation of the sphere which defines the sample positions in this spherical light
field approach, a set of three adjacent sample positions do lie in a common
plane. Under this assumption the spherical approximation can be regarded to
be locally planar. The, the sampling analysis of Chai et al. also hold for a
local observation of sampling space of the spherical parametrization presented
in this work.

Chai et al. further show, that for a given image space sampling rate, the
maximum sampling distance can be increased, if geometric depth information
is available with each light field sample being acquired. For Nd discrete levels
of depth quantization being available, the maximum sampling camera distance
is then determined by:

Δ
scmax

Nd
=

1
2Δsi

(3.6)

Δscmax =
Nd

2Δsi
(3.7)

For an 8 bit depth quantization yielding 256 discrete levels of depth, the
maximum sampling camera distance (scmax) can then be extended to 0.5, 0.25
and 0.125 for image space sampling (Δsi) of 256, 512 and 1024, respectively.
Thus, with an 8 bit depth representation being available, camera sphere rep-
resentations resulting from subdividing the initial icosahedron m ≥ 2 times
represent good sampling schemes.

For a subdivision level of m ≥ 2, the spherical sample setup satisfies the
maximum sampling distance constraint (see Table 3.1). Depending on the
image space resolution subdivision levels of increased sampling density may be
chosen to avoid aliasing artifacts.

3.5 Storage Efficiency and Light Field Compression

The storage efficiency of the light field representation presented above is de-
pendent on the resolution of both, the resolution of the sample image and the
sample position density. For each sample position an individual 2D RGBz tex-
ture map is stored. Storage costs per sample image (Mems) are steered by the

3.5. Storage Efficiency and Light Field Compression 49

image sampling rate si as follows:

Mems = si × si × 4 byte (3.8)

In practice, light field samples are captured at a resolution of 256 × 256 and
512 × 512 yielding per sample storage costs of 256Kbyte and 1024Kbyte.

The storage costs caused by each light field sample texture are multiplied
by the amount of camera sample positions (Nc) for the complete light field
representation. Additional storage costs are caused by storing the spherical
approximation being stored explicitly as an indexed face set. Remember, with
each vertex, a 4×4 viewing matrix is stored which represents the sample camera
coordinate transformation. Storing the viewing matrices using 4 byte floating
point values and an index list containing 20× 4m ∗ 3 short integer values (with
m being the spherical subdivision level) the total memory consumption for a
complete light field representation (Memlf) is then computed according to:

Memlf = Nc × Mems + Nc × 16 × 4 + 20 × 4m × 3 × 2 bytes (3.9)

Typical sizes of light field representations for a variety of image- and camera
space resolutions are listed in Table 3.2.

Images Resolution Uncompressed S3TC DXT3 S3TC DXT3 & zipped
12 256 × 256 3.1 MB 0.7 MB 0.2 MB
12 512 × 512 12.3 MB 3.0 MB 0.5 MB
42 256 × 256 10.8 MB 2.7 MB 0.6 MB
42 512 × 512 43.0 MB 10.8 MB 1.5 MB

162 256 × 256 41.5 MB 10.4 MB 1.9 MB
162 512 × 512 165.9 MB 41.5 MB 5.9 MB
642 256 × 256 164.4 MB 41.1 MB 7.5 MB
642 512 × 512 657.5 MB 164.4 MB 23.5 MB

Table 3.2: Sizes of typical light fields with and without compression

To reduce the amount of graphics memory consumed by the parabolic
maps, commodity hardware-accelerated texture compression schemes can be
employed. S3TC texture compression [48] offers an effective and easy way to
compress the light field images. Five different variants of the S3TC compres-
sion algorithm are available (named DXT1 through DXT5) which all store a
4 × 4 block of pixels in a 64-bit or 128-bit quantity and achieve a compression
ratio of 8:1 or 4:1. The DXT5 algorithm works on RGBA textures, stores a
128-bit value per 4 × 4 pixel block, and achieves a compression ratio of 4:1.

50
3. Spherical Light Field Parametrization with

Per-Pixel Depth

In our storage scheme, however, the alpha portion contains the depth values,
which turned out to be sensitive to compression artifacts resulting from a block
wise compression. This is especially critical at object boundaries. Fecker et
al. [28] demonstrated that a block wise compression of a scenery’s depth infor-
mation will cause noticeable loss of quality within light field synthesis. Thus,
the DXT3 compression algorithm is used to maintain best results within the
rendering task. DXT3 works on RGBA data as well, but does store an explicit
alpha value per pixel. DXT3 also stores a 128-bit value per 4 × 4 pixel block,
but an additional 4-bit alpha value per pixel. Alpha values are compressed on
a per pixel basis. Thus, artifacts resulting from a block wise compression to do
not occur. DXT3 still offers a total compression ratio of 4:1. DXT1, DXT2,
and DXT4 compression schemes do only provide very primitive alpha channel
support. For this reason, these compression schemes are not applicable to the
RGBz data representation being used in this work.

A light field being generated using the proposed spherical parametrization
with 162 images and a resolution of 512× 512 pixels consumes 165.9 MB with-
out compression. In comparison, a DXT3 compressed light field of the same
dimensions consumes only 41.5 MB of memory. For storing and transmission,
the total size of a light field data set can be further reduced significantly by
applying standard ZIP compression techniques. With both ZIP and DXT3
texture compression the same light field is reduced to a average size of about
6 MB (See Table 3.2).

3.6 Conclusion

The spherical light field parametrization with per-pixel depth presented in this
chapter represents an innovative parametrization approach which implements
a uniform sampling of both position and direction. For the directional domain,
however, a parabolic image based representation is applied which does provide
a good approximation of a uniform sampling pattern for the directional domain.
Here, the parabolic representation was chosen due to its storage efficiency. The
proposed parametrization opens up for virtual view synthesis with 6 DOF for
virtual viewpoint selection. It implements an efficient light field representation
with respect to storage costs which includes an implicit geometric scene de-
scription at minimum additional storage costs based on per-pixel depth values.
Light field samples and depth values are stored in a common RGBz parabolic
texture map which opens up for standard texture compression techniques to
further reduce storage costs.

In contrast to the two plane light field rendering approach presented

3.6. Conclusion 51

Two
Plane

Data
Representation

Geometry
Representation

Sampling Uniformity

Uniform
Orientation

Non
Uniform

Uniform
Position

Direct
Rendering

Processing
on Rendering

Pre-
processing

Uniform
Position &
Orientation

No
Geometry

Explicit
Geometry

Implicit
Geometry

Lumigraph

Spherical

Two
Sphere

Sphere
Plane

Unstructured
Lumigraph

Freeform
Light Field

Sphere
Hemisphere

Figure 3.7: Categorization of the sphere-hemisphere fight field parametrization presented
in this chapter.

by Levoy and Hanrahan [63] (see Section 2.5.1) this spherical light field
parametrization implements a sampling scheme which allows the virtual view-
point and virtual view direction to be chosen freely with 6 DOF for virtual view
synthesis. The parametrization is chosen sparse enough to open up for efficient
storage schemes, but dense enough to allow arbitrary views to be reconstructed
without noticeable artifacts. Discontinuities as observed with the lumigraph
approach presented by Gortler et al. [35] (see Section 2.5.2) are avoided due to
the spherical parametrization being invariant under both translation and ro-
tation. Contrary to free form lightfields [97] and unstructured lumigraphs [13]
(see Section 2.5.4) a uniform representation is guaranteed with this spherical
parametrization.

The uniform spherical parametrization presented in this chapter is akin to
the representations applied for spherical light field rendering presented by Ihm
et al. [47] and Camahort et al. [16] (see Section 2.5.3). However, essential less
light field sample positions (-90–95%) are needed to sample a complete light
field. Storing an 8 bit depth value with every captured ray in a common RGBz

52
3. Spherical Light Field Parametrization with

Per-Pixel Depth

parabolic texture map, provides 256 distinct depth layers that significantly
reduce the amount of necessary light field samples (see Section 3.4).

With the depth being stored per pixel within the same texture based repre-
sentation it is accessible directly in conjunction with the RGB data from within
a single texture fetch. As will be shown in the following chapter, the proposed
representation provides an efficient light field parametrization which facilitates
light field synthesis without the need for expensive geometry processing and
topology adjustments. The light field representation satisfies the need for a
uniform sampling which implements an implicit geometry representation of the
scene and provides direct view synthesis capabilities. A comparison to light
field parameterizations presented in the past is illustrated in Figure 3.7.

The parametrization presented in this chapter has been presented to the
computer graphics community by Todt et al. [117, 120].

4

Spherical Light Field
Rendering with Per-Pixel

Depth

In this chapter a light field rendering approach is presented which is based on
the sphere-hemisphere light field parametrization with per-pixel depth being
introduced in chapter 3. The rendering technique exploits the uniform sam-
pling structure and implicit geometric representation to implement an efficient
light field synthesis from a sparsely sampled light field representation. Depth
correction of rays based on the proposed depth map representation allows for
high-quality virtual view generation at real-time frame rates without ghost-
ing or disparity artifacts. Virtual viewpoints can be chosen with 6 DOF for
positions outside the convex hull of the represented object.
Image synthesis is implemented on the graphics processing unit (GPU) as a
fragment program which efficiently extracts correct image information from
adjacent cameras for each fragment by applying per-pixel depth correction of
rays based on the parabolic texture representation of image space. Texture
samples are exploited within the view synthesis directly without the need for
further complex and costly geometry processing or structural topology adjust-
ments.

Two different rendering implementations are introduced in this chapter.
While one rendering algorithm implements an iterative refinement approach
for rendering light fields, the other approach implements a raycasting technique
which provides superior rendering quality at moderate frame rates.

The rendering techniques are parameterized to be adjustable by means of
performance and quality to adapt to changing requirements. Level of detail
rendering techniques have been implemented to account for varying object dis-
tance and visibility. The optimized rendering techniques allow multiple light
fields to be rendered synchronously to generate complex scenes. The efficiency
of the uniform light field parametrization in combination with the rendering
technique’s flexibility provides a solid fundament for the implementation of a

53

54 4. Spherical Light Field Rendering with Per-Pixel Depth

web-based remote light field renderer based on a client-server architecture to
provide remote access to light field representations of complex scenes.

This chapter describes the GPU based spherical light field rendering with
per-pixel depth in detail. The iterative refinement rendering approach and the
raycasting technique are explained in the first three sections, followed by a de-
scription of level of detail rendering for light fields in the fourth section. The
fifth section comprehensively describes progressive light field rendering imple-
mented for remote access to light field data based on a client-server architecture.
This chapter is closed with a conclusion in the sixth section.

4.1 Spherical Light Field Rendering

For both of the two light field rendering approaches presented in this chapter,
the light field is rendered by rasterizing the front faces of the polygonal camera
sphere representation with respect to the virtual viewpoint (Peye). The virtual
viewpoint can be chosen with 6 DOF to lie anywhere outside the spherical
camera space representation. However, the viewpoint is restricted to be located
outside the camera sphere to avoid the vertices of the front faces being culled
by frustum culling. Remember, each vertex of the camera sphere corresponds
to a pre-defined camera sample position (C) (see Section 3.1).

The polygonal mesh is rendered by drawing the set of triangles from a
predefined OpenGL display list [78] according to the concrete spherical repre-
sentation of the light field. For each triangle each of its vertices is assigned
one of three distinct color values, namely red (glColor3f(1.0f,.0f,.0f))
for camera C0, green (glColor3f(.0f,1.0f,.0f)) for camera C1, and blue
(glColor3f(.0f,.0f,1.0f)) for camera C2. These vertex colors are inter-
preted as interpolation weights within the light field synthesis. Additionally
the parabolic RGBz texture image, the transformation matrix M of the camera,
and the background color are bound as parameters to each of the vertices.

While a common vertex program is utilized which implements standard ver-
tex operations, a customized fragment program is implemented which performs
the light field synthesis based on the input parameters (see Figure 4.1). The
input parameters such as the sample camera transformation and per-vertex
interpolation weights are passed through to the fragment program by the ver-
tex shader. The vertex positions, however, are transformed according to the
modelview-projection matrix of the current virtual view.

Within rasterization, per-vertex camera blending weights are interpolated
for each triangle being rendered. Within the fragment program interpolated
color values and thus interpolated camera weights are available per fragment.

4.1. Spherical Light Field Rendering 55

Polygonal Sphere
Setup
Initiate triangle mesh
with per-pixel vertex
interpolation weights
as colors

Per-Fragment
Light Field
Synthesis
Determine final fragment
color

Display
synthesized view

Viewing
Transformation
Process vertices and
pass colors, textures &
camera interpolation
weights

Figure 4.1: Overview of the light field synthesis process. The polygonal mesh of the
spherical representation is rendered to synthesize virtual views. A common vertex program
implements standard vertex operations and passes per-vertex shader parameters to the
fragment program. The customized fragment program performs the light field synthesis
to generate a virtual view.

The final color is then determined within the customized fragment program
based on the light field synthesis technique. Both of the light field synthesis
techniques presented in the following sections implement a specific fragment
shader which samples the input textures to extract light field sample data and
per-pixel depth values in order to synthesize high quality virtual views.

Note, however, that in practice the RGB and depth information of the
parabolic map are bound as separate texture objects. While the RGB texture
can be linearly interpolated using OpenGL’s standard GL LINEAR interpolation
scheme, noticeable render artifacts at the silhouettes appear when interpolating
the depth information. Using the nearest neighbour texture lookup scheme
(GL NEAREST) ensures appropriate depth information per pixel and avoids depth
aliasing artifacts at object boundaries.

V0

V1 V2

T0

T1 T2

Figure 4.2: Rendering of the polygonal camera sphere representation with distinct
colors being assigned to each of a triangle’s three vertices. For each vertex a color value
representing the sample camera blending weight, the input RGBz texture Tn, and the
corresponding camera’s transformation matrix are assigned.

56 4. Spherical Light Field Rendering with Per-Pixel Depth

Initialization
Initialize parameters
and variables

Initial Sampling
Get initial depth values
for inital intersection

Iterative
Refinement
Establish ray - object
intersection candidates

Final
Interpolation
Interpolate colors and
calculate fragment’s
depth

All surface
points in
Epsilon?

no yes

Max.
iterations
reached?

no

yes

Figure 4.3: The iterative refinement approach employs four sequential steps to establish
coherent rays and thus coherent light field samples per fragment.

4.2 Iterative Refinement

The iterative refinement technique is outlined in Figure 4.3. Four sequential
steps are implemented within this light field synthesis approach to establish
coherent rays and thus coherent light field samples in order to determine the
final fragment color (see Figure 4.4).

First, all variables and parameters, such as the current viewing position
and viewing direction are initialized in the initialization step. For the current
fragment, a viewing ray is established based on the viewing direction. This
ray’s intersection with the opposite hemisphere of the spherical representation
is evaluated to determine initial texture coordinates and thus initial texture
fetches. Based on the initial depth values being extracted from the texture
fetch’s alpha channel a first object intersection is assessed. The first intersec-
tion estimate is then successively refined in the subsequent iterative refinement
step. With a ray-object intersection being reliably determined in the itera-
tive refinement process, the final fragment color is evaluated by interpolating
appropriate texture fetches.

4.2.1 Iterative Refinement Process

When a triangle is rasterized, each fragment corresponds to a unique position
V on the camera sphere. In the first step, the fragment program calculates the
intersection point of the viewing ray with the camera sphere to obtain a first
estimate of the object intersection point P

(0)
obj. The superscript in this notation

refers to the iteration count (see Figure 4.4).

4.2. Iterative Refinement 57

Second iteration

Peye

Pobj
(0)

Pcam,0
(0)

Pcam,1
(0)

First Iteration

C0

C1

(0)
=Pcam,k

^
C0

C1
(1)

Pcam,1
^

(1)
Pcam,0
^

Pcam,0
(1)

Pcam,1
(1) Pobj

(1)V

Figure 4.4: First and second step of the iterative depth refinement.

The calculated intersection point is transformed into the viewing space of
camera k according to

S
(i)
k = Mk P

(i)
obj with k ∈ {0, 1, 2}. (4.1)

This is done for each of the three adjacent cameras that correspond to
the original triangle’s vertices. The sphere intersection points Sk can now be
converted to parabolic texture coordinates (u, v) , according to

(
u
v

)
k

=
1
2

⎛
⎝ sx

1+ sz
+ 1

sy

1+ sz
+ 1

⎞
⎠

k

with Sk =

⎛
⎝ sx

sy

sz

⎞
⎠

k

. (4.2)

RGBz samples are obtained from the parabolic texture maps corresponding to
the three cameras. The depth value z is extracted from the alpha portion and is
used to calculate the camera’s local estimate P

(i)
cam,k for the object intersection

point:

P
(i)
cam,k = z · Ck + (1 − z) P̂

(i)
cam,k (4.3)

with P
(i)
cam,k being the object intersection point and P̂

(i)
cam,k the intersection

point being projected onto the sphere using Ck as center of projection. Note
that Equation 4.3 is a simple linear interpolation, because z stores the depth
value as fractional part of the secant length.

An improved estimate for the object intersection point Pobj can now be
found by projecting the three local camera distances onto the viewing ray and
calculating the average, according to:

P
(i+1)
obj = V +

1
3

2∑
k=0

((P (i)
cam,k − Ck) · r) r (4.4)

58 4. Spherical Light Field Rendering with Per-Pixel Depth

with r being the normalized direction of the original viewing ray (red line).
As illustrated in Figure 4.4, the iteration can be pursued several times by

projecting the updated object point P
(i+1)
obj onto the sphere using the cam-

era vertices Ck as center of projection. The resulting intersection points are
successively transformed into camera coordinates to establish depth values, to
determine improved local estimates according to Equation 4.3, and eventually
calculate an improved intersection point according to Equation 4.4.

The procedure is terminated if the desired accuracy is achieved or a max-
imum number of iterations is reached. The maximum number of iteration is
adjustable at runtime. In practice, however, a maximum number of iterations
of 5 turned out to be sufficient.

Accuracy is steered by an adjustable error threshold. The error threshold
parameter defines the maximum distance of local estimates (P (i)

obj) determined
within the iterative refinement process. In case of the maximum divergence
of local estimates falling below the error threshold the iteration procedure is
terminated. Obviously, ray coherence and as a consequence image synthesis
quality is maximized with the error threshold parameter being minimized.

The final color of the fragment is calculated as the weighted sum of the RGB
values extracted from the parabolic textures of the different cameras within
the final iteration. The weights for each camera correspond to the barycentric
coordinates of the fragment with respect to the original triangle. With the
primary colors red, green and blue being assigned to the three vertices dur-
ing geometry setup, the correct weights are automatically calculated through
color interpolation during rasterization. With the latest local estimates being
averaged and projected to viewing space according to the virtual viewpoint’s
modelview-projection matrix a depth value is determined for each individual
final fragment.

4.2.2 Implementation Details - Iterative Refinement

This section presents in depth details concerning implementation issues of the
four sequential steps being performed for light field synthesis within the frag-
ment program (see Figure 4.3).

Initialization Within the initialization the fragment position is determined
from barycentric interpolation of the associated triangle’s vertex positions (cn)
taking the input color as interpolation weights. The viewing direction (dir)
and the normalized viewing direction (dirN) are established based on the vir-
tual viewpoint position (Peye) and the current fragment’s position (v) (See
Appendix A.1 ll. 31–33 for the corresponding code sequence).

4.2. Iterative Refinement 59

Initial Sampling The initial sampling step establishes the viewing ray’s ini-
tial intersection with the opposite hemisphere to extract RGB and depth sam-
ples from the parabolic textures of the adjacent sample positions as starting
point for the iterative sampling process (see Figure 4.5, left).

The viewing ray is noted using a simple ray equation with the virtual view-
point position Peye being the starting point according to:

Peye + λdir = (x, y, z)T (4.5)

With the unit sphere be denoted using the sphere equation

x2 + y2 + z2 = 1 (4.6)

the ray - sphere intersection is easily determined from:

(Peyex + λdirx)2 + (Peyey + λdiry)2 + (Peyez + λdirz)2 = 1 (4.7)

(Peyex
2 + 2λPeyexdir + λ2dirx

2)+

(Peyey
2 + 2λPeyeydir + λ2dirx

2)+

(Peyez
2 + 2λPeyezdir + λ2dirz

2) = 1 (4.8)

λ2(dirx
2 + diry

2 + dirz
2)+ (4.9)

2λ(Peyexdirx + Peyeydiry + Peyezdirz)+ (4.10)

(Peyex
2 + Peyey

2 + Peyez
2) − 1 = 0 (4.11)

Substituting term 4.9 with A, term 4.10 with B, and term 4.11 with C the
intersection is resolved by determining λ according to Equation 4.12. Note,
that the negative solution to λ is ignored as only the intersection with the
opposite hemisphere is relevant in this case.

Aλ2 + Bλ + C = 0

λ2 +
B

A
+

C

A
= 0

λ = − B

2A
+

√
−B

2A
− C

A
(4.12)

A, B and C can be expressed as dot products using dir and Peye as follows:

A = dir · dir (4.13)
B = 2(Peye · dir) (4.14)
C = (Peye · Peye) − 1 (4.15)

60 4. Spherical Light Field Rendering with Per-Pixel Depth

44 //determine viewing ray - sphere intersection on opposite hemisphere
45 float A,B,C;
46 C = dot(P eye,P eye) - 1.0;
47 B = 2.0 * dot(P eye,dir);
48 A = dot(dir,dir);
49
50 float S = max((B*B - 4.0 * A*C) ,0.0); //components under sqrt
51 //ignore negative solution - opposite hemisphere, only
52 float lambda = (-B + sqrt(S)) /A/2.0;
53
54 //Sphere intersection
55 float3 vecS = (P eye + lambda * dir);

Code Sample 4.1: Initial intersection of the viewing ray with the opposite hemisphere,
with respect to the current vertex.

Thus, with the use of the dot product the intersection of the viewing ray
with the opposite hemisphere is efficiently calculated in the fragment program
(see Code Sample 4.1).

From the initial intersection point, texture coordinates (u, v) are determined
according to Equation 4.2 for each adjacent sample camera to extract RGB and
depth values from the light field samples. With the depth information of the
initial sphere intersection to be known for each of the three sample cameras,
the iterative sampling is initiated.

Iterative Sampling Within the iterative refinement phase, the initial inter-
section point and the depth values being evaluated for each of the three ad-
jacent sample cameras are used to determine a valid object intersection point
(see Figure 4.5). First, local estimates are determined for each sample position.
Then, a new sample position on the viewing ray is determined which is used in
the third step to determine error values for the three local estimates. For the
new viewing ray sample position the sphere intersection points are updated to
establish new depth values per sample camera. Based on the coherence of the
updated depth values the iteration is either terminated or restarted in case of
the distance exceeding the given errorThreshold value.

1. Local Estimates: Local estimates are determined for each sample camera
by scaling the vector from the sample camera position to the last spherical
intersection point by the sampled depth according to Figure 4.5, left.

2. Update Viewing Ray Sample Position: The local estimates are projected
onto the viewing ray in order to determine the next sample position on the
viewing ray. The updated sample position is determined from the average

4.2. Iterative Refinement 61

C1

C0

C1

C0

C1

C0

S

C1

C0

S

C1

C0

S

C1S
depth C1S

C0S

depth C0S

Determine
Local Estimates

Update Sample
Position

Project Local
Estimates onto
Viewing Ray

All surface
points in
Epsilon?

no yes

Final color interpolation

Figure 4.5: The iterative refinement phase in detail. Local estimates are determined
for each adjacent sample camera by scaling the sampling ray C0S by the depth value
being sampled from the parabolic texture. These estimates are then projected onto the
viewing ray in order to determine the new sampling position. If all of the local estimates
are positioned within a given error threshold, iteration is stopped.

position of the projected local estimates according to Equation 4.4 (see
Figure 4.5, middle and right). In case of more than half of the maximum
iterations already processed, however, highly divergent object intersec-
tions are assumed. In this case the interpolation operation is replaced by
a maximum operation to avoid a deadlock situation (See Section 4.2.3).

3. Evaluate Error: For the interpolated new viewing ray sample position the
absolute distances to the three local estimates are chosen as error value to
evaluate the validity of the reconstructed object intersection points. The
absolute distances are weighted by the barycentric weights to ensure more
distant camera sample positions to have less influence on the overall error.
The overall error is then determined as the squared sum of the absolute
distances.

4. Resample Parabolic Textures: For the updated viewing ray sample posi-
tion, new spherical intersection points are established for each adjacent
sample camera position according to the ray sphere intersection as per-
formed in the initial step. The next iteration, however, is initialized only,
if the evaluated error still exceeds the given errorThreshold.

62 4. Spherical Light Field Rendering with Per-Pixel Depth

A B C

Figure 4.6: Iterative refinement fails at silhouette edges and locations where the correct
object point is not visible from all adjacent cameras.

Final Interpolation With the iteration being terminated, the parabolic
RGB and depth texture samples being evaluated last, are used for the final
interpolation of color values and per-fragment depth evaluation. The final
fragment color is interpolated based on the camera interpolation weights being
factored by their inverse error values to reduce the impact of sample cameras
which observe incoherent object surface points. The fragment’s depth is deter-
mined by projecting the last known viewing ray sample position to the virtual
view’s viewing space by applying the virtual view’s modelview-projection ma-
trix.

4.2.3 Rendering Quality - Iterative Refinement

Although the proposed iterative refinement scheme allows the actual geometry
intersection point to be approached quite quickly, unfortunately, the iterative
refinement fails in certain situations. Such cases are illustrated in Figure 4.6.
Case A shows a situation where the geometry is hit inside a concavity of the
object, resulting in an intersection point that is not visible from at least one
of the adjacent cameras. Case B illustrates a situation where the viewing
ray does not hit the object at all, while at least one adjacent camera reports
an intersection. Case C shows a situation where the viewing ray intersects
the object at an abrupt and small, but elongated geometric feature while no
intersection can be asserted for any of the adjacent cameras. These cases cannot
be handled exactly and will inevitably result in visible ghosting artifacts.

In order to attenuate such artifacts, the camera estimates P
(i)
cam,k are exam-

ined after a few iterations. If the three estimates are still highly divergent, the
point with the closest distance to the camera is discarded. It is then proceeded
with the residual two cameras. If no similar local estimates can be achieved
within the next few iterations, the averaging in Equation 4.4 is replaced by
a maximum operation. This procedure, however, cannot completely eliminate
the visual artifacts, especially case C which will inevitably result in ghosting ar-
tifacts. If the ghosting is still too strong the only effective measure is increasing
the number of cameras.

4.2. Iterative Refinement 63

Original geometry

1
6

2
c
a

m
e

ra
s

difference x4
Iterative Refinement

2
5

6
2

c
a

m
e

ra
s

difference x4
Iterative Refinement

6
4

2
c
a

m
e

ra
s

difference x4
Iterative Refinement

Figure 4.7: Results of the iterative refinement rendering technique at different cam-
era sphere resolutions. Top left shows the original polygonal rendering of the Stanford
Bunny model. Top right and bottom row display the iterative rendering results with in-
creased number of sample cameras supplemented by a difference image showing the pixel
difference from the original geometry multiplied by a factor 4 and inverted.

To evaluate the quality of the iterative refinement approach the well-known
Stanford Bunny [58] has been chosen as reference object. The model contains
detailed micro and meso structures and the chosen material results in clear
specular highlights when lit by directional light. Thus, this model is perfectly
suited to evaluate the quality of the light field rendering approach, as structures
and highlights have been identified to be critical for evaluating the quality of
light field rendering approaches [35, 63].

The rendering results shown in Figure 4.7 clearly display the effect of in-
creased numbers of sample cameras on ghosting artifacts. It is easily seen that
good results are achieved with spherical approximations yielding 162 or above
sample positions. Ghosting artifacts vanish with the rising amount of sam-
ple positions. This effect is best seen at the silhouette edges of the rendered
object. Ghosting at the silhouette edges results from inconsistent rays being
used for interpolation. The situation at the silhouette edges corresponds to the
situation shown as Case B in Figure 4.6. The difference images provided with
the rendering results back up this claim. Major errors by means of distance
in the RGB color space and the area of false pixel regions are displayed at the
silhouettes. With increasing sample camera count, the false pixel regions are
minimized.

64 4. Spherical Light Field Rendering with Per-Pixel Depth

Images MAE MSE RMSE PAE
162 0,0413227 0,0151801 0,123207 0,968627
642 0,0253391 0,0082435 0,090794 0,954314

2562 0,0145189 0,0042915 0,065510 0,949020

Table 4.1: Per-pixel color differences of the synthesized image compared to the original
rendering. Mean absolute error, mean squared error, and root mean squared error are
displayed for light field renderings being synthesized from a varying amount of input
samples.

The visual appearance of concavities and small-to-large depth variations
are reconstructed at good quality. The structured surface of the original 3D
rendering is clearly resampled in the light field rendering. Concavities as they
occur in the transition zone between the bunny’s body and his hind legs are
reconstructed precisely. The difference image does not show significant pixel
differences in these regions. Local differences, however, are observed at the
specular highlights which occur in regions of great curvature all over the object’s
surface. Even with an increased amount of sample cameras this highlight error
cannot be reduced significantly.

The observation is approved by a statistical analysis of per-pixel RGB dif-
ferences. Table 4.1 shows the mean absolute error (MAE), the mean squared
error (MSE), the root mean squared error (RMSE), and the peak absolute er-
ror of any one pixel within an RGB channel (PAE) for the spherical light field
representation being displayed in Figure 4.7. From the table it can be seen
clearly that all of the error measures significantly drop with rising amount of
sample positions. While the RMSE is reduced by about 25% with an increase
of sample positions from 162 to 642, the RMSE is halved by using 2562 sample
positions instead of 162 samples. The PAE, however, remains constantly high
throughout all configurations of sample positions. While the absolute peak
error reflects the maximum distance of any one pixel within an RGB channel,
it can be easily seen that a single pixel which does not correspond to the same
RGB value in the original image will result in a high PAE. From the difference
images shown in Figure 4.7 it can be seen that significant per-pixel differences
occur at the highlights of the object. As a consequence these false pixels result
in the high PAE.

While the sample camera arrangement is chosen to be dense for the iter-
ative rendering approach, far less samples are required compared to spherical
rendering approaches presented in the past (see Section 2.5.3) to achieve com-
parable rendering quality. Thus, light fields can be reconstructed from more

4.2. Iterative Refinement 65

Images Input Target Res. Target Res. Target Res.
Res. 256 × 256 512 × 512 1024× 1024

42 256 × 256 155.43 fps 110.4 fps 63.44 fps
42 512 × 512 154.42 fps 107.2 fps 59.65 fps

162 256 × 256 140.21 fps 96.9 fps 62.76 fps
162 512 × 512 130.12 fps 95.6 fps 52.88 fps
642 256 × 256 111.95 fps 78.7 fps 47.74 fps
642 512 × 512 108.33 fps 75.3 fps 46.76 fps

2562 256 × 256 91.59 fps 63.5 fps 39.44 fps
2562 512 × 512 84.65 fps 61.2 fps 37.86 fps

Table 4.2: Rendering performance for the iterative rendering algorithm applied to light
fields of varying resolution.

efficient light field representation with respect to storage costs.

4.2.4 Rendering Performance - Iterative Refinement

The rendering performance of the iterative approach allows for virtual view
synthesis at real-time frame rates, even for densely sampled light fields including
2562 sample positions (see Table 4.2). With the performance being measured
using an NVidia Geforce 8800 GTX graphics board with 768 MB of local video
memory build into an AMD Athlon 64 X2 dual core processor with 2.21 GHz
and 3.5 GB main memory, frame rates of up to 155 fps are achieved using
the interative refinement approach. For performance measurements the render
settings were chosen such that a quality according to the results depicted in
Figure 4.7 is achieved (error threshold = 0.1, maximum iterations = 256). For
performance evaluation, the spherical proxy being rendered for virtual view
synthesis has been rescaled to fit into the target resolution. Thus, 78.53 %
of the target view are covered by the spherical proxy. All measurements have
been performed using uncompressed light field data.

Table 4.2 shows the rendering performance for a variety of input sample
image resolutions captured from spherical sampling setups of varying density.
While the resolution of the input textures does not influence the rendering
performance significantly, the target rendering resolution does effect the per-
formance to a high degree. With the light field being reconstructed based on
pixel wise interpolation, the relation of the target resolution to the rendering
performance is obvious. A performance drop of about 35 % in average can be
observed with each quadruplication of the target resolution.

66 4. Spherical Light Field Rendering with Per-Pixel Depth

Initialization
Initialize parameters
and variables

Initial Sample Pos
Determine first sample
position on viewing ray

Raycasting
Sample ray at equi-
distant sample positions

Final
Interpolation
Interpolate colors and
calculate fragment’s
depth

One local
estimate in
epsilon?

no yes

Evaluate
error Threshold

& weights

Figure 4.8: The raycasting approach is implemented in four phases in order to interpolate
color information from coherent rays.

4.3 Raycasting Approach

The raycasting approach is implemented in a customized fragment program in
four phases according to Figure 4.8. The initialization phase and the evaluation
of the viewing ray’s first sample provide the starting point for the raycasting
process and the initial blending weights for the interpolation. Within the ray-
casting process the ray-object intersection is established by successively testing
for object intersections along the ray being observed from adjacent sample
cameras at a ray position. If, for a certain ray position, any of the local esti-
mates being determined based on the adjacent sample’s depth information is
positioned within a pre-defined epsilon environment, the raycasting is stopped.
For those cameras which do not observe an intersection for the last ray sample
position, the interpolation weight is reset to 0. Afterwards interpolation weights
are normalized and successively used for the final interpolation to determine
the final fragment color.

4.3.1 Raycasting Process

When a triangle is rasterized, the fragment program calculates the viewing ray,
which corresponds to the fragment. Then the intersection point of the viewing
ray with the bounding sphere of the object is calculated according to the ray-
sphere intersection performed within the iterative approach (see Section 4.2).
For the raycasting approach, however, the intersection of the viewing ray with
the hemisphere facing towards the virtual viewpoint is established as a starting
point (see Figure 4.9).

The inner sphere defines the object’s bounding sphere and thus limits the

4.3. Raycasting Approach 67

C1

V

C0

Peye

C1

C0

Peye

V

Pobj

C1

C0

Peye

V

Figure 4.9: The raycasting approach samples the viewing ray stepwise at adjacent posi-
tions starting at the intersection point with the object’s bounding sphere.

region for which valid light field information is available. From the ray intersec-
tion with the inner object bounding sphere the viewing ray is sampled at a fixed
step size, as shown in Figure 4.9. At each step, the assumption is validated
that the current ray position is the actual object intersection point (Pobj). This
point is projected onto the camera sphere using the adjacent camera positions
Ck as center of projection according to Equation 4.1. The resulting three in-
tersection points with the sphere are transformed into the viewing coordinate
system of the corresponding adjacent camera and are converted to parabolic
coordinates (see Equation 4.2). Depth values are obtained from the corre-
sponding parabolic texture maps and local estimates (Pcam,k) are calculated
for each camera according to Equation 4.3. These points are then compared to
the current ray sample position. If one of the local estimates is equal to the ray
position within a given epsilon environment, the ray sampling is immediately
stopped. This means that at least one camera is found which reliably observes
an object intersection at exactly the ray position.

If the remaining two cameras also observe a ray intersection within the
epsilon environment, it is assumed that all cameras observe the same point.
Then the barycentric weights of the fragment are used for interpolation in
order to determine the fragment’s final color.

However, if the intersection point for one camera is far away from the ray

68 4. Spherical Light Field Rendering with Per-Pixel Depth

Figure 4.10: Left: Light field rendering of the Stanford Bunny from 162 (512 × 512)
input samples. Middle, top row: Showing recoverable area for epsilon chosen to be equal
to half of the step size. Middle bottom row: Epsilon smaller than half of the step size
results in unrecoverable areas. Right: Unrecoverable areas appear as gaps in the light
field rendering if epsilon is chosen too small with respect to the step size.

position, it is assumed that one of the situations outlined in Figure 4.6 oc-
curred. In this case the color information for the respective camera is discarded
by setting the corresponding barycentric weight to zero. Afterwards, the in-
terpolation weights are normalized again and the final color is calculated as
the weighted sum. In a last step the established ray-object intersection point
is being transformed to the virtual view’s viewing space to extract per-pixel
depth values according to the modelview-projection matrix being set for the
virtual view. A light field being rendered from 162 sample positions at an
image resolution of 512× 512 is shown in Figure 4.10, left.

Note that while the size of the epsilon environment can be chosen freely,
it should be chosen according the raycaster’s stepsize. Thus, if the stepsize is
minimized to exploit more precise object intersections, the epsilon environment
should be adjusted accordingly to support the desired precision. In the deviant
case, for the stepsize to be chosen larger to increase rendering performance,
the epsilon has to be chosen accordingly larger. Choosing the epsilon to be less
than half of the step size will result in visual discontinuities as local estimates
will not be reconstructible from adjacent cameras for all ray positions. With
rising angular distance of the adjacent camera with respect to the current ray
position, the camera’s reconstructed local estimate will most likely fail the
tolerance test. Tolerance values chosen to be smaller than half of the step size
appear as equidistant isosurfaces with a distance equal to the step size and with
empty space gaps of size stepsize − 2 × tolerance in the light field rendering

4.3. Raycasting Approach 69

(see Figure 4.10).

4.3.2 Implementation Details - Raycasting

The four phases of the raycasting approach being implemented for light field
synthesis within the customized fragment program are discussed in detail in
this section (see Figure 4.8).

Initialization The first phase of the raycasting approach implements the
initialization of the current fragment position and the determination of the
viewing direction according to the initialization performed within the iterative
refinement rendering technique presented above (see Section 4.2.2). The ray-
casting is executed in the scope of a for loop which is initiated depending on the
defined stepsize. Due to shader model 3.0 limitations, a maximum loop count
may not be exceeded. Thus, up to two nested for loops are implemented to
overcome this limitations. With the nested loop approach up to 200×200 sam-
pling steps can be implemented (see Appendix A.2 for the complete fragment
shader code).

Initial Sample Position The first intersection point of the viewing ray with
the inner sphere, the object’s bounding sphere, is chosen as the initial sample
position. A simple ray-sphere intersection is implemented within the fragment
shader to determine the sampling starting point. Note that the intersection is
calculated for the inner sphere with radius of r = 1/

√
2. The calculation of

the intersection is based on the ray-sphere intersection approach implemented
within the iterative refinement fragment program. For the initial sample posi-
tion, however, the intersection with the hemisphere facing towards the virtual
viewpoint is relevant (see Code Sample 4.2).

Raycasting With the initial sampling position as starting point, the ray-
casting is implemented in three main steps. After stepping forward along the
viewing ray a given stepsize in the first step, texture samples are fetched for the
three adjacent sample cameras based on the new sample position to establish
local estimates in the second step. In the third step the local estimates are
checked against the epsilon environment constraint also given as adjustable
shader parameter. This epsilon test is the foundation for the final decision
whether to proceed or abort raycasting. In case of raycasting being proceeded
the next sample position is initialized and the raycasting procedure is restarted.
This is the case if no intersection can be reliably established for any of the ad-
jacent sample positions.

70 4. Spherical Light Field Rendering with Per-Pixel Depth

48 //first position on ray along view dir for first pos.
49 //skip some samples if skip parameter is set
50 float3 firstSamplePos = v + skip * dirN;
51
52 //determine intersection with inner sphere for initial skip
53 //if no custom skip is given
54 float skip;
55 if(!skip>0.0)
56 {
57 float A,B,C;
58 //inner sphere is of size 1.0/sqrt(2)
59 C = dot(P eye,P eye) - (1.0/sqrt(2));
60 B = 2.0 * dot(P eye,dir);
61 A = dot(dir,dir);
62
63 float S = max((B*B - 4.0 * A*C) ,0.0); //components under sqrt
64 //first intersection with inner sphere neede, so take min
65 skip = min(((-B + sqrt(S)) /A/2.0), ((-B + sqrt(S)) /A/2.0));
66 //take inner sphere intersection as start point
67 firstSamplePos = P eye + skip * dirN;
68 }

Code Sample 4.2: The initial sampling position along the viewing ray is derived from
the ray-sphere intersection with the object’s bounding sphere if no custom skip parameter
is given.

1. Update Sample Position: To update the sample position the vector to
the last known sample position is simply elongated by adding a stepsize
part of the normalized viewing direction. The new sample position is
constrained by the inner sphere. As the inner sphere limits the defined
region of valid object intersection points, all sample positions outside the
inner sphere do not contribute to the final image synthesis. Thus, in
case of the updated sample position being outside the inner sphere, the
current fragment is discarded, as the object is not visible for this pixel.

2. Determine Local Estimates: Local estimates are calculated for each of
the adjacent sample cameras from the parabolic depth samples being
extracted based on the ray-sphere intersection of the sample camera rays
through the current sample position. Ray-sphere intersection as well as
the parabolic texture sampling and the local estimate determination are
implemented as for the iterative procedure (see Section 4.2.2).

3. Evaluate Epsilon and Error Threshold: For the three local estimates the
absolute distances to the current viewing ray sample position are calcu-
lated. In case of either one of the local estimates being closer to the
sample position than defined by the epsilon parameter, the raycasting is

4.3. Raycasting Approach 71

immediately stopped. This means, that at least one camera is observing
an object surface point close to the current sample position. The sam-
ple cameras observing an intersection within the given threshold will be
accounted for in the final interpolation phase. In the deviant case their
interpolation weight (cameraWeight) is reset to 0. After all, the overall
interpolation weights are normalized.

Final Interpolation With the interpolation weights of the sample cameras
being adjusted according to the position of their local estimates with respect
to the last sample position, the fragment’s final color is interpolated similar
to the iterative refinement approach. Sample cameras which did not observe
an intersection for the last sample position do not contribute to the final re-
sult. The fragment’s depth is then determined in a last step by applying the
modelview-projection matrix to the last viewing ray sample position.

4.3.3 Rendering Quality - Raycasting

The raycasting rendering approach implements an efficient light field rendering
technique that applies a precise depth correction of rays to achieve high quality
rendering results. While being less efficient by means of rendering performance
compared to the iterative refinement method, superior rendering quality is
achieved. Silhouette edges and small geometric details are synthesized with a
high precision at rendering frame rates of up to 109 fps.

In contrast to raycasting implementations being presented for rendering
of displacement maps [127, 128] and relief textures [3, 83, 86], the raycasting
approach presented here benefits from multiple input depth maps to handle
ambiguous situations as outlined in Figure 4.6. While these related raycasting
approaches cannot handle self-occlusion and large variations in depth [7], the
raycasting approach presented in this thesis precisely reconstructs the visual
appearance from small structures and large geometric variations. Concavities
and holes can be reconstructed reliably as depth information can be retrieved
from three adjacent depth maps to determine the object intersection. Silhou-
ettes and sharp edges are precisely reconstructed (See Figure 4.11).

For comparison reasons the same reference object of the Stanford Bunny
also used to evaluate the quality of the iterative techniques was chosen to
demonstrate the quality of the raycasting approach. Figure 4.11 clearly shows
the benefit of raycasting in terms of image quality compared to iterative re-
finement shown in Figure 4.7. The micro and meso structures of the polyg-
onal Stanford Bunny model are reconstructed from only 42 input samples as
depicted in the difference image in Figure 4.11. The difference images demon-
strate the quality at the silhouette edges, small structures, and concavities.

72 4. Spherical Light Field Rendering with Per-Pixel Depth

Original geometry

4
2

c
a

m
e

ra
s

difference x4
Raycasting

6
4

2
c
a

m
e

ra
s

difference x4
Raycasting

1
6

2
c
a

m
e

ra
s

difference x4
Raycasting

Figure 4.11: Results of the raycasting approach at different camera sphere resolutions.
Top left shows the original polygonal rendering of the Stanford Bunny model. Top right
and bottom row display the raycasting synthesis results supplemented by a difference
image showing the pixel difference from the original geometry multiplied by a factor 4
and inverted.

Good synthesis quality is achieved from a fractional amount of input samples
being used for iterative refinement light field rendering and related spherical
light field techniques presented in the past.

Note that the region of false pixels at the silhouette edges is diminished dra-
matically compared to the silhouette errors which are appearing with the iter-
ative technique being applied. Silhouettes are reconstructed precisely. Starting
from 162 sample positions and above micro and meso structures are precisely
reconstructed. Highlights, however, cannot be reconstructed at the same high
quality. For specular highlight features the raycasting approach does not show
significantly improved rendering quality compared to the iterative approach.
Thus, specular highlights exhibit the most visible differences between the orig-
inal polygonal based rendering and the light field rendering.

Compared to the iterative approach per-pixel differences are significantly
smaller. The root mean square error of the raycasting approach is reduced
by 40% in comparison to the iterative approach for a light field being sampled
from 162 sample positions. However, while for the iterative approach the RMSE
could be lowered by a factor of 25% by increasing the sample amount from 162
to 642, the raycasting’s RMSE is minimized by a factor of about 7% only. The
PAE remains constantly high at an error value comparable to the iterative

4.3. Raycasting Approach 73

Images MAE MSE RMSE PAE
42 0,0181901 0,00530386 0,0728207 0,972241

162 0,0165208 0,00470699 0,0686075 0,960232
642 0,0147035 0,00404801 0,0636240 0,947370

Table 4.3: Per-pixel color differences of the light field rendering based on varying sample
densities compared to the original rendering, showing the mean absolute error, the mean
squared error, and the root mean squared error.

approach. This backups the weakness of both of the rendering approaches to
precisely reconstruct highlight effects. In total, however, the error analysis
results approve the superior quality of the raycasting approach (see Table 4.3).

4.3.4 Rendering Performance - Raycasting

The improved rendering quality of the raycasting approach comes at the cost of
reduced rendering performance. With the raycasting being applied, the overall
rendering performance is reduced by about 30% compared to the iterative ap-
proach. But sill, real-time frame rates are achieved for target resolutions of up
to 1024 × 1024 as shown in Table 4.4. For the performance measurements the
hardware and rendering setup was chosen to be identical to the iterative refine-
ment performance evaluation. To achieve a rendering quality according to the
results depicted in Figure 4.11 the setting have been setup such that the step
size was set to 0.01 and the epsilon environment was limited to 0.01. From the
table a performance drop of about 38% can be observed with each quadruplica-
tion of the target 2D image resolution. Thus, the effect of the target resolution
on the rendering performance is comparable to the iterative approach. The
additional drop in performance compared to the iterative approach is about
3%. Again, the influence of the input sample image resolution is negligible in
the global view. The amount of sample positions, however, does influence the
performance to a high degree. For a target resolution of 512 × 512 as a rep-
resentative set of measurements, performance is decreased by a factor of 0.58
from 79.1 fps to 45.8 fps with the amount of sample positions being increased
by a factor 61 of from 42 to 2562 sample positions.

While the measurements have been performed using a high-end hardware
setup, the raycasting algorithms also allows to perform efficiently on other
hardware platforms. With the stepsize and epsilon parameters the user can
adjust the rendering performance according to his hardware capabilities. How-

74 4. Spherical Light Field Rendering with Per-Pixel Depth

Images Input Target Res. Target Res. Target Res.
Res. 256 × 256 512 × 512 1024× 1024

42 256 × 256 109.79 fps 79.1 fps 49.71 fps
42 512 × 512 106.23 fps 78.3 fps 44.38 fps

162 256 × 256 81.68 fps 60.4 fps 37.43 fps
162 512 × 512 80.38 fps 57.8 fps 36.41 fps
642 256 × 256 75.41 fps 52.1 fps 29.79 fps
642 512 × 512 73.63 fps 52.2 fps 28.75 fps

2562 256 × 256 63.84 fps 46.1 fps 27.53 fps
2562 512 × 512 62.29 fps 45.8 fps 26.20 fps

Table 4.4: Rendering performance for our raycasting rendering algorithm and the iterative
refinement approach applied to light fields of varying resolution with and without texture
compression.

ever, rendering speed then comes at the price of reduced rendering quality if
the parameters are chosen to be too large. In this case discontinuity artifacts
are likely to appear. Small geometric details are not recoverable with the step
sizes chosen too large.

4.4 Level of Detail for Light Field Rendering

The flexibility of the presented light field rendering techniques opens up for
optimization strategies which allow the adjustment of rendering quality to in-
crease rendering performance. By adjusting the rendering quality depending
on the object’s relevance to the rendered scene, optimized performance can be
achieved. With the level of detail (LOD) technique presented in this section,
objects in focus are rendered at highest quality whereas distant objects are
rendered at lower resolutions. The hierarchical arrangement of sample posi-
tions within the spherical approximation resulting from the subdivision of the
initial icosahedron (see Section 3.3) makes the implementation of a discrete
LOD strategy available for light field rendering. Additionally, the rendering
techniques open up for continously adapting the rendering performance to the
quality needs for distant objects by adjusting the raycaster’s step size and
intersection evaluation tolerance.

The implemented discrete LOD strategy straightly follows LOD strategies
implemented for polygonal 3D models in interactive real-time applications. The
LOD is adjusted by coarsening the polygonal approximation being rendered for

4.4. Level of Detail for Light Field Rendering 75

light field reconstruction (see Section 4.1). Light fields being rendered with a
coarser LOD are reconstructed from fewer light field probes which is in turn
reducing the amount of texture switches in the rendering process and thus re-
ducing the GPU workload. The spherical sample positions are arranged such
that all of the vertices of a certain LOD are contained in the next finer LOD
(see Figure 4.12). No additional spherical approximations nor additional light
field samples have to be generated and hosted for this LOD strategy. Coarser
LODs are achieved by reducing the sample density in the geometric domain by
reducing the amount of sample positions. Minor popping artifacts, however,
can be observed during rendering on LOD switches resulting from image infor-
mation that becomes recoverable with the higher amount of sample positions,
e.g. concavities. The LOD to be rendered is determined in classical sense as a
tradeoff of resolution vs. geometric quality. A maximum of 5 LODs (LODmax)
is available assuming a highest resolution of the spherical approximation with
2562 sample positions for the most detailed representation.

The discrete LOD to be rendered is determined based on the spherical
coverage ratio (SCR) of the screen area covered by the projected light field
bounding sphere (AS) to a the area of a full circle which perfectly fits into the
current viewport with the radius r being half of the shortest viewport edge.

SCR =
AS

πr2
(4.16)

With NLOD being a discrete LOD level and NLOD = LODmax being the finest
LOD level, the LOD to be rendered is determined by

NLOD = SCR · LODmax (4.17)

As NLOD describes a discrete level the final NLOD is chosen to be the one
closest to the result of the by the equation above.

Rendering performance can conceptionally be adapted to the object dis-
tance by adjusting the render settings for the raycasting algorithm to steer
the reconstruction quality. As presented in Section 4.3.2 the precision of the
raycaster is dependent on the chosen step size to sample the ray and the given
tolerance at which the ray sampling is stopped. While the LOD strategy based
on the reduction of sample positions implements a discrete LOD strategy the
render settings can be adjusted continuously with the object distance. A per-
formance gain is achieved by increasing the raycaster’s step size. Note, however,
that the epsilon parameter is to be adjusted according to the chosen stepsize.
The continous level of detail offers a comfortable way of adjusting the render-
ing performance. However, it was conceptually tested, only, but is not used in
practice. The discrete LOD technique on the other hand has proven to be a
powerful tool for steering rendering performance and quality.

76 4. Spherical Light Field Rendering with Per-Pixel Depth

Figure 4.12: From left to right: Light field renditions of a Tie-Fighter light field (162
samples at 512 × 512) rendered at varying distances and LODs with the spherical proxy
geometry being superimposed. The rightmost image displays the light field rendering at
maximum rendering quality.

The LOD rendering technique is applicable to either one of the rendering
approaches presented above (See Section 4.2 and Section 4.3). The rendering
performance is steered by the object’s occupied screen space and thus shows
increased performance for distant objects, compared to a screen filled rendering
of the same light field with a sample count similar to the LOD of the distant
object. The rendering quality directly corresponds to the rendering results pre-
sented above, according to the number of input samples. Quality gain (shown
in Figure 4.13) resulting from an increase of input samples while switching to a
more detailed LOD level, however, results in noticeable popping artifacts. Fig-
ure 4.13 shows the quality increase achieved by switching to a more detailed
LOD.

The implementation of LOD rendering approaches results in a gain of ren-
dering performance and rendering flexibility which allows light fields to be
efficiently displayed. Thus, it provides an ideal solution for rendering multi-
ple instances of light fields simultaneously in a dynamic scene or integrating
dynamic high-quality light field renderings in complex polygonal based scenes.
This technique provides a powerful tool for the flexible integration of light
field renderings in performance critical real-time applications such as games or
interactive storytelling and educational presentations.

4.5. Progressive Light Field Rendering 77

1st LOD Level
42 Samples

2nd LOD Level
162 Samples

3rd LOD Level
642 Samples

Difference
42 vs. 162 Samples

Difference
162 vs. 642 Samples

Figure 4.13: Top row: Light field renditions of a Stanford Bunny light field at different
LODs. Bottom row: Difference images showing the RGB difference of one LOD rendering
to the next coarser rendition.

4.5 Progressive Light Field Rendering

Light field rendering techniques present an ideal solution to provide access
to complex data sets. The spherical light field parametrization presented in
Chapter 3 provides a flexible representation that allows for efficient remote
access and client-server based rendering methods of complex light field data.

In this section an adaption of the spherical light field raycasting approach is
presented which is optimized for web based exploration. To provide light field
data as a web gallery, the exisiting approach would require a complete light
field data set to be downloaded before the first image may be generated. Thus,
immediate visual feedback is not available. The user is forced to wait for the
complete data set to be downloaded and stored in client memory, even if he
might be interested in a certain view upon the data only. High quality light
fields also come with significant memory requirements for storing the necessary
texture images on the client’s local memory.

To these ends the client-server based light field rendering technique pre-
sented in this section is well scalable to both the available network bandwidth
and the client hardware. This approach allows light field data to be transferred
progressively on demand with respect to the interest of the client. The render-
ing client automatically adapts the visual quality of the representation to the
amount of host memory, and the desired run-time performance. Data that is

78 4. Spherical Light Field Rendering with Per-Pixel Depth

not required to generate an individual view will not be transferred. Thus, while
drastically reducing data transmission, a high-quality light field rendering tech-
nique is provided that makes interactive exploration of complex data available
at real-time frame rates with 6 DOF. With the proposed rendering technique,
visual representations of arbitrary complex data sets can be presented in web
galleries and accessed directly.

The idea behind the progressive light field rendering technique is to replace
the static tessellation of the camera sphere (see Section 3.1) by a progressive
refinement at the client side. This will allow the client to request the images
required to synthesize a particular view on demand from the server. The hier-
archical nature of subdivision also allows to prioritize the requests with respect
to the image quality and available client memory.

Progressive Refinement The base geometry for the local refinement is the
icosahedron consisting of 12 camera positions. The cartesian coordinates of the
camera positions ci are

ci ∈
⎧⎨
⎩

⎛
⎝ 0

±1
±ϕ

⎞
⎠ ,

⎛
⎝ ±1

±ϕ
0

⎞
⎠ ,

⎛
⎝ ±ϕ

0
±1

⎞
⎠

⎫⎬
⎭ with ϕ =

1 +
√

5
2

(4.18)

With images from these 12 camera positions which are uniformly distributed on
a sphere around the object, the light field rendering approach allows for synthe-
sizing virtual views from an arbitrary viewpoint at a relatively low resolution.
In order to synthesize an image from one particular view point ĉ, however, only
a few of these 12 images are required. If the virtual viewpoint ĉ is known in the
sphere’s coordinate system, the cameras ci needed to be resident in memory
for this particular viewpoint can be easily determined by calculating the dot
products:

if (ĉ · ci)

{
> 0 then ci is required
≤ 0 then ci is not required

(4.19)

For a web-based application, these are the camera images which must be re-
quested from the server. Whenever the user changes the virtual view point
ĉ, new images must be requested (or obtained from a network cache), and
previously transferred images may become obsolete. Figure 4.14 shows exam-
ples taken from the first few steps of progressive subdivision for one particular
viewing position.

To improve the overall image quality for a certain view upon the light field,
additional camera positions are dynamically inserted by calculating the mid-
point of each edge of the sphere tessellation and lifting the resulting vertex back

4.5. Progressive Light Field Rendering 79

Level 0 Level 1 Level 2 Level 3

Figure 4.14: The first few steps of the progressive refinement of the camera sphere. Start-
ing with the icosahedron at level 0, hierarchical subdivision is performed view-dependent.

to the sphere. The sphere tessellation must then be adapted to accommodate
the newly inserted camera vertex. This way a hierarchical tessellation of the
sphere is built. In order to prevent holes in the camera sphere which may result
from neighboring triangles of different subdivision level, two simple rules are
followed:

1. A triangle may only be further subdivided if all of its neighbors have at
least the same subdivision level. This means that the refinement of two
neighboring triangles may not differ by more than one level.

2. If two neighboring triangles have different subdivision level, the one with
the lower level will be subdivided temporarily to prevent T-vertices from
causing holes in the tessellation. Temporary triangles will not be further
subdivided.

Figure 4.15 illustrates these rules: The first rule says that the green triangles
adjacent to the yellow one in Figure B may not be further refined before the
yellow one is subdivided. The temporary tessellation by the second rule is
shown by the dashed lines in Figure B and C. If all neighboring triangles are
subdivided as in Figure D, the temporary tessellation is replaced by a regular
one. Following these rules, vertices can be easily added and removed from
the camera sphere while still maintaining a valid view-dependent tessellation
without any holes.

The priority of a camera request is calculated taking the virtual viewing
position in sphere coordinates (ĉ) into account from its position ci and the
refinement level si it belongs to, using a heuristic:

p(ci, si) =
1
sk

i

(ĉ · ci) (4.20)

80 4. Spherical Light Field Rendering with Per-Pixel Depth

A B C D

Figure 4.15: Tessellation of the yellow triangle in dependance on the subdivision level
of its neighbors. If not all neighboring base triangles are subdivided, a temporary tri-
angulation is used as indicated by the dashed lines. This will prevent holes caused by
T-vertices.

The level exponent k > 0 is used to balance the progressive subdivision pro-
cess. A larger value will favor breadth-first, a smaller value depth-first traver-
sal. Figure 4.16 shows the influence of the level exponent k on the refinement
process. While for k = 0.3 new cameras are inserted for the center region of
the spherical approximation first, additional cameras in the boundary regions
of the sphere are preferred for k = 0.7. From the renderings being displayed
and the additional difference images it can be seen clearly that major render-
ing artifacts at the silhouette edges are improved at an early stage using the
breadth-first approach while additional details in the inner region are refined
using the depth-first approach.

With the silhouette accuracy improving significantly with an increased sam-
ple density and the the silhouette accuracy being identified to be crucial to the
overall rendering quality, a larger level exponent is conducive in most cases.
With the breadth-first approach, the overall sampling density is increased while
uniformity is maintained to a certain degree within the current field of view.
A level exponent of k = 0.7 has been chosen to be well suited for most web
based light field renderings as it equally supports detail refinement in the inner
regions as well as silhouette accuracy.

Using the progressive refinement technique, views upon a certain spherical
light field representation are built up and are successively refined. During
this progressive refinement process the rendering quality continuously improves
as more detailed light field data becomes available until the final rendering
quality has been achieved. Note that the final rendering quality corresponds
to the rendering quality of the non progressive approaches (see Section 4.2 and
Section 4.3).

Client - Server Communication The view-dependent tessellation of the
camera sphere is performed on the client side. For every newly inserted camera

4.5. Progressive Light Field Rendering 81

Original geometry

Progressive Refinement
Light Field Rendering
k = 0.7

Progressive Refinement
Light Field Rendering
k = 0.3

D
if
fe

re
n
c
e

im
a
g
e
s

(L
ig

h
t
F

ie
ld

v
s
.
O

ri
g
in

a
l)

Figure 4.16: Left: Rendering of the polygonal based Stanford Bunny model. Top row:
Progressive rendering of the Stanford Bunny light field with a level exponent of k = 0.7.
Bottom row: Progressive rendering of the Stanford Bunny light field with a level exponent
of k = 0.3. Middle rows: Difference images showing the RGB difference of the progressive
rendering compared to the original polygonal rendering.

position, the client sends a request for image data to the server. The server is
responsible for sending the required image and depth information to the client.
A customized network protocol based on TCP has been implemented for this
communication. Image requests are identified by a unique hash key which is
calculated from the light field id and the requested camera position. The light
field server maintains a hash table which refers to the hard disc location of

82 4. Spherical Light Field Rendering with Per-Pixel Depth

the image data on the server. The communication protocol is supplemented
by initialization and security-related messages. The server may simultaneously
maintain connections to different clients and different requests from a single
client. While the rendering performance on the client side is not effected by
the server’s response, the request and update rate is effected by the server
performance and the network bandwidth.

The client-server communication was tested in both LAN and WAN net-
works. As a rule of thumb the complete network transfer of a light field will
be equivalent to transferring the same number of still images in PNG format.
This holds true if the client caches all images on the local hard disc. The
image-based remote rendering framework, however, will also work without a
disc cache. In this case, images which become obsolete due to a viewpoint
change will be discarded from memory and newly requested from the server if
necessary. This allows for efficiently balancing the local memory consumption
with the speed of interactivity and visual feedback. Figure 4.16 shows an ex-
ample of the image quality during progressive transmission of the light fight
field.

4.6 Conclusion

The tradeoff of rendering speed and synthesis quality has been identified to be
the key factor to the overall performance of a light field rendering approach
(see Section 1.2). The spherical light field rendering approaches with per-pixel
depth correction of rays presented in this chapter provide a comprehensive ren-
dering tool set which provides a flexible and powerful solution to satisfy this
challenge. With the geometry assisted per-pixel ray interpolation best render-
ing quality is achieved without noticeable ghosting artifacts at real-time frame
rates. Object silhouettes are reconstructed precisely and visual features from
meso and micro structures as well as concavities are reliably reconstructed. The
flexible implementation strategy provides an adjustable rendering approach by
means of performance and quality to adapt to changing requirements.

With the iterative rendering (see Section 4.2) and the raycasting approach
(see Section 4.3) two different rendering techniques have been presented. Both
of these approaches apply depth correction of rays based on the input data
directly. Per-pixel depth information is extracted from the alpha component of
the input samples directly to establish ray-object intersections precisely without
the need for complex mesh processing to be applied at runtime.

While the raycasting approach provides high-quality rendering results at
medium real-time frame rates based on sparsely sampled light fields, the itera-

4.6. Conclusion 83

tive refinement approach presented in this chapter allows for medium rendering
quality at high real-time frame rates from densely sampled light fields. Thus,
if memory consumption is critical and high-quality rendering results are es-
sential, the raycasting approach provides the optimal solution. If, however,
memory consumption is not an issue and slightly ghosting artifacts at the
silhouette edges are tolerable but rendering performance is a critical issues,
the iterative refinement approach provides an alternative light field rendering
solution. Note, however, that only a fractional amount of input samples is
mandatory, compared to spherical light field techniques presented in the past
(see Section2.5.3), to provide sophisticated rendering results using either one
of these two approaches.

Compared to other image based rendering methods based on texture based
geometric representations, such as displacement maps [127,128] and relief tex-
tures [3,83,86], the raycasting approach provides improved ray-object intersec-
tions and thus advanced rendering quality. These approaches are not capable
of reconstructing complex view-dependent reflectance and geometric details re-
sulting from self-occlusion, concavities and micro structures [7,83]. In compar-
ison, the raycasting approach precisely reconstructs both geometry from small
structures and large variations in depth as well as complex view-dependent
surface reflectance. It is not affected by self-occlusion or concavities.

With the LOD rendering techniques a powerful tool has been presented
which allows to adjust the rendering performance and quality according to the
user’s preferences and dynamic scene changes. The proposed LOD technique
is especially suitable for complex scenes being rendered based on multiple light
fields or light fields being rendered within the context of complex dynamic
scenes on a local machine.

With the progressive refinement rendering approach an alternative render-
ing technique has been presented in this chapter that allows for rendering of
light fields that are not present on a user’s local machine. The progressive
technique implements a web based rendering approach that provides remote
access to light field renditions stored on a remote server. Thus, this approach
implements an ideal solution for making light field data available within web
based galleries to provide access to sophisticated visualization results from a
variety of sources. Such sources include the visualization of simulation data
from earth sciences or medicine.

The rendering techniques presented in this chapter have been published by
the author to the computer graphics community in [114,117,118,120].

5

Acquisition of Spherical Light
Fields with Per-Pixel Depth

The spherical light field parametrization presented in Chapter 3 implements a
uniform sampling structure which allows high-quality image synthesis at real-
time frame rates based on combined RGB and depth input samples which are
encoded in RGBz parabolic texture maps. The spherical parametrization allows
for light field reconstruction without the need for further geometry processing,
neither as a pre-processing step nor within the rendering process. To fully
exploit the advantages of this light field representation within the acquisition
task an acquisition technique should synchronously provide RGB and depth
sampling capabilities in order to integrate combined RGBz samples into a light
field representation. Optimally, the acquisition task makes use of state-of-the-
art acquisition devices which provide combined RGBz images directly and at
high-update rates without costly processing. To further satisfy the demands on
acquisition techniques for precision, usability and availability (see Section 1.2)
the light field sampling approach should provide precise positioning abilities
and make use of commonly available and affordable hardware devices to make
a time and cost effective light field acquisition available. Acquisition approaches
should ideally assist the user in the sampling task to maximize usability. Us-
ability is optimized by providing immediate visual feedback to provide a tool
for quality evaluation within the acquisition task and by guiding the user within
the sampling device positioning process.

Unfortunately, light field acquisition techniques presented in the past do
not satisfy these requirements. While with the Light Field Camera [31] and
the Plenoptic Camera [80] two flexible solutions for a hand-held acquisition of
two-plane light fields have been presented lately, these devices are limited to
the acquisition of two-plane light field parameterizations and do not provide
per-pixel depth information directly. Thus, these device do not allow for the
acquisition of spherical light fields. The limitation to two-plane light field rep-
resentations does not exist for acquisition setups such as the Stanford Spherical
Gantry [60] which are capable of moving an imaging device to any pre-defined

85

86 5. Acquisition of Spherical Light Fields with Per-Pixel Depth

sample position around an object of interest. However, the usability of such a
device is strictly limited by the financial expense, the limited portability and
the missing capability of providing geometric information directly. Acquisition
techniques which relief the user of using complex positioning setups sample a
light field from arbitrary sample positions using off-the-shelf imaging devices.
Though, these approaches either rely on an unstructured light field parame-
terizations which exhibit known challenges from their non uniform nature (see
Section 2.5.4) or do postulate a priori knowledge of the scene geometry in order
to re-map the captured sample to predefined sample positions. As a matter
of fact, these approaches are not applicable efficiently for the acquisition of
spherical light fields with per-pixel depth.

Although per-pixel depth information is extractable from complete 4D light
fields in a post-processing step [21], a costly subsequent process is needed to
extract such information. Thus, per-pixel depth information is not available
synchronously within the acquisition phase. As a consequence these approaches
are not applicable to feed combined RGBz samples to the light field represen-
tation directly. Immediate visual feedback is not available for incomplete 4D
light fields with per-pixel depth being extracted in a post-processing step.

In this chapter a flexible light field acquisition system is presented which
provides synchronized and registered per-pixel depth and color information for
each sample at real-time. The system implements an acquisition prototype
which makes use of state-of-the-art imaging and upcoming 3D sensor technol-
ogy to acquire combined RGBz samples directly to allow for immediate visual
feedback within the acquisition process. The prototype demonstrates an effi-
cient and flexible solution towards real-time acquistion of light fields which abet
the benefits of spherical light fields with per-pixel depth using future 2D/3D
imaging sensors. Precise positioning techniques are utilized to facilitate the
acquisition of combined RGBz samples from pre-defined spherical positions ac-
cording to the proposed spherical light field parametrization. For user guidance
immediate visual feedback is granted for quality evaluation within the acqui-
sition process and a positioning guidance system is implemented within the
acquisition pipeline to ease the acquisition process.

For artificial scenes being generated from digital content using computer
graphics techniques, a light field generation process is presented in this chapter
which allows to easily generate spherical light fields from arbitrary complex syn-
thetic scenes. The presented light generation easily adapts to various rendering
engines and provides a sophisticated technique to extract light field represen-
tations from scenes involving complex rendering techniques which are hard to
render in real-time using traditional rendering approaches.

5.1. Light Field Acquisition from Physical Objects 87

5.1 Light Field Acquisition from Physical Objects

To take advantage of the benefits provided by the spherical parametrization
with per-pixel depth, presented in Chapter 3, a light field sampling device is to
be utilized which is capable of providing registered depth and color information
on a per-pixel basis in real-time. For each light field sample to be acquired the
device must be placed such that its position and direction corresponds to the
spherical parametrization given at a certain granularity. To achieve a precise
and flexible positioning of the device, an accurate and easy to use location
system is to be used.

In this chapter the acquisition device and the location system of the acqui-
sition process are explained in detail followed by an in depth description of the
processing pipeline being implemented for a flexible light field acquisition in
order to acquire complete spherical light fields from physical objects.

5.1.1 Light Field Acquisition Device

For an acquisition device to be suitable for interactive acquisition of spherical
light fields it must provide reliable depth information at real-time frame rates
on a per-pixel basis. The depth is to determined with per-pixel time consistence
such that the complete image represents a static snapshot of the scene. Per-
pixel depth must be synchronously available and registered with captured color
information.

3D Acquisition Technologies There are some technologies and algorithms
available for 3D scanning which may be adapted for real-time acquisition of
per-pixel depth information. These methods may be divided into active and
passive methods. While real-time passive methods based on stereo [27] or sil-
houettes [71, 72] have been proposed in the past, these approaches typically
do not perform well in the absence of scene texture and exhibit computational
costly processing. Thus geometry reconstructions based on such passive meth-
ods tend to provide instable results at low update rates.

Active methods provide more promising approaches for the interactive ac-
quisition of light fields. Available active range scanning methods may be
based on time-of-flight [46, 82, 133, 134], depth from defocus [77], photomet-
ric stereo [94] or projected-light triangulation [95]. Of these, the systems based
on time-of-flight may provide the most flexible techniques for light field ac-
quisition. They provide full image per-pixel depth information at real-time
frame rates, expose the lowest hardware costs and especially do not demand
computationally costly processing for geometry extraction. Recently, time-of-
flight sensors have been applied in a variety of industrial contexts and have

88 5. Acquisition of Spherical Light Fields with Per-Pixel Depth

proven their effectiveness within these environments [53]. No research has been
done, however, on applying time-of-flight sensors for the acquisition of geom-
etry assisted light fields. Within this thesis a prototype acquisition pipeline
is implemented which makes use of a Photonic Mixing Device (PMD) time-of-
flight sensor in order to interactively acquire spherical light fields with per-pixel
depth.

Photonic Mixing Device The Photonic Mixing Device (PMD) implements
an active 3D measurement device which illuminates an observed scene using
modulated, incoherent near infrared light (NIR) (see Figure 5.1). Light being
reflected by objects within the scene is captured by pixel sensors commonly
arranged in a grid of up to 160 × 120 resolution. For each of the pixels the
incoming optical signal is correlated with the internal system reference signal
of the active illumination unit. For this process a sinusoidal signal is assumed
as reference signal which is then correlated with the incoming signal. This
sampling is performed four times for each pixel but with an internal phase delay
being applied. Each sampling then results in an per-pixel evaluation of the
correlation function according to the internal phase shift. From the subsequent
sampling the distance related phase shift and thus the distance to the respective
object region is calculated. Thus, per-pixel depth information is composed
to a depth image of full sensor resolution. The sensor signal evaluation and
depth extraction is performed on the pixel sensor and the camera main board
in real-time. Signals, sampling results, and the corresponding depth values
are accessible directly from a FireWire connection at up to 20 fps [52]. For
detailed technological background of the PMD sensor the reader is referred to
Lange [54].

The PMD sensor results, however, show some artifacts resulting from the
implementation principle of this kind of technology. The distinctive features of
the resulting data are topic of active research today. Ongoing research results
contribute to the improvement of the PMD sensor technology and provide
solutions for treatment of artifacts such as the low resolution, depth distortion,
or motion blur [69].

Low Resolution Compared to up-to-date RGB imaging sensors currently
available PMD sensors provide a relative small resolution of up to
160 × 120. While most applications are capable of adapting to the low
resolution, the resulting large solid angle per pixel yields invalid depth
values in areas of inhomogeneous depth occurring in situations such as
silhouette edges and object boundaries. Lindner et al. have shown that
these invalid depth values may be enhanced with an edge-enhanced dis-
tance refinement approach which discards these so called Flying Pixels

5.1. Light Field Acquisition from Physical Objects 89

Incoherent IR
Light Source Surface

Modulation

Phase Shift

Data

Chip with CCD Array
and Correlation

1001001011

Figure 5.1: The time-of-flight principle of the PMD technology. Image courtesy of Keller
and Kolb [52]

concerning the sampling of sub-pixel locations while upscaling a PMD
depth image [68].

Depth Distortion As the system’s theoretically sinusoidal reference signal
assumed for the correlation function is not achievable in practice, the
extracted depth cannot reflect the correct distance, but comprises sys-
tematic errors. This systematic error has been investigated along with
statistical uncertainties of the PMD sensor by Rapp et al. [90]. Lind-
ner et al. presented an approach of the lateral and depth calibration of
such sensors which handles the systematic errors and statistical uncer-
tainties [66, 67].

Motion Blur With the sampling of the sinusoidal correlation function de-
pending on phase delay and phase shift and the sampling being performed
four times for each pixel element, the sensor is sensitive for motion. Mo-
tion blur artifacts may arise in dynamic scenes since the correlation results
of the subsequent samplings lead to varying distances regarding a pixel
region close to object boundaries.

Reflectivity The PMD sensor shows poor measurement results for two ex-
treme reflectivity situations. With the infrared illumination being ab-
sorbed by an object in the scene, no incoming active light is receivable
by the sensor and thus the correlation function cannot be evaluated. On
the other extreme, for infrared light being reflected perfectly, the sen-
sor reaches saturation level. As a consequence, the correlation function
does not provide any meaningful results. While this occurs to be a spe-

90 5. Acquisition of Spherical Light Fields with Per-Pixel Depth

High Res. Color Camera

PMD Camera
Active NIR Illumination

Figure 5.2: PMD camera with an additional high resolution color camera mounted.

cial burden on the PMD sensor, other measurement devices using optical
principles, e.g. laser scanning systems, suffer from the same problems
and do not provide more elaborate measurements in these situations.

2D/3D Camera Setup The combination of PMD depth information with
high-resolution RGB data is in focus of current research. While Prasad et
al. [88] have presented a hardware solution which combines a commodity CCD
and a PMD sensor in a compact mono-ocular camera device using an optical
splitter, this device is not available to the public yet. Todt et al. [116], how-
ever, have shown that registered RGB and depth information can be captured
effectively by combing a high-resolution RGB camera (1024×768) and a PMD
camera in a binocular setup (see Figure 5.2). While the proposed combination
does provide combined RGBz data on a per-pixel basis, the approach does not
take the PMD sensor characteristics into account.

Lindner et al. [70] have presented a data fusion approach which does take
the sensor characteristics into account and provides effective counter measures
to minimize the effect of PMD specific artifacts as described above. Their
data fusion is performed in two main tasks, the distance refinement and the
actual data fusion, which are arranged in a data processing pipeline according
to Figure 5.3. Note that a simple background and invalid pixel removable
is prepended to both of these tasks which discards unreliable distance values
based on the distinct evaluation of the four correlation function results.

Distance Refinement The distance refinement implements two optimization
steps in order to reduce the amount of invalid pixel and thus false color
mapping. First, an extrapolation of valid pixels is applied to restore

5.1. Light Field Acquisition from Physical Objects 91

PMD
Image

recursive refinement

Refined
Image

Registration &
Calibration Data

RGB
Image

2D/3D
Image

Data
Fusion

Occlusion
Detection

Biquadratic
Interpolation

Extrapolation
at Boundaries

Background
Segmentation

Upscaling Fusion

Figure 5.3: The data fusion of PMD depth- and RGB data is performed in a processing
pipeline which is conceptually split in two blocks, the distance refinement and the actual
data fusion. Image courtesy of Lindner et al. [70]

missing data for the subsequent biquadratic interpolation scheme. The
interpolation scheme implements an upscaling of the valid region while
incorporating edge preservation. Upscaling is based on pyramidal upscal-
ing [108] which recursively scales an image by a factor of two. With
the refinement being applied, the effect of flying pixels is reduced by a
reasonable degree.

Data Fusion The data fusion combines both, the refined distance informa-
tion and the additional high-resolution color image by back-projecting
the PMD pixels into world coordinates and a subsequent perspective
projection of the RGB image onto the tessellated geometric 3D repre-
sentation of the PMD pixels. To avoid an RGB image undersampling
and thus a loss of information the projection is implemented based on
projective texture mapping [98]. Note that the accuracy of the fusion is
strictly dependent on the PMD depth precision and the geometric rep-
resentation of the PMD pixel in 3D. Thus, the PMD device has to be
calibrated first using sophisticated calibration techniques to avoid depth
distortion [66, 67]. Special care must be taken to avoid incorrect map-
ping caused by occlusion effects which result from the different viewing
directions of both cameras. Here, Lindner et al. [70] provide a rendering
approach comparable to shadow maps [91,107] which reliably detects and
erases occlusion effects.

Due to incoherent camera viewing frustums and the physical offset of the
image sensors, the PMD camera does not cover the same viewing volume. Thus,
the PMD camera’s depth images can be mapped to a subregion of the RGB
image, only. In practice the PMD image is mapped to a region covering 77% of
the RGB image resolution. As a consequence, combined RGBz data is available
at a maximum resolution of approximately 900 × 675 pixels. While the PMD
camera operates at a maximum frame rate of up to 20 fps, the optimization

92 5. Acquisition of Spherical Light Fields with Per-Pixel Depth

pipeline and the 2D/3D data fusion described above effect the update frame
rate. With the optimization being applied the update rate drops by 5 fps. Thus
a maximum frame rate of 15 fps is achievable for combined RGBz images.

5.1.2 Pose Tracking

For the acquisition of light field samples an accurate position and orientation
tracking system is mandatory for the sampling device. To acquire light field
samples from pre-defined spherical sample positions such a system must provide
stable and reliable tracking results with low latency to facilitate effective camera
alignment.

A selection of approaches have been presented in the past which perform
pose estimation based on captured input images directly and thus are not in
need of additional tracking hardware to be installed [132]. However, these ap-
proaches do not provide stable tracking results for untextured scene contents
and are likely to fail in these situations. Even though advanced image based
camera tracking approaches have been presented recently which exploit the
benefits of PMD camera devices to stabilize tracking results [10], these tech-
niques exhibit computational complex and costly processing which limit the
update rate and thus the interactive, intuitive and effective placement of a
sampling device.

Tracking systems which extract and exploit visible markers in the input
images, such as the ARToolkit [45] or the Studierstube Tracker [111] have been
tested for camera pose estimation. As these tracking systems are focused on
overlaying virtual imagery on real world video footage, their capabilities for
camera tracking purposes are limited. The evaluation of such marker based
systems has shown that the accuracy of the system is highly effected by the
size and the viewing angle to the tracked visible marker [43]. thus, these systems
are not capable of reliably determining a stable camera pose. Additional tests,
including multiple markers could not help to improve the tracking results. For
this reason, an active tracking system was chosen to be best the best choice for
an accurate and stable pose determination.

Active tracking systems which are in need of additional hardware compo-
nents commonly attach a tracking target to the tracked device and make use of
reference signals to precisely establish the tracking target’s pose. Such systems
are commonly used in the field of Virtual Reality systems and have proven to
be well suited for interactive and accurate placement of devices. Available sys-
tems exploit electro-magnetic effects, ultrasonic techniques, or optical systems
for pose estimation.

Electro-magnetic systems [5] exploit the effects of electro-magnetism to de-
termine the pose of a tracking target within the magnetic field. These ap-

5.1. Light Field Acquisition from Physical Objects 93

proaches are subject to ferromagnetic interferences and are thus unsuitable for
the positioning of a camera covered by metal and attached to a power cord.

Acoustic tracking systems [51], either exploit the time-of-flight or the phase
coherence of an ultrasonic signal, to determine the distance and orientation
of a receiver relative to a transmitter. Due to the nature of sound acoustic,
tracking is relatively slow and effected by temperature, air pressure or changes
of the humidity as these aspects effect the speed of sound. These systems show
poor positing results for environments which exhibit reverberation and echo.

Optical tracking systems [85] make use of infrared based illumination and
camera systems to establish reliable and stable pose estimation. With the mea-
surement volume being lit by infrared light sources the reflection of a tracked
marker is captured by multiple cameras. For each camera the line of sight to
the marker is established and from the intersection points of these lines the
3D position is established (see Figure 5.4). Using multiple markers in a fixed
setup, the setup’s pose is determinable with 6 DOF. Though, special care must
be taken in the setup of such a system to avoid occlusion and ensure visibility
of a target in the complete measurement volume from at least two camera pos-
tions. While these systems provide a precise, flexible and stable solution for the
positioning task within the light field acquisition process, it must be mentioned
that the benefits come at increased financial costs, starting at 12.000 EUR for
a portable four camera system. But still, these costs make up only a fractional
part of compared to prices which must be calculated for gantry based position-
ing systems such as the Stanford Light Field Gantry and are comparable to
the prices for acoustic or electro-magnetic tracking systems. Compared to the
acoustic and electro-magnetic systems, however, the optical tracking system is
less effected by any environmental interferences.

Optical Camera Tracking The DTrack optical camera tracking system im-
plements a high-end tracking system for 3D and 6D tracking of custom tracking
targets [4]. The system consists of a PC workstation, two or more tracking
cameras, and up to 20 custom tracking targets. The PC workstation runs the
tracking software which calculates the 6 DOF target positions and orienta-
tions within the tracking volume from the line of sight to the marker’s infrared
reflection which is captured in 2D by the cameras (see Figure 5.4). The intelli-
gent tracking cameras are equipped with an FPGA for accelerated marker data
analysis. The cameras also include an infrared flash to illuminate the tracked
objects. Up to 16 cameras can be combined in a tracking system. 3D Mark-
ers and 6D Targets can be calibrated for the tracking system and mounted to
any custom device. Tracking is performed at an update rate of 60 Hz with a
maximum error of 0.5 mm in position and 0.1◦ in orientation.

94 5. Acquisition of Spherical Light Fields with Per-Pixel Depth

2D data from
camera

2D data from
camera

3D / 6D
Output data

IR flash from
tracking camera

IR flash from
tracking camera

reflected IR
light

calculated
optical ray

calculated
optical ray

Figure 5.4: Optical tracking principle. The 2D image position of the IR reflections
captured by the cameras are utilized to determine 3D positions of single markers and the
pose of tracking targets with 6 DOF. Image courtesy of A.R.T. GmbH [4]

Tracking Setup For tracking the position and orientation of the bifocal PMD
camera setup a 6D tracking target consisting of five reflective 3D mark-
ers is mounted on top of the RGB camera. To ensure visibility for an
appropriate tracking volume four ARTrack2 cameras have been installed
to the ceiling of a laboratory environment such that a tracking volume
of 5 m × 3 m × 3 m is reliably covered. Note that extensive tests have
been performed to evaluate the influence of the tracking system’s infrared
flashing system on the PMD sensor system. Fortunately an effect of the
tracking system’s flash on the PMD sensor precision could not be di-
agnosed. A stationary system has been utilized in this case. However,
portable systems are also available for more flexible application areas.

Hand-Eye Transformation With the 6D tracking target mounted to the
camera system the target’s pose is reliably determinable in tracking co-
ordinates. However, the pose of the RGB camera sensor not the tracking
target’s pose is relevant as reference value to steer the light field acqui-
sition process. Thus, the fixed transformation from the tracked target
coordinate system to the camera coordinate system is essential for the
acquisition process. The determination of this transformation is called
the hand-eye calibration problem and got its name from the robotics com-
munity, where a camera (eye) is mounted to the end effector (hand) of a
robot. In this context several approaches have been presented in the past

5.1. Light Field Acquisition from Physical Objects 95

no

yes

2D/3D Cam
Capture combined
RGBz images

Pose Tracking
Track image sensor
pose

3D Meshing
Generate 3D mesh
from RGBz image
based on intrinsic and
extrinsic camera
parameters

Camera
at desired sample

position?

Parabolic
Mapping
Render mesh
with sample camera
settings and acquire
parabolic map

Light Field
Rendering
Visualize current
light field state

Update Light
Field Data
Add current sample
to light field re-
presentation

Figure 5.5: The light field acquisition pipeline: From the captured RGBz image a 3D
mesh is generated according to the camera’s intrinsic and extrinsic camera parameters.
If the camera is positioned according to a pre-defined spherical sample position then the
3D mesh is rebinned to the sample position and a parabolic RGBz map is generated and
stored with the light field representation.

to solve this problem using a calibration pattern [56, 121, 122]. Recently
Strobl and Hirzinger have presented a new calibration pattern based ap-
proach [109] which is available as a free software toolbox [110]. The
toolbox takes a series of calibration pattern images and 6D tracking tar-
get poses to extract the desired hand-eye calibration. Using the provided
toolbox the hand-eye transformation is determined efficiently. Applying
the hand-eye transformation to the tracking results yields the imaging
sensor pose in the tracking system’s coordinate system directly.

5.1.3 Light Field Acquisition Pipeline

With the 2D/3D RGB-PMD camera setup and the accurate pose tracking sys-
tem, the critical hardware components are available to establish an efficient
light field acquisition process. The acquisition process presented in this sec-
tion is implemented as a processing pipeline taking the RGBz images of the
2D/3D camera setup and the tracked camera pose as input data. Based on
this input data the light field is sampled from pre-defined positions. Captured
light field samples are fed into the spherical light field representation and the
(incomplete) light field is being rendered directly and continuously for imme-
diate visual feedback and quality evaluation. See Figure 5.5 for an overview
of the processing pipeline. The pipeline can be structured in five subsequent

96 5. Acquisition of Spherical Light Fields with Per-Pixel Depth

steps. After updating the input data, a 3D polygonal mesh is reconstructed
from the RGBz data. The camera’s pose is evaluated against the pre-defined
spherical light field positions and a light field sample is acquired if the camera
pose does correspond to a specific sample position. With a light field sample
being acquired, the light field representation is updated and the preliminary
light field is rendered.

Input Data Update The input data is updated by synchronously polling
new data from both, the 2D/3D camera setup and the DTrack tracking system.
When polling new data from the camera setup, the sensor data of the RGB and
the PMD camera are read out and fed into the PMD processing and 2D/3D
fusion pipeline as described in Section 5.1.1. The PMD pipeline implements
state-of-the-art optimization and correction functions based on specific PMD
characteristics and thus provides optimized RGBz data at a frame rate of 15 fps
(see Section 5.1.1). The image senor’s pose is updated based on the tracking re-
sults by applying the hand-eye transformation. Thus, the update step provides
the 2D/3D camera’s fusionated RGBz image and the current camera setup’s
pose in tracking coordinates.

3D Mesh Generation From the actual camera setup’s pose and the RGBz
image data a 3D polygonal mesh is reconstructed based on the intrinsic camera
parameters which are available from the PMD processing pipeline described in
Section 5.1.1. The mesh is generated first in the camera coordinate system with
the image sensor being the origin and the negative z-axis pointing in camera
viewing direction. Then, with the tracked pose and the hand-eye transforma-
tion matrix to be known, the mesh is transformed to the tracking coordinate
system by applying the tracking transformation matrix and the hand-eye trans-
formation matrix. For clarity and simplicity reasons in this chapter the tracking
coordinate system is defined to be identical to the world coordinate system.

Initial Triangle Mesh To generate a 3D mesh from the RGBz images a tri-
angle mesh is rendered using a vertex buffer object. The vertex buffer
object is initialized once as a triangle mesh with a resolution equal to the
input camera resolution, such that the centers of four adjacent camera
pixels are connected by the edges of a quad and the quad being split into
two triangles. The mesh is generated in normalized device coordinates
(NDC) and a z value of 0 such that it equally spans along the x and y di-
rection in the range of [-1,1]. The updated input RGBz image is mapped
to the triangle mesh as texture with the alpha component containing the
depth values. The depth values are interpreted as offset values. The

5.1. Light Field Acquisition from Physical Objects 97

mesh is rendered using a customized geometry- and fragment program.
While the fragment program performs a simple texture mapping opera-
tion only, the geometry shader implements the mesh reconstruction and
optimization process.

Within the geometry shader the depth values are fetched from the alpha
channel of the input textures. The depth values are then applied to the
vertices as offset values in the z component. Thus, from the input mesh
being defined with vertex coordinates V = (x, y, 0)T and x, y ∈ [−1, 1] an
offset mesh is generated. The offset mesh expands orthogonal to the X/Y
plane in the negative z direction. Note that the depth values are given
as radial depth values along per-pixel rays in the 2D/3D camera setup.
While the x and y components of the mesh are defined in the camera’s
normalized device coordinates, the depth values now need to be converted
to NDC in order to achieve a consistent representation. This can be easily
done by projecting the vertices to the camera image space using the
camera projection matric (MCProj). The projection matrix is extracted
from the intrinsic camera calibration parameters which are known from
the PMD processing pipeline. Note, however, that only the z component
is to be adjusted. Thus, for a given mesh vertex VOffset(x, y, z) only
the z component is substituted by the projected z component of vertex
VProj .

VProj = (xProj , yProj, zProj)T = MCProj · VOffset (5.1)

With the z value being substituted the adjusted vertices
VNDC(x, y, zProj)T now define the mesh in NDC.

From the structure of a regular projection matrix it can be easily seen
that the z component of the projected vertex is computed independently
of the x and y components. Thus z values (depth values) can be handled
and transformed to NDC independently (see Möller and Haines, pp 61–
66 [2]).

To finally render the mesh in cartesian camera coordinates the mesh is
unprojected again using the inverse camera projection matrix (M−1

CProj
).

Then the VNDC are transformed to camera coordinates VCam according
to:

VCam = (xCam, yCam, zCam)T = M−1
CProj

· VNDC (5.2)

Mesh Optimization In this stage the triangle mesh represents a solid surface
in camera coordinates. For boundary regions occurring at sharp edges

98 5. Acquisition of Spherical Light Fields with Per-Pixel Depth

RGBz Input Image Triangle Mesh reconstruction

Clipping Planes

Gradient Culling

Isolated Object Mesh

Figure 5.6: Top Left: Based on RGBz input images polled from the light field acquisition
device at a resolution of 900 × 675 pixels (see Section 5.1.1), a triangle mesh is recon-
structed in camera coordinates. Top, middle: Elongated triangles resulting from depth
interpolation at boundary edges are visible for viewing directions which diverge from the
current 2D/3D camera setup pose. Top, right: Reconstruction artifacts are erased by
applying a gradient based triangle culling. Bottom, right: Redundant geometric details
are culled by adjusting up to 6 clip planes to isolate the object of interest.

within the observed object or at the silhouette edges, reconstructed tri-
angles span over a large variation in depth. These triangles occur in
regions which are occluded from the camera’s point of view and thus do
not provide exploitable depth values. If observed from a position being
exactly identical to the input camera’s pose, these triangles are not visi-
ble as they span in line of sight. For slightly varying viewing directions,
however, these triangles occur as extremely elongated textured triangles
(See Figure 5.6, top middle). As these regions are not visible from the
original view, the texture does not carry any meaningful information and
the shape, resulting from the interpolation of adjacent depth values, can
be interpreted as reconstruction artifact. Fortunately, these regions are

5.1. Light Field Acquisition from Physical Objects 99

identified easily by evaluating the gradient for each vertex based on dis-
crete depth values using finite difference methods within a given triangle.
A triangle is culled within the geometry shader, if the gradient exceeds
a given threshold value which is defined by the user (see Figure 5.6, top
right).

For scenes also including regions of non-interest such as background de-
tails and additional information to the sides of the object of interest, clip
planes are implemented to provide a flexible tool for object isolation. Up
to six clip planes are available which are aligned along the camera coor-
dinate axis and alow to cull 3D content by limiting the maximum and
minimum x,y and z values of the reconstructed mesh vertices (see Fig-
ure 5.6, bottom right). Note, however, that the clipping planes as well as
the threshold value being used for the gradient based culling of triangles
are to be adjusted manually with every light field sample to be acquired
to ensure best acquisition results.

With the mesh optimization being performed, an isolated solid surface
mesh of the captured object is rendered in camera coordinates. By apply-
ing the tracking and hand-eye transformation this mesh is easily trans-
formed to the tracking coordinate system.

Camera Pose Evaluation With each update circle of the light field acquisi-
tion pipeline, the camera setup’s pose is evaluated based on the tracking results
and compared against the pre-defined set of spherical sample positions. Re-
member that the sample positions are defined by the spherical approximation
given by the light field parametrization (see Section 3.1). Thus, given a specific
sample resolution of 12, 42, 162 or 642 sample positions, discrete sample posi-
tions are pre-defined. Tracking coordinates are evaluated in meters. Thus, the
unit sphere is defined with a radius of 1 m centered at the origin of the tracking
coordinate system. With the sample positions to be known, the current 2D/3D
camera position and central viewing direction can be evaluated with respect
to these positions. Note, however, that the spherical representation and the
camera position must be defined with respect to the same coordinate system.
For clarity reason, the spherical representation and the 2D/3D camera pose are
assumed to be given with respect to the tracking coordinate system. Note that
different base coordinate systems can be easily defined by applying a common
coordinate system transformation to both, the spherical sample coordinates
and the tracked camera coordinates.

In the ideal case, the camera is positioned such that the position is iden-
tical to a spherical sample position and the camera’s viewing direction does
correspond to the central sampling direction. The central sampling direction is

100 5. Acquisition of Spherical Light Fields with Per-Pixel Depth

given by the vector emerging from the sample position and passing through the
spherical representation’s origin, in this case, the tracking coordinate system’s
origin. However, positioning the camera according to a sample position and -
direction is a challenging task. Thus, for user convenience the pose is evaluated
with a certain tolerance.

While defining an epsilon environment around a desired sample position
would provide a straight forward solution for a ”soft” pose evaluation, this
approach does not take the viewing direction into account. Thus, two distinct
epsilon environments have been implemented for each, the camera’s direction
and its position. To evaluate the camera’s pose, the closest sample position
is determined first. The closest sample position is determined efficiently by
intersecting the ray, emerging from the origin and passing through the camera
position, with the spherical approximation. Based on the hierarchical structure
of the spherical approximation, a single triangle which is intersected by this ray
is identified quickly by establishing the intersection with the sparsest spherical
approximation and then subsequently refining the intersection based on the
triangles of the next finer discretization level. The closest sample position is
determined from the corresponding three vertices (see Figure 5.7, left). For
the closest sample position the direction is evaluated first. If the difference in
the camera’s central viewing direction and the sample position’s central sample
direction (εα) does not exceed a given epsilon angle the camera’s orientation
is assumed to be valid. In a second step the camera’s absolute distance to the
sample position is evaluated. The camera’s pose is assumed to be valid if the
distance (εd) does not exceed a given epsilon distance (see Figure 5.7, middle).

However, under certain circumstances the user might not be able to move
the camera along a path on the spherical approximation’s surface. Thus, for
some reasons he might be limited to setup the camera such that the camera
pose does fulfill the directional constraint but fails the distance constraint.
In these cases the camera pose is still considered to be valid as long as the
camera’s central viewing ray does intersect the spherical approximation within
the given epsilon distance environment. As shown in Figure 5.7, right, the
central viewing ray does still correspond the sample position’s central viewing
direction in these cases and thus provides valid information. Sampling rays to
the sides of the central direction, however, exhibit an increasing angular error.
The angular effect is factored by the camera’s distance to the sample position.
While providing a more flexible camera positioning approach, this flexibility
comes at the price of directional error to the sides of the central sampling
direction. Thus, it is to used under exceptional circumstances, only.

For user guidance a graphical representation showing the spherical approx-

5.1. Light Field Acquisition from Physical Objects 101

Figure 5.7: The camera’s central viewing direction and its position is evaluated with re-
spect to the closest sample direction. Left: Central camera viewing direction within given
tolerance (εα), but the camera fails the positional constraint. Middle: Camera within
epsilon environment of both, direction and position. Right: The directional constraint is
fulfilled and the camera’s viewing ray intersects the spherical approximation within the
positional epsilon environment but the camera itself is not positioned within the epsilon
environment. Note that the camera’s central ray corresponds to the central sampling
direction, while rising angular errors occur for divergent directions.

imation and a proxy geometry of the camera setup with the camera’s field of
view is available during the acquisition task. The closest sample position and
the epsilon environment are being highlighted.

Parabolic Mapping and Sample Acquisition With the 2D/3D camera
setup being placed according to a pre-defined sample position and the ob-
served object mesh being reconstructed, a light field sample can be acquired
by parabolically mapping the mesh from the pre-defined sampling position on
the unit sphere.

Depending on the object from which a light field is to be acquired, the
object does not necessarily fit into this representation. Remember, the object’s
bounding sphere has to be defined such that it is centered around the origin with
a radius of 1√

2
(see Section 3.2). Hence, for objects exceeding the dimensions of

the unit sphere the reconstructed mesh has to be scaled to fit into the bounding
sphere. Obviously, if a scaling is applied to the mesh for one sample position, it
has to be scaled accordingly for all of the sample positions to maintain constant
proportions.

Then, to acquire a light field sample according to the parabolic image space
parametrization, the standard vertex processing step being implemented for the
mesh reconstruction is replaced by a customized vertex program, which projects
all vertices onto the unit sphere and converts the result to parabolic coordinates.
For the generation of parabolic coordinates it is essential to transform the scene
such that the sample capture position is placed at C = (0, 0, 1)T , looking along
the negative z-axis. Thus, the scene is transformed according to the sample

102 5. Acquisition of Spherical Light Fields with Per-Pixel Depth

position’s viewing matrix which is obtained from the spherical parametrization
for the current sample position.

The steps performed by the customized vertex program comprise the fol-
lowing.

1. Projection to the hemisphere
Each mesh vertex V is projected from the sample point onto the opposite
unit hemisphere. The projection is computed by casting a ray from the
sample position through the vertex and intersecting this ray with the unit
sphere. This amounts to solving a simple quadratic equation and results
in a projected vertex S.

2. Parabolic mapping of the projected vertices
As a result of the previous step, the projected vertex S is lying on the
hemisphere with z < 0. The vertex S is then converted to parabolic
coordinates, according to Equation 4.2

3. Depth Adjustment
The depth value is calculated as the fractional part of the secant length
according to Figure 3.6.

Based on this parabolic mapping, light field samples are acquired from the
reconstructed mesh being generated based on the 2D/3D input images of the
camera setup being positioned at the sampling position. However, accurate
light field samples are achievable only, if the camera is placed exactly corre-
sponding to the position and direction pre-defined by the spherical represen-
tation. As mentioned above, an epsilon offset has been implemented for user
convenience in the positioning task.

In case of the camera being set up such that its central viewing direction
does differ by some degrees, the reconstructed mesh does exhibit visible recon-
struction artifacts when being rendered from the pre-defined sample position
(see above: 3D Mesh Generation - Mesh Optimization). Without mesh opti-
mization being applied this results in geometric details being visible which are
not visible from the 2D/3D camera’s point of view and thus do not contain
valid information. With the mesh optimization being applied, theses artifacts
are removed. In this case, no information is visible in these undefined regions.
Thus, with a light field sample being acquired from slightly varying sample
positions this will result in no light field information being available for these
regions. However, in the reverse this will avoid misleading information to be
integrated into the light field representation. As up to three input light field
samples are evaluated within the light field rendering process (see Section 4.1)
missing information in one of the light field samples will likely to be covered
by one of the two other light field samples.

5.1. Light Field Acquisition from Physical Objects 103

Note, however, that in addition to mesh reconstruction artifacts, the 3D
mesh does not represent the scene’s correct reflectance characteristics if the
variation in direction and position is chosen too large. Thus, the epsilon en-
vironment is to be chosen small to avoid dubious information being sampled.
In practice an angular epsilon environment of 0.5◦ − 1◦ for the maximum di-
rectional deviation and a corresponding maximum positional error of (8 mm
- 15 mm) have proven to result in both, a convenient acquisition process and
acquisition results which do not exhibit artifacts resulting from reconstruction
artifacts as described above.

While this acquisition approach is targeted at the acquisition of light field
samples from pre-defined spherical sample positions, it involves some manual
interaction to achieve reliable results. The gradient threshold being utilized for
triangle culling and the clipping planes have to be adjusted manually for every
single light field sample. Special effort has to be spent to position the RGBz
light field acquisition device according to the pre-defined sample position. How-
ever, following this strict acquisition process guarantees a uniform acquisition
and representation of a spherical light field. Thus, the acquisition process is
strictly driven by the underlaying spherical light field parametrization.

Different acquisition approaches which allow for a more flexible acquisition
by adjusting the spherical light field parametrization depending on a freely
chosen camera pose have been evaluated but could not provide satisfactory
results. Comparable to free form light fields and unstructured lumigraphs, these
approaches make the parametrization dependent on the acquisition process.
Thus, the quality of the parametrization and as a consequence the quality of the
successive light field synthesis is driven by the acquisition process. The benefits
of a uniform parametrization are lost, as uniformity cannot be guaranteed with
freely chosen camera positions. For this reason, these acquisition approaches
have not been implemented as a solution to the acquisition task in this work.

Light Field Update and Rendering The light field sample being acquired
in the previous step is integrated into the spherical light field representation
directly without further processing. With the first sample being acquired, the
light field renderer is capable of providing synthesized images based on the
current set of acquired samples at real-time to provide a visual representation
for quality evaluation within the acquisition process.

Thus, while acquiring additional samples, the user is capable of evaluating
the current light field quality. Improper light field samples can be removed
from the representation and replaced by new samples to maximize the quality
of an acquired light field.

In practice, this accompanying visualization has proven to be a powerful

104 5. Acquisition of Spherical Light Fields with Per-Pixel Depth

A B C D

Figure 5.8: Light field acquisition results of a stuffed animal which exhibits diffuse
materials only. A: The input RGB image showing the animal with background. B: RGB
image with the background being keyed out. C: Rendering of the light field being acquired
from 162 sample positions at a resolution of 512×512. D: Difference image showing per-
pixel differences of the light field rendering (C) and the input RGB image (B) multiplied
by a factor of 4 and inverted.

tool for quality evaluation and visual guidance to optimize acquisition results.

5.1.4 Acquisition Results

With the 2D/3D sampling hardware, the tracking system and the proposed
light field acquisition pipeline, light fields can be efficiently sampled from phys-
ical objects. The proposed acquisition reveals the potential of the bifocal PMD
camera setup for the acquisition of light fields with per-pixel depth. However,
the results expose limitations which are reasoned in the systematic and the
current development state of the young PMD technology.

Figure 5.8 shows light field acquisition results for a light field being captured
from a stuffed animal. The physical object features a compact structure and
diffuse materials. Thus, the object does not exhibit large variations in depth
and practically no sharp boundary edges in the inner region. The silhouette
edges, however, provide boundary regions with abrupt and large depth variation
with respect to the background. The object’s fur does exhibit diffuse material
properties and thus provides uniform reflections. Regions which are covered by
light absorbing materials or reflective materials do not occur.

In Figure 5.8 an RGB image of the stuffed animal (Figure 5.8, A) is shown
accompanied by the rendering of the light field (Figure 5.8, C) being acquired
using the 2D/3D PMD camera setup. A difference image showing the inverse
per-pixel differences multiplied by a factor of 4 is shown in Figure 5.8, D. For
comparison reasons the original input RGB input image is displayed with the
background being keyed out (Figure 5.8, B).

5.1. Light Field Acquisition from Physical Objects 105

Figure 5.9: Light field being captured from Christof Rezk Salama. Discontinuity artifacts
appear in regions of infrared light being absorbed during acquisition. Left: RGB input
image with the background being culled. Middle and Right: Light field rendering with
the discontinuity artifacts being highlighted in the bottom row.

From the difference image it can be seen clearly that the inner regions of the
object are reliably captured and reconstructed. Some minor artifacts occur at
the image contours such as the nose, the hands or the feet. Solely the silhouette
exhibits some more visible artifacts which occur as aliasing like rendering ar-
tifacts. These visible stepping artifacts result from the PMD camera’s relative
low resolution of 160× 120 and the resulting large solid angle. The large solid
angle yields invalid depth values in areas of inhomogeneous depth occurring in
situations such as silhouette edges and object boundaries (see Section 5.1.1).
With these invalid regions being culled within the acquisition process, these
regions are not present in the light field representation and thus cannot be
reconstructed in the image synthesis. As a consequence, the mean absolute
error of per-pixel color values resulting from the comparison of the input image
and the rendered result is reasonable high (0.0678861). The root mean squared
error for the same pair of images is determined accordingly high (0.209604).

While the stuffed animal did provide diffuse materials, only, additional ar-
tifacts arise from light absorbing materials. Figure 5.9 demonstrates the effect

106 5. Acquisition of Spherical Light Fields with Per-Pixel Depth

of infrared light being absorbed within the acquisition. Per-pixel depth cannot
be evaluated reliably with the infrared light being absorbed in some image re-
gions. Thus, the polygonal mesh being reconstructed for the sampling process
is built from incorrect and incoherent depth information in these regions. These
geometric artifacts are sampled within the acquisition process and appear as
discontinuities within the light field synthesis process. Figure 5.9 displays the
results of a light field being acquired from Christof Rezk Salama. The light
field renderings clearly demonstrate the effect of light being absorbed by the
black hair. For this region heavy discontinuity artifacts appear.

However, the rendering results displayed in Figure 5.9 also show the strength
of the presented approach. Note that ghosting artifacts are minimized to a
reasonable amount. While some ghosting artifacts occur in the face region, the
shirt’s printing is reconstructed without noticeable artifacts.

For complex scenes covering large variations in depth, which exhibit all
variations of materials and expose sharp boundary edges, the proposed acqui-
sition approach is effected by the PMD setup’s limitations to a high degree.
Figure 5.10 shows the acquisition results of such a scene. Infrared light absorb-
ing materials (labeled A in Figure 5.10) occur as holes or exhibit discontinuity
artifacts in the light field rendering. High reflective material causes the PMD
sensor to reach saturation level in the acquisition process if infrared light is
perfectly reflected. Thus, no valid depth information and as a consequence no
geometric detail is available for these regions. These regions are not acquired
and appear as holes (labeled B) in the rendering.

For this kind of complex scenes being composed from multiple objects,
ghosting and geometric distortion effects appear at boundary edges (labeled
C). For the boundary edges depth information cannot be reliably reconstructed.
Due to the PMD camera’s large per-pixel solid angle, the depth information
being acquired for these regions results from a mixture of values being mea-
sured for different object surface distances. For small variations in depth the
gradient threshold being applied for mesh optimization within the acquisition
process does not suffice as a counter measure. This results in geometric dis-
tortions being acquired and reconstructed within the light field synthesis. If,
however, the gradient threshold is chosen too small, discontinuities and loss of
geometric information may appear in region of boundary edges (labeled D).
As this complex scene is composed from a selection of relatively small objects,
the silhouette artifacts effect the overall quality of the light field rendering to
a high degree.

5.2. Light Field Generation from Synthetic Scenes 107

A
A

C

C
C

B

D
DC

Figure 5.10: Light field rendering of a complex scene containing large variations in
depth and light absorbing as well as high reflective materials. Left: RGB input image
with the background being keyed out. Middle and right: Light field rendering with
artifacts being highlighted and labeled in the bottom row. Label A highlights discontinuity
artifacts resulting from light absorbing materials. B: Holes appear in regions of reflective
materials. C: Geometric distortion at boundary edges with small variations in depth. D:
Loss of geometric information caused by the gradient threshold being chosen too small
within the acquisition process.

5.2 Light Field Generation from Synthetic Scenes

The generation of light fields from synthetic scenes based on 3D geometry
is implemented according to the acquisition pipeline. However, instead of a
light field acquisition device a customized renderer is utilized to extract light
field samples. Instead of a mesh being reconstructed from an RGBz image,
here a given 3D representation is rendered once for each sample camera being
defined by the spherical parametrization to generate a synthetic light field
of the synthetic object. For each sample camera the scene is transformed
according to the sample camera transformation matrix which is available from
the parametrization setup, such that the camera is placed at the position C =
(0, 0, 1)T , looking along the negative z-axis. To ensure the scene to fit into the
bounding sphere with radius of 1√

2
centered around the origin, the entire scene

has to be scaled and translated.

108 5. Acquisition of Spherical Light Fields with Per-Pixel Depth

Note, that this procedure is conceptually identical to the acquisition ap-
proach being utilized to sample a light field from the reconstructed 3D mesh
of a physical object (see Section 5.1.3). Thus, the same customized vertex pro-
gram is utilized to project all vertices onto the unit sphere and to convert the
result to parabolic coordinates. This allows for the efficient generation of syn-
thetic light fields using commodity graphics hardware. Due to the non-linear
geometric distortions resulting from the parabolic mapping applied by our ver-
tex program, however, it is mandatory to tessellate coarse geometry into small
triangles before light field synthesis. On modern graphics hardware this can
efficiently be achieved by a geometry shader program.

Arbitrary complex fragment programs can be used in combination with
this customized vertex program. The only modification necessary is that the
fragment program must write the interpolated depth value generated by the
vertex shader into the alpha portion of the final color.

Each parabolic map is stored as an interleaved array of RGBz values. Indi-
vidual parabolic maps are associated with the sample position’s transformation
matrix defined by the spherical parameterisation.

For usability reasons the light field generation algorithm was integrated
into commercially available 3D modeling packages like Autodesk Maya which
are commonly used in the computer graphics community. Using the plug-
in, light fields can be generated efficiently from arbitrary complex 3D objects
containing sophisticated material and (global) illumination effects. For light
field generation any render engine available with the 3D modeling package can
be applied.

All of the light fields being used to demonstrate the quality of the light
field rendering approach have been generated from synthetic objects using this
proposed technique (see Section 4.1). Light fields of the Tie-Fighter model
(see Figure 4.12) an Michelangelo’s David statue (see Figure 6.1) have been
generated using the Autodesk Maya plugin.

5.3 Conclusion

Within this chapter two approaches have been presented to generate spherical
light fields with per-pixel depth. While the first approach exploits upcoming
depth imaging sensor technology in combination with sophisticated tracking
technology to acquire light fields from physical objects, the second approach is
aiming at the generation of light fields from synthetic objects.

For synthetic objects spherical light field representations can be generated
automatically from any given synthetic 3D representation using a specialized

5.3. Conclusion 109

rendering engine. The integration of light field generation capabilities into
commercially available 3D modeling packages provides a powerful tool for the
flexible generation of sophisticated light fields from any kind of synthetic ob-
jects. Light fields being generated from synthetic objects provide high quality
representations which are reconstructed precisely using the raycasting light field
rendering approach presented in Section 4.3.

For physical objects an acquisition approach has been presented which im-
plements a prototype setup for the interactive acquisition of spherical light
fields. The approach makes use of a bifocal 2D/3D camera setup built from a
PMD time-of-flight depth imaging sensor and a high resolution RGB camera
to acquire combined RGBz information directly without the need for addi-
tional processing to extract per-pixel depth information. From the combined
RGBz images a polygonal 3D mesh can be reconstructed in world coordinates
efficiently using a high precision optical tracking system. With the 2D/3D
camera being adjusted according to a pre-defined sample position, a light field
sample is easily acquired by rendering the 3D mesh from the sample position.

While state-of-the-art optimization techniques have been implemented to
optimize the PMD sensor performance, light field acquisition is still effected
by the sensor characteristic to a high degree. The physical object acquisition
results demonstrate the main shortcomings of the 2D/3D PMD camera sys-
tem. Due to the low resolution of the PMD camera boundary edges cannot be
acquired precisely, leading to discontinuity and distortion artifacts in the mesh
reconstruction and thus in the light field representation. The acquisition is
limited to scenes which do not exhibit materials that absorb near infrared light
and do not provide high reflective materials. In appearance of one of those ma-
terials, the PMD sensor will provide unreliable depth information which effects
the mesh representation to a high degree. Thus, the acquisition of light fields
is limited to a small selection of single compact objects which provide small
variations in depth and uniform reflection characteristics, only.

In the future, however, research in the field of time-of-flight sensor tech-
nology will address the problem of low resolution. Current research on PMD
sensor calibration [69] and the combination of stereo imaging techniques with
PMD sensor information [9, 79] will provide a stable and reliable technique
for the acquisition of combined RGBz images. With the combined mono ocu-
lar PMD camera setup [88] which provides perfectly aligned and synchronized
RGBz images, an improved PMD sensor will be available in the near future.
Thus, upcoming PMD techniques will perfectly support the light field acquisi-
tion process presented in this chapter and improve the acquisition results to a
high degree.

6

Conclusion and Future Work

This work has presented a new light field technique based on a uniform spher-
ical parametrization which implements per-pixel depth correction of rays to
synthesize new high-quality virtual views at real-time frame rates.
The spherical light field parametrization presented in this thesis implements
a uniform sampling of the observation space and allows view synthesis to be
performed with 6 DOF. The light field representation stores an RGBz parabolic
texture map which combines both RGB and depth values per pixel. Thus, it
implements an efficient light field representation with respect to data volume
which includes an implicit geometric scene description at minimum additional
storage costs.

In contrast to unstructured light field rendering approaches presented by
Schirmacher and Buehler [13,97] the representation is guaranteed to be invari-
ant under both, translation and rotation. Due to the uniformity of the proposed
representation, discontinuity artifacts as they are observed with the lumigraph
approach presented by Gortler et al. [35] do not appear. While being akin to
spherical parametrization presented in the past [16, 47], the amount of light
field samples being mandatory for a high-quality image synthesis is drastically
reduced by a factor of over 90%–95%.

The light field rendering techniques presented in this dissertation exploit the
efficient spherical representation in order to generate high-quality virtual views.
Both implementations, the iterative refinement approach and the raycasting
technique, implement a per-pixel depth correction. With the depth correction
being applied, virtual views are generated without noticeable ghosting artifacts
at real-time frame rates. Visual features from meso and micro structures as
well as concavities are precisely reconstructed and silhouette edges are reliably
resampled.

With the level of detail rendering approach and the progressive refinement
light field rendering, two efficient and flexible rendering techniques have been
presented in this thesis which allow light field rendering techniques to be utilized
in a variety of application areas. The LOD technique provides a powerful tool
for rendering performance management which allows light field techniques to
be efficiently integrated into performance critical real-time applications such as

111

112 6. Conclusion and Future Work

computer games. With the progressive client-server based rendering technique,
light field representations can be flexibly shared in web-based applications in
order to provide access to sophisticated visualization results from a variety of
sources.

For the acquisition of such a spherical light field representation two dif-
ferent techniques have been presented. A straight forward rendering based
approach was presented which provides an efficient tool set for the generation
of spherical light fields with per-pixel depth from synthetic scenes. This syn-
thetic generation method allows light fields to be efficiently generated from
arbitrary complex scenes using a customized rendering engine. This work has
demonstrated that this light field generation technique can be easily integrated
in any kind of 3D rendering application. For the acquisition of light fields from
physical objects a new sampling approach has been introduced in this work
which makes use of upcoming 3D sensor technology to synchronously acquire
combined RGBz images. The acquisition approach provides immediate visual
feedback for quality evaluation of (incomplete) light fields within the acquisition
process. This work demonstrated that emerging 3D time-of-flight sensors can
be used to efficiently acquire light fields with per-pixel depth without the need
for complex geometry evaluation and geometry processing steps. However, this
work also showed that acquisition artifacts arise under certain circumstances
resulting in poor light field representations. The author is confident that cur-
rent research focusing on this young technology and future 3D sensor systems
will solve these limitations. Then, these devices provide the optimal solution
for the acquisition of light field representations with per-pixel depth.

With the spherical parametrization, the high-quality rendering approaches
and the light field generation technique presented in this dissertation, sophis-
ticated techniques are available today which are capable of promoting the ap-
plication of light field rendering techniques in many new application areas.

Light field rendering techniques are ideally suitable for the presentation of
medical data which is traditionally in need of sophisticated rendering algo-
rithms to provide high quality results. The author has shown that the presen-
tation of such data sets can be efficiently implemented using light field tech-
niques [92]. The progressive light field rendering approach presents an efficient
solution for the presentation of such kind of data.

Engineering disciplines which are in need of publishing very large 3D rep-
resentations but do not want to grant access to the underlying structural in-
formation will profit from light field representations to a high degree. The
efficient parametrization presented in this thesis provides the ideal solution for
a compact exchange of 3D representations while retaining the sensible struc-
tural information.

113

BA C D

Figure 6.1: Light field rendering in the context of cultural heritage. A: The original
polygonal based rendering of the simplified version (500k polygons) of the original geom-
etry of David obtained from The Digital Michelangelo Project [64] rendered using Mental
Ray for Maya in 39 seconds. B: Three individual light field parts rendered separately, each
representing a section of the David statue and each sampled from 162 sample positions
at an image resolution of 512× 512. C and D: Light field rendering from three composed
light fields. Rendering is performed at a frame rate of 26.5 fps.

With the advent of computer graphics technology in the field of cultural
heritage presentation systems [44], museums are starting to integrate visual-
izations of synthetic content in their exhibitions in order to grant interactive
access to virtual 3D representations [115, 119]. Here, the sophisticated light
field rendering approaches presented in this work provide an efficient solution
to the high-quality presentation of ancient artifacts (see Figure 6.1).

The benefits of the light field techniques presented in this dissertation will
open up for new ways of data visualization and analysis. The author has
demonstrated the applicability of light field synthesis for object recognition as
a proof of concept in his research activities [113]. This conceptual work will
inspire future research in the field of object recognition. With the spherical
light field representation proven to be flexible and adjustable at run-time, it
will allow for efficient data manipulation in future research projects. Especially
the potential of adjusting the lighting conditions of the light field and thus
relight the virtual scene being represented by the light field is in focus of future
research activities.

A

Appendix

A.1 Iterative Refinement Fragment Shader

1 void main(
2 float3 c0 : TEXCOORD0, //sample position coordinates
3 float3 c1 : TEXCOORD1,
4 float3 c2 : TEXCOORD2,
5 float3 P eye : TEXCOORD3, //virtual viewpoint position
6 float3 colorIn : COLOR, //interpolation weights
7 uniform float4x4 ModelViewProj, //virtual view modelview-proj
8
9 uniform sampler2D DecalMap0 : TEXUNIT0,//parabolic light field

10 uniform sampler2D DecalMap1 : TEXUNIT1,//sample textures
11 uniform sampler2D DecalMap2 : TEXUNIT2,
12
13 uniform sampler2D DepthMap0 : TEXUNIT3,//parabolic depth maps
14 uniform sampler2D DepthMap1 : TEXUNIT4,
15 uniform sampler2D DepthMap2 : TEXUNIT5,
16 uniform float4 backgroundColor,
17 uniform float errorThreshold, //steering parameter for quality
18 uniform float maxIterations, //max iteration count
19 uniform float skip, //size of empty region
20 //inside sphere to be skipped
21
22 uniform float3x3 CamToWorld0, //transformation matrices of
23 uniform float3x3 CamToWorld1, //sample cameras
24 uniform float3x3 CamToWorld2,
25
26 out float4 color : COLOR,
27 out float oDepth : DEPTH)
28 {
29 //fragment’s position based on barycentric weight from sample
30 vertices
31 float3 v = c0 * colorIn.x + c1 * colorIn.y + c2 * colorIn.z;
32 float3 dir = v-P eye; //the view direction
33 float3 dirN = normalize(dir); //normalized view direction
34
35 //extract interpolation weights from interpoalted color
36 //x,y,z correspond to c0,c1,c2, accordingly
37 float3 cameraWeight;
38 cameraWeight=colorIn;
39 //initialize the 3 camera color values with background color
40 float4 color0 = backgroundColor;
41 float4 color1 = backgroundColor;
42 float4 color2 = backgroundColor;
43

115

116 A. Appendix

44 //determine viewing ray - sphere intersection on opposite hemisphere
45 float A,B,C;
46 C = dot(P eye,P eye) - 1.0;
47 B = 2.0 * dot(P eye,dir);
48 A = dot(dir,dir);
49
50 float S = max((B*B - 4.0 * A*C) ,0.0); //components under sqrt
51 //ignore negative solution - opposite hemisphere, only
52 float lambda = (-B + sqrt(S)) /A/2.0;
53
54 //Sphere intersection
55 float3 vecS = (P eye + lambda * dir);
56
57 //direction to sphere interesection point
58 float3 dir0 = mul(CamToWorld0, vecS);
59 float3 dir1 = mul(CamToWorld1, vecS);
60 float3 dir2 = mul(CamToWorld2, vecS);
61
62 //texture coordinates for sphere intersection
63 //based on parabolic mapping
64 float3 UV0;
65 float3 UV1;
66 float3 UV2;
67 UV0.x = dir0.x / 2.0 / (1.0 - dir0.z) + 0.5;
68 UV0.y = dir0.y / 2.0 / (1.0 - dir0.z) + 0.5;
69 UV0.z = dir0.z;
70
71 UV1.x = dir1.x / 2.0 / (1.0 - dir1.z) + 0.5;
72 UV1.y = dir1.y / 2.0 / (1.0 - dir1.z) + 0.5;
73 UV1.z = dir1.z;
74
75 UV2.x = dir2.x / 2.0 / (1.0 - dir2.z) + 0.5;
76 UV2.y = dir2.y / 2.0 / (1.0 - dir2.z) + 0.5;
77 UV2.z = dir2.z;
78
79 // xyz components refer to camera 0, 1, and 2, respectively.
80 float3 depthV;
81
82 // obtain the depth samples
83 depthV.x = (UV0.z < 0.0)? tex2D(DepthMap0,UV0.xy).r : 1.0;
84 depthV.y = (UV1.z < 0.0)? tex2D(DepthMap1,UV1.xy).r : 1.0;
85 depthV.z = (UV2.z < 0.0)? tex2D(DepthMap2,UV2.xy).r : 1.0;
86
87 //initialize parameters evaluated within iteration
88 //ensure absolute error >1 and >errorThreshold
89 float fError = errorThreshold + 1.0;
90 float fIter = -1.0; //iterations performed
91 float3 vecS0 = vecS; //starting intersection points for
92 float3 vecS1 = vecS; //each sample cam corresponds to
93 float3 vecS2 = vecS; //initial sphere intersection
94 float3 dist; //distance of the local estimes for 3 cams
95 float3 vecG; //current position on ray
96 float3 direction0; //direction of rays emerging from each of
97 float3 direction1; //the three sample cameras
98 float3 direction2;
99

100 //refine local estimates until maximum iterations
101 //or errorThreshold reached
102 for(int a = 0; a < maxIterations; a++) {
103 cameraWeight=colorIn; //reset camera weightsto barycentric

A.1. Iterative Refinement Fragment Shader 117

104 // vectors from a vertex (camera) to its corresponding
105 // intersection point with the geometry
106 float3 dirG0 = depthV.x * (vecS0-c0);
107 float3 dirG1 = depthV.y * (vecS1-c1);
108 float3 dirG2 = depthV.z * (vecS2-c2);
109
110 // intersection points for each camera
111 float3 vecG0 = c0 + dirG0;
112 float3 vecG1 = c1 + dirG1;
113 float3 vecG2 = c2 + dirG2;
114
115 // the distances are projected onto ray from actual camera to the
116 //3D fragment position v)
117 dist.x = dot(dirG0,dirN);
118 dist.y = dot(dirG1,dirN);
119 dist.z = dot(dirG2,dirN);
120
121 //interpolated in barycentric coordinates
122 float dd;
123 //project local estimates on viewing ray if for the first few
124 //iterations (current iteration<maxIterations/2) for pos on ray
125 if (a < (maxIterations/2)) {
126 dd = (dist.x + dist.y + dist.z)/3.0;
127 } else { //take the maximum distance otherwise
128 dd = max(dist.x,max(dist.y,dist.z));
129 }
130 // determine interpolated intersection point for the fragment
131 vecG = v + dirN*dd;
132
133 //calculate the error as distance from position on ray
134 float3 vecError;
135 vecError.x = length(vecG-vecG0);
136 vecError.y = length(vecG-vecG1);
137 vecError.z = length(vecG-vecG2);
138 vecError *= cameraWeight;
139 // the scalar error is calculated as the sum of the squared
140 // distances between the interpolated intersection point
141 // and the intersection point of the individual camera
142 fError = dot(vecError,vecError);
143
144 //re-weight the cameras according to their errors
145 vecError/=dot(vecError,1..xxx); //normalize errors
146 cameraWeights*=vecError; //adjust weights
147
148 // prepare for the next iteration/color interpolation we
149 // intersect the camera rays with the unit sphere = solving
150 // 3 quadratic equations simultaneously
151 // (similar to first intersection of viewing ray)
152 float3 d0G = vecG-c0;
153 float3 d1G = vecG-c1;
154 float3 d2G = vecG-c2;
155
156 float3 AG;
157 float3 BG;
158 C = dot(v,v) - 1.0;
159
160 BG.x = 2.0 * dot(v,d0G);
161 BG.y = 2.0 * dot(v,d1G);
162 BG.z = 2.0 * dot(v,d2G);
163

118 A. Appendix

164 AG.x = dot(d0G,d0G);
165 AG.y = dot(d1G,d1G);
166 AG.z = dot(d2G,d2G);
167
168 float3 SG = max((BG*BG - 4.0 * AG*C) ,0..xxx);
169 float3 tG = (-BG.xyz + sqrt(SG.xyz)) /AG.xyz/2.0;
170
171 //if the depth is within the inner region of the sphere
172 //limited by parameter skip,
173 if(depthV.x<(1.0-skip) && depthV.x>(skip))
174 {
175 vecS0 = c0 + tG.x * d0G;
176 //transform the sphere points into the vertex-camera’s
177 //local coordinate system
178 direction0 = mul(CamToWorld0, vecS0);
179 // transform sphere point to parabolic map
180 UV0.x = direction0.x / 2.0 / (1.0 - direction0.z) + 0.5;
181 UV0.y = direction0.y / 2.0 / (1.0 - direction0.z) + 0.5;
182 UV0.z = direction0.z;
183 // sample the parabolic map for each vertex-camera
184 color0=(UV0.z < 0.0)?tex2D(DecalMap0,UV0.xy):backgroundColor;
185 depthV.x = (UV0.z < 0.0)? tex2D(DepthMap0,UV0.xy).r : 1.0;
186 }else{ //prevent local estimates in back to influence next ray pos
187 cameraWeight.x = 0.0;
188 color0 = backgroundColor;
189 }
190
191 if(depthV.y<(1.0-skip) && depthV.y>(skip))
192 {
193 vecS1 = c1 + tG.y * d1G;
194 direction1 = mul(CamToWorld1, vecS1);
195 UV1.x = direction1.x / 2.0 / (1.0 - direction1.z) + 0.5;
196 UV1.y = direction1.y / 2.0 / (1.0 - direction1.z) + 0.5;
197 UV1.z = direction1.z;
198 color1 = (UV1.z < 0.0)? tex2D(DecalMap1,UV1.xy) :
199 backgroundColor;
200 depthV.y = (UV1.z < 0.0)? tex2D(DepthMap1,UV1.xy).r : 1.0;
201 }else{
202 cameraWeight.y = 0.0;
203 color1 = backgroundColor;
204 }
205
206 if(depthV.z<(1.0-skip) && depthV.z>(skip))
207 {
208 vecS2 = c2 + tG.z * d2G;
209 direction2 = mul(CamToWorld2, vecS2);
210 UV2.x = direction2.x / 2.0 / (1.0 - direction2.z) + 0.5;
211 UV2.y = direction2.y / 2.0 / (1.0 - direction2.z) + 0.5;
212 UV2.z = direction2.z;
213 color2 = (UV2.z < 0.0)? tex2D(DecalMap2,UV2.xy) :
214 backgroundColor;
215 depthV.z = (UV2.z < 0.0)? tex2D(DepthMap2,UV2.xy).r : 1.0;
216 }else{
217 cameraWeight.z = 0.0;
218 color2 = backgroundColor;
219 }
220 cameraWeight /= dot(cameraWeight,1..xxx); //normalize weights
221
222 // if the error is below the threshold, exit the for loop
223 if (fError < errorThreshold) {

A.1. Iterative Refinement Fragment Shader 119

224 break;
225 }
226 fIter += 1.0;
227 }
228
229 fIter /= maxIterations; //ratio with respect to maximum iterations
230
231 //determine depth for fragment by projecting to virtual view
232 float4 depthPoint = mul(ModelViewProj, float4(vecG,1.0));
233 depthPoint/=depthPoint.w;
234 oDepth=(depthPoint.z+1)/2.0;
235
236 //set sample cameras color to background if weight is 0
237 if(!(cameraWeight.x > 0.0))
238 color0 = backgroundColor;
239 if(!(cameraWeight.y > 0.0))
240 color1 = backgroundColor;
241 if(!(cameraWeight.z > 0.0))
242 color2 = backgroundColor;
243
244 //interpolate color weights
245 color = color0*cameraWeight.x+color1*cameraWeight.y+
246 color2*cameraWeight.z;
247 }

Code Sample A.1: Iterative refinement light field rendering fragment program.

120 A. Appendix

A.2 Raycasting Fragment Shader

1 void main(
2 float3 c0 : TEXCOORD0, //sample position coordinates
3 float3 c1 : TEXCOORD1,
4 float3 c2 : TEXCOORD2,
5 float3 P eye : TEXCOORD3, //virtual viewpoint position
6 float3 colorIn : COLOR, //interpolation weights
7 uniform float4x4 ModelViewProj, //virtual view modelview-proj
8
9 uniform sampler2D DecalMap0 : TEXUNIT0,//parabolic light field

10 uniform sampler2D DecalMap1 : TEXUNIT1,//sample textures
11 uniform sampler2D DecalMap2 : TEXUNIT2,
12
13 uniform sampler2D DepthMap0 : TEXUNIT3,//parabolic depth maps
14 uniform sampler2D DepthMap1 : TEXUNIT4,
15 uniform sampler2D DepthMap2 : TEXUNIT5,
16
17 uniform float errorThreshold,//steering parameter for quality
18 uniform float epsilon, //size of epsil. environment
19 uniform float stepsize, //raycasting stepsize
20 uniform float skip, //size of empty region
21 //inside sphere to be skipped
22 uniform float4 backgroundColor,
23 uniform float earlyBackgroundTest,
24
25 uniform float3x3 CamToWorld0,//transformation matrices of
26 uniform float3x3 CamToWorld1,//sample cameras
27 uniform float3x3 CamToWorld2,
28
29 out float4 color : COLOR,
30 out float oDepth : DEPTH)
31 {
32 float breakTest = 0.0;//control flag for early exit in for loop
33 //determine size of for loop, use 2 vars because max loops is
34 limited
35 float maxIterationsI = 1;
36 float maxIterationsJ = (2.0-skip)/stepsize;
37 if(maxIterationsJ>200)
38 {
39 maxIterationsJ = 200;
40 maxIterationsI = (((2.0-skip)/stepsize)/200)+1;
41 }
42 //fragment’s position based on barycentric weight from sample
43 vertices
44 float3 v = c0 * colorIn.x + c1 * colorIn.y + c2 * colorIn.z;
45 float3 dir = v-P eye; //the view direction
46 float3 dirN = normalize(dir); //normalized view direction
47
48 //first position on ray along view dir for first pos.
49 //skip some samples if skip parameter is set
50 float3 firstSamplePos = v + skip * dirN;
51
52 //determine intersection with inner sphere for initial skip
53 //if no custom skip is given
54 float skip;
55 if(!skip>0.0)
56 {
57 float A,B,C;
58 //inner sphere is of size 1.0/sqrt(2)

A.2. Raycasting Fragment Shader 121

59 C = dot(P eye,P eye) - (1.0/sqrt(2));
60 B = 2.0 * dot(P eye,dir);
61 A = dot(dir,dir);
62
63 float S = max((B*B - 4.0 * A*C) ,0.0); //components under sqrt
64 //first intersection with inner sphere neede, so take min
65 skip = min(((-B + sqrt(S)) /A/2.0), ((-B + sqrt(S)) /A/2.0));
66 //take inner sphere intersection as start point
67 firstSamplePos = P eye + skip * dirN;
68 }
69
70 //current position on ray along view dir for first pos. skip some
71 samples
72 float3 vecG = firstSamplePos;
73
74 //extract interpolation weights from interpoalted color
75 //x,y,z correspond to c0,c1,c2, accordingly
76 float3 cameraWeight;
77 cameraWeight=colorIn;
78 //initialize the 3 camera color values with background color
79 float4 color0 = backgroundColor;
80 float4 color1 = backgroundColor;
81 float4 color2 = backgroundColor;
82
83 //spherical intersection points of sample cameras
84 float3 vecS0, vecS1, vecS2;
85 // xyz components refer to camera 0, 1, and 2, respectively.
86 float3 depthV;//depth sampled from texture
87
88 //start raycasting in two for loops
89 for(int i = 0; i < maxIterationsI; i++)
90 {
91 for(int j = 0; j < maxIterationsJ; ++j) {
92
93 vecG += stepsize * dirN; //determine next sample position on ray
94 //check if we are still in the inner sphere
95 //discard pixel if no intersection within inner sphere
96 if(skip>0.0 &&
97 length(firstSamplePos-vecG)>(1-skip+1.0/sqrt(2)))
98 {
99 discard;

100 }else if(length(firstSamplePos-vecG)>(1.414213562)){
101 discard;
102 }
103 //determine dirs from sample cams to ray sample pos
104 float3 d0G = vecG-c0;//vector from sample camera position
105 float3 d1G = vecG-c1;//to current ray sample position
106 float3 d2G = vecG-c2;
107 d0G=normalize(d0G);//normalized dir to sample pos
108 d1G=normalize(d1G);
109 d2G=normalize(d2G);
110
111 //determine ray - sphere intersection on opposite hemisphere
112 //for each sample camera ray through current view ray sample pos
113 float3 A,B,C;
114 C.x = dot(c0,c0) - 1.0;
115 C.y = dot(c1,c1) - 1.0;
116 C.z = dot(c2,c2) - 1.0;
117
118 B.x = 2.0 * dot(c0,d0G);

122 A. Appendix

119 B.y = 2.0 * dot(c1,d1G);
120 B.z = 2.0 * dot(c2,d2G);
121
122 A.x = dot(d0G,d0G);
123 A.y = dot(d1G,d1G);
124 A.z = dot(d2G,d2G);
125
126 float3 S = max((B*B - 4.0 * A*C) ,0..xxx);//component under
127 sqrt
128 //ignore negative solution - opposite hemisphere, only
129 float3 lambda = (-B.xyz + sqrt(S.xyz)) /A.xyz/2.0;
130
131 //Sphere intersections
132 vecS0 = c0 + lambda.x * d0G;
133 vecS1 = c1 + lambda.y * d1G;
134 vecS2 = c2 + lambda.z * d2G;
135
136 //direction to sphere interesection point
137 float3 direction0 = mul(CamToWorld0, vecS0);
138 float3 direction1 = mul(CamToWorld1, vecS1);
139 float3 direction2 = mul(CamToWorld2, vecS2);
140
141 //texture coordinates for sphere intersection
142 //based on parabolic mapping
143 float3 UV0;
144 float3 UV1;
145 float3 UV2;
146 UV0.x = direction0.x / 2.0 / (1.0 - direction0.z) + 0.5;
147 UV0.y = direction0.y / 2.0 / (1.0 - direction0.z) + 0.5;
148 UV0.z = direction0.z;
149
150 UV1.x = direction1.x / 2.0 / (1.0 - direction1.z) + 0.5;
151 UV1.y = direction1.y / 2.0 / (1.0 - direction1.z) + 0.5;
152 UV1.z = direction1.z;
153
154 UV2.x = direction2.x / 2.0 / (1.0 - direction2.z) + 0.5;
155 UV2.y = direction2.y / 2.0 / (1.0 - direction2.z) + 0.5;
156 UV2.z = direction2.z;
157
158 // obtain the color samples
159 color0 = (UV0.z<0.0)?tex2D(DecalMap0,UV0.xy) : backgroundColor;
160 color1 = (UV1.z<0.0)?tex2D(DecalMap1,UV1.xy) : backgroundColor;
161 color2 = (UV2.z<0.0)?tex2D(DecalMap2,UV2.xy) : backgroundColor;
162
163 // obtain the depth samples
164 depthV.x = (UV0.z<0.0)?tex2D(DepthMap0,UV0.xy).r : 1.0;
165 depthV.y = (UV1.z<0.0)?tex2D(DepthMap1,UV1.xy).r : 1.0;
166 depthV.z = (UV2.z<0.0)?tex2D(DepthMap2,UV2.xy).r : 1.0;
167
168 // vectors from a vertex (camera) to its corresponding
169 // intersection point with the geometry
170 float3 dirG0 = depthV.x * (vecS0-c0);
171 float3 dirG1 = depthV.y * (vecS1-c1);
172 float3 dirG2 = depthV.z * (vecS2-c2);
173
174 // object intersection points for each camera (local estimates)
175 float3 vecG0 = c0 + dirG0;
176 float3 vecG1 = c1 + dirG1;
177 float3 vecG2 = c2 + dirG2;
178

A.2. Raycasting Fragment Shader 123

179 //absolute distances of local estimates from view ray sample pos
180 float3 dist;
181 dist.x = length(vecG-vecG0);
182 dist.y = length(vecG-vecG1);
183 dist.z = length(vecG-vecG2);
184
185 //determine minimal distance
186 float minDist = min(dist.x,min(dist.y,dist.z));
187 //if one local estimate wihin epsilon environment
188 if ((minDist < epsilon)){
189 //Check all cams if their local estimates are within error
190 //threshold, if not set weight to 0
191 if (dist.x > errorThreshold) {
192 cameraWeights.x = 0.0;
193 color0=backgroundColor;
194 }
195 if (dist.y > errorThreshold) {
196 cameraWeights.y = 0.0;
197 color1=backgroundColor;
198 }
199 if (dist.z > errorThreshold) {
200 cameraWeights.z = 0.0;
201 color2=backgroundColor;
202 }
203 //normaliez camera weights
204 cameraWeights /= dot(cameraWeights,1..xxx);
205
206 //stop raycasting
207 breakTest = 1.0;
208 break; //inner loop
209
210 }
211 }
212 if (breakTest > 0.0)
213 break; //outer loop
214 }
215 //discard if no intersection established
216 if (breakTest<1.0)
217 {
218 discard;
219 }
220 //determine depth for fragment by projecting to virtual view
221 float4 depthPoint = mul(ModelViewProj, float4(vecG,1.0));
222 depthPoint/=depthPoint.w;
223 oDepth=(depthPoint.z+1)/2.0;
224
225 //Interpolate color from cameraWeights
226 color = color0 * cameraWeights.x +
227 color1 * cameraWeights.y +
228 color2 * cameraWeights.z;
229 }

Code Sample A.2: Raycasting light field rendering fragment program.

Bibliography

[1] E. H. Adelson and J. R. Bergen. The plenoptic function and the elements
of early vision. In Computational Models of Visual Processing, pages 3–
20, 1991.

[2] T. Akenine-Möller and E. Haines. Real-Time Rendering. 1999.

[3] Andujar, C., Boo, J., Brunet, P., Fairen, M., Navazo, I., Vazquez, P.,
Vinacua, and A. Omni-directional relief impostors. In Computer Graphics
Forum, pages 553–560, 2007.

[4] A.R.T. GmbH. The DTrack System. http://www.ar-tracking.de/, last
visited: 01.02.2009.

[5] Ascension Technology Corporation. Flock of birds tracking sys-
tem. Ascension Technology Corporation Product Presentation.
http://www.ascension-tech.com/realtime/RTflockofBIRDS.php, last vis-
ited: 01.02.2009.

[6] I. Ashdown. Near-field photometry: A new approach. Journal of the
Illuminating Engineering Society, 22(1):163–180, 1993.

[7] L. Baboud and X. Décoret. Rendering geometry with relief textures. In
Proc. Graphics Interface, pages 195–201, 2006.

[8] P. A. Beardsley, P. H. S. Torr, and A. Zisserman. 3d model acquisi-
tion from extended image sequences. In Proc. European Conference on
Computer Vision, volume 2, pages 683–695, 1996.

[9] C. Beder, B. Bartczak, and R. Koch. A combined approach for estimating
patchlets from PMD depth images and stereo intensity images. In Proc.
Annual Symposium of the German Association for Pattern Recognition,
DAGM, volume 4713, pages 11–20, 2007.

125

126 BIBLIOGRAPHY

[10] C. Beder, I. Schiller, and R. Koch. Real-time estimation of the camera
path from a sequence of intrinsically calibrated PMD depth images. In
The International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, volume XXXVII, pages 45–50, 2008.

[11] J. Blinn and M. Newell. Texture and reflection in computer generated
images. In Proc. ACM SIGGRAPH, pages 266–266, 1976.

[12] J. F. Blinn. Simulation of wrinkled surfaces. In Proc. ACM SIGGRAPH,
pages 286–292, 1978.

[13] C. Buehler, M. Bosse, L. McMillan, S.Gortler, and M. Cohen. Unstruc-
tured lumigraph rendering. In Proc. ACM SIGGRAPH, pages 425–432,
2001.

[14] E. Camahort. 4D light-field modeling and rendering. Ph.D. Thesis, Uni-
versity of Texas at Austin, 2001.

[15] E. Camahort and D. Fussel. A geometric study of light field representa-
tions. Technical Report, Department of Computer Science, University of
Texas, 1999.

[16] E. Camahort, A. Lerios, and D. Fussell. Uniformly sampled light fields.
Technical Report, Department of Computer Science, University of Texas,
1998.

[17] J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum. Plenoptic sampling.
In Proc. ACM SIGGRAPH, pages 307–318, 2000.

[18] B. Chen. Novel methods for manipulating and combining light fields.
Ph.D. Thesis, Stanford University, 2006.

[19] S. Chen. QuickTime VR: An image-based approach to virtual environ-
ment navigation. In Proc. ACM SIGGRAPH, pages 29–38, 1995.

[20] W.-C. Chen, J.-Y. Bouguet, M. H. Chu, and R. Grzeszczuk. Light field
mapping: efficient representation and hardware rendering of surface light
fields. ACM Trans. Graph., 21(3):447–456, 2002.

[21] D. F. Dansereau and L. T. Bruton. Gradient-based depth estimation
from 4d light fields. In Proc. ISCAS, volume 3, pages 549–552, 2004.

[22] P. Debevec, Y. Yu, and G. Boshokov. Efficient view-dependent image-
based rendering with projective texture-mapping. Technical Report, Uni-
versity of California at Berkeley, 1998.

BIBLIOGRAPHY 127

[23] P. E. Debevec. Modeling and rendering architecture from photographs.
Ph.D. Thesis, University of California at Berkeley, 1996.

[24] P. E. Debevec. Image-based modeling and lighting. In Proc. ACM SIG-
GRAPH, pages 46–50, 2000.

[25] R. A. DeVore, B. Jawerth, and B. J. Lucier. Image compression through
wavelet transform coding. IEEE Trans. Inform. Theory, 38(2):719–746,
1992.

[26] M. Faraday. Thoughts on ray vibrations. Philosophical Magazine,
XXVIII:3, 1846.

[27] O. Faugeras, B. Hotz, H. Mathieu, T. Viéville, Z. Zhang, P. Fua,
E. Théron, L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy. Real
time correlation based stereo: algorithm implementations and applica-
tions. Technical Report, INRIA, 1993.

[28] U. Fecker, A. Guenegues, I. Scholz, and A. Kaup. Depth Map Compres-
sion for Unstructured Lumigraph Rendering. In Proc. Visual Communi-
cations and Image Processing, 2006.

[29] G. Fekete. Rendering and managing spherical data with sphere quadtrees.
In Proc. Conference on Visualization, pages 176–186, 1990.

[30] P. C. Gasson. Geometry of Spatial Forms: Analysis, Synthesis, Concept
Formulation and Space Vision for CAD. 1983.

[31] T. Georgiev, C. Zheng, S. K. Nayar, D. Salesin, B. Curless, and C. Int-
wala. Spatio-angular resolution trade-offs in integral photography. In
Proc. Eurographics Symposium on Rendering, pages 263–272, 2006.

[32] A. Gershun. The light field. J. Math. and Physics, 18:51–151, 1939.
translated by P. Moon and G. Timoshenko.

[33] A. S. Glassner. An introduction to ray tracing. 1989.

[34] J. S. Gondek, G. W. Meyer, and J. G. Newman. Wavelength dependent
reflectance functions. In Proc. ACM SIGGRAPH, pages 213–220, 1994.

[35] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumigraph. In
Proc. ACM SIGGRAPH, pages 43–54, 1996.

[36] N. Greene. Applications of world projections. In Proc. Graphics Inter-
face/Vision Interface, pages 108–114, 1986.

128 BIBLIOGRAPHY

[37] N. Greene. Environment mapping and other applications of world pro-
jections. IEEE Comput. Graph. Appl., 6(11):21–29, 1986.

[38] P. Haeberli and M. Segal. Texture mapping as a fundamental drawing
primitive. In Proc. Eurographics Workshop on Rendering, pages 259–266,
1993.

[39] P. S. Heckbert and H. P. Moreton. Interpolation for polygon texture map-
ping and shading. State of the Art in Computer Graphics: Visualization
and Modeling, pages 101–111, 1991.

[40] W. Heidrich. High-quality shading and lighting for hardware-accelerated
rendering. Ph.D. Thesis, Computer Graphics Group University of Erlan-
gen, 1999.

[41] W. Heidrich and H.-P. Seidel. View-independent environment maps.
In Proc. ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, pages 39–ff., 1998.

[42] B. Heigl, R. Koch, M. Pollefeys, J. Denzler, and L. J. V. Gool. Plenop-
tic modeling and rendering from image sequences taken by hand-held
camera. In Proc. DAGM-Symposium, pages 94–101, 1999.

[43] T. Horz. Handheld Acquisition of Spherical Lightfields. Master Thesis,
University of Siegen, 2008.

[44] T. Horz, A. Pritzkau, C. Rezk-Salama, S. Todt, and A. Kolb. Gaming
Technology in Cultural Heritage Systems. In Proc. Int. Conf. on Intelli-
gent Games and Simulation, 2007.

[45] Human Interface Technology Laboratory , University of Washington.
The ARToolkit. http://www.hitl.washington.edu/artoolkit/, last visited:
01.02.2009.

[46] G. Iddan and G. Yahav. 3D imaging in the studio. In Proc. SPIE, volume
4298, page 48, 2000.

[47] I. Ihm, S. Park, and R. K. Lee. Rendering of spherical light fields. In
Proc. Pacific Conf. on Computer Graphics and Applications, page 59,
1997.

[48] K. Iourcha, K. Nayak, and Z. Hong. System and method for fixed-rate
block-based image compression with inferred pixel values. United States
Patent 5,956,431, 1999. S3 Incorporated (Santa Clara, USA).

BIBLIOGRAPHY 129

[49] T. Kanade, P. Rander, and P. Narayanan. Virtualized reality: Construct-
ing virtual worlds from real scenes. IEEE MultiMedia, 04(1):34–47, 1997.

[50] S. Kang. A Survey of Image-Based Rendering Techniques. In Proc. SPIE,
VideoMetrices, volume 3641, pages 2–16, 1999.

[51] I. Karaseitanidis and A. Amditis. A nouvel acoustic tracking system for
virtual reality systems. Product Engineering: Tools and Methods Based
on Virtual Reality, pages 99–122, 2008.

[52] M. Keller and A. Kolb. Real-time simulation of time-of-flight sensors.
Simulation Modelling Practice and Theory, 2008. submitted.

[53] A. Kolb, E. Barth, and R. Koch. ToF-Sensors: New Dimensions for Re-
alism and Interactivity. In Proc. Conf. on Computer Vision and Pattern
Recognition (CVPR), Workshop on ToF Camera based Computer Vision
(TOF-CV), pages 1–6, 2008.

[54] R. Lange. 3D time-of-flight distance measurement with custom solid-
state image sensors in CMOS/CCD-technology. Ph.D. Thesis, University
of Siegen, 2000.

[55] J. Lengyel. The convergence of graphics and vision. Computer, 31(7):46–
53, 1998.

[56] R. K. Lenz and R. Y. Tsai. Calibrating a cartesian robot with eye-on-
hand configuration independent of eye-to-hand relationship. IEEE Trans.
Pattern Anal. Mach. Intell., 11(9):916–928, 1989.

[57] R. Levin. Photometric characteristics of light controlling apparatus. Il-
luminating Engineering, 66(4):205–215, 1971.

[58] M. Levoy. The stanford 3d scanning repository. Stanford University.
http://graphics.stanford.edu/data/3Dscanrep/, last visited: 01.02.2009.

[59] M. Levoy. The stanford multi-camera array. Stanford University.
http://graphics.stanford.edu/projects/array/, last visited: 01.02.2009.

[60] M. Levoy. The stanford spherical gantry. Stanford University.
http://graphics.stanford.edu/projects/gantry/, last visited: 01.02.2009.

[61] M. Levoy. Computational imaging in the sciences. In ACM SIGGRAPH
Course Notes, page 7, 2006.

[62] M. Levoy. Light fields and computational imaging. Computer, 39(8):46–
55, 2006.

130 BIBLIOGRAPHY

[63] M. Levoy and P. Hanrahan. Light Field Rendering. In Proc. ACM SIG-
GRAPH, pages 31–42, 1996.

[64] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk.
The digital michelangelo project: 3d scanning of large statues. In Proc.
ACM SIGGRAPH, pages 131–144, 2000.

[65] R. R. Lewis. Light-driven global illumination with a wavelet represen-
tation of light transport. Ph.D. Thesis University of British Columbia,
1998.

[66] M. Lindner and A. Kolb. Lateral and Depth Calibration of PMD-Distance
Sensors. Advances in Visual Computing, 2:524–533, 2006.

[67] M. Lindner and A. Kolb. Calibration of the intensity-related distance
error of the PMD TOF-Camera. In Proc. SPIE, Intelligent Robots and
Computer Vision, volume XXV, pages 30–35, 2007.

[68] M. Lindner and A. Kolb. Data-Fusion of PMD-Based Distance-
Information and High-Resolution RGB-Images. In Proc. Int. IEEE Symp.
on Signals, Circuits & Systems (ISSCS), volume 1, pages 121–124, 2007.

[69] M. Lindner, A. Kolb, and T. Ringbeck. New Insights into the Calibration
of TOF Sensors. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), Workshop on ToF Camera based Computer Vision
(TOF-CV), pages 1–5, 2008.

[70] M. Lindner, M. Lambers, and A. Kolb. Data Fusion and Edge-Enhanced
Distance Refinement for 2D RGB and 3D Range Images. Int. J. on Intell.
Systems and Techn. and App. (IJISTA), Issue on Dynamic 3D Imaging,
5(1):344 – 354, 2008.

[71] Y. Matsumoto, H. Terasaki, K. Sugimoto, and T. Arakawa. A portable
three-dimensional digitizer. In Proc. Int. Conf. on Recent Advances in
3-D Digital Imaging and Modeling, page 197, 1997.

[72] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan.
Image-based visual hulls. In Proc. ACM SIGGRAPH, pages 369–374,
2000.

[73] L. McMillan and G. Bishop. Head-tracked stereoscopic display using
image warping. In Proc. ACM SIGGRAPH, pages 39–46, 1995.

BIBLIOGRAPHY 131

[74] L. McMillan and S. Gortler. Image-based rendering: A new interface be-
tween computer vision and computer graphics. Proc. ACM SIGGRAPH,
33(4):61–64, 2000.

[75] G. Miller and C. Hoffman. Illumination and reflection maps: Simulated
objects in simulated and real environments. In ACM SIGGRAPH Course
Notes for Advanced Computer Graphics Animation, 1984.

[76] P. Moon and D. Spencer. The photic field. MIT Press, 1981.

[77] S. K. Nayar, M. Watanabe, and M. Noguchi. Real-time focus range
sensor. In Proc. Int. Conf. on Computer Vision, page 995, 1995.

[78] J. Neider and T. Davis. OpenGL Programming Guide: The Official Guide
to Learning OpenGL, Release 1. 1993.

[79] C. Netramai, O. Melnychuk, J. Chanin, and H. Roth. Combining PMD
and stereo camera for motion estimation of a mobile robot. In Proc. The
IFAC World Congress, 2008. accepted.

[80] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan.
Light Field Photography with a Hand-Held Plenoptic Camera. Computer
Science Technical Report CSTR, Stanford University, 2005.

[81] Nvidia Corporation. Improve batching using texture atlases. White Pa-
per, 2004.

[82] T. Oggier, B. Buettgen, F. Lustenberger, G. Becker, B. Regg, and A. Ho-
dac. Swissranger sr3000 and first experiences based on miniaturized 3D-
ToF cameras. In Proc. Range Imaging Research Day at ETH Zurich,
2005.

[83] M. M. Oliveira, G. Bishop, and D. McAllister. Relief texture mapping.
In Proc. ACM SIGGRAPH, pages 359–368, 2000.

[84] W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compres-
sion Standard. 1992.

[85] T. Pintaric and H. Kaufmann. A rigid-body target design methodology
for optical pose-tracking systems. In Proc. ACM symposium on Virtual
reality software and technology, pages 73–76, 2008.

[86] F. Policarpo, M. M. Oliveira, and a. L. D. C. Jo˙Real-time relief mapping
on arbitrary polygonal surfaces. In Proc. Symposium on Interactive 3D
graphics and games, pages 155–162, 2005.

132 BIBLIOGRAPHY

[87] D. Porquet, J.-M. Dischler, and D. Ghazanfarpour. Real-time high-
quality view-dependent texture mapping using per-pixel visibility. In
Proc. Int. Conf. on Computer graphics and interactive techniques in Aus-
tralasia and South East Asia, GRAPHITE, pages 213–220, 2005.

[88] T. Prasad, K. Hartmann, W. Weihs, S. Ghobadi, and A. Sluiter. First
steps in enhancing 3D vision technique using 2D/3D sensors. In Proc.
Computer Vision Winter Workshop, pages 82–86, 2006.

[89] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. G. Shapiro, and W. Stuet-
zle. View-base rendering: Visualizing real objects from scanned range and
color data. In Proc. Eurographics Workshop on Rendering Techniques,
pages 23–34, 1997.

[90] H. Rapp, M. Frank, F. Hamprecht, and B. Jhne. A theoretical and exper-
imental investigation of the systematic errors and statistical uncertainties
of time-of-flight cameras. Int. J. on Intell. Systems and Techn. and App.
(IJISTA), Issue on Dynamic 3D Imaging, 2007.

[91] W. Reeves, D. Salesin, and R. Cook. Rendering antialiased shadows with
depth maps. In Proc. ACM SIGGRAPH, pages 283–291, 1987.

[92] C. Rezk-Salama, S. Todt, and A. Kolb. Raycasting of Light Field Gal-
leries from Volumetric Data. Computer Graphics Forum, 27(2):839–846,
2008.

[93] I. D. Rosenberg, P. L. Davidson, C. M. R. Muller, and J. Y. Han. Real-
time stereo vision using semi-global matching on programmable graphics
hardware. In Proc. ACM SIGGRAPH Sketches, page 89, 2006.

[94] H. Rushmeier, G. Taubin, and A. Guéziec. Applying shape from light-
ing variation to bump map capture. In Proc. Eurographics Rendering
Workshop, pages 35–44, 1997.

[95] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3d model acqui-
sition. ACM Trans. Graph., 21(3):438–446, 2002.

[96] H. Schirmacher, W. Heidrich, and H.-P. Seidel. High-quality interactive
lumigraph rendering through warping. In Proc. Graphics Interface, pages
87–94, 2000.

[97] H. Schirmacher, C. Vogelgsang, H.-P. Seidel, and G. Greiner. Efficient
Free Form Light Field Rendering. In Proc. Vision Modeling and Visual-
ization, pages 249–256, 2001.

BIBLIOGRAPHY 133

[98] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Haeberli.
Fast shadows and lighting effects using texture mapping. In Proc. ACM
SIGGRAPH, pages 249–252, 1992.

[99] S. Seitz and C. Dyer. View morphing. In Proc. ACM SIGGRAPH, pages
21–30, 1996.

[100] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coeffi-
cients. Readings in multimedia computing and networking, pages 124–141,
2001.

[101] J. R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator. In Applied Computational Geometry: To-
wards Geometric Engineering, volume 1148 of Lecture Notes in Computer
Science, pages 203–222. 1996.

[102] H.-Y. Shum, S.-C. Chan, and S. B. Kang. Image-Based Rendering. 2006.

[103] H.-Y. Shum and L.-W. He. Rendering with concentric mosaics. In Proc.
ACM SIGGRAPH, pages 299–306, 1999.

[104] H.-Y. Shum and S. B. Kang. A review of image-based rendering tech-
niques. In Proc. IEEE/SPIE Visual Communications and Image Pro-
cessing (VCIP), pages 2–13, 2000.

[105] P.-P. Sloan, M. F. Cohen, and S. J. Gortler. Time critical lumigraph
rendering. In Proc. Symposium on Interactive 3D graphics, pages 17–ff.,
1997.

[106] P.-P. Sloan and C. Hansen. Parallel lumigraph reconstruction. In Proc.
IEEE Symposium on Parallel visualization and graphics, PVGS, pages
7–14, 1999.

[107] M. Stamminger and G. Drettakis. Perspective shadow maps. In Proc.
ACM SIGGRAPH, pages 557–562, 2002.

[108] M. Strengert, M. Kraus, and T. Ertl. Pyramid methods in GPU-based
image processing. In Proc. Vision, Modeling and Visualization, pages
169–176, 2006.

[109] K. H. Strobl and G. Hirzinger. Optimal Hand-Eye Calibration. In Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 4647–
4653, 2006.

134 BIBLIOGRAPHY

[110] K. H. Strobl, W. Sepp, S. Fuchs, C. Paredes, and K. Arbter. DLR
CalDe and DLR CalLab. http://www.robotic.dlr.de/callab/, last visited:
01.02.2009.

[111] Studierstube augmented reality project. Studierstube Tracker.
http://studierstube.icg.tu-graz.ac.at/handheld ar/stbtracker.php, last
visited: 01.02.2009.

[112] I. E. Sutherland. Sketchpad: A man-machine graphical communication
system. In Proc. AFIPS Spring Joint Computer Conference, pages 329–
346, 1963.

[113] S. Todt, M. Langer, C. Rezk-Salama, A. Kolb, and K. Kuhnert. Spherical
Light Field Rendering in Application for Analysis by Synthesis. Int. J.
on Intell. Systems and Techn. and App. (IJISTA), Issue on Dynamic 3D
Imaging, 5(1):304 – 314, 2008.

[114] S. Todt, C. Rezk-Salama, L. Brckbauer, and A. Kolb. Progressive Light
Field Rendering for Web Based Data Presentation. In Workshop on
Hyper-Media 3D Internet, pages 23–32, 2008.

[115] S. Todt, C. Rezk-Salama, T. Horz, A. Pritzkau, and A. Kolb. An Inter-
active Exploration of the Virtual Stronghold Dillenburg. In Proc. Euro-
graphics, Cultural Heritage, pages 17–24, 2007.

[116] S. Todt, C. Rezk-Salama, and A. Kolb. Real-Time Fusion of Depth and
Light Field Images. In Proc. ACM SIGGRAPH Posters, 2005.

[117] S. Todt, C. Rezk-Salama, and A. Kolb. Fast (Spherical) Light Field
Rendering with Per-Pixel Depth. Technical Report, Computer Graphics
Group University of Siegen, 2007.

[118] S. Todt, C. Rezk-Salama, and A. Kolb. Light Field Rendering for Games.
In Proc. Theory and Practice of Computer Graphics, pages 27–33, 2008.

[119] S. Todt, C. Rezk-Salama, and A. Kolb. Virtuelle Rekonstruktion und
Exploration der Schlossanlage Dillenburg. Virtuelle Welten als Basis-
technologie fr Kunst und Kultur: Eine Bestandsaufnahme, pages 59–78,
2009.

[120] S. Todt, C. Rezk-Salama, A. Kolb, and K.-D. Kuhnert. GPU-Based
Spherical Light Field Rendering with Per-Fragment Depth Correction.
Computer Graphics Forum, 27(8):2081–2095, 2008.

BIBLIOGRAPHY 135

[121] R. Tsai and R. Lenz. Real time versatile robotics hand/eye calibration
using 3d machine vision. In Proc. Int. Conf. Robotics and Automation,
pages 24–29, 1988.

[122] R. Tsai and R. Lenz. A new technique for fully autonomous and efficient
3d robotics hand/eye calibration. Proc. Int. Symp. Robotics Research,
5:345–358, 1989.

[123] C. Vogelgsang and G. Greiner. Hardware accelerated light field rendering.
Technical Report IMMD 9, University Erlangen-Nürnberg, 1999.

[124] C. Vogelgsang and G. Greiner. Adaptive lumigraph rendering with depth
maps. Technical Report 3 IMMD 9, University Erlangen-Nürnberg, 2000.

[125] C. Vogelgsang and G. Greiner. Ray-tracing in depth maps for image-
based rendering. Technical report, IMMD 9, University Erlangen-
Nürnberg, 2001.

[126] D. Voorhies and J. Foran. Reflection vector shading hardware. In Proc.
ACM SIGGRAPH, pages 163–166, 1994.

[127] J. Wang, X. Tong, J. Snyder, Y. Chen, B. Guo, and H.-Y. Shum. Captur-
ing and rendering geometry details for btf-mapped surfaces. The Visual
Computer, 21(8-10):559–568, 2005.

[128] L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum.
View-dependent displacement mapping. ACM Trans. Graph., 22(3):334–
339, 2003.

[129] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth,
A. Adams, M. Horowitz, and M. Levoy. High performance imaging using
large camera arrays. ACM Trans. Graph., 24(3):765–776, 2005.

[130] B. Wilburn, M. Smulski, H.-H. K. Lee, and M. Horowitz. The light field
video camera. In Proc. Media Processors, SPIE Electronic Imaging, pages
29–36, 2002.

[131] D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. H.
Salesin, and W. Stuetzle. Surface light fields for 3d photography. In Proc.
ACM SIGGRAPH, pages 287–296, 2000.

[132] K. Xu, K. W. Chia, and A. D. Cheok. Real-time camera tracking for
marker-less and unprepared augmented reality environments. Image Vi-
sion Comput., 26(5):673–689, 2008.

[133] Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, and T. Ringbeck. Smart
pixel – photonic mixer device (PMD). In Proc. Int. Conf. on Mechatron.
& Machine Vision, pages 259–264, 1998.

[134] G. Yahav, G. J. Iddan, and D. Mandelbaum. 3D imaging camera for
gaming application. In Digest of Technical Papers of International Con-
ference on Consumer Electronics, pages 1–2, 2007.

[135] J. C. Yang, M. Everett, C. Buehler, and L. McMillan. A real-time dis-
tributed light field camera. In Proc. Rendering Techniques, pages 77–86,
2002.

[136] A. Zandi, M. Boliek, E. L. Schwartz, and A. Keith. Compression with re-
versible embedded wavelets with an enhanced binary mode. In Proc.
Acoustics, Speech, and Signal Processing Conference ICASSP, pages
1962–1965, 1996.

[137] C. Zhang and T. Chen. A self-reconfigurable camera array. In Proc.
Rendering Techniques, pages 243–254, 2004.

[138] J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 23:337–343, 1977.

