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Abstract Many state-of-the art visualization techniques must Herd to the spe-
cific type of dataset, its modality (CT, MRI, etc.), the resded object or anatomical
region (head, spine, abdomen, etc.) and other parametatad¢o the data acqui-
sition process. While parts of the information (imaging mitdaand acquisition
sequence) may be obtained from the meta-data stored withothme scan, there
is important information which is not stored explicitlygeanatomical region. Also,
meta-data might be incomplete, inappropriate or simplysmgs

This paper presents a novel and simple method of determihéntype of dataset
from previously defined categories. A 2D histogram of theset is used as input
to the neural network, which classifies it into one of seveaétgories it was trained
with. Two types of 2D histograms have been experimented, witle based on in-
tensity and gradient magnitude, the other one on intensitydistance from center.

A significant result is the ability of the system to classitakets into a specific
class after being trained with only one dataset of that clatiser advantages of the
method are its easy implementation and its high computaltiserformance.
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1 Introduction

Volume visualization technigues have seen a tremendoust@rowithin the past
years. Many efficient rendering techniques have been desdlm recent years in-
cluding 3D texture slicing[[2, 26], 2D texture mapping [1p}le-integration[[7],
GPU ray-casting [12, 19, 22], and special purpose hardldie [

Nevertheless, the users of volume visualization systemighmare mainly physi-
cians or other domain scientists with only marginal knowkedbout the technical
aspects of volume rendering, still report problems withpees to usability. The
overall aim of current research in the field of volume viszetiion is to build an
interactive rendering system which can be used autonombysion-experts.

Recent advances in the field of user interfaces for volumealization, such
as [16] and[[1B] have shown that semantic models may be edliltwr the specific
visualization process and the type of data in order to mestetihequirements. The
semantic information is built upon a priori knowledge abitnatimportant structures
contained in the dataset to be visualized. A flexible viszdion system must thus
contain a high number of different semantic models for thgeheariety of different
examination procedures.

An important building block for an effective volume rendegiframework is a
classification technique which detects the type of datasasé and automatically
applies a specific semantic model or visualization tectmidtor example, some
methods are created specifically for visualizing MRI scdrth@spine or CT scans
of the head, and those methods rely on the actual datasef tieihat type (i.e. its
modality and its anatomical region).

The prior knowledge required for selecting an appropriaseialization tech-
nigue includes imaging modality, acquisition sequencat@mical region, as well
as other parameters such as chemical tracing compoundisTbeyond the infor-
mation stored in the file system or the meta-data, thereferpnapose a technique
which classifies the datasets using a neural network whiehnabgs on statistical
information, i.e. on histograms of the 3D data itself.

We have tested our method and determined that it can dedidestsets depend-
ing on imaging modality and anatomical region. Althougtsthiethod could pos-
sibly be used to separate datasets depending on whichgraginpound has been
used, if any, we did not have suitable datasets to test this.

The remainder of the paper is structured as follows: In thxé $ection we review
related work important to our paper. As we assume that nthalleaders are famil-
iar with neural networks, a very short introduction is irdeid in Sectiofql3. Sectidn 4
describes our proposed method for automatic classificafi@D datasets. In Sec-
tion[d we describe the test environment our solution wagmated in. Sectiohl6
presents and discusses the results of the standard histaguaroach. In Sectidg 7
we introduce a new type of histogram which incorporates gagnmfeatures for
further delineation of intra-class datasets and SeElioon@lades the paper.
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2 Related work

The 2D histogram based on intensity and gradient magnituateimtroduced in a
seminal paper by Kindlmann and Durkin [10], and extended tdtirdimensional

transfer functions by Kniss et al. [11]. Lundstrém et al][itroduced local his-
tograms, which utilize a priori knowledge about spatiahtieinships to automati-
cally differentiate between different tissue types. Saretal. [25] introduced the
so-called low/high (LH) histogram to classify material boaries.

Rezk-Salama et al. [18] suggest a user-centered systerh igltiapable of learn-
ing semantic models from examples. In order to generate asetmantic model, a
visualization task is performed several times on a colbectf datasets which are
considered representative for a specific examination sicefféroughout this train-
ing phase the system collects the parameter vectors angrasahem using princi-
pal component analysis. Rautek et all[16] present a seoiaatilel for illustrative
visualization. In their system the mapping between voluimettributes and visual
styles is specified by rules based on natural language agy fogics.

Tzeng et al[[24] suggest an interactive visualizationeysivhich allows the user
to mark regions of interest by roughly painting the bouneadn a few slice images.
During painting, the marked regions are used to train a heatavork for multi-
dimensional classification. Del Rio et al. adapt this apghot specify transfer
functions in an augmented reality environment for medipglliaations[[6]. Zhang
etal. [27] apply general regression neural networks testiasach point of a dataset
into a certain class. This information is later used for gisisig optical properties
(e.g. color). Cerquides et al.l][3] use different methodsl&ssify each point of a
dataset. They use this classification information lateisgign optical properties to
voxels. While these approaches utilize neural networkssmasptical properties,
the method presented here aims at classifying datasetsategories. The category
information is subsequently used asapriori knowledge to visualize the dataset.

Liu et al. [13] classify CT scans of the brain into patholadiclasses (hormal,
blood, stroke) using a method firmly rooted in Bayes decig@ory.

Serlie et al.[[211] also describe a 3D classification methaodl their work is fo-
cused on material fractions, not on the whole dataset. Thegdiarch model to
the LH histogram, parameterizing a single arch functionxpeeted pure material
intensities at opposite sides of the edge (L,H) and a scabper. As a peak in
the LH-histogram represents one type of transition, thetelumembership is used
to classify edge voxels as transition types.

Ankerst et al.[[1] conduct classification by using a quadritim distance func-
tions on a special type of histogram (shell and sector maafdhe physical shape
of the objects.
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3 Neural Network Basics

A neural network is a structure involving weighted intergeations among neurons
(see Fig[dL). A neuron is structured to process multiple isypusually including a
bias (which is weight for fixed input with value +1), produgia single output in
a nonlinear way. Specifically, all inputs to a neuron are fixggmented by multi-
plicative weights. These weighted inputs are summed aml tia@sformed via a
non-linear activation function, because non-linear atitbn functions are needed if
a neural network is expected to solve a non-linear problgm. Weights are some-
times referred to as synaptic strengths.

<O

Input 1

W1 Bias

(optional)

activation
function

Fig. 1 A neuron

The output of each neuron (except those in the input layegnsputed like:
yi = F(6+ wij*¥i)
1

wherei is the previous layer indey,is the current layer indexy is the weighty is
the output,f is the activation functiond is the bias (optional).

Feed-forward neural networks usually employ sigmoid atiin functions.
These functions are smooth and in the [-1,1] range they gueajmately linear.
Two most commonly used ones are logistic function (see[BigvBich has output
domain [0,1] and hyperbolic tangent (output domain [-1,1])

In order to train a the neural network, sets of known inpupatidata must be
assembled. In other words, a neural network is trained bynple& The most com-
monly used algorithm for training feed-forward networksadled back-propagation
of errors [20]. The algorithm starts by comparing the actwaput of the network
for the presented input with the desired output. The diffeesis called output error,
and the algorithm tries to minimize this error using a steedescent method with
the weights as variables.

The training process is repeated many times (epochs) atisfactory results are
obtained. The training can stop when the error obtainedsistlgan a certain limit,
or if some preset maximum number of training epochs is reiche
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1)

Fig. 2 Logistic activation
function: f(x) = 52+

One of the most commonly used networks is the multilayer feedard net-
work (Fig.[3), also called multi-layer perceptron. Feedafard networks are advan-
tageous as they are the fastest models to execute. Furttegrthey are universal
function approximators (segl[9]).
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Fig. 3 General schematic of a feed-forward neural network

Feed-forward networks usually consist of three or four taye which the neu-
rons are logically arranged. The first and the last layertagdrtput and the output
layers. All the others are called hidden layers.

From a general perspective, a neural network is an apprdximi an arbitrary
function.

A nice (and relatively short) introduction to feed-forwamelural networks is pre-
sented by Svozil et al. [23].

4 Automatic Classification of Volume Datasets

The method described in this paper was mostly inspired byawious work|[[28].
In [28], neural networks are used to position “primitivest the 2D histogram in
order to create transfer function aiming at an effectiveupw visualization. The
method presented here is similar in the sense that it usessB@hams as inputs to
neural networks.
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One of the widely used visualization approaches of 3D dataytds direct vol-
ume rendering (se€_|[8]) by means of a 2D transfer functiontrabBsfer functions
are created in respect to the combined histogram of inteastt its first derivative.
Although transfer functions rely on intensity/derivativistograms, other histogram
types can also be constructed from a 3D dataset. This wilebgomstrated later. 2D
histograms in turn may be viewed as grayscale images.

All histograms of the same 3D dataset type, e.g. differens€ins of the thorax,
look similar to human observers. Likewise, histograms €fedént datasets types
usually look noticeably different, but the difference atkgpends on the type of the
histogram (see Fif]4). Our method stems from this fact.

Neural networks can easily be trained to approximate anawmRrfunction for
which we have observations in the form of input-output camabibns. That makes
neural networks suitable for classifying input histograme categories.

The straight-forward approach is to use the histogram pif@brmalized to the
[0,1] range) as inputs to the neural network. On the output siddy eatput corre-
sponds to one category. We take the outputs as represehéngdabability of the
input to belong to the corresponding category. Thus we h&véimensional output
for k categories. For example, assume that we have the folloj@irg normalized
[ outputs for some input:

0,893456
0,131899
0,044582

we interpret them as the probabilities of the input belogdmrespective category
(category one — 89%, category two — 13% and category three)-Métice that the
actual outputs in general do not add up to 100%.

In order to identify the most probable classification resthié output with max-
imum value is chosen. Therefore, this input would be classifis belonging to the
category one. Fid.16]7 amd 8 show actual outputs of a neutafonle (for easier
discerning, descriptive names are given to the outputs).

A training sample consists of the histogram input and thée@®utput vector.
In the desired output vector, only the correct output catepas value 1, while all
the others have value 0.

In our implementation we chose the multilayer perceptrob )] a type of neu-
ral network which is capable of performing the required tdsks trained by the
back-propagation algorithm. One major benefit of MLP is thdditional outputs
can be added fairly easily, while retaining the function lbftse other outputs. Us-
ing some other types of neural networks a new neural netwankdvhave to be
created and trained from scratch, wasting time whenevewacagegory is added.
Furthermore, this would cause differently randomizedahiveights, thus leading
to slightly different results. In our version, we only neecatld weights between the
newly inserted neuron in the output layer and all neuronsénlast hidden layer
(see Figlh).

1 The activation function which is employed in the neural newee used produces outputs in the
convenient rang€d, 1], so no additional normalization is necessary
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MR_02_interop_B MR_06_preop  MR_03_interop  MR_07_preop
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Fig. 4 Some of the histograms of intensity/derivative type. Each orheofirst 3 rows represents
one class. The histograms in the last two rows result from miscellsndatasets.

As feed-forward networks can approximate any continuoakftection with as
little as 3 layers, we have only tested networks with 3 ang/drie Fewer number of
layers can be compensated with a larger number of neurohe ihidden layer(s).
Although some differences exist (séé[[4, 5]), they are nletveet for this method
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Hidden
layer

Fig. 5 Adding an output
preserves existing weights.
The neural network depicted
here is very small compared
to real examples.

output

(see Fig[B). All the results (except F[d. 9) presented hezeohtained using a 3
layer neural network.

4.1 Modeling the Rest Class

There are two ways to deal with datasets that do not fall inyocd the well-defined
classes, i.e. the miscellaneous datasets. The first appi®éx have a “rest class”,
to which all of these datasets are associated. The secomdagpassumes that
elements from the rest class usually do not strongly aetiaay of the outputs, often
having value of the maximum output around 0,5 (50%). So thersttapproach uses
a threshold for successful classification: If the value efrtiaximum output is below
that threshold, the dataset fails being classified into drigewell-defined classes
and it is considered to be part of the rest class.

From a conceptual point of view, the threshold approach dependent from
the rest-class approach, i.e. each of the concepts can bedapgparately. From a
practical point of view, both approaches are not compldatelgpendent: the better
trained the rest class is, the less effect thresholdinggesv Furthermore, providing
a high amount of training samples to the rest class affeeteetiability, i.e. the value
of the maximum output in this context, of the classificatidrthee normal (well-
defined) classes. If this is coupled with a high thresholadt @1 “false negatives”,
i.e. datasets misclassified as belonging to the rest classaith of a well-defined
class, emerge . However, applying both approaches is behdéficlower amounts
of training samples for the rest class.
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4.2 Performance | ssues

If we directly use histogram pixels as the network’s inputs, have a large num-
ber of inputs, e.g. for a 256*256 histogram we get 411’4)uts. If the second layer
contains 64 neurons, the number of weights between 1st athdager is 4M. In
our implementation, the weights are 32-bit floats, whichiteto 16MB just for the
storage of the weights between thidnd the 29 layer. The amount of weights be-
tween other layers is significantly smaller, due to the mowrel number of neurons
in these layers.

However, the overall memory consumption is relatively exdte. Furthermore,
the training gets very slow, and an alternative persistenage on a hard disk would
not be convenient due to slow reading, writing and data feans

Fig. 10 Size reduction. Upper
left is the original 256x256, ]
lower right is 8x8 SO IR | Y R

Therefore, we incorporated a downscaling scheme for thtedriams by rebin-
ning. This does not only greatly reduce the required dataijtkaiso significantly
eliminates small details present in the histograms. Fayedataset, their exact po-
sitions are always different, so they are only an obstacledmparison purposes.

For simplicity, our implementation only allows reductiopfiactors that are pow-
ers of 2. Thatis: 0 — no reduction, 1 — reduction to 128x128r&duction to 64x64,
etc. Most of the tests have been conducted with reductidnrf&c(histogram size
32x32).

5 Testing Environment

The implementation of the described method is done in a limi@n tool called
OpenQVis. It is based on a collaborative research projetttesfomputer Graphics
Group of the University of Erlangen-Nurembetie VIS Group at the University of
Stuttgartand theComputer Graphics and Multimedia Systems Group at the Wnive

2 prefixes K and M here meart®and 2°
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sity of SiegenGermany. OpenQVis focuses on real-time visualizatiolyjrrg on
the features of modern graphics cards (s€e [8]).

OpenQVis has different “models” of transfer functions, @iare used to vi-
sualize different types of 3D datasets. Examples are: CTography of the head,
MRI scans of the spinal cord, MRI scans of the head, and solwes@ models were
considered as classes for our method.

OpenQVis allows the user to navigate to a model list and tmsbmne for the
currently opened dataset. If the chosen model is not in ghelithe output classes,
a new output class is added to the neural network and the rletsvce-trained with
this new training sample. If the chosen class is alreadyemteis the outputs, the
network is re-trained with this new training sample inclddi the histogram of the
currently opened dataset exists among the training sapthiesample is updated
to reflect the new user preference.

Saving training samples with the neural network data isireduecause each re-
training consists of many epochs, and if only the newest gampised the network
gradually “forgets” previous samples, which is, of counsegesired. So, all saved
samples are used for each epoch in the re-training process.

For testing purposes, we had three series available:

=

Computed tomography - angiography of the head (CTA_*J&B3sets

2. Magnetic resonance images of the head, both preopegaiveénter-operative
(MR_*), 15 datasets

3. Magnetic resonance - constructive interference in thadst state, mostly scans

of the spine (mr_ciss_*), 19 datasets

Furthermore, we had 23 miscellaneous datasets, almosealy/favailable on the
internet. 2 of those datasets were synthetic (bucky anddkx)t generated directly
from computer 3D models and not acquired by means of a sogudevice.

This method can differentiate between cases within the saaening modality.
We tested this with available but confidential CTA heart dats, which were clearly
discernible from CTA head datasets.

6 Results

The classification based on our neural network approacts talepending on his-
togram reduction factor, mere microseconds. The trairakgg milliseconds for the
reduction factor 4 and below. The training for the reducfiactor 3 takes notice-
able fractions of a second (0,2s to 0,6s) in our tests, anthéoreduction factor 2 it
takes seconds (3-10 seconds). The training time variatesdt from the termina-
tion condition. We use the Mean Squared Error (MSE) comlttsE<0,003 which
was nearly almost met before the maximum number of epochseaabed.

The reliability of classification is directly associatediwthe reduction factor. As
seen on Fid, 11, the reliability decreases as the histogizeridscreases.
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The choice of the dataset which is used to represent a clfissnoes the re-
sults to some degree (see Higl 12). This influence affectsldssification outcome
only in the miscellaneous group, i.e. the rest class. Chgoan average-looking
histogram for the training, or average and extremes in a@@s®re training sam-
ples per class, results in a higher reliability of the classiion and in more uniform
output values across all datasets of that class.

A slight variation of the results with respect to the inittahdomization of the
neural network exists, but is negligible. After training thetwork with one sample
of each type, the average difference in outputs (due tordifteinitial weights) is
around 1%. The maximum for any dataset is 5%. These diffeseget smaller with
a greater number of training samples.

Training with multiple datasets of specific classes impsabe reliability. Train-
ing with multiple datasets of the rest class lowers misdiassion rate (see Fi@. 13).

With the rest-class approach, all of the misclassificatimeraur in the miscella-
neous group (see TdB. 1). This means, for example, that na<dlAssified as any-
thing else other than CTA. Only datasets from the miscetiaagroup are wrongly
classified as something else (CTA, MR, or mr_ciss). Thisuse #&ven if the neural
network is trained with only one sample of each type.

The thresholding approach has a lower amount of misclaasdits in the mis-
cellaneous group, but it misclassifies some datasets otliee dasses (“false neg-
atives”).

Misclassification rate

Approach/Setup w.d.c.— rest rest— w.d.c.
no rest class, no threshold 0 all(23)
with rest class, 1 ts/cl 0 15-20
with rest class, 2 ts/cl 0 10-15
with rc, 2 ts/wdc and 6 ts/rc 0 3-5
no rest class, threshold 50% 0 10-15
no rest class, threshold 70% 0-1 5-10
no rc, threshold 90%, 1 ts/cl 20-25 1-2
no rc, threshold 90%, 2 ts/cl 0 3-5
w. rc, threshold 50%, 1 ts/cl 0 5-15
w. rc, threshold 70%, 1 ts/cl 0-5 2-10
w. rc, threshold 90%, 1 ts/cl 25-30 0-2
w. rc, threshold 90%, 2 ts/cl 0-5 0-2
w. rc, th. 90%, 2 ts/wdc and 6 ts/rc 5-10 0

Table 1 Comparison of misclassification rates for different setups of thesdier. If not specified,
the classification has been performed using varying parametdesnrs of number of training
samples per class (for some setups) or choice of datasets used forgiragsulting in slightly
different misclassification rates.

Abbreviations: w. — with, ts — training sample(s), cl — class, rcst otass, wdc — well-defined
class, th. —threshold.
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From Fig[®6[7[B and Tabld 1 it can be easily concluded thathteshold is a
tweaking parameter. Therefore, it should be set high ongperific situations, and
in most cases it should be set to a more conservative valdé-EDo).

7 Incorporating Geometric Features

The above described approach based on intensity/degvatstograms has some
drawbacks, e.g. in the case of CTA datasets. Here, diffegegions of the head
can not be distinguished with the standard 2D histogram.

Thus, we propose to use a histogram based on intensity oisxamd distance
from the “center” on the y-axis instead of intensity derivat Thus, the y-axis can
be thought of as an ordinal number of spherical shell fronctrdger. To make this
histogram completely rotationally invariant, the center uge is not the geometric
center of the rectangular cuboid, but rather “center of madsere the voxel inten-
sities serve as “mass” weight (see FFigl 14). The shell tlaskns not fixed, but it is
proportional to the distance between the center of masshanfaitthest corner. This
makes this spherical histogram also scale invariant.

VZ

Fig. 14 To create a spherical
histogram, a center of mass
if calculated first. Then, the
histogram is created based on
the number of voxels having a

certain intensity and distance \
from the center. N

The spherical histogram alone has lower delineating pdwaer the standard his-
togram. However, if it is appliedfter the standard one, it can further discriminate
datasets within a class obtained using standard histodraisican be accomplished
relatively easily. As the only difference is in the type of thistogram, almost every-
thing else remains the same. We first use the standard rastogira dataset to get
a class, then we use spherical histogram to get a subclasgydfasses are defined
for that class. Each subclass has it's own accompanyingahaatwork which is
applied to the spherical histogram.

Among the available datasets, it makes sense to furthededi@iTA class. The
first subclass consists of datasets which represent onlyren portion of the head,
thus containing only brain, blood vessels and bone. Thergkesabclass consists
of the dataset which encompasses the entire head, or a pghg béad which also
includes skin and surrounding air (see [Fig. 15[and 16).
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Inner part of a head Outer part of a head (includes skin)

Fig. 15 Visualizations of two datasets.

Fig. 16 Some of the spherical histograms from the head CTA series. The fstepresents
datasets containing an inner part of a head, while the secenéran outer part of, or a whole,
head.

The conclusions for the standard histograms also hold tusgherical ones:
more training improves results, which particular dataseeschosen for training
influences results, higher resolution histogram providstebresults etc.

In a classification problem within one class, there are ndlproatic “miscel-
laneous” datasets. So if there are significant geometrferdiices between sub-
classes, number of misclassifications should be minimalexXample is shown in
Fig.[17.

An alternative method for classifying 3D datasets woulddege a downscaled
version of the dataset itself instead of the 2D histogrannpatito the neural net-
work. This alternative, however, would strongly incorgergeometric aspects, like
the individual orientation of the recorded specimen in® ¢hassification process.
As a result, the training phase would become more difficuttrentraining samples
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would be required, and the number of input nodes will inaeeesnsiderably to
achieve a robustness comparable to the described histogetinod.

8 Conclusion

We have presented a robust technique to automaticallyifyl@&3 volume datasets
according to the acquisition sequence, the recorded specamd sequence-related
parameters. The fact that only one training sample per clasgy standard his-
tograms with the rest-class approach is sufficient to ptpmassify all the other
datasets of the same type is remarkable. Depending in whatdf/visualization
system this method is used, no prior experience might bereztat all.

The adaptability of our technique is demonstrated by usidiff@rent histogram
type (spherical histogram), which includes geometricufesst thus allowing it to be
used as separator for different geometries of datasetsoddih spherical histograms
can be used on their own, it is best to combine them with staitatograms.

Depending on the amount of information about the data andpécation sce-
nario, the architecture of the neural network can be adapté@tter suite typical
use cases.

The majority of misclassifications are caused by datasétsbimg to the miscel-
laneous group. As researchers, we had many different naseelus datasets readily
available. However, in production systems the number cdisids in the rest class
should be comparably smaller, thus making this method ewane appropriate.

An additional advantage of this method is its easy impleat@n. Successful
implementations may be based on one of the many free neuvbrkeimplemen-
tations around. As a result, the benefits of including thishme in a suitable pro-
duction visualization system will easily outweigh the implentation costs.
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