
Computergraphik und

Multimediasysteme

Efficient and High Quality Clustering

Effiziente und Hochqualitative

Clusterbildung

vom Fachbereich Elektrotechnik und Informatik
der Universität Siegen

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von

Iurie Chiosa

Siegen, Juli 2010

1. Gutachter: Prof. Dr. Andreas Kolb
2. Gutachter: Prof. Dr. Mario Botsch

Tag der mündlichen Prüfung: 23 September 2010

Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier.

Revision 1.2.4

Abstract

Clustering, as a process of partitioning data elements with similar properties, is an essential
task in many application areas. Due to technological advances, the amount as well as the
dimensionality of data sets in general is steadily growing. This is especially the case for large
polygonal surface meshes since existing 3D geometry acquisition systems can nowadays
provide models with up to several million triangles. Thus, fast and high-quality data and
polygonal mesh processing becomes more demanding.

To deal with such a huge and diverse heap of clustering problems efficient algorithms
are required. At the same time the resulting clustering quality is of highest importance in
almost all situations. Thus, identifying an optimal tradeoff between efficiency and quality
is crucial in many clustering tasks.

For data clustering tasks in general as well as mesh clustering applications in particular,
k-means like techniques or hierarchical methods are used most often. Nonetheless, these
approaches are deficient in many respects thus a considerable amount of work is still
required to improve them.

This dissertation describes new feasible solutions for efficient and high quality mesh and
data clustering. It addresses both the algorithm and the theoretical part of many clustering
problems, and new clustering strategies are proposed to overcome inherent problems of the
standard algorithms.

With the advent of general-purpose computing on Graphics Processing Units (GPU),
which allows the usage of a highly parallel processing power, new tendencies emerged to
solve clustering tasks on the GPU.

In this work, a first GPU-based mesh clustering approach, which employs mesh connec-
tivity in the clustering process, is described. The technique is designed as parallel algorithm
and it is solely based on the GPU resources. It is free from any global data structure, thus
allowing an efficient GPU implementation and a further step in parallelization.

Based on the original concepts a GPU-based data clustering framework is also proposed.
The formulation uses the spatial coherence present in the cluster optimization and in the
hierarchical merging of clusters to significantly reduce the number of comparisons in both
parts. The approach solves the problem of the missing topological information, which is
inherent to the general data clustering, by performing a dynamic cluster neighborhood
tracking. Compared to classical approaches, our techniques generate results with at least
the same clustering quality. Furthermore, our technique proofs to scale very well, currently
being limited only by the available amount of graphics memory.

iii

iv

Zusammenfassung

Clusterbildung, als Prozess der Gruppierung von Datenelementen mit ähnlichen Eigen-
schaften, ist eine grundlegende Aufgabe in vielen Anwendungsbereichen. Aufgrund tech-
nologischer Fortschritte nimmt die Menge sowie die Dimensionalität der Daten stetig zu.
Dies ist insbesondere für große Polygonnetze der Fall, da aktuelle 3D-Scanner Modelle mit
bis zu mehreren Millionen Dreiecken liefern können. Entsprechend steigt die Nachfrage
nach einer schnellen und hochqualitativen Verarbeitung von Daten und Polygonnetzen.

Um die große Menge an vielfältigen Problemen im Bereich der Clusterbildung lösen
zu können, sind effiziente Algorithmen erforderlich. In den meisten Fällen ist hierbei die
Qualität der Ergebnisse sehr wichtig. Für viele Anwendungen ist es daher entscheidend,
den optimalen Kompromiss zwischen Geschwindigkeit und Qualität zu finden.

Für Daten-Clusterbildung im Allgemeinen sowie für Polygonnetz-Clusterbildung im
Speziellen, wurden bisher primär k-means-ähnliche sowie hierarchische Ansätze verwendet.
In vielen Fällen sind die Ergebnisse dieser Methoden jedoch unzureichend.

Die vorliegende Dissertation beschreibt neue Ansätze zur effizienten und hochqualita-
tiven Clusterbildung von Polygonnetzen und allgemeinen Daten. Sie befasst sich sowohl mit
dem algorithmischen als auch mit dem theoretischen Hintergrund von Clusterbildungsprob-
lemen und stellt neue Ansätze zur Überwindung der Nachteile klassischer Verfahren vor.

Mit der Einführung moderner Grafik-Hardware, welche die massiv-parallele Verar-
beitung von Daten ermöglicht, zeichnet sich ein neuer Trend zur Lösung von Cluster-
bildungsproblemen auf Grafikprozessoren (Graphics Processing Units, GPU) ab.

In dieser Arbeit wird der erste GPU-basierte Clusterbildungsansatz für Polygonnetze
beschrieben, der die Konnektivität des Polygonnetzes berücksichtigt. Das Verfahren läuft
dabei ausschließlich auf der GPU und verzichtet gleichzeitig auf jegliche globale Daten-
struktur.

Basierend auf dem zuvor vorgestellten Verfahren, wird weiterhin ein GPU-basiertes
Daten-Clusterbildungs-Framework vorgeschlagen. Dieses nutzt die räumliche Kohärenz im
Kontext der Clusteroptimierung und des hierarchischen Mergings zur signifikanten Re-
duktion nötiger Vergleiche. Gleichzeitig umgeht der Ansatz das Problem der fehlenden
Topologie-Information durch dynamisches Tracking von Nachbarschaften. Im Vergleich zu
klassischen Verfahren erzielt das vorgestellte Verfahren Ergebnisse mit mindestens gleicher
Qualität, skaliert dabei sehr gut und ist derzeit nur durch die verfügbare Menge an Grafik-
speicher begrenzt.

v

vi

Contents

Abstract iii

Zusammenfassung v

1 Introduction 1
1.1 Overall Goals . 2
1.2 My Contributions . 2
1.3 Outline . 4

2 Mesh and Data Clustering Algorithms 5
2.1 Mesh Clustering . 6

2.1.1 Introduction . 6
2.1.2 Variational Mesh Clustering . 7
2.1.3 Hierarchical Mesh Clustering . 12

2.2 Data Clustering . 14
2.2.1 K-Means Clustering . 15
2.2.2 Bottom-up vs. Top-down Hierarchical Clustering 17

2.3 GPU-based Processing . 19
2.3.1 GPU Computing . 19
2.3.2 GPU-based Clustering . 22

3 Energy Minimization by Local Optimization 25
3.1 CVD-based Mesh Coarsening . 26

3.1.1 Overview of Mesh Coarsening Approaches 26
3.1.2 CVD on a Polygonal Mesh . 27
3.1.3 The Valette Approach . 29
3.1.4 Uniform CVD-based Mesh Coarsening 32
3.1.5 Improvements . 36

3.2 Adaptive CVD-based Mesh Coarsening . 42
3.2.1 Nonuniform CVD-based Mesh Coarsening 44
3.2.2 Discrete Multiplicatively Weighted CVD 47
3.2.3 Feature Preserving Mesh Coarsening 49

3.3 Energy Minimization by Local Optimization 52

vii

3.3.1 The EMLO Algorithm . 52
3.3.2 Different Application Areas . 56

3.4 Conclusions . 62

4 Multilevel (ML) Mesh Clustering 63
4.1 The Multilevel Clustering Algorithm . 63
4.2 Realizing Multilevel Mesh Clustering . 67

4.2.1 Optimal Dual Edge . 69
4.2.2 Implementing the ML Clustering Process 70

4.3 Multilevel Data Structure . 73
4.4 Multilevel Mesh Clustering Results . 76
4.5 Different Variants of the Multilevel Clustering 87
4.6 Conclusions . 90

5 GPU-based Mesh Clustering 91
5.1 Parallel Mesh Clustering . 92

5.1.1 Boundary-based Mesh Clustering 93
5.1.2 Parallel Multilevel (PML) Mesh Clustering 97

5.2 GPU-based Mesh Clustering . 99
5.2.1 Processing Concepts and Data Structures 100
5.2.2 Mesh Representation on GPU . 101
5.2.3 Boundary-based Mesh Clustering on GPU 103
5.2.4 Multilevel Mesh Clustering on GPU 106
5.2.5 Parallel Multilevel Mesh Clustering on the GPU 108

5.3 GPU-based Mesh Clustering Results . 111
5.4 Conclusions . 116

6 GPU-based Data Clustering 119
6.1 Neighborhood Identification and Tracking 120
6.2 Local Neighbors K-Means . 122
6.3 Multilevel Data Clustering . 126
6.4 GPU Implementation Details . 127

6.4.1 Data Representation and Processing 127
6.4.2 Initial Clustering Configuration . 128
6.4.3 Data Clustering . 129
6.4.4 Brute-force K-Means on the GPU 130

6.5 GPU-based Data Clustering Results . 130
6.6 Identifying the Number of Clusters . 135
6.7 Conclusions . 138

Summary and Future Work 139

A Proof of Proposition 3.1 141

viii

B Compute Cluster’s Local Neighbors. 143

Bibliography 145

ix

x

List of Abbreviations

BB Boundary-based
BIC Bayesian Information Criterion
BL Boundary Loop
CA Cluster Array
CVD Centroidal Voronoi Diagram
DE Dual Edge
DG Dual Graph
EMLO Energy Minimization by Local Optimization
GPU Graphics Processing Unit
HC Hierarchical Clustering
HE Half Edge
HFC Hierarchical Face Clustering
ML Multilevel
MWCVD Multiplicatively Weighted Centroidal Voronoi Diagram
ODE Optimal Dual Edge
PML Parallel Multilevel
PQ Priority Queue
VC Variational Clustering

xi

xii

Chapter 1

Introduction

Due to technological advances, the amount as well as the dimensionality of data sets in
general are steadily growing. This is especially the case for large polygonal surface meshes
since existing 3D geometry acquisition systems can nowadays provide models with up to
several million triangles. Thus, fast and high-quality data and polygonal mesh processing
becomes more demanding.

Clustering, as a process of partitioning data elements with similar properties, is an es-
sential task in many application areas [XW08]: computer science (web mining, information
retrieval, mesh and image segmentation), engineering (machine learning, pattern recogni-
tion), medicine (genetics, pathology), economics (marketing, customer and stock analysis)
and many other fields. To deal with such a huge and diverse heap of clustering problems
efficient algorithms are required. At the same time the resulting clustering quality is of
highest importance in almost all situations. Thus, identifying an optimal tradeoff between
efficiency and quality is crucial in many clustering tasks.

For data clustering tasks in general as well as mesh clustering applications in particular,
k-means like techniques or hierarchical methods are used most often. In both categories,
a problem-dependent energy functional is present, which drives an optimization process
(k-means) or the order of cluster merging (hierarchical methods). Nonetheless, these ap-
proaches are deficient in many respects thus a considerable amount of work is still required
to improve them.

With the advent of general-purpose computing on Graphics Processing Units (GPU),
which allows the usage of a highly parallel processing power, new tendencies emerged to
solve clustering tasks on the GPU. The pioneering work of Hall and Hart [HH04] was the
first attempt to accelerate the k-means algorithm. Although the approach applies also to
surface polygonal meshes, it does not actually utilize the mesh connectivity in the clustering
process. Thus, the demand for new GPU-based mesh clustering techniques is still an open
problem.

In this dissertation new feasible solutions for efficient and high quality mesh and data
clustering are introduced. We address both the algorithm and the theoretical part of many
clustering problems. In all cases we are driven by the aim to fulfill the major general
clustering goals.

2 CHAPTER 1. INTRODUCTION

1.1 Overall Goals

In this dissertation we investigate the clustering for two data types: polygonal surface
meshes, which have geometry and connectivity (topology) information, and general data,
which misses the topology and usually tends to be high-dimensional. We usually differenti-
ate between these two data types and correspondingly apply different clustering algorithms.

However, from a general clustering point of view similar goals can be identified in both
cases:

Automatic clustering: Given a clustering criterion, it is always desirable to have an
automatic clustering. This implies no user interaction for driving the clustering pro-
cess, defining or adjusting different clustering parameters, or any other user related
decisions.

Efficient clustering: This generally implies that the algorithms must have low compu-
tational and memory requirements. Both can be achieved through:

• Better algorithm design.

• Efficient data structures.

• Parallelization of the clustering algorithms. Thus parallel architectures, e.g.
multi-core CPU or GPU, can be used for acceleration.

• Intelligent energy functionals. Indisputably these are essential for efficient clus-
tering, since the more cumbersome the energy functional, the more resources
and computational effort it requires.

High quality results: It is always desirable to have the best possible clustering results
regarding a given clustering criterion. If an energy functional is present the result
must be as close as possible to the global optimum.

Generic clustering: This implies that the same clustering technique applies regardless
of the problem or data specific details.

1.2 My Contributions

This dissertation describes a new generic clustering framework for efficient and high quality
clustering. Most parts of this work have been published in different scientific articles [CK06],
[CK08], [CKCL09], [CK11]. The major contributions of my work are:

The Energy Minimization by Local Optimization approach. This approach is pro-
posed as a generalization of the Valette approach [VC04]. It is a formulation which
is free from any global data structure and which can perform efficiently if a spe-
cial energy functional formulation exists. In this context new energy functionals are
introduced:

1.2. MY CONTRIBUTIONS 3

• The notion of Multiplicatively Weighted Centroidal Voronoi Diagram is general-
ized in the context of mesh coarsening. Different cluster’s weights are suggested
to capture the mesh features as good as possible.

• A new spherical mesh approximation energy functional has been developed,
which can be represented in an incremental formulation.

The Multilevel (ML) clustering strategy. This strategy is proposed to solve inherent
problems of the standard Variational and hierarchical algorithms, such as initializa-
tion dependency or greediness of clustering results. The algorithm neither uses any
heuristics nor any a-priori user-specified parameters. It is generic and performs a
complete mesh analysis, providing a complete set of solutions, and yielding results of
at least the same clustering quality compared to standard techniques. The approach
proved to be a powerful and reliable tool for clustering. In this context different new
elements were developed:

• A discrete data structure for storing and reconstructing the multilevel construc-
tion.

• Different variants of ML clustering which allows the user to choose between
faster execution or higher quality.

A GPU-based mesh clustering framework. It is the first GPU-based approach which
employs mesh connectivity in the clustering process. It is solely based on GPU re-
sources and allows for a considerable speedup. In this context many new elements
were proposed:

• A new mesh connectivity encoding is proposed which allows performing all nec-
essary mesh clustering tasks on the GPU.

• The Boundary-based mesh clustering approach is proposed. It is parallelizable
and provides all necessary ingredients for a GPU-based implementation, without
introducing any special energy functional requirements.

• The Parallel Multilevel technique (PML) which is an important strategy for an
efficient GPU-based multilevel (hierarchical) clustering, allowing a further step
towards parallelization.

A GPU-based data clustering framework. Like the mesh clustering framework, it is
solely based on GPU resources. It generalizes the Multilevel clustering idea to data
clustering, exploiting the spatial coherence present in the optimization and the cluster
merging steps. Besides the fact that the approach generates results with at least the
same clustering quality, it proved to be a better strategy at revealing the number of
clusters present in the data set. In this context new elements were developed:

• A dynamic cluster neighborhood tracking to resolve the missing topological in-
formation. It allows required cluster merging and optimization.

4 CHAPTER 1. INTRODUCTION

• The Local Neighbors k-means algorithm as a counterpart to the classical k-means
algorithm. The approach strongly incorporates the spatial coherence present in
the optimization, and thus is faster and scales much better.

1.3 Outline

The remainder of the dissertation is organized as follows.

In Chapter 2 we review most of the work done in the field of polygonal surface mesh
and data clustering. We describe major algorithms and theoretical aspects in both
cases. In the last section of the chapter we also describe the Graphics Processing Unit
(GPU) and its application in the context of general-purpose computation.

In Chapter 3 we describe a new clustering approach, i.e. Energy Minimization by Local
Optimization, in the context of different application areas, such as mesh coarsen-
ing and mesh approximation. Many related improvements are also proposed in this
chapter.

In Chapter 4 we introduce the Multilevel mesh clustering approach. Here we describe all
related algorithm and implementation details, together with many evaluation results.

In Chapter 5 we describe a GPU-based solution for mesh clustering. We show how the
mesh must be encoded to allow for mesh clustering on the GPU. Here we also propose
new algorithms which can be implemented on the GPU. Additionally, we provide most
of the GPU-specific implementation details and some non-trivial OpenGL-specific
solutions.

In Chapter 6 we demonstrate the GPU-based Multilevel solution for data clustering. We
describe in detail all new elements and techniques. Here we extensively evaluate the
proposed approaches. We also test the approach for revealing the number of clusters
present in the data set.

Chapter 2

Mesh and Data Clustering
Algorithms

In this dissertation the term clustering refers to the process of grouping the data elements
in different groups, i.e. clusters, according to some criterion. A cluster is then a collection of
data elements with similar properties, while the elements in different clusters are dissimilar
from one another.

In this work we apply clustering to two data types: surface polygonal meshes and
general data. In contrast to general data polygonal meshes possess additional connectivity
information which must be taken into account during clustering. In both cases a clustering
criterion is defined which drives the clustering process. The clustering criterion is usually
problem dependent – there is no universal criterion that could be equally applied to any
clustering problem. Nonetheless, the clustering techniques are usually similar, although
applied to different data types. Thus, it is important to analyze advantages as well as
the inherent problems which exist for this type of clustering approaches, with the aim to
identify new and better solutions.

This chapter is intended to draw an overall picture of the most significant aspects of
mesh and data clustering algorithms. Here, we give all necessary information for under-
standing of the later chapters. It must be recognized that there is a huge amount of work
done in both fields. Thus, we focus on techniques that are closely related to our work.

In Section 2.1 we describe surface polygonal meshes and the state-of-the-art clustering
algorithms which apply in this field. In Section 2.2, data clustering techniques are described.
In both sections the k-means-like and hierarchical-like methods are considered in detail.

In the second part of this dissertation we propose approaches for performing clustering
tasks on the Graphics Processing Unit (GPU). Thus, in Section 2.3 we describe in more
detail the main GPU stages and the processing concepts in the context of general-purpose
computations on graphics hardware. We also review the previous work related to GPU-
based clustering. This gives the reader a first idea of GPU processing concepts and the
underlying difficulties of using graphics hardware for clustering purposes.

6 CHAPTER 2. MESH AND DATA CLUSTERING ALGORITHMS

2.1 Mesh Clustering

In this section we describe different aspects of surface polygonal mesh clustering (short:
mesh clustering). First, in Section 2.1.1 we review some mesh and clustering terminology. In
Sections 2.1.2 - 2.1.3 we describe in more detail Variational and hierarchical mesh clustering
approaches.

2.1.1 Introduction

Polygonal meshes are the most often used representation for 3D models in computer graph-
ics. This representation is a de facto standard geometric representation for interactive 3D
graphics. Their popularity is mostly due to their flexibility to approximate any 3D shape
with arbitrary accuracy. Additionally, polygonal meshes can be processed and rendered by
current graphics hardware very efficiently.

According to [Sha08], a surface polygonal mesh M is defined as a tuple {V,E, F} with:

• V a set of vertices V = {Vi = pi | pi ∈ R
3, 1 ≤ i ≤ m}

• E a set of edges E = {eij = (pi,pj) | pi,pj ∈ V, i 6= j}

• F a set of faces F = {Fj}, which are represented by planar polygons.

The use of the term surface mesh is required in order to distinguish between 3D volu-
metric meshes and the actual 2D surface mesh that is embedded in 3D. Despite this, for
the rest of this work we usually use only the term mesh for referring to surface polygonal
meshes.

Although the faces Fj can be represented by arbitrary planar polygons, most often
triangular faces are considered, i.e. {Fj = (pr,ps,pt) | pr,ps,pt ∈ V, r 6= s, r 6= t, s 6= t},
which are usually called triangle meshes or simply triangulations, see Figure 2.1. All the
models used in this dissertation are represented by triangular meshes. Nonetheless, the
proposed mesh clustering algorithms equally apply to any polygonal meshes.

An important topological characteristic of a mesh is whether or not it is a 2-manifold.
This implies that for each mesh point the surface is locally homeomorphic to a disk, or
half disk at the mesh boundary [BPK∗08]. Note that, only in this case the local mesh
neighborhood is well defined – a prerequisite for all mesh clustering algorithms proposed
in this work. Thus, we always assume and require the mesh to be an orientable 2-manifold.

There are different mesh data structures which can be employed to store the ge-
ometry and the topological (connectivity) mesh information, see [BPK∗08]. In general
this depends on the application requirements, i.e. fast mesh queries or traversal, which
might be necessary during different mesh processing tasks. The winged-edge [Bau72], half-
edge [Män88] and directed-edge [CKS98] data structures are most often employed. In our
work we use a variant of the half-edge data structure, as depicted in Figure 2.1. For
each halfedge the following references are stored: next halfedge (next halfedge); previous
halfedge (prev halfedge); the halfedge in the opposite direction (twin); its adjacent face

2.1. MESH CLUSTERING 7

V:

V

V

V

F

to_vertex

to_face

twin

prev_halfedge

next_halfedge

halfedge

face

vertex

F:

Figure 2.1: Example of stored references for each halfedge in a half-edge data structure.

(to face); the vertex it points to (to vertex). Additionally, for each face a reference to
one of its halfedges and for each vertex a reference to one of its outgoing halfedges is stored.
This allows an efficient retrieval of any required mesh information during the clustering
process.

Now, given a clustering criterion, clustering a mesh means grouping the mesh elements,
such as faces or vertices or edges, into clusters according to a given similarity measure.
Generally, an energy functional is given (sometimes named error or cost functional), which
calculates the costs for assigning an element to a specific cluster. This energy must be
minimized when clustering the mesh elements.

Mesh clustering is used in many areas of computer graphics. Later on we will describe
some of the applications. For an overview in the context of mesh segmentation see [Sha04],
[Sha06], [AKM∗06], [APP∗07], [Sha08], [CGF09].

Note that, due to a variety of application areas, different terminology is sometimes
used regarding the clustering process. It is sometimes referred to as partitioning or tes-
sellation and the clusters as regions. In the field of mesh segmentation these two notions
are sometimes interleaved and cannot be well separated. Still, it must be recognized that
segmenting a model can be done without employing a clustering process.

Due to a huge amount of different mesh clustering problems, there are plenty of algo-
rithms to accomplish this. However, there are two classes of algorithms that prevail and are
de facto standard for performing mesh clustering. These are Variational and hierarchical
methods. In both categories, an energy functional is present, which drives the optimization
(Variational) or the order of the cluster merging (hierarchical methods). In Sections 2.1.2-
2.1.3 we describe these algorithms in more detail. At the end of each section we also provide
examples of their applicability in different areas of computer graphics.

2.1.2 Variational Mesh Clustering

Variational mesh clustering has been proposed by Cohen-Steiner et al. [CSAD04] as an
extension of Lloyd’s algorithm [Llo82], sometimes referred to as k-means algorithm (see

8 CHAPTER 2. MESH AND DATA CLUSTERING ALGORITHMS

Section 2.2.1), for planar polygonal mesh approximation. Variational Clustering (VC) is
de facto the common and most often employed mesh clustering approach. It casts the
mesh clustering problem into a variational partitioning problem where the mesh’s faces are
clustered such that the total approximation error is minimized.

The Algorithm.

Suppose that an input polygonal mesh M with m faces Fj is provided. Clustering M into
k non-overlapping clusters Ci means that each cluster Ci consists of a union of ni mesh
faces F i

j .
In general, each cluster Ci can be summarily represented by a cluster proxy, or as

originally proposed by a shape proxy, according to the Definition 2.1.

Definition 2.1. A cluster (shape) proxy Pi is a local best representative of the cluster Ci

w.r.t. a given energy functional.

As an example, in [CSAD04] for planar mesh approximation the shape proxy Pi =
(Ci,Ni) is used, where Ci is the cluster centroid and Ni is the normalized average over all
face normals of the cluster Ci. In this case the shape proxy is a local representative of the
cluster Ci which best approximates a given cluster geometry. Accordingly, the proxy set
P = {Pi} approximates the whole mesh geometry.

Now, suppose that a proxy-based energy functional E(P) is provided accroding to the
Definition 2.2.

Definition 2.2. A proxy-based1 energy functional E(P) is an energy functional defined as

E(P) =
k−1
∑

i=0

E(Ci, Pi) =
k−1
∑

i=0

∑

Fj∈Ci

E(Fj, Pi). (2.1)

where E(Ci, Pi) is the error of the cluster Ci for the corresponding proxy Pi. E(Fj, Pi)
is the error given by assigning the face Fj to the cluster Ci with proxy Pi.

For a given energy functional E(P) and a given number of clusters k the algorithm seeks
to find a clustering of the input mesh into k clusters Ci and associated set {Pi}i∈{0,...,k−1}

of proxies that minimizes the total energy E(P). The Variational clustering performs ac-
cording to the Algorithm 2.1.

Algorithm 2.1. (The Variational Clustering Algorithm)

1 Initialization step.
2 Repeat until convergence {
3 Seeding step.
4 Partitioning step.
5 Fitting step.
6 }

1Note that, in the case of a a proxy-based energy functional we always assume that the proxies are
explicitly computed before any energy computation.

2.1. MESH CLUSTERING 9

In Algorithm 2.1 each step performs as follows:

Initialization step: Here the starting seeds with associated starting proxies are identified.
Usually a random initialization is used to choose the starting seeds. For defining the
starting proxies the seed’s local information is used, e.g. for planar fitting [CSAD04]
the normal of the seed face is used.

Seeding step: For each cluster Ci and its associated proxy Pi, identify a face Fj ∈ Ci

with the smallest energy E(Fj, Pi) as a new cluster seed. This is achieved by visiting
all faces in the cluster. Sometimes, as a second requirement, the seeds must be as
close as possible to the cluster center.

Partitioning step: For each seed face F seed
i insert its three adjacent faces Fj into a global

priority queue (PQ) with a priority equal to their respective energy E(Fj, Pi). Thus,
a face Fj with m edges can appear up to m times in the PQ with different cluster
labeling and priority. After this, an energy-minimizing cluster growing Algorithm 2.2
is used to cluster the mesh elements into k clusters. Here each face is assigned to the
best fitting proxy. As a result, a new mesh clustering is obtained.

Fitting step: After the partitioning step a new set of proxies {P new
i } is computed from

the obtained clustering. This is then used for new seeding and partitioning steps.

Algorithm 2.2. (Energy-minimizing cluster growing)

1 while the PQ is not empty {
2 pop a face Fj with the smallest cost E(Fj, Pi)
3 if Fj not assigned to any cluster {
4 assign Fj to cluster Ci

5 push unlabeled incident faces of Fj (up to two) into the PQ with label i
6 }
7 }

For a user specified number of clusters k, the Variational clustering algorithm pro-
vides a k-partitioning of the input mesh with k non-overlapping and connected clusters.
An approximative exemplification of the steps of this clustering algorithm is presented in
Figure 5.2 on page 94.

In [CSAD04] several enhancements were proposed to improve the algorithm:

1. Incremental seed insertion and deletion: The user has not only the possibility
to define the desired number of clusters but also to interactively insert or delete a
proxy. The insertion is done by finding a cluster with highest energy and within it
picking a face with worst distortion as a new seed. This adds a new cluster in the
most needed part of the object. The deletion is done by computing for each pair (or
random pairs) of clusters the merging energy. The pair with the smallest energy is
then replaced with a single one, i.e. the two clusters are merged, and as a result a
cluster is deleted.

10 CHAPTER 2. MESH AND DATA CLUSTERING ALGORITHMS

2. Cluster teleportation: In many situation the algorithm may find itself stuck in
a local minimum, because the clusters cannot move easily to different parts of the
surface to find better positions. To improve this situation, a cluster deletion followed
by a cluster insertion is applied at regular intervals. The idea is to teleport a cluster
to the most needed mesh location. In practice a heuristic is used to test if the energy
added by the deletion is smaller than half of the energy of the worst cluster; if it is
not, no teleportation is applied.

3. Progressive initialization: The idea is to add one region at a time, perform parti-
tioning and then choose the face with maximum energy as a new seed. This approach
works well for non-smooth objects but fails to provide good initialization if a lot of
noise is present.

Application areas.

The Variational clustering is used in a wide range of applications and is in fact “a first
choice” for performing many mesh clustering tasks. Depending on a specific problem the
algorithm (Algorithm 2.1) may undergo some changes, or specific constraints may be im-
posed on the clustering process to support different clustering needs. Here we present some
of these applications with the aim of spotting major technical aspects as well as advantages
or disadvantages of the algorithm for further analysis.

• As originally proposed in [CSAD04], the algorithm was employed for planar approx-
imation of the mesh for subsequent remeshing. In addition to the enhancements
described above such as incremental seed insertion and deletion of clusters or cluster
teleportation, the authors also suggested that, in some situations, it is valuable to
have an interactive tool that allows the user to artificially scale up or down the area
of specific regions. In this case, the algorithm weights different regions differently,
thus preserving different surface details better.

• In [WK05] the approach was extended to support other proxy shapes such as spheres,
cylinders and rolling-balls blend patches. The motivation of this choice is the fact that
most CAD objects consist of such patches. Thus, compared to the planar approxima-
tion, a more compact approximation with fewer number of proxies can be achieved.

Compared to the standard algorithm, in this approach the major changes appear in
the fitting phase. There is no longer only a single proxy to be computed in the fitting
step, but four of them, i.e. best fitting plane, sphere, cylinder and blend patch. In
this case, only one out of four, the one which gives minimal fitting energy E(Ci, Pi),
must be chosen as shape proxy and assigned to a given cluster.

However, due to complexity and thus slower proxy fitting, a progressive clustering
was proposed. In the first iterations only planes are used for fitting until the change
in the energy is very small. Then sphere and cylinders are also allowed to be fitted.
Finally the rolling-ball blend patches are permitted until the final stable clustering
is reached.

2.1. MESH CLUSTERING 11

• In [SS05] the approach was applied to fit ellipsoidal regions for compact geometric
representation. The approach allows surface as well as volume oriented fitting. The
algorithm obeys the same strategy as in [CSAD04] and terminates when the desired
number of iterations has been performed.

• In [JKS05] the algorithm was adapted for identifying quasi-developable surfaces. The
authors proposed an automatic procedure to increase or decrease the number of
clusters based on a fitting error. In this case, the clusters are grown until a bounding
fitting error Emax is achieved, using standard Variational clustering. After this, new
clusters are added for “large” holes, or clusters are deleted if a developability condition
allows merging of two clusters.

• In [YLW06] the method was extended to extract not only planes or special types of
quadrics (spheres and circular cylinders), but also general quadric surfaces. Using a
progressive initialization [CSAD04] (start with k = 1 and then progressively add a
cluster) the algorithm terminates when a pre-specified energy threshold is met and
the iterations have converged. Checking for redundant proxies was also employed
by considering merging each pair of adjacent clusters. Furthermore, a method for
boundary smoothing was presented and used to improve the final result.

• In [WZS∗06] the method is employed to approximate a triangle mesh by a bounding
set of spheres which have a minimal summed volume outside the object. A mesh is
discretized into inner points by voxelizing the object and surface points. The clus-
tering is applied to both types of points. The region teleportation is triggered when
insufficient error improvements occur.

• In [OS08], in the context of image-based surface compression, the approach was
employed to partition the mesh into a set of elevation maps.

• The approach can be used to construct an approximative Centroidal Voronoi Dia-
gram on polygonal meshes. However, as we will point out in Section 3.1, the Valette
approach [VC04] is more efficient for this purpose.

Discussions.

The Variational method does provide an optimal clustering, in the sense that at least a
local minimum is reached, but for an a-priori user-specified number of clusters k. In general,
the determination of an appropriate number of clusters involves manual user intervention.

Additionally, the choice of initial seeds, i.e. starting positions and starting representa-
tives, affects the convergence and the final result. If a random initialization2 is used then
two consecutive executions of the algorithm produce, in general, different results, for an

2A usual reasoning behind this choice is that it is fast and it works “well” in practice providing good
results.

12 CHAPTER 2. MESH AND DATA CLUSTERING ALGORITHMS

example see Section 3.1.4. This produces suboptimal clustering results and might hinder
fixation of the number of clusters or other clustering parameters.

Other initialization heuristics can also be applied such as the multiple-run approach
where multiple random initializations are applied and the solution with the smallest error
is reported – a computationally very expensive approach. The farthest point initialization
[KJKZ94] can also be used to choose the starting seeds. However, for many applications
this uniform sampling does not pay off, because it does not support the underlying energy
functional.

Proposed heuristics in [CSAD04] such as incremental insertion and deletion of regions
and region teleportation proved to be efficient in many situations. However, it is still an
open question when and where to apply them, and the operations are computationally
expensive.

Thus, having an appropriate initialization technique for this class of iterative approaches
is still a major problem that needs to be addressed.

Last but not least note the sequential nature of this clustering approach. In the par-
titioning step a PQ is used to identify the smallest cost element, and for cluster growing
only one face can be assigned to the best fitting proxy, see Algorithm 2.2. This means
that the algorithm can not be efficiently implemented on parallel hardware, e.g. Graphics
Processing Units (GPUs).

2.1.3 Hierarchical Mesh Clustering

Vertex hierarchies, which are common in mesh simplification algorithms where edge con-
traction operations are applied [XV96] [Hop97] [LE97] [Gar99], can be considered an early
application of this type of clustering. In [GWH01] the hierarchical face clustering is pro-
posed for planar approximation of polygonal meshes.

The Algorithm.

A hierarchical clustering always produces a binary tree. The algorithm works as described
below; see [Sha08].

Algorithm 2.3. (The Hierarchical Clustering Algorithm)

1 Initialize a priority queue PQ of pairs (u, v)
2 Until PQ is empty {
3 Get next pair (u, v) from PQ
4 if (u, v) can be merged {
5 Merge (u, v) into w
6 Insert all valid pairs of w to PQ
7 }
8 }

2.1. MESH CLUSTERING 13

If a vertex hierarchy is built then the original mesh vertices are the nodes of the hier-
archy. Each mesh edge provides a pair of vertices (Vi, Vj) that can be clustered together.
According to Algorithm 2.3, all these pairs, the number of which equals exactly the num-
ber of edges in the mesh, are inserted into a Priority Queue (PQ) with a problem-specific
defined priority3. In each step two vertices are contracted together and a new node is cre-
ated in the tree. For this newly created node, new vertex pairs are created for all adjacent
vertices and inserted in the PQ, see [Hop97].

In [GWH01] face hierarchies are proposed, i.e Hierarchical Face Clustering (HFC). Here,
to follow the analogy of vertex hierarchies, the algorithm starts by creating a Dual Graph
(DG) of the mesh. Each mesh face is assigned to a node in the DG and a dual edge (DE)
between two nodes is created if the corresponding mesh faces are adjacent. At the beginning
each mesh face Fj is assigned to a specific cluster Ci. In the Priority Queue all created DEs
are sorted according to their contraction cost (merging energy). At each step, a DE with
highest priority is popped from the PQ and collapsed. Collapsing a DE means merging two
clusters into one representative cluster, for an example see Figure 5.4 on page 98. After
collapse, the PQ is updated for all DEs incident to the newly created node. For more details
see [GWH01]. As a result one obtains a hierarchy (a binary tree) of face clusters.

Application areas.

Hierarchical mesh clustering is of major importance and is employed in applications which
seek to identify a multiresolution partitioning of the original mesh for efficient spatial
queries or mesh representation/approximation:

• As already pointed out, vertex hierarchies are used for view-dependent reconstruction
of surface approximation [XV96] [Hop97] [LE97] [Gar99].

• In [GWH01], the HFC is proposed for planar approximation of polygonal meshes.
Some potential application areas of their approach where also suggested, such as
distance and intersection queries, collision detection, surface simplification, or mul-
tiresolution radiosity.

• In [SSGH01], the HFC is employed to partition the mesh into charts that have disk-
like topology. In post-processing the chart boundaries are straightened by computing
a shortest path over mesh edges.

• In [She01], the HFC is applied for CAD model simplification for remeshing purposes.
Different geometric and topological costs are considered when merging the clusters.

• In [GG04], the hierarchical clustering is used to segment the mesh points or an
arbitrary point set into a set of components which possess one or more slippable
motions, i.e. rigid motions that slide the transformed version against stationary one
without forming any gaps.

3The priority is usually modeled in the energy functional.

14 CHAPTER 2. MESH AND DATA CLUSTERING ALGORITHMS

• In [AFS06], Attene et al. employed the HFC technique for fitting a family of primitives
such as planes, spheres and cylinders, which can be used for reverse engineering or
mesh denoising and fairing. In that case the cost of collapsing a DE is the minimum
of the approximation errors computed against all primitives.

Discussions.

The main advantage of the hierarchical approach is that it does not require any additional
parameters or any intervention from the user. This is in contrast to Variational clustering,
which requires the initial number and positions of the starting seeds. The hierarchical
clustering starts with each element, i.e. vertex or face, as a separate cluster and then
decreases the number of clusters in each step applying the merging operation.

Despite the simplicity and wide range of applications, hierarchical clustering is yet a
greedy approach, i.e. an assigned element can no further be reassigned to other clusters
although that may result in a more appropriate configuration. This drawback limits the ap-
plicability of hierarchical clustering in many situations, e.g. generating Centroidal Voronoi
Diagram (CVD) for mesh coarsening. Applying a greedy hierarchical approach on base of
a CVD does not yield a valid solution, i.e. the result is not a CVD.

2.2 Data Clustering

Clustering, as a process of partitioning data elements with similar properties, is an es-
sential task in many application areas [XW08]: computer science (web mining, informa-
tion retrieval, image segmentation), engineering (machine learning, pattern recognition),
medicine (genetics, pathology), economics (marketing, customer and stock analysis) and
many other fields.

Correspondingly, a lot of work has been done in these fields. This concerns not only
on the data types, which could be discrete or continuous. It also concerns the diversity of
clustering problems, which are usually separated into hard (where a data point belongs
to one and only one cluster) and soft (fuzzy) clustering (where a data point might belong
to two or more clusters with some probabilities). Different clustering algorithms such as
hierarchical, partitional, neural network-based or kernel-based clustering, and others, can
be applied. Not to mention the diversity of proximity (similarity or dissimilarity) measures
that are defined between data elements or between clusters. For a more detailed overview
on this topic we refer the reader to [XW08] and [GMW07], which are the most up-to-date
and comprehensive references for data clustering aspects.

For the rest of this work we assume that a data set D = {Q1,Q2, ...,Qm} is given with
m points Qj = {qj1, qj2,, qjd} ∈ R

d, where d is the dimensionality of data set.
Our goal is to cluster this data set according to some predefined clustering criteria.

Despite the diversity of clustering algorithms, k-means approach and hierarchical methods
are most often employed. In Section 2.2.1 we describe the k-means approach in more
details. In Section 2.2.2 hierarchical (agglomerative and divisive) methods are described.

2.2. DATA CLUSTERING 15

In all cases we try to identify the advantages and the drawbacks of these approaches.

2.2.1 K-Means Clustering

The k-means algorithm [For65], [Mac67], sometimes referred as Lloyd’s algorithm [Llo82],
is one of the simplest and most often employed clustering algorithm.

The algorithm.

For a user specified number of clusters k, the k-means approach seeks an optimal parti-
tioning of the data elements. The main steps of k-means are performed according to the
Algorithm 2.4.

Algorithm 2.4. (The k-means Algorithm)

1 Select k points as initial cluster centroids
2 Repeat until convergence {
3 Assign each element to the nearest cluster
4 Recalculate the centroid of each cluster
5 }

The k-means algorithm usually starts with k randomly peeked points and assign them
as starting cluster’s centroid Ci. After that all data points are assigned to the nearest
cluster Cl, i.e.

Qj ∈ Cl, if ‖Qj −Cl‖ < ‖Qj −Ci‖

for j = 1, ...,m; i 6= l and i = 1, ..., k .
This is followed by recomputation of the centroid for each cluster. The cluster’s centroid

is computed as Ci =
∑

Qj∈Ci
Qj/ni, where ni is the total number of points in cluster Ci.

These new centers are used to perform a new partitioning afterwards.
The two steps: partitioning and centroid update in the Algorithm 2.4 are performed

until convergence, i.e. the newly computed centroids are the same or the points are assigned
to the same clusters, or until a user specified maximum number of iterations.

It can be proven that such an algorithm aims at minimizing the energy functional

E =
k−1
∑

i=0

∑

Qj∈Ci

‖Qj −Ci‖
2.

which is the within-cluster variance, i.e. the squared distance between cluster’s centroid
and its assigned data points. For such a functional the algorithm always converges, because
each step reduces the energy E.

Note that, when assigning the data elements according to the nearest-neighbor rule the
input space is divided into Voronoi regions. Thus, there is a strong link between the Cen-
troidal Voronoi Diagram and the k-means clustering [DFG99]. Both minimize the within-
cluster variance and the cluster’s centroid is exactly the centroid of its associated Voronoi
region.

16 CHAPTER 2. MESH AND DATA CLUSTERING ALGORITHMS

Discussions.

The k-means algorithm works very well in practice. However, although it converges, there
is no guarantee that the global minimum will be reached. Due to random initialization, the
algorithm usually converges only to a local minimum. Thus the result is strongly dependent
on the initialization.

The solution might be to improve the initialization. The multiple random run ap-
proach or the farthest point initialization [KJKZ94] can be considered to reduce the effect
of initialization. However, these heuristics are computationally expensive and there is no
guarantee that the final solution will be better. Thus, in many situation different alter-
natives to k-means are considered that find better clusterings, see [HE02] for an overview
and comparison.

Another problem of the k-means algorithm is that the user needs to define the number
of clusters k present in the data set. Like for cluster initialization, there are no efficient
and universal methods to define k.

In image segmentation a behavior known as elbowing effect is usually used to decide on
the number of clusters. As long as the data is not naturally clustered there is only a small
increase in the energy E; further decrease in k will then effect much larger increase in E,
see for an example [DGJW06].

A good solution for this problem is the X-means approach of Pelleg and Moore [PM00].
They extended the k-means algorithm to efficiently estimate the number of clusters. The
algorithm uses the Bayesian Information Criterion (BIC) to decide if a cluster split into
two subclusters models a real structure or not. For a given range [kmin, kmax] of clusters
the steps of X-means approach are summarized in Algorithm 2.5.

Algorithm 2.5. (The X-means Algorithm)

1 Identify kmin starting seeds
2 Apply k−means.
3 Repeat until k < kmax or no split applied {
4 Virtually subdivide each cluster into 2 subclusters
5 Use the BIC score to decide if the splits must be applied or not.
6 }

The algorithm starts with a configuration which is obtained using the standard k-
means algorithm, see Algorithm 2.4. In each following step each cluster is subdivided into
two subclusters using the standard k-means algorithm, i.e. 2-means. At this point a model
selection test is performed on all pairs of subclusters, using the BIC score. Depending on
the result of the test, a split of a cluster into two subclusters might be accepted or not. If
splitting is not allowed, the cluster is left intact. The process is repeated until none of the
splits improve the BIC score, i.e. none of the splits are allowed.

For a d dimensional data set D with m number of data elements and a family of
different clustering solutionsMk for different k number of clusters, the Bayesian Information

2.2. DATA CLUSTERING 17

Criterion (BIC) BIC(Mk) or Schwarz criterion is computed as [Sch78], [PM00]:

BIC(Mk) = l̂k(D)−
pk
2
log m.

where l̂k(D) is the log-likelihood of data D according to the Mk solution, which describes
how well a given model fits the data; pk = k + dk is the number of parameters in Mk.
Finally a clustering solution with maximum value of BIC is selected. In general, the BIC
imposes a tradeoff between model quality (first term) and model complexity (second term),
thus seeking accurate and simple models. For more details on the computation of the BIC
see [PM00].

2.2.2 Bottom-up vs. Top-down Hierarchical Clustering

In contrast to meshes where usually only agglomerative (bottom-up) hierarchical methods
are used, in data clustering divisive (top-down) hierarchical methods are also used. For
some problems divisive approaches appear to lead to better clustering results [SKK00],
[SB04].

The algorithms.

The main steps of the agglomerative hierarchical method are summarized in Algorithm 2.6.

Algorithm 2.6. (The Agglomerative Hierarchical Algorithm)

1 Start with m points as initial k clusters
2 Repeat until k == 1 {
3 Search 2 clusters with minimal distance D(Ci, Cj)
4 Merge Ci and Cj into a new cluster Cij

5 }

The agglomerative hierarchical method starts with m clusters. Each of them contains
exactly one data point. In each step, two clusters with the smallest distance between them
is found and the clusters are combined into one new cluster. There exists a large number
of distance definitions for cluster merging. For an overview we refer the reader to [XW08]
and [GMW07].

In contrast to agglomerative techniques the divisive approaches proceed in the opposite
way. At the beginning, the entire data set is contained in one cluster. In each subsequent
step a cluster is divided into two clusters according to some rule.

As an example, the bisecting k-means [SKK00], [SB04] works this way. The steps of
this approach are summarized in Algorithm 2.7.

18 CHAPTER 2. MESH AND DATA CLUSTERING ALGORITHMS

2 3Q Q Q Q0 1

Figure 2.2: A simple example of a possible dendrogram for four points.

Algorithm 2.7. (The Bisecting k-means Algorithm)

1 Define the whole data set is a single cluster
2 Loop until k clusters are found {
3 Pick a cluster to split
4 Apply bisecting step.
5 }

In general the largest cluster is chosen to be split. In the bisecting step a two clusters
k-means, i.e. 2-means, algorithm is applied L times and a split with smallest energy is
selected.

The results of hierarchical clustering are usually depicted as a binary tree or dendro-
gram, which provides very informative description of existing data structures. Figure 2.2
depicts such an example. The height of a dendrogram usually expresses the different dis-
tance measures, for more examples see [XW08] and [GMW07].

Discussions.

Note that, the bisecting k-means algorithm is computationally more expensive than the
agglomerative hierarchical clustering. Although it is believed to be less affected by the
containment problem. However, it must be recognized that the result of both agglomerative
or divisive hierarchical methods will suffer from any erroneous decisions made at some step
and these will be propagated in the successive steps. This is the major drawback of this
kind of approaches.

This can be improved by applying an optimization step after merging or splitting. This
is the same idea as the Multilevel clustering approach [CK08], [CK11]. In Chapter 6 we
test this idea for data clustering. For divisive hierarchical clustering the X-means algorithm
[PM00] can be employed4 if starting with kmin = 1.

4Note that, in the original paper [PM00] when subdividing a cluster into two subclusters only the

2.3. GPU-BASED PROCESSING 19

It must be pointed out that the X-means and the divisive approaches use two cluster
k-means for the bisecting step. Thus, for different runs, fluctuations might be present in
the final result.

Although most clustering algorithms still comply with a sequential order of processing,
attempts for parallel data clustering have been made, for an example and an overview see
[Ols95]. In the field of image segmentation a parallel region growing paradigm [WLR88]
was introduced. The growing is performed by identifying all possible merge partners and
merging regions with mutual choices, similar to the parallel Multilevel mesh clustering
[CKCL09], [CK11].

2.3 GPU-based Processing

The Graphics Processing Unit (GPU) is a highly parallel hardware for accelerating graphics
applications. Modern GPUs are capable of rasterizing and processing billions of vertices
and fragments per second. Although originally designed to efficiently deal with computer
graphics tasks, in the last decade a new trend has emerged to exploit this hardware for
general-purpose computing. This is mainly driven both by rapid increase of the GPU
computational power and recent improvements in its programmability.

In this section we describe general GPU-related aspects in the context of mesh and
data clustering. Section 2.3.1 gives a brief introduction to the modern GPU, together with
the processing, computing and programming concepts. Section 2.3.2 describes the previous
work of using the GPU for clustering tasks.

2.3.1 GPU Computing

The modern graphics pipeline consists of three main stages: the vertex, geometry and
fragment stage. Figure 2.3 depicts these stages and the workflow in the pipeline. With the
advent of programmable pipeline, which mostly replaced the fixed-function pipeline, the
user can define a program specific to each stage.

The three stages operate as follows:

• In the vertex stage a vertex program operates on incoming vertices, manipulating
them according to the application’s objectives. Traditionally this includes vertex
coordinate transformation and lighting calculations.

• In the geometry stage assembled primitives can be modified, extended or deleted by
a geometry program. Here, new extra rendering primitives can be emitted, or the
geometry generated procedurally by adding or removing vertices.

points in the original cluster are considered. Thus yielding, as for bisecting k-means, a nested hierarchy.
However, in the publicly available implementation of the X-means algorithm [PM] this restriction is relaxed
and the points can be assigned also to neighboring clusters.

20 CHAPTER 2. MESH AND DATA CLUSTERING ALGORITHMS

fragment

geometry
program program
vertex

program

Rasterization

Graphics Memory
primitives

fragments

1

Frame Buffer

TF

3

2

vertices

Figure 2.3: The graphics pipeline. TF: transform feedback.

• In the fragment stage a fragment program is executed for each rasterized fragment.
Here, the color of each output pixel is calculated and written to the frame buffer or
the render target, or to multiple render targets5 (MRT).

Each of these stages is capable of memory gathering, i.e. the ability to fetch data
from different positions in texture memory. However, only the vertex stage is capable of
performing scattering, i.e. alter the output position of an element. This can be achieved by
drawing the input vertices as points with correspondingly selected output locations. This
procedure, however, may lead to memory and rasterization coherence problems, which can
ultimately affect the performance [OLG∗07]. In contrast, the output address of a fragment
is predefined even before the fragment is processed. This limitation needs to be taken into
account because it dictates the processing workflow of the fragment stage.

Earlier hardware architectures implemented each of these programmable stages in spe-
cial dedicated hardware units called shader units, each optimized for its task. However, with

5The Multiple Render Targets (MRT) mechanism allows to simultaneously write at a given position
in all render targets.

2.3. GPU-BASED PROCESSING 21

the introduction of NVIDIA’s GeForce 8 series and ATI Radeon HD 2000 series GPUs the
Unified Shader Architecture has been proposed. Such hardware is composed of a bank of
computing units (shader units), each capable of performing any of the pipeline steps. Thus,
the GPU can dynamically schedule the computing units for better load balance, thereby
significantly increasing the GPU throughput.

The programmable units of the GPU follow a single program multiple data (SPMD)
programing model, i.e. all elements are processed in parallel using the same program. Each
element is processed independently from each other and they cannot communicate with
each other. Currently, there are two main graphics application programming interfaces
(APIs): OpenGL and DirectX. For programing the shader units on the graphics card the
so-called shading languages emerged: Cg (C for Graphics) [MGAK03], GLSL (OpenGL
Shading Language) [Ros06] and HLSL (High Level Shader Language). For our GPU-based
implementation we use OpenGL with GLSL.

General-Purpose Computing on the GPU

Utilizing the GPU for non-graphics applications has evolved as a special field of General-
Purpose Computation on the GPU (GPGPU)6. This was mainly driven by a steady in-
crease in the computational power of the GPU compared to the CPU. As a result, many
applications or simulations can be speeded up by this highly parallel streaming processor
[OLG∗07], [OHL∗08], [SDK05].

Programing the GPU for general-purpose applications can be achieved in two ways
[OHL∗08]:

1. Using a graphics API, i.e. shading languages Cg, GLSL or HLSL. Here the program is
structured in terms of the general graphics pipeline stages, see Figure 2.3. Usually, the
programmer redefines a non-graphics problem using graphics terminology and data
structures such as textures, vertices, fragments, buffers, etc. There are many GPGPU
techniques which efficiently map complex applications to the GPU. We refer the
reader to the state-of-the-art report of Owens et al. [OLG∗07] and [OHL∗08], where
many of these techniques are describe in detail.

2. Using non-graphics interfaces to the hardware. Programming a non-graphics general-
purpose application using a graphics API is in many cases cumbersome and the
programmable units are only accessible at an intermediate step in the pipeline. For a
common programmer a familiar high level language which gives direct access to the
GPU programming units is more desirable. NVIDIA’s CUDA7 (Compute Uniform
Device Architecture) programing language is a good example in this case. It allows
a flexible and better suited environment for general parallel processing. However,
this flexibility comes at the cost that the user needs to understand the low-level de-
tails of the hardware to achieve good performance. The OpenCL8 (Open Computing

6http://www.gpgpu.org/
7http://www.nvidia.com/cuda
8http://www.khronos.org/opencl

22 CHAPTER 2. MESH AND DATA CLUSTERING ALGORITHMS

Language) language, which is an open standard like OpenGL and supports GPUs of
multiple vendors, is about to become an alternative to CUDA in the near future.

There are many areas where GPUs have been used for general-purpose computing and
this is an ever growing field. Examples include physically-based simulation (game physics,
biophysics, climate research), signal and image processing (image segmentation, computer
vision, medical imaging), computational finance and many others. We refer the reader to
[OLG∗07] and [OHL∗08] for a more comprehensive overview of these applications. The
GPGPU web page6 also keeps track for most of the ongoing developments in this field. In
the next section we review the GPU-based clustering approaches in details.

2.3.2 GPU-based Clustering

One of the most prominent works in GPU-based acceleration of iterative (Lloyd’s) cluster-
ing was the work of Hall and Hart [HH04]. They proposed a GPU-CPU solution, where the
pairwise distance evaluations are done on the GPU and the centroid update on the CPU.
For each cluster the model data (centroid) is loaded into shader constants and all pairwise
(point-to-cluster) distances are computed. The result is written as a depth value of the
fragment and the cluster ID as fragment color value. The depth test ensures that for each
point the cluster ID with the smallest distance is kept. After all clusters are processed, the
color buffer is read back to the CPU and the cluster’s information is updated. Speedup fac-
tors of between 1.5 and 3 were reported comparing to the CPU implementation. A similar
GPU-CPU solution was proposed also in [TK04].

The work in [CTZ06] proposed more efficient GPU-based solutions to k-means. How-
ever, due to overwhelming computation cost, the reduced communication cost of the GPU-
based solution did not pay off compared to the GPU-CPU solution.

In [SDT08] another similar solution is proposed. For each cluster an individual distance
texture is defined to keep point-to-cluster distances. This, generally, limits the maximum
number of clusters that can be handled. Still, for specific configurations speed up factors
of 4 to 12 have been reported.

In [ZZ06] a GPU-based acceleration of hierarchical clustering for gene expression profiles
was proposed. First, the similarity distance matrix is calculated, i.e. the distances between
all pairs of genes. This is achieved, as for k-means applications [HH04] [CTZ06] [SDT08],
by rendering a quad that covers the distance matrix texture. For each generated fragment
the cluster-to-cluster distance is computed. To identify a minimum distance for two clusters
to be collapsed, a reduction operation [KW03] is used. Depending on the input data set,
speed up factors of 2− 4 have been reported.

In the recent past, CUDA implemented k-means [FRCC08] [HtLlDt∗09] [ZG09] and
hierarchical clustering [SDTW09] methods have been proposed. For specific problems,
speedup factors of 13 for k-means and 30 − 65 for hierarchical clustering have been re-
ported.

However, as we will point out in Section 6.2, the standard k-means approach (Sec-
tion 2.2.1), although parallelizable, is a brute-force algorithm. All the GPU-based cluster-

2.3. GPU-BASED PROCESSING 23

ing approaches considered so far, including the hierarchical approach, simply try to map
these brute-force algorithms on the GPU. In this case, no attempt is actually done to
reformulate the algorithms so that higher parallelism can be achieved.

In contrast, the GPU-based Local Neighbors k-means approach proposed by Chiosa
and Kolb [CK11], which reformulated the k-means algorithm, achieves better parallelism
by taking into account the spatial coherence present during optimization as during cluster
merging. Thus this algorithm can deliver better performance on the GPU, see Section 6.2.

Although the solution proposed in [HH04] for Variational clustering has been shown
to work for polygonal meshes, no mesh connectivity information is actually used in the
clustering process. The mesh is viewed as a triangle soup and clustering is applied on
element basis. This, however, can lead to unsatisfactory clustering results, as we show in
Figure 5.1 on page 92.

Two major problems can be identified that impede the use of the GPU for mesh clus-
tering, which explains why there is so little work done in this field. First, the lack of parallel
algorithms – most of existing mesh clustering algorithms are sequential. Second, the lack
of a Half Edge data structure [Män88] on the GPU – to our knowledge there is currently
no such data structure on the GPU.

The only existing GPU-based mesh clustering framework which employs the mesh con-
nectivity in the clustering process is presented by Chiosa and Kolb in [CKCL09], [CK11].
They addressed iterative as well as hierarchical (multilevel) mesh clustering on the GPU.
Using a special mesh connectivity encoding they have shown that both approaches can be
efficiently implemented on the GPU. This is described in detail in Chapter 5.

24 CHAPTER 2. MESH AND DATA CLUSTERING ALGORITHMS

Chapter 3

Energy Minimization by Local
Optimization

As described in Section 2.1.2, the Variational clustering (VC) [CSAD04] is the de facto
standard approach for performing any mesh clustering tasks. Similar to the k-means algo-
rithm it is attractive due to its elegance and ease of implementation. However, its efficiency
for large models is questionable: the two-phases approach, i.e. partitioning and proxy fit-
ting, together with a global priority queue that stores the distortion error does not appear
to be ideal. This supposition is more accentuated by the approach of Valette et al. [VC04],
which has shown to accomplish the same task, i.e. build a Centroidal Voronoi Diagram
(CVD) on a polygonal mesh, but at lower computational effort and with a more simplified
data structure.

The aim of this chapter is twofold:

1. We describe1 a new clustering paradigm, namely the Energy Minimization by Local
Optimization (EMLO), which compared to the standard VC performs differently and
has desirable proprieties. In Sections 3.1 - 3.2 we describe this clustering algorithm
in the context of CVD-based mesh coarsening, as originally proposed in [VC04],
[VKC05], [VCP08]. In these sections we only partially touch on the different prob-
lems associated with the (uniform and adaptive) CVD-based coarsening of surface
polygonal meshes. Different improvements (uniform seed generation, cluster connec-
tivity check, multiplicatively weighted CVD) are also proposed in Section 3.1.5 and
Sections 3.2.2 - 3.2.3, respectively. We generalize the Valette approach in Section 3.3
and propose some application areas2 in Section 3.3.2.

2. Although the Valette approach performs mesh clustering differently compared to the
Variational clustering it belongs to the same class of iterative methods. Thus, it suf-
fers from the same inherent problems: choosing the starting number of clusters and
seeds’ positions. In this chapter we want to show by example this class of associated

1Parts of this chapter were published in [CK06], [CK08].
2The spherical approximation energy functional in Section 3.3.2 is a completely new material.

26 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

problems. The reader can then more comprehensively understand the underlying
problems of this class of algorithms. In most cases we give solutions or make con-
structive analyses of possible solutions, which are then the roots for most of the ideas
and algorithms proposed in the rest of this work.

3.1 CVD-based Mesh Coarsening

Mesh coarsening, i.e. the reduction of the mesh complexity in terms of the number of
vertices or faces, is still a very exciting field of research. This is mainly due to a growing
technological advance in the acquisition and generation systems, which provide meshes
of high complexity. For a wide range of applications these meshes are too complex to be
used directly. Thus coarsening, i.e simplifying, the mesh can reduce memory requirements,
speed up transmission, accelerate different computations such as finite element analysis or
collision detection, or be crucial for real-time rendering [HG97], [Coh99], [LRC∗02].

Although, there are plenty of techniques to perform mesh coarsening (we review them
shortly in Section 3.1.1), the CVD-based approaches proved to be the best regarding the
quality of the resulting triangulation. This is due to the intrinsic compactness of the ob-
tained CVD tessellation [DFG99][OBS92]. Thus, CVD provides an optimal strategy for
resampling [AdVDI03], [AdVDI05] and coarsening [VC04], [VKC05], [VCP08], [CK06].

A Centroidal Voronoi Diagram is a special form of the Voronoi diagram (VD) where
the Voronoi sites (seeds) are also the mass centroid of the associated Voronoi regions, see
Section 3.1.2 for more details. The duality between VD and the Delaunay triangulation
(DT) in R

2 is well know, see [DBvKOS00], [OBS92]. A DT is obtained by inserting for each
Voronoi vertex a triangle where the triangle vertices are the Voronoi seeds. This property
is used for triangulation in a CVD-based setting.

For this kind of approach two phases can be identified:

1. Constructing a CVD on the surface of a polygonal input mesh M , see Figure 3.1 (c)
on page 33.

2. Triangulating the obtained Voronoi diagram, see Figure 3.1 (d) on page 33. The
final coarse mesh (triangulation) is created by inserting one vertex per cluster and
connecting them according to the cluster’s adjacency.

3.1.1 Overview of Mesh Coarsening Approaches

Simplifying a mesh and at the same time maintaining its original fidelity is certainly chal-
lenging. For a boarder overview on the topic see [HG97], [Coh99] and [LRC∗02].

As described in [LRC∗02], two types of constrains can be identified for mesh coarsening:

• Fidelity-based : the mesh is simplified until the difference between simplified and the
original mesh is above a user-provided simplification error ǫ.

3.1. CVD-BASED MESH COARSENING 27

• Budget-based : for a user-specified maximum number of triangles find a simplified
mesh with a minimum error ǫ.

To perform the simplification four classes of approaches can be identified:

1. The refinement methods, which are coarse-to-fine approaches, start from a base mesh
adaptively adding details to the mesh, [EDD∗95] or see [HG97] for an overview.

2. The decimation methods, which are fine-to-coarse approaches, start from the orig-
inal mesh by removing the mesh elements: vertices, edges, or faces. Different local
simplification operators apply:

• Edge collapses or vertex-pair collapse [Hop96], [GH97].

• Face collapse [Ham94], [GHJ∗97].

• Vertex decimation [SZL92], [Kle98].

• Cell collapse [RB93].

3. The so-called remeshing techniques can also be identified [LSS∗98], [KVLS99], [AMD02],
[AdVDI03]. Explicit parametric remeshing approaches use global [GGH02] or local
[SG03] parameterizations, whereas implicit or volumetric remeshing approaches con-
struct an intermediate volume model [KJ01], [NT03].

4. The energy minimization methods, are a new class of algorithms for mesh coars-
ening. Good examples in this case are the work of Cohen-Steiner et al. [CSAD04]
or Valette et al. [VC04], [VKC05], [VCP08], and Chiosa and Kolb [CK06], [CK08].
These approaches simplify the mesh indirectly. First, a clustering according to a given
criteria is performed. This is followed, in the first case, by an approximation of the
obtained planar clusters by a polygonal mesh, whereas in the second case a Delaunay
triangulation is built from the obtained Centroidal Voronoi Diagrams.

At this point it is also important to note a relevant difference between the three above
described mesh reduction approaches and the last class of techniques. The former three
are specifically designed only for mesh reduction whereas the later is more generic and can
cope with more tasks, as we show in this and the next chapters.

3.1.2 CVD on a Polygonal Mesh

A Centroidal Voronoi Diagram (CVD) is a special form of a Voronoi Diagram (VD). For
a more comprehensive discussion on theoretical aspects and practical applicability of the
CVD see [DFG99].

28 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

Continuous case:

Given a set of k different points {zi}
k−1
i=0 in the domain Ω, a Voronoi regionDi corresponding

to the point zi is defined as:

Di = {x ∈ Ω| d(x, zi) < d(x, zj) ∀ j 6= i} (3.1)

where d is the distance measure.

The points {zi}
k−1
i=0 are called seeds or generators and the set {Di}

k−1
i=0 is the Voronoi

diagram of Ω, see for more details [OBS92], [DBvKOS00].

In the general case, the distance d is defined by the metric in a given space. Thus,
anisotropic distance (directional distance) can also be considered, as proposed in [LS03],
[DW05]. However, for the rest of this work we assume that the distance d is the standard
Euclidean distance.

A Centroidal Voronoi Diagram or a Centroidal Voronoi Tessellation [DFG99] is a
Voronoi diagram where each Voronoi seed zi is also the mass centroid z∗i of its Voronoi
region Di defined as:

z∗i =

∫

Di
xρ(x)dx

∫

Di
ρ(x)dx

(3.2)

where ρ(x) is a density function.

One of the most important properties of a CVD is that it minimizes the following energy
functional:

E =
n−1
∑

i=0

∫

Di

ρ(x)‖x− zi‖
2dx. (3.3)

In other words this energy functional is minimized when Di’s are the Voronoi regions
of corresponding seeds zi and, at the same time, the zi’s are the mass centroids of the
associated regions Di, i.e a given tessellation is a CVD.

Common algorithms for constructing a CVD are the Lloyd’s method [Llo82], which alter
the Voronoi diagram construction and recomputation of the centroids of the associated
regions, and the k-means clustering described in Section 2.2.1.

CVD on a 3D surface mesh:

To construct a CVD on a polygonal surface mesh several approaches can be considered,
see also [MS09]:

• Geodesic Distance based Method: A strict description of the CVD for 3D surface
meshes requires the computation of the geodesic instead of the Euclidean distances,
as done in [PC04], [PC06] and [SSG03]. However, the geodesic distance computation
is very expensive.

3.1. CVD-BASED MESH COARSENING 29

• Euclidean Distance based Method: In [DGJ03] a Constrained Centroidal Voronoi
Tessellation is proposed. In this case the Euclidean distance is used and the cluster
centroids are constrained, i.e. (constrained mass centroid), to belong to a given sur-
face. However, identifying the constrained centroids is not a trivial task and requires
an additional computational effort.

• Parametrization based Method: The input mesh is first parametrized to a plane
[AdVDI03], [AdVDI05]. In this case the CVD can be performed in the parametric
space and then mapped back to the mesh. However, as pointed out in [VCP08],
the distortions introduced by the parameterization methods have at least the same
shortcomings with regard to the geometric accuracy as using the Euclidean distance
methods.

• Approximation Method: The work of Valette et al. [VC04], [VKC05], [VCP08]
proposed a more efficient method to construct a CVD on a polygonal mesh. The
method is stated as a face clustering problem, where the energy functional is min-
imized according to local queries on the boundaries between clusters. Each CVD
region is assumed to consist of a union of several mesh faces, thus it only approxi-
mates a Voronoi region.

Constructing a CVD on a surface polygonal mesh is not a trivial task. However, in the
context of a mesh coarsening, the approximation method, although it only approximates a
CVD, proved to be the best compromise between CVD building efficiency and the resulting
triangulation quality [VC04], [VKC05], [VCP08]. Additionally, the approach is very robust
allowing a simple integration of different checks and constraints. In the next section we
describe this approach in more details.

3.1.3 The Valette Approach

According to [VC04], given a surface polygonal mesh M with faces Fj, we assume that the
boundaries of a cluster Ci are a subset of the edges of M . Thus, the Ci consists of a union
of several mesh faces Fj. Note that, due to this assumption in the general case the clusters
Ci are not Voronoi regions in the strict sense as defined in Eq. (3.1).

The energy functional equivalent to Eq. (3.3) can be defined as:

E =
k−1
∑

i=0

(
∑

Fj∈Ci

∫

Fj

ρ(x)‖x− zi‖
2dx). (3.4)

It can be shown that if approximating each face Fj with constant face density ρj by a
single point, i.e. by its centroid

γj =

∫

Fj
ρ(x)xdx

∫

Fj
ρ(x)dx

.

the energy functional defined by Eq. (3.4) can be simplified to

30 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

ECV D =
k−1
∑

i=0

(
∑

Fj∈Ci

ρjAj‖γj − γi‖
2). (3.5)

where Aj is the face area and

γi =

∑

Fj∈Ci
ρjAjγj

∑

Fj∈Ci
ρjAj

. (3.6)

the centroid of the region Ci.
It can be easily proven that substituting the Eq. (3.6) into the Eq. (3.5) yields:

ECV D =
k−1
∑

i=0

ECV D(Ci) =
k−1
∑

i=0

(
∑

Fj∈Ci

mj‖γj‖
2 −

‖
∑

Fj∈Ci
mjγj‖

2

∑

Fj∈Ci
mj

). (3.7)

where γj and mj = ρjAj is the centroid and the weighted area of the face Fj, respectively.
The equation (3.7) describes the energy of a discrete CVD for a polygonal mesh. How-

ever, due to our assumption that Voronoi regions Ci consist of a union of several mesh
faces Fj, this is still an energy of an approximated CVD.

Now, constructing an approximated CVD on a polygonal mesh M can be seen as a
clustering problem, in which the original mesh faces Fj are assigned to different clusters
Ci, i.e. to approximated Voronoi regions, in such a way that the energy ECV D, Eq. (3.7),
is minimized.

For a given number of clusters k, Valette et al. [VC04] proposed a very efficient iterative
algorithm to perform the minimization.

At the beginning each cluster is assigned to a randomly picked face. Looping over the
boundary edge set of each cluster the free faces are set to belong to respective clusters
if they are not yet assigned to any other clusters. This way an initial configuration is
obtained.

The minimization process works as follows: For each boundary edge e between two
clusters Cq and Cp a local test is performed and the following energies for three cases are
computed, see Figure 3.15 on page 54:

1. E0
CV D energy: Fm still belongs to Cq and Fn still belongs to Cp.

2. E1
CV D energy: Cq grows and Cp shrinks, i.e. Fm and Fn belong to Cq.

3. E2
CV D energy: Cq shrinks and Cp grows, i.e. Fm and Fn belong to Cp.

The case with the smallest energy is chosen and the cluster configuration is updated
accordingly. Thus, the energy functional is iteratively decreased and the final clustering is
obtained when no further energy reduction is achieved.

Using the Eq. (3.7) the energies E0
CV D, E

1
CV D and E2

CV D are computed as follows:

3.1. CVD-BASED MESH COARSENING 31

E0
CV D =

∑

i
′

ECV D(Ci
′) +∗ E0

CV D (3.8)

E1
CV D =

∑

i
′

ECV D(Ci
′) +∗ E1

CV D (3.9)

E2
CV D =

∑

i
′

ECV D(Ci′) +
∗ E2

CV D (3.10)

with i
′

∈ {0, . . . , k − 1} \ {q, p} and

∗E0
CV D =

∑

Fj∈Cq\{Fm}

mj‖γj‖
2 +mm‖γm‖

2 −
‖
∑

Fj∈Cq
mjγj‖

2

∑

Fj∈Cq
mj

+

∑

Fj∈Cp\{Fn}

mj‖γj‖
2 +mn‖γn‖

2 −
‖
∑

Fj∈Cp
mjγj‖

2

∑

Fj∈Cp
mj

.

(3.11)

∗E1
CV D =

∑

Fj∈Cq\{Fm}

mj‖γj‖
2 +mm‖γm‖

2 +mn‖γn‖
2 −

‖
∑

Fj∈Cq∪{Fn}
mjγj‖

2

∑

Fj∈Cq∪{Fn}
mj

+

∑

Fj∈Cp\{Fn}

mj‖γj‖
2 −

‖
∑

Fj∈Cp\{Fn}
mjγj‖

2

∑

Fj∈Cp\{Fn}
mj

.

(3.12)

∗E2
CV D =

∑

Fj∈Cq\{Fm}

mj‖γj‖
2 −

‖
∑

Fj∈Cq\{Fm} mjγj‖
2

∑

Fj∈Cq\{Fm} mj

+

∑

Fj∈Cp\{Fn}

mj‖γj‖
2 +mn‖γn‖

2 +mm‖γm‖
2 −

‖
∑

Fj∈Cp∪{Fm} mjγj‖
2

∑

Fj∈Cp∪{Fm} mj

.

(3.13)

Observe that, for comparing the global energies E0
CV D, E

1
CV D and E2

CV D in Eqs. (3.8) -
(3.10) there are terms which are identical, thus they are irrelevant. The energy terms which
remain are:

∗∗E0
CV D = −

‖
∑

Fj∈Cq
mjγj‖

2

∑

Fj∈Cq
mj

−
‖
∑

Fj∈Cp
mjγj‖

2

∑

Fj∈Cp
mj

. (3.14)

∗∗E1
CV D = −

‖
∑

Fj∈Cq∪{Fn}
mjγj‖

2

∑

Fj∈Cq∪{Fn}
mj

−
‖
∑

Fj∈Cp\{Fn}
mjγj‖

2

∑

Fj∈Cp\{Fn}
mj

. (3.15)

∗∗E2
CV D = −

‖
∑

Fj∈Cq\{Fm} mjγj‖
2

∑

Fj∈Cq\{Fm} mj

−
‖
∑

Fj∈Cp∪{Fm} mjγj‖
2

∑

Fj∈Cp∪{Fm} mj

. (3.16)

32 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

It is important to recognize that comparing the reduced energies ∗∗E0
CV D,

∗∗E1
CV D and

∗∗E2
CV D is equivalent to comparing the total energies E0

CV D, E
1
CV D and E2

CV D in Eqs. (3.8)-
(3.10), but at lower memory and computational cost. Indeed, for each cluster only the
values

∑

mjγj and
∑

mj need to be stored and a fast cluster update is possible in this
case. Additionally, for each face Fj the values of mjγj and mj can be computed only once
at the beginning, thus making the overall computational cost very low.

Note that, the reduced energy form in the Eqs. (3.14)-(3.16) was only possible due to
a special CVD energy function formulation in Eq. (3.7). We call such an energy form an
incremental energy formulation.

Note that, the Valette approach does not require any global priority queue and there is
no explicit proxy fitting or seed identification step in the algorithm. These are the major
elements of this clustering approach compared to the classical Variational clustering method
that allowed us to solve the same problem, i.e. constructing an approximated CVD, but in
a more efficient manner.

3.1.4 Uniform CVD-based Mesh Coarsening

There are many applications where high quality triangulations are required, e.g. for finite
elements analysis. To speed up the simulations it is desirable to make the mesh as coarse
as possible. At the same time to have a stable simulation a mesh with well-shaped triangles
(triangles that are as close as possible to equilateral) is required.

Given an input surface polygonal mesh M with m faces Fj, we want to coarsen the
mesh M to a k output number of vertices. This means building a CVD clustering with k
clusters. We use the Valette algorithm from Section 3.1.3, followed by a triangulation.

A uniform density function ρ(x) needs to be assumed to yield a uniformly coarsened
mesh, i.e. a triangulation with well-shaped triangles. In this case we can safely remove any
face weight ρj from our computations, i.e. we set ρj = 1 The energy ∗∗E0

CV D in Eq. (3.14)
becomes:

∗∗E0
CV D = −

‖
∑

Fj∈Cq
Ajγj‖

2

∑

Fj∈Cq
Aj

−
‖
∑

Fj∈Cp
Ajγj‖

2

∑

Fj∈Cp
Aj

.

The same applies to ∗∗E1
CV D and ∗∗E2

CV D in Eqs. (3.15)- (3.16), where Aj is the area of
the face Fj.

Thus for each face Fj we compute and save only the values Aj and Ajγj, which are
computed only once before the algorithm starts. Correspondingly, for each cluster Ci two
values

∑

Aj and
∑

Ajγj are saved and updated.
Figure 3.1 shows the result of a uniform mesh coarsening applied to the sphere model.

As expected, the algorithm yields a uniform (well-shaped triangles) output triangulation.
The final triangulation is created by inserting one vertex per cluster at the position equal
to the cluster centroid γi =

∑

Ajγj/
∑

Aj, which is easily computed because the values
∑

Aj and
∑

Ajγj are already available. The vertices are connected, as described in [VC04],
according to the cluster’s adjacency, where a triangle is created for each vertex where three
Voronoi regions meet.

3.1. CVD-BASED MESH COARSENING 33

(a) (b) (c) (d)

Figure 3.1: (a) Sphere model with 28.5k triangles. Uniform coarsening results for k = 300
clusters which results in a mesh with 300 vertices: (b) Initial cluster growing. (c) Uniform
CVD clustering. (d) Triangulation of (c).

Although, the result is visually pleasing there are many issues related to the CVD-based
mesh coarsening. A discussion of these issues follows.

Initialization problem:

The problem of a “good” initialization, i.e. the starting positioning of seeds, has a long
history as the problem of identifying the “true” number of clusters. Here one may ask if or
why is the initialization so important, because the optimization step in any case provides a
“good” result regardless of the initial configuration, as presented in Figure 3.1. There are
two important aspects which are strictly related to the initialization:

1. Faster convergence. If the initialization is very close to the final result, then the
algorithm converges very quickly thus becoming very efficient.

2. More qualitative results. A better initialization always leads to a better clustering
result, i.e lower clustering energy. It is well known that during optimization the
clusters can be trapped in some region and cannot “jump” easily to other high energy
regions to lower the total energy.

A “good” initialization is one that is very close or mimics the final solution of a given
problem. It can be observed in the Figure 3.1(b) that a random sampling followed by an
initial growing is far away from the final CVD result.

A random sampling is the simplest and most often employed strategy. Sometimes a
multiple run random initialization approach (computationally very expensive) is also em-
ployed, there the solution with smallest energy is chosen. However, a random initialization
leads to a random results, as presented in Figure 3.2. Although the number of clusters is
fixed the resulting triangulations differ and some feature points are lost.

The Farthest Point initialization [KJKZ94] is more appropriate in this context. It starts
with some random seed and then iteratively adds a seed with maximum distance to the al-
ready existing seeds. Although this is a good strategy, still a high computational complexity
O(km) (k number of clusters and m total number of elements) makes it less attractive.

34 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

Figure 3.2: Results for two different random initializations with k = 527 clusters. (left)
Uniform clustering. (right) Corresponding triangulation.

In Section 3.1.5 we propose a new initialization approach, which proves to be a good
solution for a uniform CVD-based clustering.

Vertex placement:

In [VC04] the final triangulation is enhanced using as a vertex in the triangulation an
original mesh vertex which is the closest to the cluster centroid γi (Eq. (3.6)). Although, this
works well for planar or highly tessellated meshes, Figure 3.3(d) depicts an example where
this fails to work properly. Note that, the result presented in Figure 3.3(d) is approximately
identical to that in Figure 3.3(c) where only the cluster centroid γi is used. In Figure 3.3(f)
we exemplify this situation showing that the closest vertex is a suboptimal choice, not to
say that identifying these vertices requires an additional computational effort.

In [VKC05] and [VCP08] the Quadric Error Metrics (QEM) [GH97] was employed to
relocate the cluster centroid position. As proposed in [Lin00], for each face Fj an associated
4× 4 quadric matrix Qj is computed, which provides a very convenient representation for
evaluating the squared distance between any point and the plane containing Fj. Then,
for each cluster Ci a sum of all QEM of the cluster’s faces can be used to compute the
“optimal” cluster’s centroid position. In this case the centroid position has the smallest
deviation from all planes containing Fj in a cluster.

In [VKC05] the QEM is used in the final post-processing to enhance the quality of
the approximating mesh. Figure 3.3(e) shows the result of using the QEM for final vertex

3.1. CVD-BASED MESH COARSENING 35

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Cube model with 30k triangles. Uniform coarsening results for k = 274: (a)
Initial cluster growing. (b) Uniform CVD clustering. (c) Triangulation of (b) with cluster
centroid as vertex. (d) Triangulation of (b) with closest original mesh vertex to the cluster
centroid as vertex. (e) Triangulation of (b) with the QEM approach. (f) Illustration of an
inadequate mesh vertex selection according to the smallest distance. The red vertices are
the closest and not the green one.

placement, which indeed outperforms the results presented in Figure 3.3(c)-(d). In [VCP08]
this post-processing is embedded in the clustering process itself. At each iteration a better
cluster centroid is computed and injected in the energy computation. This is in the same
spirit as done for constrained CVD [DGJ03].

However, additionally to an increased computational complexity the QEM approach
fails sometimes to provide reliable results. Figure 3.4 provides such an example. In a given
situation a cluster (composed from three intersecting planes) contains two feature lines
which are almost parallel, thus the optimal vertex position is far away from the original
mesh vertices. To fix this problem additional checks are required to detect and project the
vertex on the original mesh.

36 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

Figure 3.4: Triangulating with QEM post-processing. (left) Clustering result, number of
clusters k = 527. (right) Triangulation of (left) with QEM positioning.

It is clear that the above described possibilities lack efficiency in many situations. A
possible solution in this case is to use an adaptive CVD [VKC05], [CK06] where each
triangle gets a specific density related to the surface property. Thus if the higher curvature
regions have a larger weight than lower curvature regions the cluster centroid γi (Eq. (3.6))
will be “attracted” to the mesh surface, which in turn gives a lower approximation error.
Section 3.2 shows how this approach works.

Connectivity check for valid triangulation:

To obtain a valid triangulation in the final clustering each cluster has to be a 1-connected
set of faces. To ensure this constraint in [VKC05] a three-step approach is proposed:

1. Perform the clustering without any checks.

2. Clean any disconnected cluster, by removing the smallest components and leaving
the largest component only.

3. Perform the clustering with an additional embedded check, which does not allow the
clusters to get disconnected.

As pointed out in [CK06] the algorithm proposed in [VKC05] for the third step does
not guaranty a genus zero clusters, which is also a prerequisite for a valid triangulation.
In Section 3.1.5 we propose a new Vertex Boundary-edge Count approach, which is able to
handle such configurations.

3.1.5 Improvements

In this section we describe different improvements that relate to CVD-based mesh coars-
ening [CK06]. First, we present an algorithm for generating an initial set of seeds that is
approximately uniformly distributed over the input mesh. Secondly, we describe an algo-
rithm that prevents the clusters from getting disconnected during the clustering process.

3.1. CVD-BASED MESH COARSENING 37

(l=1) (l=2) (l=3)

Figure 3.5: Result of the l-neighborhood initialization for different levels l.

l-Neighborhood Initialization:

Given a polygonal mesh M with faces Fj. Assume that all valid faces are contained in
an array (F valid

j). Holes are considered to be invalid. We also assume that each face has
references to its neighbors, which is a standard data element in mesh data structures such
as the half-edge data structure [Män88].

The basic idea is to assume that each face is a potential starting seed. Then for a user
specified level l a check is done to see if the lth-neighborhood of a given seed contains
only valid faces. If that is the case, the face is reported as a seed and all faces in the l-
neighborhood are set as invalid, thus no other seed can contain them in its l-neighborhood.
Interestingly, the algorithm does not use any distance computation, it merely uses the face
adjacencies across edges (face-neighborhood). The Algorithm 3.1 describes the steps of the
l-neighborhood3 initialization.

Algorithm 3.1. (l-neighborhood Initialization)

1 ∀ face in (F valid
j): setValid(face)

2 ∀ face ∈ (F valid
j) do:

3 if(isValid(face) && isValid(l−neighborhood of face))
4 setInvalid(l−neighborhood of face)
5 addToSeedSet(face)

For example, for level l = 2 a given face is reported as a seed if its neighboring faces are
valid and, at the same time, each neighboring face also has its neighboring faces valid,
as presented in Figure 3.5.

The algorithm selects a set of seed faces, whose l-neighborhoods do not overlap. In a
brute-force implementation, for a triangulated mesh this algorithm has a runtime com-

3In [CK06] the original name of the algorithm was k-neighborhood initialization. However, throughout
this work k is related to the number of clusters. To avoid the confusion between k number of levels, the
name of the algorithm is changed to l-neighborhood, where l stands for levels.

38 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S

ee
ds

l level

Generated number of seeds

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fa

ce
s

l level

Number of faces in a seed’s l-neighborhood

 0

 5000

 10000

 15000

 20000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

tim
e,

 m
se

c.

l level

Time

Figure 3.6: Result of l-neighborhood initialization for the Bunny model.

 0

 2

 4

 6

 8

 10

 12

0*100 1*104 2*104 3*104 4*104 5*104 6*104 7*104

le
ve

l,
l

m number of faces

log3 m

Figure 3.7: Plot of log3m for Bunny model consisting of 7 · 104 faces.

plexity of 3l to identify a single seed or a l-neighborhood, see Figure 3.6. The number of
seeds is of the order of m/(2.5l2), where m is the total number of faces, yielding an overall
complexity of (m · 3l)/(2.5l2).

If comparing l-neighborhood initialization with Farthest Point initialization [KJKZ94],
which has O(km) complexity, then the l-neighborhood approach is better suited for values
of l ≤ log3m. Figure 3.7 depicts an example for Bunny model (7 ·104 faces), which indicates

3.1. CVD-BASED MESH COARSENING 39

(a) (b) (c)

Figure 3.8: Result of the l-neighborhood initialization for the Bunny model with level l = 4,
l = 8 and l = 12, respectively. (a) Obtained seeds and their l-neighborhood; (b) Result of
the initial cluster growing; (c) Triangulation of (b) using the cluster centroid as vertex.

that for l ≤ 10 we have a more efficient initialization compared to the Farthest Point
initialization.

Observe in Figure 3.5 that there are some faces that are not assigned to any given seed’s
l-neighborhood. This is due to the fact that the algorithm simply works on the array of
faces trying to identify the next face with valid, i.e. not yet covered, l-neighborhood.

40 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

The algorithm possess a number of important features:

• For a mesh with uniformly sized triangles the resulting l neighborhoods are nearly
disk-shaped. This yields very good starting seed sets for algorithms that try to con-
struct equally sized and compact clusters, such as the uniform mesh coarsening in
Section 3.1.4.

• The algorithm is in the same spirit as farthest point initialization [KJKZ94], although
no distance computations are involved.

• In some situations the result of the l-neighborhood initialization is already good
enough for a final mesh coarsening. This is especially important if the user wants to
evaluate the final mesh resolution interactively, before deciding on the level l or on
the number of clusters k to be used in the overall optimization. In Figure 3.8 we give
such an example.

It must be recognized that the l-neighborhood algorithm gives an arbitrary number of
clusters k, which is related to the level l. However, some applications may require a fixed
number of seeds. In this case a modified version of the algorithm can be used to reduce
the number of obtained seeds. First, an initial growing based on the given l-neighborhoods
is performed. After this, the area of the resulting clusters is checked and the number of
seeds is reduced by merging the three neighboring clusters having a common vertex with
the smallest summed area. The seed’s new position is assigned to the common vertex
of the three original clusters. Note that, the same idea can be used to avoid inefficient
initializations for large l, thus starting with lower l and then adding new seeds at the
common vertex of three neighboring clusters.

Connectivity Check:

In the following, consider a boundary edge c between two adjacent clusters, see Figure
3.9(a). We check whether the red cluster can grow in the direction of the edge c, i.e. whether
the triangle ∆(V1,V2,V3) may switch to the red cluster, without yielding a disconnected
cluster. Let n and p denote the next and previous edges w.r.t. c for the considered triangle,
respectively.

Our algorithm is related, although developed independently, to the work of Valette et al.
[VKC05]. They relate their approach solely on the check of the edges n and p and on vertex
V2. In their implementation growing is allowed if: n or p are exclusively boundary edges.
Otherwise, if n and p are not boundary edges, all triangles in the 0-ring of the vertex V2

should be of the same cluster. Their approach has the disadvantage, that the check fails to
handle the disconnectivity as presented in Figure 3.9 (c).

Our algorithm is based on an additional counter for each vertex storing the number of
adjacent cluster boundary edges, referred to as vertex boundary-edge count. After the initial
growing, the counter is set to the number of cluster boundary edges. Thus, for example, in

3.1. CVD-BASED MESH COARSENING 41

V1
V2

V3

p

n

c

V1

V2V3

V2
V1

V3

V3

V1

V2

(a) (b) (c) (Case 0)

V2
V3

V1

V2
V3

V1

V2
V3

V1

V2
V3

V1

(Case 1) (Case 2) (Case 3) (Case 4)

Figure 3.9: Connectivity check configurations. (a) Boundary edge c is one which points
from vertex V1 to V3; n and p denote the next and previous edges w.r.t c. (b) - (c) Growing
leads to disconnected and non-zero genus clusters, respectively. (case0) - (case4) Allowed
growing configurations.

Figure 3.9 (case 0) vertex V1 will have count 2, V3 will have count 3, whereas V2 still has
a count equal to zero.

Clearly, growing does not lead to a disconnected cluster, if the boundary-edge count
for V2 is zero. Also, if only one of the edges n or p is a boundary of the current cluster,
w.r.t. edge c, growing does not lead to an invalid situation. Otherwise, if n XOR p is a
boundary of the different cluster, we check if vertex V2 has no adjacent boundary of the
current cluster, thus avoiding the configuration in Figure 3.9 (c), i.e. a cluster with genus
> 0.

Putting this together, we have the following connectivity check as presented in Algo-
rithm 3.2.

Algorithm 3.2. (Vertex Boundary-Edge Count Algorithm)

1 if(count(V2) == 0) OR // Case 0
2 (isBoundaryOfCurr(n) XOR isBoundaryOfCurr(p)) OR // Case 1,2
3 ((isBoundary(n) XOR isBoundary(p))
4 AND !V2.hasBoundaryEdge(curr)) // Case 3,4
5 Then allow growing and update vertex counter

Where curr denotes the current cluster and V2.hasBoundaryEdge(curr) checks for
boundary edges for the current cluster at V2.

Using this check the following situations are avoided:

42 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

• The adjacent cell represent a single cluster. Here, a growing would lead to an implicit
deletion of one cluster, Figure 3.9 (a).

• Splitting the cluster into two parts. This is the only situation that can possibly cause
a splitting of the green cluster, Figure 3.9 (b).

• Growing may result in nonzero genus clusters, Figure 3.9 (c).

The update of the boundary-edge counter for vertices after the growing is performed is
quite simple. With respect to the cases noted in the above algorithm, we have:

Case 0: Update: count(v2) = 2.

Case 1: n is a boundary of the current cluster.

Update: count(V1) = 0.

Case 2: p is a boundary of the current cluster.

Update: count(V3) = 0.

Case 3: n is a boundary of a different cluster.

Update: count(V1) --; count(V2) ++.

Case 4: p is a boundary of a different cluster.

Update: count(V3) --; count(V2) ++.

Note, that (case 0) is the most encountered situation during cluster optimization, which
leads to a very efficient check in this situation. Cases 3 and 4 are the most expensive checks,
but they do not occur very frequently.

3.2 Adaptive CVD-based Mesh Coarsening

Adaptivity is a key for a better approximation of high curvature regions of the underlying
surface mesh. Figure 3.10 provides such an example, where it is easily recognized that case
(γ = 4) better approximates the surface than case (γ = 0) does.

As pointed out in [DW05], the aspect ratio and orientation of the triangles in the coarse
mesh must depend on the underlying problem. Thus, different metrics apply: isotropic
[SAG03], [AdVDI03], [AdVDI05], [VKC05] or anisotropic [LS03], [DW05], [VCP08]. The
anisotropic case is of interest in boundary viscous or fluid flow simulations, where the
solutions often have an anisotropic behavior, and thus anisotropic meshes are desirable.
In the following we only consider the isotropic case and show how using the weighted
CVD yields an adaptive coarsening. In Sections 3.2.2 - 3.2.3, in the context of feature-
preserving coarsening, we will show that an anisotropic behavior is still obtainable using
a multiplicative weighted CVD and a special cluster’s weight definition, yielding feature
elongated clusters.

3.2. ADAPTIVE CVD-BASED MESH COARSENING 43

(γ = 0) (γ = 4)

Figure 3.10: A comparison between uniform and adaptive coarsening. Top left: The original
Bust model consists of 30.6K vertices. Bottom left: Initialization with l-neighborhood for
level l = 3 resulting in k = 2272 clusters. Top: clustering result and bottom: corresponding
triangulation, for different values of γ, respectively.

44 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

3.2.1 Nonuniform CVD-based Mesh Coarsening

For a better approximation it is generally expected to have smaller sized clusters (Voronoi
regions) in higher curvature areas and larger sized ones in lower curvature areas, resulting
in more or less vertices in these regions, respectively.

To achieve such a behavior a nonuniform density function ρ(x) must be used. This is in
contrast to uniform coarsening where uniform density is assumed, see Section 3.1.4. Under
the assumptions made in Section 3.1.3 each face has its own weight ρj. Thus, ρj needs to
be related to the surface properties, e.g. curvature.

In [VKC05] the density ρj was related to the local principal curvatures kj,1 and kj,2

as ρj =

(

√

k2
j,1 + k2

j,2

)γ

. Here γ is the gradation parameter which controls how different

regions are weighted. Note, that for γ = 0 a uniform coarsening is obtained. This density-
curvature relation is in the same spirit as proposed in [AMD02], [AdVDI03], [AdVDI05].

Different curvature estimation techniques, e.g. [CSM03] [Rus04] [CP05], can be em-
ployed to deal efficiently with noise or bad sampling conditions present in the input mesh,
for a more comprehensive overview of existing techniques see [GG06] and [BPK∗08]. How-
ever, due to a relatively high time complexity, see for example [VKC05] where the curvature
computation takes longer than the actual clustering process, we propose to use a slightly
simpler and thus computationally more efficient approach to define ρj. Based on the obser-
vation that generally the normal field discontinuities directly indicate the mesh features,
e.g. a face which belongs to a feature will have large deviation of its normal w.r.t. its
neighbors, we set ρ′j equal to the mean of the normal difference of the faces in the 1-ring
of face Fj. For the face Fj with vertices Vi1 , . . . ,Vimwe have:

ρ′j =
1

n

m
∑

i=1

∑

Fk adj. to Vi

‖nj − nk‖ (3.17)

where nk is the normal of face Fk and n =
∑m

i=1

∑

Fk adj. to Vi
1.

Note that, the ρ′j is zero for planar regions. Thus, a mapping is required to prevent
division by zero in Eq. (3.6). One could set the density as ρj = (ρ′j+∆)γ (we use ∆ = 10−2).
Or a linear mapping from [ρ′min; ρ

′
max] to [1; ρnew] as:

ρj =
ρ′max − ρ′j
ρ′max − ρ′min

+ ρnew
ρ′j − ρ′min

ρ′max − ρ′min

Where γ or ρnew are user defined parameters. For large values of these parameters the
cluster centroids move towards cells with higher density, resulting in more vertices in these
areas, see Figure 3.10.

The results presented in the Figure 3.10 were obtained using the l-neighborhood al-
gorithm for initialization. To ensure a valid triangulation the vertex boundary-edge count
approach (Section 3.1.5) is directly embedded in the optimization process, thus preventing
the clusters from getting disconnected. The vertices of the final coarsened mesh are chosen
to be equal to the centroid of the cluster, which are already computed during the clustering
process. This makes the final triangulation a simple and fast operation.

3.2. ADAPTIVE CVD-BASED MESH COARSENING 45

Although, the results are visually pleasing there are two very important aspects which
relate to the adaptive coarsening:

Initialization Problem:

The use of the l-neighborhood initialization for an adaptive clustering is mainly due to
our observation that a compact initialization is less prone to provide disconnected clusters
than a non compact one, e.g. random initializations always provide elongated clusters, see
Figure 3.1 (b) on page 33. However, for an adaptive clustering such an initialization is
suboptimal because it provides, in general, a uniform sampling.

The solution proposed in [VKC05] can be used to alleviate this problem. A global
average cluster density ADCi

= 1
k

∑

j∈Ci
ρj is computed first. Then a random face is picked

to start growing a cluster Ci until its cumulated density reaches ADCi
. Although, it proved

to work well in practice, this technique has some drawbacks, namely:

• Random behavior : each starting face is picked randomly to grow a cluster with average
cluster density ADCi

. This results in a random behavior of the clustering result with
the same problems as described in Section 3.1.4 (Figure 3.2 on page 34).

• Discretization problems : because we operate on a polygonal mesh, as pointed out in
[VKC05], it often happens that some clusters remain to be initialized and there are
no free faces available to start with. The authors proposed, in this case, to pick at
random a face and assign it to a given cluster. This may lead to more disconnected
clusters, because the picked face most probably will be inside of some cluster.

• No energy functional support : Although this technique works very well in practice,
one must recognize that it is only a good initialization heuristic. It does not pro-
vide an initialization which supports a given energy functional. As an example, for
Multiplicatively Weighted CVDs, which we will propose in Section 3.2.2, it will not
provide an appropriate initialization that can take into account the cluster’s weight.

In this respect one may be tempted to reformulate the l-neighborhood initialization and
use the average cluster density ADCi

to stop at a lower level to mimic the same behavior.
However, finally we will end up with the same set of problems as mentioned above.

Influence of Face Density and Cluster Weight:

Assume that we are building an adaptive (weighted) CVD on a model as depicted in
Figure 3.11. As expected, for large values of γ some clusters get smaller or bigger in high
or low curvature areas, respectively. However, as indicated in Figure 3.11 (γ = 2 to γ = 6),
although larger values of γ are used, some highly weighted clusters on the model features
do not change their size or get elongated in the direction of low homogeneously weighted
regions. Such a behavior contradicts the general expectation that highly weighted clusters
always decrease their size as γ increases. The expected behavior in this case is as presented
in Figure 3.11 (wA

i).

46 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

(γ = 2) (γ = 4) (γ = 6) (wA
i , γ = 2)

Figure 3.11: Result of an adaptive CVD for different values of γ. (wA
i) Result obtained

with multiplicatively weighted CVD (Section 3.2.3).

Figure 3.12: Final clustering configuration for two clusters Ci and Cj. The face F is the
triangle under consideration.

In general, increasing the values of γ attracts the cluster centroids to higher density
regions, as can be seen in Figure 3.11. However, for clusters on the model features, increas-
ing γ has no substantial effect on the clusters centroids because they are already “fixed”
at these positions. The only effect for such clusters is that their total weight increases.

As an example, consider the configuration as presented in Figure 3.12. Here the bound-
ary update between cluster Ci (lies on the model feature) and its adjacent one Cj (not on
the model feature) is done. For a boundary face F the energy contribution to the total
energy is given by ρf‖γf −γi‖

2 and ρf‖γf −γj‖
2, respectively. Increasing γ moves the cen-

troid γj of Cj in the direction of higher density regions where the centroid γi of Ci remains

3.2. ADAPTIVE CVD-BASED MESH COARSENING 47

almost fixed. In this case the total energy contribution of two clusters is only influenced by
the distance between face-cluster and the density ρf of the face under consideration, but
not the cluster weight.

To account for cluster weight it becomes clear that we need methods that can weight
the face-cluster distances in different ways. The energy most probably must be given by
wiρf‖γf − γi‖

2 and wjρf‖γf − γj‖
2, with w as cluster weight. Thus, we introduce the

Multiplicatively Weighted CVD in Section 3.2.2, and in Section 3.2.3 appropriate cluster
weights are proposed that can take into account the cluster weight.

3.2.2 Discrete Multiplicatively Weighted CVD

The Voronoi Diagram (VD) concept can also be extended to the weighted Voronoi dia-
grams. In this section we introduce the Multiplicatively Weighted CVD (MWCVD) as an
extension of the CVD [CK06]. This concept is the basis of our feature preserving mesh coars-
ening. First, we review the concepts of a Weighted Voronoi Diagram and Multiplicatively
Weighted Voronoi Diagram and finally we give a discrete formulation of the MWCVD.

Weighted Voronoi Diagrams:

Weighted Voronoi diagrams are well known in 2D (see for example [OBS92]). For a given
set of n different sites {zi}

k−1
i=0 in the domain Ω, the weighted Voronoi-region is defined as:

Dw
i = {x ∈ Ω| di(x, zi) < dj(x, zj) ∀ j 6= i} (3.18)

where di is a weighted distance measure for cluster i. For this type of VD the assumption
is that the site has a predetermined weight which reflects an application-specific property,
e.g. additive, multiplicative or others, see [OBS92] for an overview.

For an ordinary VD one assumes that all clusters have the same weight, i.e. di(x, zi) ≡
d(x, zi), where d is the standard Euclidean distance.

Multiplicatively Weighted Voronoi Diagram:

For this type of weighted Voronoi Diagrams (see [AE84], [OBS92]) di is given by:

di(x, zi) = wi‖x− zi‖ (3.19)

where {wi}
n−1
i=0 are predetermined positive weights. In this case, we refer to Dw

i as multi-
plicatively weighted (MW) Voronoi-region Dmw

i and to the set {Dmw
i }k−1

i=0 as MW Voronoi
diagram.

Here it is important to note that this definition of the MW Voronoi Diagram is a special
case of an anisotropic Voronoi Diagram defined in [LS03], see for more discussions [DW05].

Generally, MW-Voronoi regions are not necessarily connected or convex. In some sit-
uations, depending on the associated weights, they may also contain holes, i.e. they may
have a non-zero genus.

48 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

Multiplicatively Weighted CVD (MWCVD):

Given a set of k different seeds {zi}
k−1
i=0 together with predetermined positive weights

{wi}
k−1
i=0 and a positive density function ρ(x) in the 2D domain Ω. A Multiplicatively

Weighted Centroidal Voronoi Diagram is a MW-Voronoi diagram for which the seeds
{zi}

k−1
i=0 of the regions {Dmw

i }k−1
i=0 are their corresponding centroids (Eq. (3.2)).

Similar to the CVD the following property holds:

PROPOSITION 3.1. Given a set of k different seeds {zi}
k−1
i=0 with associated positive

weights {wi}
k−1
i=0 and a density function ρ(x) in the domain Ω. Let {Dmw

i }k−1
i=0 denote any

tessellation of Ω into k regions. Define:

Emw =
k−1
∑

i=0

∫

Dmw
i

ρ(x) wi‖x− zi‖
2dx (3.20)

Emw is minimized if and only if {Dmw
i }k−1

i=0 is a MWCVD.

The proof of this Proposition is given in Appendix A.

Observe that in the case of uniform weights {wi}
k−1
i=0 the MWCVD becomes an ordinary

CVD, so that the MWCVD is a generalization of the CVD.

Discrete MWCVD:

Because we work on a polygonal mesh the discrete formulation for MWCVD is required.
Using the same assumptions as in Section 3.1.3 the MWCVD energy functional (3.20)
becomes:

EMWCVD =
k−1
∑

i=0

(
∑

Fj∈Ci

ρjAjwi‖γj − γi‖
2) (3.21)

with the seed of each cluster Ci chosen as its centroid

γi =

∑

Fj∈Ci
ρjAjγj

∑

Fj∈Ci
ρjAj

. (3.22)

Here Aj and ρj are the area and the density function of the face Fj, respectively, and γj

is the triangle’s center of mass.

Eq. (3.21) together with Eq. (3.22) can be simplified to:

EMWCVD =
k−1
∑

i=0

wi(
∑

Fj∈Ci

ρjAj‖γj‖
2 −

‖
∑

Fj∈Ci
ρjAjγj‖

2

∑

Fj∈Ci
ρjAj

) (3.23)

As in Section 3.1.3, the energy computation is based only on three values for each

3.2. ADAPTIVE CVD-BASED MESH COARSENING 49

cluster:
∑

ρjAj‖γj‖
2,
∑

ρjAjγj and
∑

ρjAj. The
∗E0

MWCVD is given by:

∗E0
MWCVD = wq(

∑

Fj∈Cq

ρjAj‖γj‖
2 −

‖
∑

Fj∈Cq
ρjAjγj‖

2

∑

Fj∈Cq
ρjAj

)+

wp(
∑

Fj∈Cp

ρjAj‖γj‖
2 −

‖
∑

Fj∈Cp
ρjAjγj‖

2

∑

Fj∈Cp
ρjAj

).

The ∗E1
MWCVD and ∗E2

MWCVD can be computed in a similar way, refer to Eq. (3.11)-
Eq. (3.13) and Figure 3.15 on page 54.

3.2.3 Feature Preserving Mesh Coarsening

The visual quality of a coarsened model is directly related to the preservation of the
surface features. We aim at capturing the mesh features as good as possible and at the
same time reducing the overall computational effort. We achieve this through direct usage
of the cluster centroid in the clustering process as in the triangulation, without using any
specially-designed vertex positioning techniques, e.g. QEM or constrained positioning. We
show that with appropriate cluster’s weights the MWCVD provides a natural way for an
efficient feature-preserving coarsening.

We relate the weights wi to the face’s density ρj in the cluster, which itself resembles the
mesh features. As the cluster configuration changes during different iterations, the weight
will be updated accordingly and thus resulting in differently shaped clusters in the final
MWCVD.

We propose three different types of cluster’s weight:

Weighted Area:

wA
i =

∑

Fj∈Ci

ρjAj (3.24)

The cluster area is weighted with the face densities. This means, clusters with higher
density get smaller in size compared to clusters with lower density.

Density Variance:

wV
i = 1 +

∑

Fj∈Ci

(ρj − ρi)
2 (3.25)

This will lead to clusters with the same density variance distribution. Thus clusters
with higher density will tend to contain only faces with higher density and build
around those regions and vice versa.

Maximum Density:
wM

i = maxFj∈Ci
{ρj} (3.26)

Assigning the maximum density to the cluster weight is based on the idea, that cells
with low or high density should be contained in clusters with low or high weight,
respectively.

50 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

Note that, in the case of a uniform density function our MWCVD will result in an
ordinary CVD for the maximum density based and density variance cluster’s weight. This is
not the case for wA and could be solved by normalizing wA with the cluster area

∑

Fj∈Ci
Aj.

This, however, yields unsatisfactory clustering results.
A proper reformulation of the cluster weights (Eqs. (3.24)-(3.26)) results in local incre-

mental computation rules which can be efficiently updated and evaluated during clustering
process.

For the weighted-area based approach wA
i (Eq. (3.24)) the value

∑

Cj∈Vi
ρjAj is already

computed for the energy functional Eq. (3.23). Therefore, this cluster weight is obtained
with no additional computational cost.

The density-variance approach wV
i (Eq. (3.25)) can be simplified to

wV
i = 1 +

∑

Fj∈Ci

ρ2j − (
∑

Fj∈Ci

ρj)
2/ni (3.27)

where ni is the number of faces in a cluster. This allows the computation of wV
i using only

local computations based on the additional quantities
∑

Fj∈Ci
ρ2j and

∑

Fj∈Ci
ρj per cluster.

For the maximum-density approach wM
i (Eq. (3.26)), the current maximum needs to

be identified by checking all faces in a cluster. This means keeping explicitly the cluster
faces, a requirement that must be avoided for efficiency reasons. To overcome this problem
we propose to use the following approximation:

maxFj∈Ci
{ρj} = lim

p→∞
(
∑

Fj∈Ci

ρpj)
1/p (3.28)

This approximate value of the maximum ρ in a cluster can be computed using the additional
value

∑

Fj∈Ci
ρpj which again requires only local updates. To get a good approximation of the

maximum ρ in a given cluster, the value of p must be large enough. In our implementation
we use a value of 10, since larger values may lead to numerical problems.

Figure 3.13 (top) shows different clustering results obtained for the Fandisk model using
the proposed cluster’s weights. Note that, in all three cases the obtained clustering provides
smaller-sized clusters in higher curvature regions where larger-sized ones are covering lower
curvature areas. Using the maximum-density or density-variance approach, i.e. wM or wV

respectively, results in clusters that are elongated along the feature lines, indicating an
anisotropic behavior in this case. For the weighted-area based, i.e. wA, the clusters are
more compact and also containing a significant number of cells with low curvature. From
this perspective, the clustering results obtained using the former two cluster’s weight, i.e.
wM or wV , are more suitable for our final triangulation, because the cluster centroid is
closer to the original surface.

Figure 3.13 (bottom) shows the corresponding triangulations. Although we use only
the cluster centroid as a vertex for the triangulation, the final coarse mesh still preserves
the main features of the original mesh. Small defects which can be seen in the obtained
triangulation are due to the fact that some clusters contain more than one feature point,

3.2. ADAPTIVE CVD-BASED MESH COARSENING 51

Figure 3.13: (Top) Clustering results and (bottom) corresponding triangulation for the
Fandisk model. Left: result using wA; Center: result using wM ; Right: result using wV .

(a) (b) (c)

Figure 3.14: (a) Clustering result with wM , for l = 7 resulting in 274 clusters. (b) Triangu-
lation of (a) using the cluster centroid as vertex. (c) Triangulation of (a) using the QEM
for vertex placement.

i.e. the intersection of several feature lines. In the final triangulation these feature points
are reduced to a single vertex.

Figure 3.14 (a) shows the result of MWCVD utilizing the maximum density wM cluster
weight. The result exhibits the desired result in sense of the feature elongated clusters.
Figure 3.14 (b) - (c) provides a comparison of the corresponding triangulations using direct
or QEM vertex placement. Although, in the first case only the cluster centroid is used for
triangulation, the feature lines are well preserved.

Table 3.1 provides the timing results for different meshes. The first row gives the number

52 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

Model Fandisk Cube Bunny Horse Armadillo
V(input mesh) 6475 15002 34834 48485 172974

l (level) 3 7 7 5 5
seeds (obtained) 527 274 594 1579 4594

Init (msec.) 31 110 281 312 1047
Clustering,
wA

ρnew 50 50 50 100 100
(msec.) 688 1078 3438 11375 17641

Clustering,
wM

ρnew 50 50 50 100 100
(msec.) 671 1062 4890 6937 20000

Clustering,
wV

ρnew 3 3 3 5 5
(msec.) 468 860 3234 5235 18750

Table 3.1: Timing for different input meshes. The results are generated using a 3GHz Intel
Core(TM)2 Duo CPU PC.

of vertices of the input mesh. The second one shows a chosen value for level l. For a given
value of l, the l-neighborhood initialization gives the total number of seeds k, i.e. the number
of vertices in the final coarse mesh. The fourth row shows the time needed to perform l-
neighborhood initialization. For different cluster’s weights, the scaling parameter ρnew and
the time required to obtain the final clustering are presented.

In the case of the density-variance approach the value for the scaling parameter ρnew is
usually chosen to be small compared to the value used for the weighted-area and maximum-
density approach, see Table 3.1. This is due to the quadratic influence of the density
function ρ on the cluster weight wV , see Eq. 3.25.

3.3 Energy Minimization by Local Optimization

Chiosa and Kolb [CK08] have pointed out that the Valette algorithm, Section 3.1.3, can
be employed to perform other tasks, i.e. used with other energy functionals, and not only
for building a CVD as originally proposed in [VC04]. As an example we have shown that
the L2,1 norm [CSAD04] can be represented in an incremental form, which allows an ef-
ficient energy computation, we describe this in Section 3.3.2. Thus, in the next section
we present a generalization of the Valette algorithm, i.e. Energy Minimization by Local
Optimization (EMLO) algorithm, and in Section 3.3.2 we show different application areas
of the approach.

3.3.1 The EMLO Algorithm

To facilitate the description of the algorithm, it is helpful to introduce the notion of a
Boundary Loop [CK08]:

Definition 3.1. A Boundary Loop (BL) is a closed sequence of all boundary half edges
of a 1-connected set of faces.

3.3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION 53

In Figure 3.15 the BL is represented by a dashed line. If a cluster Ci has more than
one component, then each component will have its own boundary loop. Any change in the
cluster configuration changes the BLs of the affected clusters, see Figure 3.15. This notion
is very important in this as in the context of defining and identifying an Optimal Dual
Edge, see Section 4.2.2.

Now, suppose that an energy functional E is provided:

E =
∑

i∈{0,...,k−1}

Ei =
∑

i∈{0,...,k−1}

∑

Fj∈Ci

Ei
j. (3.29)

Ei
j is the positive semidefinite4 cost of assigning the face Fj to the cluster Ci. Note,

that in general El
j 6= Em

j if l 6= m, e.g. see the CVD energy functional Eq. (3.5). The value
of E in Eq. (3.29) depends only on a given clustering of the mesh M into k clusters Ci,
where each cluster Ci contains a set of faces {F i

j}.
The basic idea of the algorithm is that the total energy E can be minimized by simply

reassigning the cluster’s faces to other clusters in such a way that the energy E decreases,
i.e. energy minimization by reclustering.

A simple example of this process for two adjacent clusters Cq and Cp and two neigh-
boring faces Fm and Fn for a boundary edge e is presented in Figure 3.15. The energies of
three configurations are computed:

• For the initial configuration with corresponding energy E0 the face Fm belongs to Cq

and Fn belongs to Cp.

• For the case when cluster Cq grows and Cp shrinks, thus both Fm and Fn belong to
Cq.

• For the case when cluster Cp grows and Cq shrinks, thus both Fm and Fn belong to
Cp.

For a given boundary edge e the smallest energy E is chosen and a corresponding con-
figuration is updated, i.e. a cluster grows or shrinks or no configuration change is performed
[VC04], [CK08].

Given an initial (starting) configuration the algorithm iteratively reduces the energy E
of a given configuration as described in the Algorithm 3.3.

Algorithm 3.3. (Energy Minimization by Local Optimization (EMLO))

1 Loop until no configuration changes {
2 Forall Clusters Ci

3 Forall Boundary Loops b of Ci

4 Loop over boundary edges e ∈ b {
5 Compute energies E0, E1, E2

6 Choose smallest energy and update cluster configuration
7 }
8 }

4A function f is positive semidefinite, if f(x) ≥ 0 for every x ∈ D.

54 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

Fn

Fm

Cq

Cp Cp

Cq

Fn

Fm

Cp

Cq

Fn

Fm

E0 E1 E2

Figure 3.15: Local tests performed for a given boundary edge e (solid line) of two adjacent
clusters Cq and Cp where corresponding faces Fm and Fn are checked. TheBoundary Loop
of the cluster is represented by a dashed line. E0 configuration energy: Fm still belongs to
Cq and Fn still belongs to Cp. E

1 configuration energy: Cq grows and Cp shrinks, i.e. Fm

and Fn belong to Cq. E
2 configuration energy: Cq shrinks and Cp grows, i.e. Fm and Fn

belong to Cp.

In each iteration, the algorithm loops over the BLs of each cluster. For a given boundary
edge, energies E0, E1, E2 are computed, refer to Figure 3.15. The cluster configuration is
changed and updated only if E1 or E2 is smaller than E0 otherwise the configuration is
left intact.

The energies E0, E1 and E2 are defined as follows, refer to Figure 3.15:

E0 =
∑

i
′

Ei
′ +

∑

Fj∈Cq

Eq
j +

∑

Fj∈Cp

Ep
j . (3.30)

E1 =
∑

i
′

Ei
′ +

∑

Fj∈Cq∪{Fn}

Eq
j +

∑

Fj∈Cp\{Fn}

Ep
j . (3.31)

E2 =
∑

i
′

Ei
′ +

∑

Fj∈Cq\{Fm}

Eq
j +

∑

Fj∈Cp∪{Fm}

Ep
j . (3.32)

with i
′

∈ {0, . . . , k − 1} \ {q, p}

Because the energy functional E is supposed to be positive semi-definite and any mod-
ification in the cluster’s configuration reduces E, the algorithm converges, i.e. there are
no cluster configurations for which E1 or E2 is smaller than E0. The result is an opti-
mized clustering for which the functional E is minimal. However, as for all algorithms from
this class of iterative approaches, there is no guarantee that the global minimum will be
reached.

It is important to observe that for comparing the energies E0, E1 and E2 in the above

3.3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION 55

(a) (b) (c) (d)

Figure 3.16: EMLO algorithm stages: (a) Initialization, black triangles represent the start-
ing seeds F start

j . (b) Result after one loop of the initial cluster growing. (c) Final result of
the initial cluster growing. (d) Final clustering obtained after the energy minimization.

formulas, the first sums are irrelevant, thus Eqs. (3.30)-(3.32) can be reduced to:

∗E0 =
∑

Fj∈Cq

Eq
j +

∑

Fj∈Cp

Ep
j . (3.33)

∗E1 =
∑

Fj∈Cq∪{Fn}

Eq
j +

∑

Fj∈Cp\{Fn}

Ep
j . (3.34)

∗E2 =
∑

Fj∈Cq\{Fm}

Eq
j +

∑

Fj∈Cp∪{Fm}

Ep
j . (3.35)

Note that, comparing ∗E in Eqs. (3.33)-(3.35) is equivalent to comparing the energies
E in Eqs. (3.30)-(3.32), but at lower computational cost because the irrelevant summations
are dropped.

As a result, comparing the total energy for different configurations requires only the
data from two adjacent clusters which border a given boundary edge. Thus the energy
minimization is done by applying only local (thus the name Energy Minimization by Local
Optimization) queries on the BL. Based only on this information the cluster configuration
is optimized, i.e. functional E is minimized.

In general, any energy functional can be used with the EMLO algorithm. However, as
ca be seen from Eqs. (3.33)-(3.35), to compute efficiently the total energy for different con-
figurations a direct cluster’s data update is required. This can be efficiently achieved only
if the energy functionals are in an incremental energy formulation . As an example,
the CVD energy functional used in Sections 3.1 - 3.2 has such a formulation. For other
energy functionals, such as the ones used in [AFS06], the requirement is store the cluster’s
faces explicitly and solve an eigensystem to compute the energies for each step. Using these
energy functionals is, in general, possible but very inefficient.

Finally the steps of the generalized Valette approach can be summarized as follows:

Initialization: At the beginning each face Fj of a mesh is set to be free F free
j , i.e. not

assigned to any cluster. Now, given an initial number of clusters k, identify k starting

56 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

seeds (faces) F start
j . Assign each F start

j to an individual cluster Ci. Usually a random
initialization is used in this step, see Figure 3.16 (a) for an example.

Initial Cluster Grow: Grow each cluster Ci one at a time, by looping over the BLs of
the cluster. For each boundary edge e of the cluster Ci check if it has a free face F free

j

and assign it to the cluster Ci, i.e. F
free
j ⇒ F i

j , for an example see Figure 3.16 (b).
This process is repeated until the entire model is covered (Figure 3.16 (c)). In this
step no energy computation is in general required, thus a very fast growing can be
achieved.

Energy Minimization: For this step the Energy Minimization by Local Optimization
is used as described in the Algorithm 3.3. The result of the energy minimization is
a configuration for which no further decrease in the total energy E is possible, see
Figure 3.16 (d).

Taking this algorithm by itself, it requires the initial k number and the positions of
the initial seeds to be specified, just as Variational Clustering (Section 2.1.2). Thus, the
convergence and the final result is also highly dependent on the starting configuration.

However, compared to the standard Variational Clustering this approach, see Algo-
rithm 3.3, reveals some very important aspects:

1. There is no Priority Queue used in the clustering process.

2. There is no initial seed initialization in each iteration. Remember that for this an
explicit check of the faces for each cluster is done to identify the one with smallest
energy as starting seed, see Section 2.1.2.

These are the major reasons that make this algorithm so attractive.

3.3.2 Different Application Areas

As pointed out in the last section the EMLO algorithm requires the energy functionals to
be in an incremental formulation. The advantages of an incremental energy formulation
can be easily recognized:

• Efficient cluster’s data update, yielding an efficient energy computation.

• Only local queries are required to compute the energy.

• This kind of representation allows an energy simplification as obtained in Eq. (3.14)-
(3.15), thus reducing the overall memory requirement and allowing an efficient energy
minimization.

3.3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION 57

However, such a formulation is very hard to find, especially for already existing energy
functionals. In this section we try to extend the class of energy functionals which can be
used efficiently with the EMLO algorithm, thus showing the generic nature of the approach.

The energy functional proposed in [CSAD04] for planar mesh approximation can be
simplified to such a form, as we show in the next subsection.

Thus it is also important to extend the EMLO algorithm to fit, at least, other shapes
such as: spheres, cylinders or cones. In this section we give a new incremental energy for-
mulation for sphere fitting. Defining an incremental energy formulation for approximating
the mesh with cylinders or cones is still a challenging task. Though, in Chapter 5 we in-
troduce the Boundary-based clustering algorithm, which can be seen as a counterpart of
the EMLO algorithm. In that context the requirement on the energy formulation is more
relaxed and can accept existing energy formulation.

Planar Approximation:

In [CSAD04] a new shape metric L2,1 was introduced, which in the discrete case can be
written as:

L2,1(Ci) =
∑

Fj∈Ci

ρjAj‖nj −Ni‖
2. (3.36)

where nj is the normal of the faces Fj andNi is the representative cluster normal computed
as:

Ni =

∑

Fj∈Ci
ρjAjnj

‖
∑

Fj∈Ci
ρjAjnj‖

. (3.37)

In the following, we derive a very efficient formulation from combining Eq. (3.36) and
Eq. (3.37). This can be used not only with the EMLO algorithm but also with the classical
VC approach. One can show that:

EP lanar =
k−1
∑

i=0

L2,1(Ci) =
k−1
∑

i=0

2(
∑

Fj∈Ci

ρjAj − ‖
∑

Fj∈Ci

ρjAjnj‖). (3.38)

Applying similar arguments as for Eq. (3.14) in Section 3.1.3, the energy of the initial
configuration for planar mesh approximation is:

∗∗E0
P lanar = −‖

∑

Fj∈Cq

ρjAjnj‖ − ‖
∑

Fj∈Cp

ρjAjnj‖. (3.39)

∗∗E1
P lanar and

∗∗E2
P lanar are computed in a similar way, see Eq. (3.15), (3.16).

The functional EP lanar with reduced energies ∗∗E0
P lanar,

∗∗E1
P lanar and ∗∗E2

P lanar pro-
vides the same advantages as the CVD energy functional. For each cluster only the value
∑

ρjAjnj needs to be stored. Again, these values can be updated easily and thus a fast
energy computation is possible.

Figure 3.17 (a) - (b) shows a clustering result using the ∗∗EP lanar energy functional. It
can be seen that the algorithm performs well. Although, two problems can be observed:

58 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

(a) (b) (c)

Figure 3.17: Results for planar clustering of the Fandisk model. (a) Random initialization
with initial grow for k = 70 clusters. (b) Clustering result. (c) Result after merging with
∆merging = 1◦, resulting in 44 clusters.

1. The clusters are not compact in strictly planar regions.

2. Some planar patches contain more than one cluster.

The first problem is due to the energy functional, which simply identifies regions with
the same representative normal Ni. Thus for strict planar regions the decision on whether
a face belongs to one or another cluster is generally undefined (zero energy regions). This
effect can be even more pronounced if a slight amount of noise is present in the model,
thus elongated or branched clusters might appear, see Figure 3.17 (b).

The second problem is due to poor initialization, where for one planar patch more
starting seeds are generated.

A possible solution in this case, as proposed in [CSAD04], is to use a sort of a farthest-
point initialization (a cluster is inserted one at a time at the face with maximum energy)
or the cluster teleportation technique. However this will not pay-off on noisy or smooth
models.

Another simple solution could be to use a user-specified parameter ∆merging. If the angle
between representative normals Ni of two neighboring clusters is smaller than ∆merging,
then the clusters are merged into one cluster. The resulting clustering after applying this
step can be seen in Figure 3.17 (c). However, this results in less clusters as originally
intended.

Spherical Approximation:

In this section we present a new energy functional, which can faithfully approximate a
given surface’s geometry with spherical segments.

We assume that for each face Fj the normal nj and its centroid pj are provided. A
sphere can be represented by the sphere center Ci and its radius Ri. Then the sphere-
approximating energy functional can be written (see Figure 3.18) as:

Esphere =
k−1
∑

i=0

Esphere
i =

k−1
∑

i=0

∑

Fj∈Ci

‖cj −Ci‖
2. (3.40)

3.3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION 59

j

c
C

n

p

Ri

i

j

j

Figure 3.18: Sphere approximation.

where

cj = pj − Rinj. (3.41)

is the translated position pj along the normal nj with the amount Ri, and

Ci =

∑

Fj∈Ci
cj

ki
. (3.42)

is the cluster centroid using translated position cj, where ki is the size of the cluster Ci.
It can be easily shown that Eq. (3.40) can be simplified to:

Esphere
i =

∑

Fj∈Ci

‖cj‖
2 −

‖
∑

Fj∈Ci
cj‖

2

ki
. (3.43)

Using the Eq. (3.41) in Eq. (3.43) one obtains:

Esphere
i =

∑

Fj∈Ci

‖pj‖
2 − 2Ri

∑

Fj∈Ci

(pj · nj) + kiR
2
i −

1

ki
‖
∑

Fj∈Ci

pj‖
2 +

2Ri

ki





∑

Fj∈Ci

pj ·
∑

Fj∈Ci

nj



−
R2

i

ki
‖
∑

Fj∈Ci

nj‖
2.

(3.44)

The value of Ri for which the Esphere
i is minimal can be obtained by taking

∂Esphere
i

∂Ri
= 0.

Thus Ri is computed as:

Ri =
ki
∑

Fj∈Ci
(pj · nj)−

(

∑

Fj∈Ci
pj ·

∑

Fj∈Ci
nj

)

k2
i − ‖

∑

Fj∈Ci
nj‖2

. (3.45)

Using the Eq. (3.45) in Eq. (3.44) one obtains:

60 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

Esphere
i =

∑

Fj∈Ci

‖pj‖
2 −

1

ki
‖
∑

Fj∈Ci

pj‖
2 −

1

ki

[

ki
∑

Fj∈Ci
(pj · nj)−

(

∑

Fj∈Ci
pj ·

∑

Fj∈Ci
nj

)]2

k2
i − ‖

∑

Fj∈Ci
nj‖2

.

(3.46)

Applying similar arguments as for Eq. (3.14) in Section 3.1.3, the energy of the initial
configuration for spherical cluster approximation is:

∗∗E0
sphere = −

1

ki
‖
∑

Fj∈Ci

pj‖
2 −

1

ki

[

ki
∑

Fj∈Ci
(pj · nj)−

(

∑

Fj∈Ci
pj ·

∑

Fj∈Ci
nj

)]2

k2
i − ‖

∑

Fj∈Ci
nj‖2

.

(3.47)

∗∗E1
sphere and

∗∗E2
sphere are computed in a similar way, see Eq. (3.15), (3.16).

The functional Esphere with reduced energies ∗∗E0
sphere,

∗∗E1
sphere and

∗∗E2
sphere provides

the same advantages as the CVD energy functional. For each cluster Ci only the value
∑

pj,
∑

nj and
∑

(pj · nj) needs to be stored. Again, these values can be updated easily
and thus a fast energy computation is possible.

Note in Eq. (3.40) that for planar clusters Ri = ∞. This is exactly the case when k2
i −

‖
∑

Fj∈Ci
nj‖

2 ≈ 0. Thus, during the clustering process we first check if |k2
i − ‖

∑

nj‖
2| <

∆zero (we use ∆zero = 5×10−5). If this is the case we then simply set Esphere
i = 0 allowing a

planar fitting, otherwise Eq. (3.46) is employed. Or, if the reduced energy from Eq. (3.47)
is used, set ∗∗E0

sphere = −∞ to get planar regions fit first.
Figure 3.19 (a) - (b) shows the result of a sphere approximation for a model which

can be ideally approximated by 11 spherical clusters. Figure 3.20 (a) shows the result for
a model which consists of a sphere and a cube, which can be ideally approximated by 7
clusters. Note that the newly proposed energy functional performs very well.

However, in contrast to the expected result, as presented in the Figure 3.19 (c) and
Figure 3.19 (b) (produced with the ML algorithm; see Chapter4), two problems can be
identified:

1. Some spherical patches contain more than one cluster.

2. One cluster contains more than one spherical patch.

Both cases are only due to non-optimal starting seeds positioning, i.e. random initial-
ization. As in the case of a planar approximation (see previous section) the teleportation
mechanism [CSAD04] can be employed to improve the final clustering. However, the deci-
sion on whether two regions needs to be merged is a heuristic one, which simply checks if

3.3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION 61

(a) (b) (c)

Figure 3.19: Sphere approximation clustering results for 11 clusters. (a)-(b) Result of the
EMLO algorithm with random starting seeds. (c) Result of the ML algorithm (see next
chapter) for the same number of clusters.

(a) (b)

Figure 3.20: Sphere approximation clustering results for 7 clusters. (a) Result of the EMLO
algorithm with random starting seeds. (b) Result of the ML algorithm (see next chapter)
for the same number of clusters.

62 CHAPTER 3. ENERGY MINIMIZATION BY LOCAL OPTIMIZATION

the resulting merging error is smaller than half of the error of the worst cluster and this
may not pay off if models are noisy. The insertion is also not a cheap operation as the face
with worst distortion needs to be identified. Not to say that the user interaction is required
if the final number of clusters is not know in advance.

3.4 Conclusions

In this chapter we developed and exploited a new clustering paradigm, namely the EMLO
algorithm. The algorithm is proposed as a generalization of the Valette approach [VC04],
which was originally proposed only in the context of building a Centroidal Voronoi Diagram
on polygonal meshes.

In the first two parts of the chapter the EMLO algorithm was employed for CVD-based
mesh coarsening. It was shown that the Multiplicatively Weighted CVD with appropriate
cluster weights and direct vertex placement is the best tradeoff between approximation
quality and the efficiency of the coarsening process. In the last part the planar and spherical
approximation were proposed and applied.

From the obtained results three major problems can be identified:

1. Defining the “true” number of clusters. For the EMLO algorithm, as for all algorithms
in this class of iterative techniques, the user needs to define the number of clusters
k.

2. The problem of a “good” initialization that can take into account the underlying
energy functional. Proposed energy functionals perform very well with the EMLO
algorithm, however they are not always able to provide expected results mostly due to
the initialization problems. Thus this is still a major issue that needs to be addressed.
In the next chapter we try to tackle it together with the first problem.

3. The requirement on the energy functional to be in an incremental energy formulation
severely limits the applicability of the EMLO algorithm. However, as already pointed
out this can be alleviated using the Boundary-based clustering algorithm, which we
propose in Chapter 5.

Chapter 4

Multilevel (ML) Mesh Clustering

In Chapter 2 we described state-of-the-art approaches for mesh clustering. In the last
chapter, we have listed and exemplified most of the existing clustering problems regarding
the iterative clustering. We also gave different solutions which proved to be efficient for
individual problems.

However, it becomes indisputably clear in this context that existing algorithms do
not provide all necessary means for controlling or performing the clustering process. Each
approach is partially defective and in some cases requires an input from the user or yields
suboptimal results.

In this chapter we address these inherent problems of the variational and hierarchical
mesh clustering. We describe1 a novel Multilevel (ML) mesh clustering2 approach [CK08].
The proposed algorithm incorporates the advantages of both methods and consequently
overcomes the drawbacks of both. The result is a Multilevel construction, which allows a
fast and complete mesh analysis.

Since a brute-force combination of variational and hierarchical methods would be rather
expensive regarding the computational effort and storage requirements, an efficient imple-
mentation and an optimized discrete data structure is proposed in Section 4.2 and Sec-
tion 4.3, respectively.

We also show the generic nature of this algorithm in Section 4.4 by applying it to
different tasks: Multilevel Centroidal Voronoi Diagram construction, planar and spherical
mesh approximation. In this context, it will be recognized that the ML construction can
be speeded up without any loss of quality and different variants of the ML clustering are
possible in this case, these are discussed in Section 4.5.

4.1 The Multilevel Clustering Algorithm

Let us first review the advantages and the drawbacks of the most frequently employed
mesh clustering algorithms: hierarchical and variational.

1Parts of this chapter were published in [CK08].
2The original name of the algorithm [CK08] was Variational Multilevel Clustering (VMLC).

64 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

(a) (b)

Figure 4.1: CVD result for Bunny model for 200 clusters. (a) Hierarchical clustering. (b)
Variational clustering.

Hierarchical method: It produces a hierarchy, i.e. a binary tree, of clusters, see Sec-
tion 2.1.3. The main advantage of such an approach is that it does not require any
additional parameters or intervention from the user.

Despite the simplicity and wide range of applications, hierarchical clustering is yet a
greedy (non-optimal) approach. Due to a strict containment property in the cluster
hierarchy, it yields worse quality result compared to the variational approaches. If
a face is assigned to some cluster during merging it can no longer be reassigned to
other clusters although that may result in a more appropriate configuration. This
drawback limits the applicability of hierarchical clustering in many situations. E.g.
generating a Centroidal Voronoi Diagram (CVD) for mesh coarsening, as exemplified
in Figure 4.1. Applying a greedy hierarchical approach on the base of a CVD does
not yield a valid solution, i.e. the result is not a CVD.

Variational method: In contrast to the hierarchical approach, this method does provide
an optimal clustering3. However, an a-priori specified number and position of seeds
is required as input, see Section 2.1.2.

The determination of an appropriate or “true” number of clusters involves, in gen-
eral, the intervention of the user. Still, some applications are steered by quality or
approximation criteria thus making a predefinition of the number of clusters imprac-
tical. Additionally, as exemplified in the last chapter, it is difficult to choose “good”
initial seeds, i.e. starting positions, that can take into account the underling energy
functional and starting representatives. This also affects the convergence and the final
clustering result. In this context, some results obtained in the last chapter, see Fig-

3In the sense that at least a local minimum is reached.

4.1. THE MULTILEVEL CLUSTERING ALGORITHM 65

Hierarchical Clustering Variational Clustering

Advantages: Drawbacks:
• does not require the initial number of
clusters k

• requires the number of clusters k

• no initial seed positioning • requires and is dependent on the ini-
tialization

• nested hierarchy and provides all lev-
els (solutions)
Drawback: Advantage:
• a greedy (non-optimal) approach • provides an optimized clustering

Table 4.1: Hierarchical mesh clustering vs. Variational mesh clustering.

ure 3.2 on page 34 and Figures 3.19 - 3.20 on page 61, clearly depicts the situations
where these problems severely affect the final result.

Table 4.1 summarizes all above described aspects for both clustering algorithms. A sim-
ple analysis reveals an interesting fact about these standard and most frequently employed
clustering approaches. It can be seen that the advantages of one approach are in fact the
drawbacks of the other and vice versa.

Thus, if both algorithms can be fused together, such that they complement each other,
a new “hierarchical-variational” approach can be obtained, which incorporates only the
advantages of both hierarchical and variational algorithms. The new algorithm must obey
the following desired proprieties:

• No need to define the number of clusters k.

• No initialization dependency.

• Provides all levels (solutions).

• Each clustering configuration is optimized

This way, it must give to the user the possibility to choose any desired “hierarchy” level,
and for each one an optimized solution is obtained. This contrasts the greedy result of a
“true” hierarchical clustering. A visual exemplification of this idea is provided in Figure 4.2.

In its simplified form this clustering idea can be realized as a hybrid between hierarchi-
cal and variational clustering algorithms. It must alternately perform the merging of two
adjacent clusters (hierarchical phase) and apply an optimization step (variational phase).
Such a construction is called a Multilevel (ML) clustering [CK08].

66 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

Figure 4.2: Different levels of the ML mesh clustering.

(a) (b) (c)

Figure 4.3: An example of a single step of the ML algorithm. (a) Initial configuration, the
solid line represents the Dual Edge (DE) to be collapsed. (b) The new configuration after
the DE was collapsed. (c) The resulting configuration after the optimization step.

The ML algorithm starts with a configuration where each mesh face Fj is assigned to an
individual cluster Ci, i.e the total number of clusters k is equal to the number of faces m in
the mesh. In each ML step, two adjacent clusters with smallest merging cost are identified
and merged, see Figure 4.3 (a) - (b). Here the total number of clusters is decreased by one.
The newly obtained configuration (Figure 4.3 (b)) is then optimized w.r.t. an underlying
energy functional, i.e. the total energy is minimized, see Figure 4.3 (c). These general steps
of the algorithm are summarized in the Algorithm 4.1.

Algorithm 4.1. (The Multilevel Clustering Idea)

1 Initialization step.
2 Repeat until k == 1 {
3 Merging step.
4 Optimization step.
5 }

Thus, after initialization the algorithm alternately executes the merging and the opti-
mization steps until the final number of clusters is equal to one. This way, an optimized
multilevel clustering is built.

4.2. REALIZING MULTILEVEL MESH CLUSTERING 67

The cost of merging two clusters Cq and Cp into one representative cluster Cr, i.e. the
collapse cost of a Dual Edge which connects Cq and Cp, is defined [CK08] as:

CostDE = ECq∪Cp
− (ECq

+ ECp
). (4.1)

where E is the energy of a given cluster Ci.

The cost definition (4.1) is different from the one used for hierarchical clustering in
[AFS06]. There, only the cost for the merged clusters, i.e. only the first term in Eq. (4.1),
is used. This cost definition, on the contrary, ensures that the collapse operation is done
only for clusters which give the smallest increase in the total energy E, i.e. the selected
collapse has the least negative impact on the overall energy. Additionally, as we will show
in Section 4.4, this cost definition leads to a very compact energy representation and makes
the algorithm even more efficient.

The merging of two clusters is always done according to the least merging cost. The
following optimization step, see Algorithm 4.1, provides a better initial configuration for
the next level. Thus, the initial starting configurations at any level are always the most
appropriate for any specific clustering process and obey the underling energy functional.
This resolves the inherent problems of the Variational algorithms, for which the result and
the convergence is strictly related to the initial selection of seeds.

4.2 Realizing Multilevel Mesh Clustering

An efficient implementation of the Multilevel approach (Algorithm 4.1) is challenging. The
direct combination of the hierarchical and variational methods is, in general, difficult, even
impossible. There are many reasons for this:

Non-nested hierarchy: The ML mesh clustering algorithm, in contrast to hierarchical
face clustering algorithm, does not, in general, generate a nested hierarchy. Figure 4.4
provides such an example. Note that the lower level clusters are not completely
contained in a single upper level cluster.

The multilevel construction is a nested hierarchy only when no optimization takes
place. Thus, navigating between different levels of the multilevel representation is a
non trivial task in this case.

Validity and varying number of DEs: The standard hierarchical approach, see Sec-
tion 2.1.3, starts with the creation of the Dual Graph (DG) of the mesh M . However,
after an optimization step some Dual Edges may no longer be valid, see Figure 4.5 (b).
This means the DG is no longer valid. These DEs should be removed from their cor-
responding nodes in the DG. Even worse, new DEs may appear after optimization,
see Figure 4.5 (c). Thus, new DEs must be created and added to the corresponding
nodes in the DG.

68 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

12

2 6 7

11

13

14

4 5 1 3

810 9

0

12

2 6 7

11

13

14

4 5 1 3

810 9

0

0

1

2

3

4

5

6

7

8 9

10 11

8

10

12

0

1

2

3

4

5

6

7

8 9

10 11 10

8

12

(a) (b)

Figure 4.4: Example of a non nested “hierarchy” for ML construction. (a) Hierarchical
clustering: hierarchy is nested. (b) ML clustering: merging cluster 9 with cluster 11 and
applying optimization destroys the nested hierarchy, i.e. cluster 2 is no longer contained in
cluster 9 but belongs to cluster 8.

(a) (b) (c)

Figure 4.5: Example of an ambiguity in the validity of the DEs. (a) Initial configuration,
the solid line represents the Dual Edge (DE) to be collapsed. (b) The new configuration
after the DE was collapsed. The solid lines represent DEs which will not be valid after the
optimization step. (c) The resulting configuration after the optimization step. The solid
lines represent newly created DEs.

This is in contrast to the standard hierarchical algorithm, where only DEs incident
to a newly created node need to be updated. All this makes the DG structure rather
inefficient and special care must be taken for a correct update.

Computational effort: The variational clustering is an iterative approach where parti-
tioning and fitting steps are alternated until an optimal partitioning according to an
energy functional is obtained, see Section 2.1.2. Thus, using variational clustering in

4.2. REALIZING MULTILEVEL MESH CLUSTERING 69

conjunction with hierarchical clustering will require, in general, two priority queues:
one for all DEs and the second one for the priority of faces in the partitioning step.
Hence, using this approach in the optimization step is computationally prohibitive.

Tracking of cluster faces: Applying the optimization step after each dual edge collapse
will reassign some of the faces to different clusters, see Figure 4.5 (b) - (c). Thus, all
such changes must be tracked and represented in an appropriate data structure for
a fast “hierarchy” navigation.

To tackle the first two problems we depart from the standard usage of a Dual Graph
and of a Priority Queue to sort the DEs. Instead, in Sections 4.2.1-4.2.2 we propose new
and more efficient methods for solving these problems.

The computational effort of the ML approach can be reduced by choosing a more effi-
cient optimization approach compared to the variational clustering. We propose to use the
Energy Minimization by Local Optimization approach developed in the last chapter. This
technique is more suitable, because it does not require any Priority Queue for performing
the optimization.

To address the last problem, in Section 4.3 we propose a new data structure for tracking
the cluster faces.

4.2.1 Optimal Dual Edge

A Dual Edge between two clusters Ck and Cl, with respective Boundary Loops BLk and
BLl, see Definition 3.1, is identified according to the Definition 4.1. Each DE has assigned
cost according to the Eq. (4.1) and the reference to two merging clusters, see Figure 4.6.

Definition 4.1. A dual edge (DE) between two clusters Ck and Cl can be created if and
only if the Boundary Loops BLk and BLl share at least one common edge.

The total number of DEs for a specific cluster equals to the number of different BLs
that are adjacent to a given cluster. In general, a cluster must keep track of these DEs and
correspondingly update them. However, as already pointed out, during the optimization
step the cluster’s BL most probably changes, which results in a varying number of DEs, see
Figure 4.5. Each of these affected clusters must be checked for possible changes in its DE
list. These changes, i.e. deletion or insertion of new DEs, must be propagated and saved
in some form, which is rather inefficient.

The major idea here is to store only one DE per cluster. We call this DE an Optimal
Dual Edge (ODE) and define it according to the Definition 4.2, refer to Figure 4.6.

Definition 4.2. An Optimal Dual Edge (ODE) is a Dual Edge, see Definition 4.1, with
the smallest merging cost out of all DEs of a given cluster.

This notion of an ODE (Definition 4.2) helps us in dealing with the problem of varying
number of DEs:

70 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

30

Cq

C0C1

C2

C3

40

10

15

Figure 4.6: Identification of an Optimal Dual Edge (ODE) for a cluster Cq. A DE is rep-
resented by an arc with corresponding collapse cost. A loop over BLq is done and all
possible DE are checked. The DE with the smallest cost is stored. In this example it is
Cq.ODE.cost = 10 and Cq.ODE.opposite = C1.

• We no longer track the validity of DEs or the appearance of new DEs during optimiza-
tion. We rather indicate that there has been a change to the cluster configuration and
consequently its ODE is probably no longer valid or the merging cost is not updated,
i.e. C.validODE=false.

• Only one Dual Edge (in our case it is an optimal DE) needs to be identified for each
cluster. Thus, the current number of DEs is exactly equal to the current number of
clusters.

The process of identifying an ODE is implemented as the updateODE() subroutine.
Any cluster which has an invalid ODE, i.e. C.validODE==false, requires a new ODE. To
identify an ODE for a cluster Ci a loop over the cluster’s BL is done. A check of all possible
DEs is performed and the one with the smallest cost is stored. An example is provided in
Figure 4.6.

An ODE, as a DE, keeps the information of two possibly merging clusters. One of them
is the current cluster C for which the ODE is identified. The second one is some of its
adjacent clusters, which is stored in C.ODE.opposite. Each ODE has also an associate
merging cost stored in C.ODE.cost, see Figure 4.6.

4.2.2 Implementing the ML Clustering Process

To keep track of all valid clusters, we propose to use a Cluster Array structure defined
according to the Definition 4.3.

Definition 4.3. A Cluster Array (CA) is an array of a fixed length k that stores the
references to all created clusters, see Figure 4.7.

4.2. REALIZING MULTILEVEL MESH CLUSTERING 71

A Cluster Array, see Figure 4.7, keeps references to all clusters. If a cluster gets invali-
dated due to some merging operation, then it is simply marked as invalid.

C0 C1 C2 C3 . . . Ck−4 Ck−3 Ck−2 Ck−1

Figure 4.7: The Cluster Array (CA).

Now, each cluster Ci in part has three flags that describe the cluster’s state:

• C.affected flag is set to true if the cluster configuration is affected in some way by
a merging or optimization operation.

• C.needOptimization flag is set to true if the cluster configuration requires opti-
mization due to merging or a change in the cluster configuration.

• C.validODE flag is set to true if the cluster’s ODE is valid and the collapse cost is
updated.

Initialization:

Before a ML clustering (Algorithm 4.1) can start it requires an initial starting configuration.
In the initialization step each mesh face Fj ∈ M is assigned to an individual cluster Ci,
i = j, as shown in Figure 4.8. As a result the total number of clusters is equal to m.

F0 F1 F2 F3 . . . Fk−4 Fk−3 Fk−2 Fk−1

⇓

C0 C1 C2 C3 . . . Ck−4 Ck−3 Ck−2 Ck−1

Figure 4.8: The Cluster Array (CA) after initialization.

At this step no ODEs are identified. We only flag each cluster in the CA as being
unchanged C.affected=false and C.needOptimization=false, i.e. the cluster configu-
ration has not changed and it does not require optimization. However, we set the cluster’s
ODE as being non-updated C.validODE=false, i.e. the ODE of this cluster is no longer
determined.

Dual Edge Collapse:

At this step an ODE with minimal cost must be identified in the CA and the collapse
operation applied to this ODE.

To efficiently identify a cluster with the smallest cost regarding its ODE out of all
ODEs, we apply a single step of a bubble sort to the CA to move this cluster to the end of
the CA, see Figure 4.9. If a cluster has an invalid ODE, i.e. C.validODE==false, then an
ODE is identified for this cluster using the updateODE() subroutine, see Section 4.2.1. The

72 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

C Cq C Cl . . . C C C C

⇓

C C Cl C . . . C C C CODEmin

Figure 4.9: Applying a single step of bubble sort to the CA will move the cluster with
smallest cost ODE to the end of CA. In this case CODEmin

.ODE.opposite = Cl.

C0C1

C2
40

10

15

5Cl

CODEmin

C0C1

C2

Cnew
l

(a) (b)

Figure 4.10: Example of a Dual Edge collapse. (a) Initial configuration. The CODEmin
has

smallest cost ODE. (b) Collapsing the ODE. Reassigns cluster’s data and faces to the
cluster C l

new.

C C Cl C . . . C C C CODEmin

⇓

C C Cnew
l C . . . C C C

�����XXXXX
CODEmin

Figure 4.11: Merging cluster CODEmin
with Cl will result in a new cluster Cnew

l . Where the
last cluster in the CA automatically becomes invalid by decreasing the number of clusters
by one.

merging cost of the ODE is then used to decide if a given cluster has the smallest merging
cost4.

Note that using the CA with all clusters ODEs and a single step of the bubble sort is
an efficient solution to identify the minimal cost DE. Using a Priority Queue will result in
O(n log n) complexity, because the PQ needs to be rebuilt after each optimization phase
which vary the number of DEs. This is in contrast to hierarchical clustering where the
number of PQ elements is fixed.

A Dual Edge collapse operation is applied to the ODE of the last valid cluster in the

4In the case of two clusters having the same merging cost, the cluster with smallest number of faces must
be in general promoted. This reduces the number of operations in the merging step and the information
stored for the multilevel representation.

4.3. MULTILEVEL DATA STRUCTURE 73

CA, i.e. to the CODEmin
, see Figure 4.9. Collapsing an ODE means merging two adjacent

clusters into one representative cluster. The merging is applied between CODEmin
and the

opposite cluster that makes up the ODE, e.g. in Figures 4.10-4.11 the cluster Cl is the
opposite cluster of ODEmin.

Figure 4.10 provides an example of a collapse operation, while Figure 4.11 shows how
these changes are propagated to the CA. In the merging operation the cluster’s data and
faces are reassigned to a new representative cluster C l

new. After this operation the last
cluster CODEmin

in CA is invalidated, by reducing the number of valid clusters by one, as
shown in Figure 4.11. Because the configuration of C l

new cluster has changed we set its
identifier C l

new.affected to true and C l
new.needOptimization to true, which indicates

for the next step that only this cluster requires optimization.

Optimization:

The EMLO algorithm (Algorithm 3.3) is used to perform the optimization. The opti-
mization is executed only for clusters that require optimization, i.e. which are flagged as
C.needOptimization==true.

After performing the optimization we indicate that a given cluster does not require any
further optimization by resetting its flag to C.needOptimization=false.

Any change in the cluster configuration during energy minimization flags the oppo-
site cluster as requiring optimization, i.e. C.needOptimization=true. Thus, in the next
optimization loop these clusters are also handled. This process repeats until no cluster
configuration change occurs, i.e. all clusters have C.needOptimization=false.

Observe that the energy minimization always starts with the cluster most affected by
the collapse operation, i.e. the cluster optimization is always applied to the merged cluster
first, followed by an outwards propagation of that change to the neighboring clusters. This
will lead to a better convergence behavior of the Multilevel approach.

After the optimization step any cluster that has been affected by the optimization will
have a flag C.affected=true. Each of these clusters and its neighbors most probably have
an invalid ODE, thus we reset the flag for all of them to C.validODE=false. This triggers a
new identification of ODEs for these clusters and leads to a correct identification of ODEs
for neighboring clusters as well.

4.3 Multilevel Data Structure

In this section we describe a very fast and memory efficient differential data structure to
store the multilevel representation. It provides an easy way for reconstructing any level and
for computing any additionally required cluster information. Although here we describe this
structure only in the context of mesh clustering, the same data structure can be used to
represent any multilevel construction, e.g. Multilevel data clustering described in Chapter 6.

Suppose that we are given an initial mesh M as presented in Figure 4.12 (step0). Each
mesh face Fj ∈ M has an index ID=j. At the beginning each Fj (see Section 4.2.2) is

74 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

assigned to a corresponding cluster Ci with ID=i=j.

After each optimization step (or merging step if the optimization is deactivated) dif-
ferent faces are exchanged between different clusters. For keeping track of these exchanges
the basic idea is to store only the information corresponding to the faces which have moved
from one cluster to another, i.e the difference between two consecutive clusterings.

Thus, for each such face Fmoved
j with ID=a we store a triplet (a, b, c), where:

a: Is the face index.

b: Is the ID of the cluster to which the face has moved.

c: Is the ID of the cluster from which the face has been removed.

Figure 4.12 shows an example of the differential data storage; here only the final situ-
ation after the complete optimization steps is depicted. Note that even though a face can
be moved to different clusters during a complete optimization step, we store only the final
cluster ID.

Now, to reconstruct level l from level l − 1 using the stored information at level l and
the differential data {(al1, b

l
1, c

l
1), . . . , (a

l
n, b

l
n, c

l
n)}, we change all addressed faces with ID=al

to a cluster with ID=bl. Taking the example in Figure 4.12, going from step1 to step2 will
assign the face with ID=5 to the cluster with ID=4. Vice versa, if going from l+1 to l level,
for all faces with ID=al+1 the cluster ID is changed to ID=cl+1. Thus going from step4 to
step3 in Figure 4.12 requires to change for face F1 its cluster’s ID to the ID=1.

Moreover, the core algorithm does not actually store any intermediate information like
energy for any level in the multilevel representation. However, for some applications it may
be important to have this kind of information to justify or compare individual cluster levels
or to compute the cluster energy.

The energy of each level can be computed using the stored triplets (a, b, c). Suppose
that each cluster Ci in the initialization step, i.e. the cluster consists of one face only, has
some initial values C0

i {mi} for different additive measures mi, see Table 4.2. The measures
mi may represent any cluster data such as the centroid γi for a CVD, the normal ni for
planar fitting or the area ρj, see Section 4.4. In this case, index a refers to the measurema of
the cluster C0

a . Index b indicates that the measure ma should be “inserted” into the cluster
Cb and at the same time index c indicates that ma should be “removed” from the cluster
Cc. “Insertion” and “removal” may include various mathematical operations depending on
the measure. For example for the cluster area the insertion operation is a simple addition
and the removal operation is a subtraction of the terms. A detailed example which refers
to Figure 4.12 is presented in Table 4.2.

It should be noted, that based on this principle arbitrary measures can be tracked
throughout the multilevel construction.

4.3. MULTILEVEL DATA STRUCTURE 75

step0 step1 step2 step3

F7F5

F6

F0

F1

F2

F3

F4 C4

C5
C6

C0

C1

C2

C3

C4 C6

C0

C1

C2

C3

C6C4

C0

C1
C2

[7, 6, 7] [5, 4, 5] [3, 2, 3]

step4 step5 step6 step7

C2C0

C4 C6
C2

C4

C0

C0 C2 C2

[1, 0, 1] [2, 0, 2;
6, 2, 6;
7, 2, 6]

[2, 2, 0;
4, 0, 4;
5, 0, 4]

[0, 2, 0;
1, 2, 0;
4, 2, 0;
5, 2, 0]

Figure 4.12: An example of stored information for each step of the Multilevel clustering
algorithm applied to a simple mesh. step0 is the initial configuration. Here the cluster ID
corresponds to the face ID. step7 is the final clustering.

step0 step1 step2 step3 step4 step5 step6 step7
C0

0
{m0} m0 m0 m0 m0 ⊕m1 (m0⊕m1)⊕

m2

(m0⊕m1⊕
m2)⊖m2⊕
m4 ⊕m5

(m0⊕m1⊕
m4⊕m5)⊖
m0 ⊖m1 ⊖
m4 ⊖m5

C0

1
{m1} m1 m1 m1 m1 ⊖m1 × × ×

C0

2
{m2} m2 m2 m2 ⊕m3 (m2⊕m3) (m2⊕m3)⊖

m2 ⊕ m6 ⊕
m7

(m3⊕m6⊕
m7)⊕m2

(m3⊕m6⊕
m7⊕m2)⊕
m0 ⊕m1 ⊕
m4 ⊕m5

C0

3
{m3} m3 m3 m3 ⊖m3 × × × ×

C0

4
{m4} m4 m4 ⊕m5 (m4⊕m5) (m4⊕m5) (m4 ⊕m5) (m4⊕m5)⊖

m4 ⊖m5

×

C0

5
{m5} m5 m5 ⊖m5 × × × × ×

C0

6
{m6} m6 ⊕m7 (m6⊕m7) (m6⊕m7) (m6⊕m7) (m6⊕m7)⊖

m6 ⊖m7

× ×

C0

7
{m7} m7 ⊖m7 × × × × × ×

Table 4.2: The data refers to the multilevel representation example in Figure 4.12. It shows
how cluster data can be obtained for different steps. The operator ⊕ indicates an insertion
operation and ⊖ an removal operation, i.e. a given additive measure m is inserted or
removed from the cluster. The flag × in the table indicates that the cluster at that step is
no longer valid.

76 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

4.4 Multilevel Mesh Clustering Results

In this section we evaluate the Multilevel approach. Because the EMLO algorithm (see last
chapter) is used in the optimization phase of the Multilevel construction5, the same energy
functionals apply, as presented in Section 3.1.3 and Section 3.3.2.

All the results presented in this chapter are obtained on a 3GHz Intel Core(TM)2 Duo
CPU PC.

Building an Approximated Centroidal Voronoi Diagram:

As described in Section 3.1.4 the CVD energy functional can be simplified to [VC04]:

ECV D =
k−1
∑

i=0

(
∑

Fj∈Ci

mj‖γj‖
2 −

‖
∑

Fj∈Ci
mjγj‖

2

∑

Fj∈Ci
mj

).

where γj and mj = ρjAj is the centroid and the weighted area of the face Fj, respectively.
In case of the EMLO approach the energy of the initial configuration is:

∗∗E0
CV D = −

‖
∑

Fj∈Cq
mjγj‖

2

∑

Fj∈Cq
mj

−
‖
∑

Fj∈Cp
mjγj‖

2

∑

Fj∈Cp
mj

.

∗∗E1
CV D and ∗∗E2

CV D are computed in a similar way, refer to Eqs. (3.15)- (3.16).
For the ML approach we need additionally to define the collapse cost of a Dual Edge.

According to Eq. (4.1) the CVD merging cost for two merging clusters Cq and Cp is:

CostCV D =
∑

Fj∈(Cq∪Cp)

mj‖γj‖
2 −

‖
∑

Fj∈(Cq∪Cp)
mjγj‖

2

∑

Fj∈(Cq∪Cp)
mj

−

∑

Fj∈Cq

mj‖γj‖
2 +

‖
∑

Fj∈Cq
mjγj‖

2

∑

Fj∈Cq
mj

−

∑

Fj∈Cp

mj‖γj‖
2 +

‖
∑

Fj∈Cp
mjγj‖

2

∑

Fj∈Cp
mj

.

(4.2)

Eq. (4.2) simplifies to a very compact form:

CostCV D = −
‖
∑

Fj∈(Cq∪Cp)
mjγj‖

2

∑

Fj∈(Cq∪Cp)
mj

− ∗∗E0
CV D. (4.3)

Observe that this form leads to a very fast and efficient energy/cost computation. For
each cluster only the values

∑

mjγj and
∑

mj need to be stored.

5Note, as already discussed, this restriction on the optimization algorithm is only due to high compu-
tational effort required by the ML approach.

4.4. MULTILEVEL MESH CLUSTERING RESULTS 77

(level = 500) (level = 200)

Figure 4.13: The CVD clustering results using the HFC algorithm (top) and the ML algo-
rithm (bottom) for the Bunny model for different levels, i.e. number of clusters.

Figure 4.14: The CVD clustering results for the Fandisk model at level = 450 using: (left)
The HFC algorithm, (right) The ML algorithm.

Figure 4.13 depicts the result of a CVD for the Bunny model using the HFC compared
to ML algorithm at the same level. The same comparison is provided in Figure 4.14 for
a mechanical Fandisk model. Observe that the ML algorithm provides a valid CVD con-
struction at each level with well shaped clusters. However, applying the HFC algorithm
does not yield a valid solution, i.e. the result is not a CVD. Consequently, the energy of
the ML is lower than that of the HFC as depicted in Figures 4.15 - 4.16.

78 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

 0

 1

 2

 3

 4

 5

 6

 7

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
ne

rg
y

E
 C

V
D

clusters

ML
HFC

Figure 4.15: CVD Energy versus # of clusters for the Fandisk model. HFC: hierarchical
face clustering, ML: multilevel clustering.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 400 500 600 700 800 900 1000

E
ne

rg
y

E
 C

V
D

clusters

ML
HFC

random init EMLO

Figure 4.16: CVD Energy versus # of clusters for the Fandisk model. HFC: hierarchical
face clustering, ML: multilevel clustering, EMLO: with 50 random initialization for a given
number of clusters.

Figure 4.16 additionally depicts the dependency between the total CVD energy (Eq. (3.7))
and the number of clusters for the EMLO algorithm with random initializations. To obtain
the energy variation limits, the algorithm was applied 50 times for the same number of
clusters with different random seeds. Although the ML uses in its optimization stage the
EMLO algorithm the energy obtained with ML is always lower, thus leading to a better

4.4. MULTILEVEL MESH CLUSTERING RESULTS 79

quality clustering than that of the EMLO algorithm. This behavior is due to a better
initialization configuration provided by the ML algorithm, this in contrast to random ini-
tialization of the EMLO algorithm. The same behavior has been observed with similar
quality for other models.

It can be seen that the ML algorithm does not require any input from the user. It
performs a complete mesh analysis, i.e. a complete set of solutions is obtained, and the
user has the possibility to choose any solution. As expected, the results are of higher quality
than those obtained with the classical algorithms alone.

To reflect on the question of how many clusters best suit a given CVD clustering, or in
other words, what is the best level that needs to be chosen out of all, one could check the
energy behavior and look for the so-called elbow effect [DGJW06]. However, it can be seen
from Figure 4.15 that the energy of a CVD is steadily increasing, and does not indicate
clearly the point from which the increase in the energy is much faster. To judge the number
of clusters, in this case, one could also check the quality of the resulting triangulation or
the approximation error between original mesh and the resulting coarsened mesh, or any
other problem specific measures.

Planar Approximation:

As described in Section 3.3.2 the energy of planar mesh approximation for the initial
configuration can be written as:

∗∗E0
P lanar = −‖

∑

Fj∈Cq

ρjAjnj‖ − ‖
∑

Fj∈Cp

ρjAjnj‖. (4.4)

∗∗E1
P lanar and

∗∗E2
P lanar are computed in a similar way, see Eq. (3.15) - (3.16).

The cost of a dual edge is then calculated similar to the Eqs (4.2) - (4.3) as:

CostP lanar = −‖
∑

Fj∈(Cq∪Cp)

ρjAjnj‖ −
∗∗E0

P lanar. (4.5)

Observe that the functional EP lanar provides the same advantages as the CVD energy
functional. For each cluster only the value

∑

ρjnj needs to be stored for a fast energy and
merging cost computation.

Figure 4.17 shows the results of planar clustering applied to the Fandisk model. Note
that for this model the results of both algorithms are similar. This is due to the fact that in
regions with zero Gaussian curvature the hierarchical approach adequately merges regions
in principal directions of zero curvature.

However, as presented in Figure 4.18 and Figure 4.19, for shapes with non-zero Gaussian
curvature the ML algorithm provides a better planar approximation, resulting in a higher
overall fitting quality. It is also important to observe in Figure 4.19 the “smoothness” of
the cluster boundary. Thus, for shapes with non-zero Gaussian curvature the ML algorithm
will, in general, provide better results compared to hierarchical clustering.

80 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

Figure 4.17: Planar clustering results using the HFC algorithm (left) and the ML algorithm
(right) for the Fandisk model at the level of 200, 100 and 50 clusters, respectively.

Figure 4.18: Planar clustering results using the HFC algorithm (left) and the ML algorithm
(right) for a sphere model at a level of 100 clusters.

4.4. MULTILEVEL MESH CLUSTERING RESULTS 81

Figure 4.19: Planar clustering results using the HFC algorithm (top) and the ML algorithm
(bottom) for the Horse model (top view) at a level of 500 clusters.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 50 100 150 200 250

E
ne

rg
y

E
 P

la
na

r

clusters

ML
HFC

random init EMLO

Figure 4.20: Planar energy versus # of clusters for the Fandisk model. HFC: hierarchical
face clustering, ML: multilevel clustering, EMLO: with 50 random initialization.

82 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

Figure 4.20 shows the energy behavior of the planar clustering for different number of
clusters, applied to the Fandisk model. The ML energy is always lower than that of HFC
and EMLO approaches, which means a better clustering quality.

However, note that in contrast to the CVD clustering problem (see Figure 4.16) the
energy of the EMLO is larger than that of the HFC and respectively of the ML. This
behavior is due to random initialization, which is not able to generate more starting seeds
in higher curvature regions for a better approximation. In contrast, the HFC is performing
first the mergings in zero curvature regions, thus leaving more clusters in higher curvature
regions, and this yields a lower energy.

This result is very important because, in general, it is believed that the variational
methods always outperform the result of hierarchical clustering. This result indicates the
contrary and any clustering problem with similar energy functional is expected to have
similar energy behavior.

Sphere Fitting:

The energy of a spherical mesh approximation, see Section 3.3.2, for initial configuration
can be written as:

∗∗E0
sphere = (Ereduced

sphere)q + (Ereduced
sphere)p.

(Ereduced
sphere)i = −

1

ki
‖
∑

Fj∈Ci

pj‖
2 −

1

ki

[

ki
∑

Fj∈Ci
(pj · nj)−

(

∑

Fj∈Ci
pj ·

∑

Fj∈Ci
nj

)]2

k2
i − ‖

∑

Fj∈Ci
nj‖2

.

∗∗E1
sphere and

∗∗E2
sphere are computed in a similar way, see Eq. (3.15), (3.16).

The cost of a Dual Edge for two clusters Cq and Cp is then calculated similar to the
Eqs (4.2) - (4.3) as:

CostSphere = −∗∗E0
Sphere −

1

kqp
‖

∑

Fj∈(Cq∪Cp)

pj‖
2 −

1

kqp

[

kqp
∑

Fj∈(Cq∪Cp)
(pj · nj)−

(

∑

Fj∈(Cq∪Cp)
pj ·

∑

Fj∈(Cq∪Cp)
nj

)]2

k2
qp − ‖

∑

Fj∈(Cq∪Cp)
nj‖2

.

where kqp = kq + kp the size of both merged clusters.
Note that this representation provides the same advantages as the CVD energy func-

tional. For each cluster Ci only the value
∑

pj,
∑

nj and
∑

(pj · nj) needs to be stored.
Again, these values can be updated easily and thus a fast energy or merging cost compu-
tation is possible.

4.4. MULTILEVEL MESH CLUSTERING RESULTS 83

(1157) (7)

(4) (2)

Figure 4.21: The sphere fit clustering results using the ML algorithm at different levels.

 0

 10000

 20000

 30000

 40000

 50000

 5 10 15 20 25

S
ph

er
e

fit
 e

ne
rg

y

clusters

ML Sphere-cube
HFC Sphere-cube
random init EMLO

Figure 4.22: Sphere fit energy Esphere behavior for the model presented in Figure 4.21.

84 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

Figure 4.23: The sphere fit clustering results using the ML algorithm at the level of 11
clusters. A given model is composed of 11 spherical patches.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 5 10 15 20 25

S
ph

er
e

fit
 e

ne
rg

y

clusters

ML 11 Spheres
HFC 11 Spheres

random init EMLO

Figure 4.24: Sphere fit energy Esphere behavior for the model presented in Figure 4.23.

4.4. MULTILEVEL MESH CLUSTERING RESULTS 85

(22) (11)

Figure 4.25: The sphere fit clustering results using the HFC algorithm at different levels.
The “wrong” mergings applied at the beginning are propagated throughout all levels.

Figure 4.21 depicts the result of the Multilevel clustering algorithm at different levels
for a model consisting of a cube and a spherical patch. Figure 4.23 depicts the result
of the Multilevel clustering algorithm for a model consisting of 11 spherical patches. As
expected, the ML approach is able to identify correctly all spherical patches present in the
model. In Figure 4.21 the planar regions are merged first because they have zero energy,
see discussions in Section 3.3.2.

Figure 4.22 and Figure 4.24 present the energy behavior for the models presented in
Figure 4.21 and Figure 4.23, respectively. The energy of the ML approach remains zero
until the “true” number of clusters present in the model is reached, followed by a fast
increase as the number of clusters decreases, the so-called elbow effect. This fact can be
used to stop the algorithm at an appropriate level and report the number of clusters which
best approximate a given model.

Note in Figure 4.22 that the energy of the hierarchical clustering is identical to that of
the ML. This indicates that there is no optimization taking place after the merging step. In
contrast, for the model presented in Figure 4.23 the energy of the hierarchical clustering is
slightly higher than that of the ML clustering, see Figure 4.24. This results from “wrong”
mergings which are applied at the beginning of the clustering process. Because at the
beginning each cluster consists of a small number of triangles, two clusters can merge
even though they correspond to two distinct spheres. By applying optimization, the ML
approach can recover itself from these “wrong” mergings at later levels, as the separation
between spheres becomes more apparent. However, the HFC has no such possibility and
propagates these “wrong” mergings in the upper levels.

An example of this problem for HFC is provided in Figure 4.25. Although, for this
model this problem only slightly affects the final result, there can be situations, e.g. for
noisy models, where this will accumulate more severely in the case of HFC. Thus, the ML
approach is the best remedy in such situations.

86 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

Figure 4.22 and Figure 4.24 also show the energy of the EMLO algorithm with random
initializations. For large number of clusters the EMLO is able in some situations to reach the
energy of the ML and HFC algorithm, although on average the result is worse. However,
as the number of clusters approach the “true” number of patches present in the model
the result of the EMLO becomes even worse. This behavior, as in the case of the planar
approximation, see Figure 4.20 on page 81, is due to bad random initialization.

Thus, the quality of the provided results for the Hierarchical face clustering compared
to variational clustering is, in general, problem dependent. In contrast, the Multilevel ap-
proach does not suffer from such problems and always provides the best solutions, regardless
of the clustering problem.

Timing:

Table 4.3 presents the timing for the Multilevel approach applied to different models. As
expected, because the ML clustering provides all solutions, it is time consuming.

Model # Faces Energy Functional Time
(input mesh) (sec.)

Fandisk 13k CVD 2
Fandisk 13k planar 2
Fandisk 13k sphere 35
11Spheres 28k CVD 20
11Spheres 28k planar 21
11Spheres 28k sphere 91
Bunny 70k CVD 281
Bunny 70k planar 288
Bunny 70k sphere 518
Horse 97k CVD 710
Horse 97k planar 622
Horse 97k sphere 1153

Table 4.3: Clustering time for ML algorithm.

Nonetheless, due to the usage of the EMLO algorithm in the optimization step and be-
cause this optimization is applied only locally, see Section 4.2, the ML algorithm converges
quickly. The time required to build a CVD for Bunny model for one level at 594 clusters
is approximatively equal to 3 seconds, see Table 3.1. In contrast, to obtain the complete
set of 70k solutions with ML algorithm requires 281 seconds. Thus, the ML construction
is very efficient in this sense.

4.5. DIFFERENT VARIANTS OF THE MULTILEVEL CLUSTERING 87

4.5 Different Variants of the Multilevel Clustering

One of the most important properties of the Multilevel algorithm is its flexibility. The
merging and optimization steps can be altered in an arbitrary sequence or even deactivated
if required. Thus, different variants of the algorithm are possible.

step0 step1 step2 step3

F7F5

F6

F0

F1

F2

F3

F4 C4

C5
C6

C0

C1

C2

C3

C4 C6

C0

C1

C2

C3

C6C4

C0

C1
C2

Figure 4.26: Example of possible mergings applied in the first steps.

In this context, it is also important to note that at the beginning the clusters are
composed only of one face and the algorithm most likely merges only two by two of these
single neighboring clusters, see in Figure 4.26 step0 to step3. Thus, depending on the
addressed problem, it may be adequate to skip the optimization step for these first merging
steps.

Indeed, regarding the energy behavior for spherical approximation in Figure 4.22 on
page 83, the optimization can be deactivated for all levels without any quality loss. However,
for the case presented in Figure 4.24 the optimization can be deactivated only for a specific
number of merging steps, otherwise the quality of the final result will be lower. The same
applies for planar approximation, see the energy behavior in Figure 4.20 on page 81.

However, speeding up the ML algorithm by deactivating the optimization step in dif-
ferent scenarios is not the only possibility. Remember that, to perform one merging step,
one minimal cost ODE is identified in CA by performing one step of a bubble sort, see
Section 4.2. This means iterating once trough the CA to perform only one such merging,
which is, in general, time consuming.

Copp=k−1
0 Copp=2

1 Copp=1
2 Copp=k−2

3 . . . Copp=k−8
k−2 Copp=2

k−1

⇓

Copp=k−1
0 Copp=2

1 �
�

��H
H

HH
Copp=1

2 Copp=k−2
3 . . . �����XXXXXCopp=k−8

k−2 �
�

��H
H

HH
Copp=2

k−1

Figure 4.27: Example of the sequential merging of clusters in CA. The index opp. indicates
the opposite merging cluster for a given ODE.

Instead, we propose to apply all possible mergings in CA sequentially up to a user
defined parameter p% in one step and not in p% steps. Thus, after initialization, sequen-
tially for each valid cluster C in the CA an ODE is identified and directly collapsed if the
C.ODE.opposite cluster was not already involved in another merging operation. This step
is repeated until p% of clusters are merged. An example of this operation is provided in
Figure 4.27.

88 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

All steps of this variant of the ML approach are summarized in the Algorithm 4.2.

Algorithm 4.2. (A p% Variant of the Multilevel Algorithm)

1 Sequentially merging p% of clusters.
2 Loop until number of clusters equals 1 {
3 Collapse one ODE.
4 Apply optimization.
5 }

Table 4.4 presents the timing for the ML approach according to the Algorithm 4.2 for
different values of p%. Note that, this variant of the ML algorithm allows a substantial
reduction of the computational cost compared to the standard ML approach (Table 4.3).

Model # Faces Energy Functional p Time
(input mesh) % (sec.)

11Spheres 28k CVD 50 4
11Spheres 28k CVD 95 1
Horse 97k CVD 50 200
Horse 97k CVD 95 33

Table 4.4: Clustering time for a variation of the ML algorithm for different p% values.

However, it is questionable how these sequential mergings affect the final quality of the
result. In Figure 4.28 we show the dependency between the total CVD energy and the
number of clusters for different clustering algorithms, applied to the Bunny model. The
p factor refers to the first p% of sequential merges applied. Note the energy jumps which
appear at the point where p% of the merging steps are done. Because these mergings are
done sequentially, the total energy in this case is higher than that of the HFC algorithm.
After this point the standard ML algorithm is applied, and as a result the energy starts to
decrease approaching the energy of the ML algorithm.

Table 4.5 depicts the time required for different algorithms to obtain the clustering/en-
ergy results presented in the Figure 4.28.

Algorithm ML HFC p = 50% p = 75% p = 95%
Time, sec. 281 218 52 18 9

Table 4.5: Clustering time for different clustering algorithms for Bunny model. ML: Mul-
tilevel mesh clustering. HFC: Hierarchical face clustering. (p:) Applying a variant of the
ML algorithm according to the Algorithm 4.2.

Note, the energy of the ML and of the p = 95% in the Figure 4.28 in the range 2500 to
2000 clusters is identical. Thus, if the region of interest, regarding the number of clusters,
is similar, then this variant of the algorithm, i.e. Algorithm 4.2 with p = 95%, can be used
to considerably speedup the computation without any substantial quality loss.

4.5. DIFFERENT VARIANTS OF THE MULTILEVEL CLUSTERING 89

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 22000 24000 26000 28000 30000 32000 34000 36000

E
ne

rg
y

E
 C

V
D

clusters

ML
HFC

p: 50%

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 12000 13000 14000 15000 16000 17000 18000

E
ne

rg
y

E
 C

V
D

clusters

ML
HFC

p: 75%

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 2000 2500 3000 3500 4000

E
ne

rg
y

E
 C

V
D

clusters

ML
HFC

p: 95%

Figure 4.28: CVD Energy versus # of clusters for the Bunny model. ML: Multilevel mesh
clustering. HFC: Hierarchical face clustering. (p:) Applying a variant of the ML algorithm
according to the Algorithm 4.2.

90 CHAPTER 4. MULTILEVEL (ML) MESH CLUSTERING

Although the parameter p is a user specified one, for most of the problem a p between
50% to 70% proves to have no substantial influence on the results, yet allowing considerable
speedup.

4.6 Conclusions

In this chapter we have presented a novel and versatile algorithm for performing Multilevel
mesh clustering. As originally intended the algorithm resolves the inherent problems of
Variational and hierarchical clustering. The algorithm neither uses any heuristics to obtain
the final result nor any a-priori user specified parameters. It performs a complete mesh
analysis with better, or at least the same, quality results.

We have provided a very efficient implementation and data structure for this algorithm.
We showed that different variants of the algorithm are possible, thus allowing the user to
choose between faster execution or higher quality of the final result.

This way, the Multilevel approach proves to be a powerful and reliable tool for mesh
clustering. It allows a better mesh analysis and provides an indispensable control over
clustering process.

We also have shown the generic nature of this approach by applying it to different
tasks. However, we must point out that, because the EMLO algorithm developed in the
last chapter is used in the optimization phase of the algorithm, the applicability of the ML
algorithm is still restricted only to the set of energy functionals which can be represented
in an incremental energy formulation.

In the next chapter, together with a solution for accelerating the ML construction on
the GPU, we address this restriction by reformulating the EMLO algorithm such that it
can accept any proxy-based energy functionals, thus allowing for a larger set of energy
functionals.

Chapter 5

GPU-based Mesh Clustering

Fast and high quality clustering of large polygonal surface meshes still remains one of the
most demanding fields in mesh processing. Because existing clustering algorithms are very
time-consuming, the use of parallel hardware, i.e. the graphics processing unit (GPU), for
speeding up these algorithms is a reasonable and at the same time a crucial task in this
field.

However, up until now only a few approaches have been developed to utilize this kind of
hardware for mesh clustering purposes. One of the first and most prominent works in GPU-
based acceleration of the iterative (Variational, Lloyd’s) clustering was the work of Hall
and Hart [HH04]. Here, the GPU is only used to compute pairwise distance information
and the proxy computation is done on the CPU. Thus only a small acceleration factor of
2 to 3 can be obtained. The work in [CTZ06] and later in [SDT08] proposed more efficient
GPU-based solutions but only for k-means approaches. For more details on GPU-based
processing see Section 2.3.

Although the solution proposed in [HH04] has been shown to work for polygonal meshes,
no mesh connectivity information is actually used in the clustering process. The mesh is
simply viewed as a triangle soup and the clustering is done on a k-means basis, which can
be a major drawback in many mesh clustering applications. Figure 5.1 depicts such an
example. Note that, if no mesh connectivity is used in the clustering process the clusters
are split into two over different helix coils. In contrast, using the mesh connectivity in the
clustering process aligns the clusters along helix coils.

The only existing GPU-based mesh clustering framework completely implemented on
the GPU which employs the mesh connectivity (topology) in the clustering process is
proposed in [CKCL09], [CK11]. In this chapter we describe1 most of the details related to
this framework.

In the first part of the chapter, i.e. Section 5.1, we develop new algorithms which obey
a parallel formulation. In Section 5.1.1 a new Boundary-based mesh clustering algorithm
is proposed as a new approach for parallel cluster optimization. It provides all necessary
ingredients for a GPU-based implementation without introducing any special energy func-

1Parts of this chapter were published in [CKCL09] and [CK11].

92 CHAPTER 5. GPU-BASED MESH CLUSTERING

Figure 5.1: A clustering example without (left) and with (right) connectivity taken into
account. Applied to a helix model for 25 clusters.

tional requirements. In Section 5.1.2 a new parallel Multilevel clustering concept, for which
several Dual Edges are collapsed in each step, is proposed for speeding up the Multilevel
mesh clustering on the GPU.

In the second part, i.e. Section 5.2, we address all GPU-specific implementation details
and give some non-trivial OpenGL specific solutions. Section 5.2.1 describes general pro-
cessing and data structures concepts. Section 5.2.2 describes how the mesh geometry and
connectivity is encoded on the GPU. This gives all necessary means for a complete iterative
or Multilevel GPU-based mesh clustering, which is described in Sections 5.2.3 - 5.2.5. In
Section 5.3 we evaluate the proposed algorithms and their GPU-based implementations.
Section 5.4 draws some final conclusions.

5.1 Parallel Mesh Clustering

A major problem that impedes the use of the GPU for mesh clustering and by that to
exploit the computational power of this hardware, is the lack of parallel algorithms for
mesh clustering. All approaches mentioned so far have more or less a sequential nature of
processing. The Variational (Section 2.1.2) or hierarchical (Section 2.1.3) mesh clustering
approaches use a global priority queue in order to identify the best face-cluster assign-
ment or the best merge. The EMLO algorithm (Algorithm 3.3) requires a direct cluster
data update to be propagated to subsequent steps after any face assignment. Thus, these
algorithms can not be parallelized easily, resulting in a rather bad scalability for large
meshes.

In this section we review these problems for both iterative and hierarchical mesh clus-
tering approaches and propose parallel reformulations so that these can be implemented
on the parallel hardware, i.e. on the GPU.

5.1. PARALLEL MESH CLUSTERING 93

5.1.1 Boundary-based Mesh Clustering

In this section a new Boundary-based (BB) mesh clustering approach is described. It
belongs to the same class of iterative approaches as the classical Variational clustering
(VC), see Section 2.1.2, or the Energy Minimization by Local Optimization (EMLO),
see Chapter 3. However, compared to both the proposed approach has a very important
property – it has a parallel formulation.

Consider a mesh M that is clustered into k clusters Ci. As for VC, a shape proxy Pi

is a local representative of the cluster Ci that best approximates a given cluster geometry.
Accordingly, the proxy set P = {Pi} approximates the whole mesh geometry, for more
details see Section 2.1.2.

Now, suppose that a proxy-based energy functional E(P) (Definition 2.2 on page 8) is
provided:

E(P) =
∑

i∈Ω

E(Ci, Pi) =
∑

i∈Ω

∑

Fj∈Ci

E(Fj, Pi). (5.1)

with Ω ∈ {0, . . . , k − 1}.

E(Ci, Pi) is the energy of the cluster Ci for a given proxy Pi and E(Fj, Pi) is the positive
semi-definite cost of assigning the face Fj to the cluster Ci with a corresponding proxy Pi.

Note, for the VC approach a fixed precomputed set of input proxies {Pi} is used when
assigning the faces Fj to the clusters Ci. Where the EMLO realizes indirectly proxy updates
after each reassignment of a face Fj to the cluster Ci.

Now suppose that a Variational mesh clustering (Section 2.1.2) is done and a new set
of proxies {P new

i } is fitted. The VC framework will continue with an identification of the
initial seeds for the next partitioning phase. For each cluster Ci this is done by going
once through all its faces Fj and identifying one face with the smallest energy E(Fj, P

new
i)

and closest to the cluster center. These seeds, see Figure 5.2 (init grow), are then used to
perform a new clustering from scratch.

However, in practice one can easily observe that the cluster configuration changes
rapidly during the first iterations and then starts to settle slowly, i.e a significant spatial
coherence can be observed. Thus, the cluster configuration is mostly affected on the cluster
boundaries whereas the cluster’s “interior” does not change, see Figure 5.2 (1 iter.) - (46
iter.). Thus, we find that in the process of cluster optimization, checking these “interior”
regions for reassignment, as done in the case of the classical VC, is not necessary, and can
be limited to boundary regions only.

To implement this idea a modified VC approach can be considered. Instead of perform-
ing the regrowing from scratch we have to cluster inwards from the boundary of each cluster
and consider only boundary faces or faces which are in the vicinity of the cluster boundary.
Although this sounds plausible it still does not avoid the use of a Priority Queue, which
as already stated can be a major obstacle in parallelizing and implementing this algorithm
on GPU.

Another alternative is to use a variant of the EMLO algorithm. Its locality-based check
paradigm is well suited in this case. Additionally, as required, the EMLO performs and

94 CHAPTER 5. GPU-BASED MESH CLUSTERING

(init) (init grow) 1 iter. 6 iter.

14 iter. 23 iter. 30 iter. 46 iter.

Figure 5.2: Boundary-based cluster optimization steps: (init) Black triangles are the start-
ing seeds for initialization. (init grow) Initial cluster grow. (1 iter.)-(46 iter.) Clustering
results after corresponding number of iterations.

Figure 5.3: Initial cluster growth for given starting seeds (black triangles).

considers only the cluster’s boundary faces. Despite this, it has a restriction on the energy
functional to be in an incremental formulation for an efficient energy computation.

Instead, we propose a new clustering concept, namely the Boundary-based cluster
optimization, by redefining the classical VC approach [CSAD04] and making use of the
idea of local optimization from the EMLO approach [CK08].

Before performing a BB cluster optimization, an initial clustering configuration is re-
quired, i.e. a configuration that needs to be optimized. To obtain such a configuration
the same procedure is used, as in the case of the EMLO mesh clustering approach, see
Section 3.3.

Using a random initialization, k starting seeds are generated, see Figure 5.3 (black

5.1. PARALLEL MESH CLUSTERING 95

triangles). Then the initial cluster growth is done by iteratively assigning the free (not
assigned to any cluster) neighboring face of a cluster’s boundary edge, see Figure 5.3.
Generally, this process is very fast because no energy computation is involved.

Boundary-based Cluster Optimization

Suppose that an initial clustering configuration, as depicted in Figure 5.2 (init grow), for k
clusters Ci with proxies Pi and with corresponding energy E(P) =

∑

i E(Ci, Pi) is given.
Now, minimizing the total energy E(P) of a given clustering can be done by reassigning
the cluster’s boundary faces to other clusters in such a way that the total energy E(P)
decreases.

An example of this process for two clusters Cq and Cp with proxies Pq and Pp and two
neighboring faces Fm and Fn of a boundary edge e is presented in Figure 3.15 on page 54.
For each boundary edge the following energy cases are considered:

• Case 0: Initial configuration with corresponding energy E(P)0 where the face Fm

belongs to Cq and Fn belongs to Cp.

• Case 1: A case when cluster Cq grows and Cp shrinks, thus both Fm and Fn belong
to Cq, with corresponding energy E(P)1.

• Case 2: A case when cluster Cp grows and Cq shrinks, thus both Fm and Fn belong
to Cp, with corresponding energy E(P)2.

Note, these energy cases are in the same spirit as considered for EMLO algorithm
(Section 3.3) or as originally proposed in [VC04], however with a substantial difference in
the way these energies are computed.

We propose to compute the energies E(P)0, E(P)1 and E(P)2 as follows:

E(P)0 =
∑

Fj∈Cq\{Fm}

E(Fj, Pq) + E(Fm, Pq) +

∑

Fj∈Cp\{Fn}

E(Fj, Pp) + E(Fn, Pp).

E(P)1 =
∑

Fj∈Cq\{Fm}

E(Fj, Pq) + E(Fm, Pq) + E(Fn, Pq) +

∑

Fj∈Cp\{Fn}

E(Fj, Pp).

E(P)2 =
∑

Fj∈Cq\{Fm}

E(Fj, Pq) +

∑

Fj∈Cp\{Fn}

E(Fj, Pp) + E(Fm, Pp) + E(Fn, Pp) (5.2)

96 CHAPTER 5. GPU-BASED MESH CLUSTERING

The energies are computed with a fixed set of proxies, and no direct proxy update is
considered. This is in the same spirit as done for the VC approach.

For comparing the energies E(P)0, E(P)1 and E(P)2 in the above formulas, the sums
are irrelevant, thus Eq. (5.2) can be simplified to:

∗E(P)0 = E(Fm, Pq) + E(Fn, Pp).
∗E(P)1 = E(Fm, Pq) + E(Fn, Pq).
∗E(P)2 = E(Fm, Pp) + E(Fn, Pp).

(5.3)

Note that, comparing ∗E(P) in Eq. (5.3) is equivalent to comparing the energies E(P)
in Eq. (5.2), but at a lower computational cost because the irrelevant summations are
dropped.

The complete cluster optimization is done according to the Algorithm 5.1.

Algorithm 5.1. (Boundary-based (BB) Cluster Optimization)

1 Loop until no configuration changes {
2 Compute proxy set {Pi}
3 For all Clusters Ci

4 For all Boundary Loops b of Ci

5 Loop over boundary edges e ∈ b {
6 Compute energies ∗E(P)0, ∗E(P)1, ∗E(P)2

7 Choose the smallest energy and update cluster configuration
8 }
9 }

For a given boundary edge e the smallest energy ∗E(P) is chosen and a corresponding
configuration is updated, i.e. cluster grow or shrink or no configuration changes. After the
optimization, a new set of proxies {Pi} is computed and used to perform another boundary-
based energy minimization. Because the energy E(P) is supposed to be positive semi-
defined, any boundary modification lowers the energy and thus the algorithm converges in
general2, i.e. for a given set of proxies there are no boundary faces that can be reassigned
to other clusters so that the energy decreases.

The most important property of this algorithm is that any computation of energy ∗E(P)
can be done independently from any other, and there is no cluster data update required as
for EMLO after a face is reassigned from one cluster to another. All this provides the base
to perform the energy computations in parallel, making the Algorithm 5.1 suitable for a
GPU-based implementation3.

2Although not observed in practice, in some cases the algorithm may not converge due to numeric
problems when recomputing the proxies. For these cases a predefined maximum number of iterations
should be provided.

3
Remark: Although, our intent is to implement the BB algorithm on the GPU, it can be also employed

on the CPU with no restrictions. Similar to EMLO it can be used as a standalone algorithm or in the
optimization stage of the ML algorithm. To accomplish this, the same strategy is used as described for the
EMLO algorithm in Section 3.3.

5.1. PARALLEL MESH CLUSTERING 97

It should be noted that, in contrast to [VC04] and [CK08], this approach imposes no
further limitations on the energy functional, since the proxies are fixed during the opti-
mization. Thus, any proxy-based energy functional (Definition 2.2) can be used, allowing
for a large set of energy functionals.

Note that in comparison to the classical VC approach [CSAD04] there is no identifi-
cation of initial seeds, as well as no local or global priority queue to determine the next
assignment of a face to a new cluster. Thus, this approach reduces the computational costs
and, furthermore, it is well suited to be implemented on a GPU. In this form the algorithm
can also be used in the optimization phase of the Multilevel mesh clustering approach,
see previous chapter, thus removing the requirement on the special representation of the
energy functional for an efficient clustering with ML algorithm.

5.1.2 Parallel Multilevel (PML) Mesh Clustering

In the Multilevel mesh clustering approach each cluster has its own ODE, which represents
the Dual Edge with the smallest merging cost out of all DEs of a given cluster, see for
more details on this idea Section 4.2.1. In each step of the ML construction a single ODE
with smallest cost out of all ODEs is identified and collapsed. This step is then followed
by an optimization phase, see Algorithm 4.1.

As we aim at implementing the ML approach on the GPU, both steps (merging and
optimization) must obey a parallel formulation. Regarding parallel cluster optimization,
the Boundary-based cluster optimization algorithm described in the last section, see Algo-
rithm 5.1, can be applied with no restrictions to achieve a fast parallel optimization.

However, for the hierarchical part of the ML construction, where a single ODE collapse
is applied, only a parallel identification of these ODEs is possible. Each cluster can identify
its own ODE independently from any other clusters. Thus, identifying the ODEs has a
parallel formulation by default. As a result, the main steps of the ML approach can be
performed as described in Algorithm 5.2.

Algorithm 5.2. (The Multilevel Algorithm)

1 Loop until number of clusters equals 1 {
2 Forall clusters compute in parallel ODEs
3 Collapse the ODE with smallest cost.
4 Apply optimization.
5 }

However, the procedure of one Dual Edge collapse in each step limits the generally
required parallelism. It can be easily recognized in Figure 5.4 that a single ODE collapse
in each step is not the most optimal procedure in this example. Performing more ODE
collapses in one step, as presented in Figure 5.5, can lead to the same clustering result
but with a significant speedup. Thus, the key idea is to identify a set of independent and
mutual ODEs, i.e. consisting of pair of ODEs which connect the same clusters. This set

98 CHAPTER 5. GPU-BASED MESH CLUSTERING

12

2 6 7

11

13

14

4 5 1 3

810 9

0

0

1

2

3

4

5

6

7

2

3

4

5

6

7

8

4

5

6

7

8 9

6

7

8 9

10

8 9

10 11

8

10

12 1213 14

Figure 5.4: An example of sequential cluster merging and a resulting hierarchy (ML).

12

2 6 7

11

13

14

4 5 1 3

810 9

0

0

1

2

3

4

5

6

7

8 9

10 11

1213 14

Figure 5.5: An example of parallel cluster merging and a resulting hierarchy (PML).

5.2. GPU-BASED MESH CLUSTERING 99

of ODEs can than be collapsed in parallel in one merging stepwithout introducing any
inconsistency.

Based on this observation, we propose to apply multiple ODE collapses in parallel,
yielding a Parallel Multilevel (PML)4 clustering technique. The main steps of the PML
approach are summarized in Algorithm 5.3.

Algorithm 5.3. (The Parallel Multilevel Algorithm)

1 Loop until number of clusters equals 1 {
2 Forall clusters compute in parallel ODEs
3 Collapse all mutual ODEs in parallel.
4 Apply optimization.
5 }

In general, parallel cluster merging raises the question of whether or not this approach
leads to worse results regarding the energy functional. To reflect on this question consider
the variant of the ML mesh clustering algorithm proposed in Section 4.5. There it was
shown that for a specific range of interest regarding the number of clusters, sequentially
merging the first p% of the clusters without optimization leads to the same clustering
quality, when the optimization is reactivated after these clusters have been merged. Thus,
we expect the PML to have at least the same energy behavior. Indeed, as we will see in
Section 5.3, applying PML only, the clustering is faster, however the clustering result is
worse compared to ML. However, after switching from PML to ML, the energy rapidly
converges against the ML variant and finally yields the same clustering result.

It should be pointed out that, the PML algorithm, as the ML algorithm, is flexible in
applying the optimization and/or the parallel ODE collapse at any stage of the Multilevel
mesh analysis. For example, for some clustering problems one could use the PML with
optimization deactivated, i.e. perform a parallel hierarchical clustering. Or perform p% of
ODE collapses with PML clustering and then continue with sequential ODE collapses for
the remaining steps, see Section 5.3 for an example and discussions.

5.2 GPU-based Mesh Clustering

In this section we describe GPU-specific implementation details for the algorithms proposed
in Section 5.1. We aim at performing the complete mesh clustering entirely on the GPU,
reducing the data transfer between CPU and GPU to a minimum. The proposed GPU-
framework is generic, thus we omit any energy functional related details.

Our implementation is OpenGL-based mainly due to the fact that the clustering frame-
work is based on an existing generic GPU-framework [Cun09a], which was developed in
the context of real-time particle systems for flow visualization [Cun09b]. This allowed for

4The ML and PML always refer to the version with single respectively multiple ODE merge, regardless
of its implementation on the CPU or GPU.

100 CHAPTER 5. GPU-BASED MESH CLUSTERING

an easy and efficient integration of all clustering algorithms. Although a CUDA-based im-
plementation could provide a more structured implementation, our general expectation is
that this will not provide substantial performance gains.

5.2.1 Processing Concepts and Data Structures

On the GPU, entities (e.g. vertices or fragments) are processed in parallel and independent
from each other. Mesh clustering on a GPU must obey the same processing concept. A
decision on whether a face must be assigned or reassigned to a different cluster must be
made independently and in an arbitrary order from any decision made for its neighbors.
The same is also true for cluster merging decisions. Thus a per-face or a per-cluster process-
ing is applied. Depending on the applied energy functional the data necessary for energy
computation is saved in associated FaceData or ClusterData textures, correspondingly.

For Multilevel clustering approaches the starting number of clusters k is identical to the
number of facesm. However, in the case of Boundary-based clustering k is user specified and
k ≤ m (usually k ≪ m). Despite this we always assume kmax = m and use a corresponding
texture size, i.e. texSize = ceil(sqrt(m)). This simplifies all cluster data fetches, e.g. for
a cluster with index r the data is located in a texture with size texSize at the position
(mod(r, texSize), f loor(r/texSize)). For a cluster -defined texture a texel then simply refers
to an individual cluster data.

In our current framework, only 2D 32-bit float textures are used to store the associated
FaceData and ClusterData. On current graphics hardware the 2D texture maximum size
limit is 8192, thus theoretically up to 81922 faces or clusters can be stored.

The input and the output textures on the GPU must be kept distinct. Thus, a dou-
ble buffering approach is used to separate the input and the output textures [KLRS04],
[SDK05]. Using a flip-flop technique, which exchanges the role of input and output, different
operations can be performed on these textures.

Two basic techniques are used to perform most of the clustering tasks:

1. Texture rasterization: The process is triggered by rendering a quad which matches
the output texture. During rasterization, for each output texel a fragment is gener-
ated. In the fragment shader the texture coordinates are used to read the input
texture or other textures using texture fetching. This information is used to perform
all necessary computations and finally assign a data to the fragment. If the output
texture is also a render target then it is updated correspondingly.

2. Vertex scattering: The texture data are reinterpreted as a vertex stream. In the
vertex shader, depending on loaded information, different texture fetches or compu-
tations are performed. The output vertices are rendered as points with the output
positions computed in the vertex shader5. If an output texture is set as a render tar-

5Due to possible collisions in the scatter addresses, this process may not be efficient and it should be
avoided if possible [Buc05].

5.2. GPU-BASED MESH CLUSTERING 101

get, then each rasterized point, i.e. fragment, will correspondingly update the texture
at a precomputed position. This process fits into a single render pass [Buc05], [SH07].

5.2.2 Mesh Representation on GPU

Interestingly, a major problem that impedes the use of the GPU for mesh clustering, even if
a parallel algorithm formulation exists, is the lack of the Half Edge data structure [Män88]
on the GPU6. This restriction also explains why there is so little work done in this field.

As an example, the Boundary-based parallel algorithm proposed in Section 5.1.1 re-
quires and heavily uses the Half Edge data structure to work on the boundary of the
cluster. The ML algorithm in turn, see Section 5.1.2, requires the Boundary Loop of the
cluster to identify the smallest cost ODE.

In its simplest form a mesh can be represented (reconstructed) by specifying the co-
ordinates of the vertices together with a set of indices for faces, see Section 2.1.1. In this
case, there is, in general, no possibility to obtain any neighboring information for a face
without rebuilding the entire mesh. Due to processing constraints, rebuilding the mesh on
the GPU and saving this information in some data structure is cumbersome. Additionally,
it is also impossible to propagate any local changes to the neighbors, because each mesh
entity is processed independently from each other.

Our solution to this problem [CKCL09] is to save the corresponding neighbors for each
face in addition to the vertex coordinates and indices for faces. For a triangular mesh each
face has exactly three neighbors, thus these indices (IDn1, IDn2, IDn1) can be simply saved
in a RGB channel, see example in Figure 5.6.

Observe that the face neighbors information allows navigating and collecting mesh
information. Starting from one face any neighboring face can be obtained, by accessing
the neighbors of the neighbors of a face. Using this representation one can compute any
required information for each face: centroid, or normal, or curvature. Most importantly, it
is also sufficient for performing any necessary clustering operations, as we will show later.

Moreover, due to the simplicity of the representation and because we mostly use textures
to save any data in the GPU memory, we save the input mesh in an image based pfs
format, see [MKMS07]. Three RGB frames are used to save, correspondingly, the vertex
coordinates, vertex indices and face neighbors IDs, as sketched in Figure 5.7. The “face
neighbors” frame contains for each face the indices for neighboring faces, as presented in
Figure 5.6. In GPU memory these frames are also loaded in three corresponding textures.

Regardless of whether the mesh is clustered or not, each face belongs to a specific cluster
with index IDcl. In the beginning each face belongs to a “null” cluster, i.e. it has IDcl = −1.
We save this information together with face neighboring information (IDn1, IDn2, IDn3)
in a RGBA texture FaceInfo, as depicted in Figure 5.8. Here each texel corresponds to a
face in the original mesh. Reassigning a face from a cluster m, i.e face has IDcl = m, to
cluster n means that the face will have IDcl = n, as shown Figure 5.8.

Now, the most important element here is the notion of a cluster’s boundary-face:

6To our knowledge there is currently no such data structure representation on the GPU.

102 CHAPTER 5. GPU-BASED MESH CLUSTERING

11 9

1

15 −1 13

4 8 2

8 6

−1 10

11 −1 14

81310793

410−135−1 12

15
IDn1 IDn2 IDn3

F2 F4
F5

F8 F10

F0

F6

F12 F13
F14

F9

F3F1

F7

F15

F11

1 −1 −1 2 6 0

13 −1 97 14 12

−1 3 1

7 −1

5

Figure 5.6: Example of stored face neighbors indices (IDn1, IDn2, IDn1) for a given mesh.

F15

F5

vertex coordinates face neighborsface indices

F4

PFS

F2

F8 F10

F0

F6

F12 F13
F14

F9

F3F1

F7 F11

Figure 5.7: Mesh encoding in a PFS format with corresponding RGB frames.

5.2. GPU-BASED MESH CLUSTERING 103

−113 −1
−1

F6

11

4 −1 −1 −1

11

−1−1−1

−1 −1 −1

−1−1−1−1

6

0

F0

F10F8

F5
F4F2

3 1 8

35 4 1 6

79 8 9

7

0 2

14

10

−1

15

−1 −1
1 −1

6
2 −1 −1 −1

−1 −1
10
−1 −1 −1

−1
7

12
−1 8

−1 3
13
−110 −1

11
5 −1 −1

−1

F11

−1 13

F15

F7

F1 F3

F9

−1

F14
F13F12

IDcl IDn1

IDn2 IDn3

14
9

12
−115

Figure 5.8: An example of the information stored in the FaceInfo texture. Top: The mesh
with corresponding IDs for faces. Bottom: The RGBA FaceInfo texture where each texel
contains the (IDcl, IDn1, IDn2, IDn3) for each face. Any change of the face index IDcl is
propagated to the corresponding texel in the FaceInfo texture.

Definition 5.1. A face with ID∗
cl is a cluster boundary-face if at least one of its neigh-

bors has IDcl 6= ID∗
cl.

As we will show later, using the notion of a boundary-face (Definition 5.1) the cluster
growing, or the cluster optimization, or the ODE identification can be realized.

5.2.3 Boundary-based Mesh Clustering on GPU

For a user specified number of clusters k, the steps of the BB algorithm presented in
Section 5.1.1 are implemented as follows:

Initialization:

Randomly generate or load from a file k starting IDs. Reset the face index IDcl corre-
sponding to these IDs in the FaceInfo texture. An example of this process is presented in
Figure 5.8. Here three starting faces, i.e. {0; 6; 11}, are considered.

Initial Cluster Growth:

Regarded from the actual boundary of the cluster, there are two types of boundary faces,
see Definition 5.1: interior IDcl > −1 and exterior IDcl = −1. Only exterior boundary

104 CHAPTER 5. GPU-BASED MESH CLUSTERING

0

F2 F4
F5

F8 F10

F0

F6

F12 F13
F14

F9

F3F1

F7 F11

F15

−1 −1 −1

11

−1−1−1

−1 −1 −1

−1−1−1−1

6

0 −1 −1

11

6−1−1

−1 −1 11

11−1−1−1

6

0

6

−1

11

0

11−1

6 11 11

1111−16

6

0 0 0 0

6

11

1111

6 11 11

111166

6

0 0

step 0 step 1 step 2 step 3

Figure 5.9: Example of an initial growing applied to a given mesh, with corresponding
changes applied to the IDcl channel of the FaceInfo texture. Three render passes are
required to obtain the final configuration.

faces must be added to a specific cluster in the growing phase, i.e. face IDcl is changed
from −1 to a corresponding cluster ID, see Figure 5.9.

This is achieved by rasterizing the FaceInfo texture. In this case, fragments which
correspond to different texels, i.e. faces, in FaceInfo texture are generated. The fragments
which correspond to the interior faces IDcl > −1 or have all neighbors with IDcl == −1
are simply discarded, the rest are considered for growing. In the case when an exterior
boundary face can be added to more than one cluster we assign the face to a cluster with
smallest ID, see Figure 5.9.

An initial cluster growing is finished if there are no exterior boundary faces left for
further assignment, i.e. all fragments are discarded. An occlusion query can be used in this
case to check if any fragment has been written, i.e. if any face IDcl in FaceInfo texture
changed or not.

Cluster Optimization:

The GPU-based implementation steps of the Boundary-based cluster optimization, accord-
ing to the Algorithm 5.1, are summarized in Algorithm 5.4.

Algorithm 5.4. (GPU BB clustering steps)

1 Loop while samples ! = 0 {
2 GatherClusterData()
3 ComputeClusterProxy()
4 samples = OptimizeBoundaryEnergy()
5 }

5.2. GPU-BASED MESH CLUSTERING 105

The GatherClusterData() subroutine is used to gather all necessary cluster data to
compute the cluster proxy. To perform this, the FaceInfo texture is loaded into a vertex
stream. In a vertex shader the corresponding face data is fetched for each vertex, i.e. face,
from FaceData texture. This information is then scattered, using the index IDcl of the
face, to a correct cluster position in the ClusterData texture. Having the additive blending
activated, the individual cluster’s data is summed up from each face.

Using the data from ClusterData texture the cluster’s proxy can be computed (Com-
puteClusterProxy()) and the information saved in the ClusterProxy texture.

The OptimizeBoundaryEnergy() subroutine is implemented as presented in the Algo-
rithm 5.5. Where N1, N2, N3, i.e. Nj, refer to the index IDcl of the neighboring faces
(IDn1, IDn2, IDn3) .

Algorithm 5.5. (Optimize Boundary Energy)

1 faceWillGoToCluster = −1; //set default to discard
2 shrinkEnergy = DBL MAX; //set to the maximum value
3
4 rasterize FaceInfo texture
5 for each fragment f { //represents a face
6 IDcl = f.getClusterID();
7 if ((N1 == IDcl) && (N2 == IDcl) && (N3 == IDcl)) discard;
8 else{
9 //we are on the cluster boundary
10 for each neighbor Nj {
11 compute energies ∗E(P)0, ∗E(P)1, ∗E(P)2; //according to Eq. (5.3)
12 if (∗E(P)2 smallest and smaller than shrinkEnergy) {
13 shrinkEnergy = ∗E(P)2;
14 faceWillGoToCluster = Nj;
15 }
16 }
17
18 if(faceWillGoToCluster == −1) discard; //no change to the boundary
19 else set f [IDcl] = faceWillGoToCluster; //do the shrink operation
20 }
21 }

To perform a cluster boundary optimization, see Figure 5.10, the FaceInfo texture is
rasterized. For each fragment which corresponds to a boundary face the ∗E(P)0, ∗E(P)1,
∗E(P)2 energies are computed according to Eq.(5.3). The non-boundary corresponding
fragments are simply discarded. Remember that as in the case of initial cluster growth the
cluster can change its configuration only through boundary faces, i.e the interior boundary
faces in this case.

The case with the smallest energy must be chosen and the configuration correspondingly
updated. Thus if ∗E(P)0 is the smallest energy the fragment is simply discarded. If ∗E(P)2

106 CHAPTER 5. GPU-BASED MESH CLUSTERING

0 0

6

11

1111

6 11 11

111166

6

0 0 0 0

6

11

1111

6 11 11

11666

6

0 0 0 0

6

11

1111

6 6 11

11666

6

0 0

step 3 step 4 step 5

Figure 5.10: An example of a GPU-based BB cluster optimization. (Top) Clustered mesh.
(Bottom) Shows how the face’s IDcl changes in FaceInfo texture.

is the smallest, i.e. cluster shrinks, then the fragment IDcl is set to the ID of the opposite
cluster. However, if ∗E(P)1 is the smallest energy, i.e. cluster must grow, the fragment is
also discarded because the IDcl for the neighboring face can not be reset from this point
in the program. This limitation has no influence on the optimization, because any cluster
growth can be seen as a shrink of the opposite cluster, i.e. required cluster growth will be
performed by shrinking the opposite cluster.

After all fragments are processed, a new clustering configuration is obtained. This is
used as a starting configuration to complete a new optimization step according to the
Algorithm 5.4, i.e. gather cluster data, compute cluster proxies and apply a boundary
optimization. This process is repeated until there is no change in the clusters configuration,
i.e. no fragment changed its IDcl. An occlusion query is used in this case to check how many
fragments (samples) were written. An example of this process is depicted in Figure 5.10.

Note that, the bigger the clusters the more fragments corresponding to interior (non-
boundary) cluster faces are discarded. Thus, this Boundary-based optimization process is
very fast, see also the timing in Table 5.1.

5.2.4 Multilevel Mesh Clustering on GPU

The ML approach performs according to the Algorithm 5.2. As a starting configuration each
mesh face is considered as an individual cluster. For a given clustering configuration the
algorithm starts with the identification of Optimal Dual Edges (ODEs), see Definition 4.2.
This is followed by the collapse operation, where one smallest cost ODE is collapsed.

However, to identify the cluster’s ODE requires the Boundary Loop, Definition 3.1, or
at least the boundary Half Edges (HEs) of the cluster, see Section 4.2.1. None of these
elements are stored and thus available on the GPU.

Despite this, note that a boundary HE is one that is adjacent to two boundary faces,

5.2. GPU-BASED MESH CLUSTERING 107

see Figure 5.11. On the GPU the boundary faces, see Definition 5.1, can be easily identified
using the stored information. Thus, a Dual Edge (DE) can be generated for a boundary
face if its neighboring face belongs to a different cluster. An example of this operation is
depicted in Figure 5.11. Using this idea yields a very efficient DE generation on the GPU
without storing any additional information.

C1 C2

C3
F

C3

C1 C2

(a) (b)

Figure 5.11: Example of a Dual Edge (DE) identification on the GPU. An arrow indicates
a DE. (a) For a given face F two DEs are generated, because it has two adjacent boundary
faces. (b) For a given clustering configuration 10 DEs are generated.

The Algorithm 5.6 shows the main implementation steps for ML approach on the GPU.

Algorithm 5.6. (GPU ML clustering steps)

1 Loop while numberOfCluster > 1 {
2 findMinDE();
3 collapseMinDE(); // numberOfCluster−−;
4 minimizeEnergy(); //according to the Algorithm 5.4
5 }

In the findMinDE() subroutine one DE with the smallest merging cost out of all gen-
erated DEs is identified. A workflow of this process is given in Figure 5.12. The FaceInfo
texture is loaded into a vertex stream. The vertex program (1) discards all vertices corre-
sponding to the non-boundary faces. For vertices which pass this test, i.e. for each boundary
face, a DE is computed/generated. A DE contains the (virtual) collapse cost Er,s and the
indices (IDr, IDs) of two merging clusters. All generated DEs are scattered into a single
pixel, see Figure 5.12. For each fragment, which correspond to a DE, the DE cost Er,s is
set as a fragment depth and the indices (IDr, IDs) as a fragment color. Using a depth test,
the smallest cost DE with corresponding (IDr, IDs) can be identified.

In the collapseMinDE() subroutine the collapse operation is applied, i.e two clusters
referenced by (IDr, IDs) are merged. This operation is simple as it requires only reseting
all faces with IDcl == IDs to IDcl = IDr in the FaceInfo texture.

In the minimizeEnergy() subroutine the obtained clustering configuration is optimized.
For this the Boundary-based cluster optimization approach is applied, as described in
Section 5.2.3.

108 CHAPTER 5. GPU-BASED MESH CLUSTERING

program

FaceInfo

vertex

depth

dual edges

F1 F2 F3
F4

),

F5
F0

F7

1

(

F6

depth test & mask
r,sE

sIDrID

Figure 5.12: A workflow example for the Multilevel (ML) Dual Edge identification. Arrows
indicate the DEs, Er,s denotes the energy for merging the cluster IDr with cluster IDs.

5.2.5 Parallel Multilevel Mesh Clustering on the GPU

For performing the parallel Multilevel (PML) clustering all mutual Dual Edges must be
identified. This is in contrast to the ML approach where only one minimal cost DE is iden-
tified. Mutual DEs are pairs of DEs that connect the same clusters, e.g. if one DE merges
cluster C1 with cluster C2 then the mutual DE will merge C2 with C1, see Figure 5.13 (b).

In general, identifying if two DEs are mutual can be done only after all DEs are gen-
erated. Thus, first, for each cluster the ODE is identified. This is followed by a collapse
operation in which it is tested if two ODEs are mutual and, respectively, can be collapsed.
The main implementation steps for the PML approach on the GPU are shown in the
Algorithm 5.7.

Algorithm 5.7. (GPU PML clustering steps)

1 Loop while numberOfCluster > 1 {
2 findODEForEachCluster();
3 collapseAllMutualODEs();
4 minimizeEnergy(); //according to the Algorithm 5.4
5 }

5.2. GPU-BASED MESH CLUSTERING 109

program
vertex

vertex
program

FaceInfo

dual edges

depthdepth

dual edges

F4F7
ID1 ID3ID5

TF

E

E

ID1

ID7

depth test
& mask

F6 F5
ID7

E

E

ID7

ID5

1 (a) (b)
F2

C1 C3

C5C7

F1
F0 F3

F4F7

F2

C1 C3

C5C7

F1
F0 F3

F4F7
F6 F5 F6 F5

depth test & max−blend2

F7F6
F5F4F3
F2F1F0

Figure 5.13: A workflow example for Parallel Multilevel (PML) dual edge identification.
(a)-(b): A mesh consisting of 8 faces and clustered in 4 clusters Ci. Arrows indicate the
DEs, E denotes the merging energy, and IDn denotes the opposite merging cluster index.
Note, that applying the second pass results in case (b) with two mutual DEs instead of
case (a) with no mutual DEs.

In the findMinDEForEachCluster() subroutine for each cluster a DE with the small-
est merging cost out of all generated DEs for this cluster is identified, i.e. an Optimal
DE (Definition 4.2). The workflow in this case is identical to the ML clustering, see Fig-
ure 5.12. Where the vertex scattering (vertex program (1)) with depth test activated, i.e.
glEnable(GL DEPTH TEST) and glDepthMask(GL TRUE), is applied. However, with the
difference that the DEs are not scattered into only one pixel but to different pixels which
correspond to the boundary face’s IDcl, i.e. which correspond to different clusters ID, see
Figure 5.13. Remember from last section that the number of generated DEs for each clus-
ter is approximately equal to the number of boundary faces. Now, each of these DEs must
be scattered to its individual cluster position, and the one with smallest cost, i.e minimal
depth, will be reported.

However, there can be cases where no mutual ODEs exist although there are possibilities
for merging, see for an example Figure 5.13 (a). This mostly happens in the regions with
identical merging cost, because here the direction of the merge is arbitrary. The same
problem was pointed out indirectly in [WLR88], where it is proposed to select the neighbor
with the largest ID. In our implementation we adopt the same selection rule.

110 CHAPTER 5. GPU-BASED MESH CLUSTERING

To have this selection implemented efficiently we propose to use the transform feedback
(TF) feature of the GPU to read back all generated DEs without recomputing them again,
see the sketch in Figure 5.13. These DEs can be scattered (vertex program (2)) to the
correct cluster position exactly as done in the (vertex program (1)). However, to choose a
neighbor with the largest ID, some additional settings are required for this second pass:

1. We set no depth buffer update, i.e. glDepthMask(GL FALSE), and set the depth
comparison function to glDepthFunc(GL EQUAL). Thus, using the depth buffer data
to test and consider only the DEs which have identical minimal cost, i.e depth, as
that already saved in the depth buffer.

2. Apply a maximum blending to the ODE’s cluster ID. Thus, from all fragments that
correspond to DEs with minimal cost only one with maximum cluster ID will be
saved for each cluster in part.

This way, at least one pair of mutual DEs can be obtained, see Figure 5.13 (a) - (b).

After all ODEs are computed, the mutual ones need to be identified and collapsed in one
collapse step. This is implemented in a subroutine collapseAllMutualODEs() as described
in Algorithm 5.8. Note that, if two mutual ODEs exist we have to apply the merging only
in one direction, i.e. avoid any double resettings. The order in this case is not important,
and we let only clusters with largest ID to apply merging.

Algorithm 5.8. (GPU Collapse All Mutual ODEs)

1 Texture FaceInfo;//contains the current clustering, i.e. IDcl for each face
2 Texture ClusterODE; //contains ODE for each cluster
3
4 rasterize FaceInfo texture
5 for each fragment f { //represents a face
6 IDcl = f.getClusterID();
7 mergingClusterID 1 = get data at IDcl in ClusterODE;
8 mergingClusterID 2 = get data at mergingClusterID 1 in ClusterODE;
9
10 if(mergingClusterID 2 != IDcl) discard; //no mutual ODEs
11
12 //choose only largest ID clusters to perform the collapse
13 if(IDcl < mergingClusterID 1) discard;
14
15 IDcl = mergingClusterID 1; //perform the collapse
16 }

5.3. GPU-BASED MESH CLUSTERING RESULTS 111

5.3 GPU-based Mesh Clustering Results

All the results presented in this and the next chapter are generated using a 3GHz Intel
Core(TM)2 Duo CPU PC with a GeForce GTX 280 (1024MB) graphics card.

To evaluate the algorithms presented in this chapter we show how an approximated
Centroidal Voronoi Diagram (CVD) can be performed. This energy functional is chosen
mostly due to the fact that it can be easily implemented and because it requires few cluster
data.

The energy of an approximated CVD can be written as, see Section 3.1.3:

ECV D =
k−1
∑

i=0

Ei =
k−1
∑

i=0

∑

Fj∈Ci

ρj‖γj − γi‖
2. (5.4)

where γj and ρj is the centroid and the weighted area of the face Fj, respectively. γi =
∑

Fj∈Ci
ρjγj/

∑

Fj∈Ci
ρj is the cluster centroid (proxy). Thus for computing the ∗E(P)0,

∗E(P)1, ∗E(P)2 energies in Eq. (5.3) one uses:

E(Fs, Pr) = ρs‖γs − γr‖
2. (5.5)

The Dual Edge collapse cost between two clusters C1 and C2 is computed as DEcost =
E12 −E1 −E2, see Section 4.1. For an easier computation of the merging energy, Eq. (5.4)
can be written in the form:

Ei =
∑

j

ρj‖γj‖
2 − 2γi · (

∑

j

ρjγj) + ‖γi‖
2
∑

j

ρj.

Thus for each face in the FaceData texture we only need to keep the values ρj‖γj‖
2,

ρjγj and ρj. Correspondingly, the ClusterData texture stores for each cluster the following
information:

∑

j ρj‖γj‖
2,
∑

j ρjγj and
∑

j ρj.

Boundary-based GPU Mesh Clustering Results:

Figure 5.14 depicts the result of a CVD construction for the Armadillo model. Observe
how during optimization the clusters (the green cluster is the most prominent) move from
the left leg to different parts of the model. This shows that the Boundary-based algorithm
performs very well even when starting with a “bad” initialization. At the same time observe
the perfect symmetry (good visual quality) in the final clustering.

Figure 5.15 shows the CVD energy behavior for the BB algorithm compared to the
EMLO algorithm (Section 3.1.4) for different number of clusters between 2k and 1k. Note
that using the Boundary-based approach a slightly higher energy is obtained compared to
the EMLO algorithm. This is due to the fact that the BB algorithm optimizes the complete
boundary at once in parallel, where the EMLO algorithm has a more selective boundary
optimization as it reupdates the cluster data after each local optimization.

Similar behavior was observed for most of the tested models, although for some models
and specific number of clusters the results are identical. Such an example is the clustering

112 CHAPTER 5. GPU-BASED MESH CLUSTERING

(a) (b)

(c) (d)

Figure 5.14: A CVD construction for 15 clusters. (a) & (c) Results of the initialization.
(b)&(d) Results after applying Boundary-based mesh clustering.

Model # # CPU GPU Speedup
Faces Clusters EMLO (sec.) BB (ms) Factor

Bunny 70k 1k 3 172 17
Bunny 70k 3k 3 187 16
Horse 97k 1k 3 187 16
Horse 97k 2k 4 218 18

Armadillo 346k 2k 12 1140 10
Armadillo 346k 5k 16 891 18

Table 5.1: Clustering time for building a uniform CVD with CPU- vs. GPU Boundary-
based (BB) cluster optimization.

5.3. GPU-BASED MESH CLUSTERING RESULTS 113

 25

 30

 35

 40

 45

 50

 55

 60

 1000 1200 1400 1600 1800 2000

E
ne

rg
y

E
 C

V
D

clusters

GPU BB
CPU EMLO

Figure 5.15: CVD energy as a function of the number of clusters for the Bunny model. (BB)
Boundary-based; (EMLO) Energy Minimization by Local Optimization (Section 3.1.4). To
obtain the energy variation limits the algorithms are performed 100 times with different
random initializations.

Figure 5.16: A GPU-based CVD clustering for 8 clusters. (a) Result of the initialization.
(b) Result after applying Boundary-based mesh clustering.

114 CHAPTER 5. GPU-BASED MESH CLUSTERING

of a cube model with 8 clusters, as presented in Figure 5.16. For this configuration both
algorithms provide the same clustering result.

Table 5.1 provides a timing comparison between CPU- and GPU-based clustering re-
sults, i.e. for the EMLO and the BB approaches, for different meshes. Here considerable
speedups from 10 to 18 times are observed.

Multilevel Mesh Clustering Results:

Figure 5.17 shows the CVD energy variation for GPU- vs. CPU-based clustering algorithms
for different number of clusters between 2k and 1k for the Bunny model.

 25

 30

 35

 40

 45

 50

 55

 60

 65

 1000 1200 1400 1600 1800 2000

E
ne

rg
y

E
 C

V
D

clusters

GPU HC
CPU HC
GPU ML
CPU ML

GPU PML

Figure 5.17: CVD energy versus number of clusters for Bunny model. (HC) Hierarchical
clustering; (ML) Multilevel; (PML) Parallel ML.

(1633) (1172) (482) (133)

Figure 5.18: A CVD GPU-based PML clustering result for different number of clusters.

5.3. GPU-BASED MESH CLUSTERING RESULTS 115

Model CPU, ML GPU, ML Speedup Factor
(sec.) (sec.)

Bunny 281 183 1.5
Horse 710 283 2.5

Armadillo 10856 6633 1.6

Table 5.2: Clustering time for Multilevel (ML) mesh clustering. The results are given using
a CPU and respectively a GPU based implementation.

Model CPU, ML GPU, PML Speedup Factor
(sec.) (sec.)

Bunny 281 9 31
Horse 710 5 142

Armadillo 10856 73 149

Table 5.3: Clustering time for GPU-based Parallel Multilevel (PML) vs. to the CPU ML
mesh clustering.

 25

 30

 35

 40

 45

 50

 55

 1000 1200 1400 1600 1800 2000

E
ne

rg
y

E
 C

V
D

clusters

GPU ML
GPU PML

GPU PML/1633 ML

Figure 5.19: CVD energy as function of the number of clusters for the Bunny model. (ML)
Multilevel; (PML) Parallel ML. (PML/1633 ML) Performing PML up to 1633 clusters,
then applying ML clustering.

As expected, the hierarchical clustering energy, which is obtained by deactivating the
optimization, is identical in both cases, see Figure 5.17 (GPU HC & CPU HC). This is
because both algorithms must perform mergings in the same order.

However, the energy of the (GPU ML) compared to the (CPU ML) approach is slightly
higher, see Figure 5.17. This is due the optimization behavior of the Boundary-based

116 CHAPTER 5. GPU-BASED MESH CLUSTERING

algorithm which is used in the optimization phase, as presented in Figure 5.15.
Figure 5.17 also depicts the energy of the GPU-based parallel ML (PML) algorithm.

The PML energy is lower than that of the hierarchical clustering but higher than that
of the ML algorithm. Note also that there are approximately 200 cluster mergings in one
merging step. Figure 5.18 shows, correspondingly, the GPU-based PML clustering result
for Bunny model for different number of clusters.

Table 5.2 provides a timing comparison between CPU- and GPU-based clustering re-
sults for ML approach. Due the fact that only one Dual Edge is collapsed in each step for
the GPU ML clustering a speedup factor of only 1.5 to 2.5 is achieved.

However, using the GPU-based parallel ML clustering approach speedup factors of 30
to 150 can be achieved, as presented in Table 5.3.

It is important to note that, as in the case of the CPU-based ML algorithm, see Sec-
tion 4.5, different variants of the GPU-based ML algorithm are possible. The PML algo-
rithm is very fast, but the clustering result is worse compared to ML. In this case one
can combine both algorithms to speedup the ML approach with no quality sacrifice. Fig-
ure 5.19 depicts such an example. If the ML algorithm is activated after the PML, the
energy rapidly converges against the standard ML variant. Here the PML approach was
applied up to 1633 clusters, followed by the ML clustering. Note that, the clustering energy
from 1200 clusters is identical to that of the ML clustering. Thus for a specific region of
interest, regarding the number of clusters (in this example from 1200 to 1 clusters), this
variation of the algorithm can be used to perform a fast ML construction.

5.4 Conclusions

In this chapter we have described new mesh clustering concepts, which provide a parallel
redefinition of the existing standard approaches. Thus, we reviewed the Variational and the
hierarchical (or in our case the Multilevel approach because it is more generic) algorithms
and proposed the Boundary-based and the parallel ML mesh clustering algorithms. The
Boundary-based approach is parallelizable and can accept any proxy-based energy func-
tionals, thus allowing for a wider range of applications. The proposed parallel ML mesh
clustering approach is very flexible. It has no limitation in the way in which parallel ML
clustering can be performed.

The major algorithmic elements are boundary-based queries, which strongly incorporate
the spatial coherence present in the optimization and the cluster merging steps. Our for-
mulation is free from any global data structures. Thus, it provides all necessary ingredients
for a GPU-based implementation.

We showed how both concepts can be entirely implemented on the GPU and also gave
some non-trivial GPU-specific technical details. To perform the clustering on the GPU, we
proposed a new mesh connectivity encoding. This gives all necessary means for a complete
Variational, Hierarchical or Multilevel GPU-based mesh clustering. It must be noted that,
this is the first GPU-based mesh clustering framework which employs mesh connectivity
in the clustering process.

5.4. CONCLUSIONS 117

We tested the approach by building a Centroidal Voronoi Diagram. Using this frame-
work we showed that considerable speedup can be obtained.

This GPU-based framework constitutes an important building block for an efficient
mesh clustering. Together with the Multilevel approach, which we discussed in the previous
chapter and which proved to provide high quality clustering results, they constitute the
main tools to perform efficient and high quality mesh clustering.

118 CHAPTER 5. GPU-BASED MESH CLUSTERING

Chapter 6

GPU-based Data Clustering

Generalizing the Multilevel (ML) mesh clustering concept described in the previous two
chapters to general data clustering is tempting in several ways:

1. As shown in Chapter 4 for meshes, the ML approach resolves the inherent problems of
the standard iterative and hierarchical algorithms. For iterative (k-means) approaches
the ML solves the dependency of the result on the initial number and selection of
seeds, which strongly affects the quality of the result. For hierarchical approaches
the non-optimal shape of the clusters in the hierarchy, which is due to the strict
containment property in the cluster hierarchy, is also overcome. Thus, any application
which uses the standard hierarchical or k-means clustering algorithms can profit, i.e.
provide higher quality results, when using the ML construction.

2. There is a rapid growth not only in the amount but also in the dimensionality of
the data to be clustered. Thus, fast processing and clustering of these large data sets
is an essential task for many applications. Realizing the ML data clustering on the
GPU, as done for meshes [CKCL09], will make accelerated and scalable clustering
available for a large number of applications.

In this chapter we present a generalization of the Multilevel method to data clustering
and its GPU-based implementation1. All advantages of the mesh-based technique conve-
niently carry over to the generalized data clustering approach.

In Section 6.1 we show how the problem of the missing topological information, which
is inherent to general data clustering, is solved by dynamically tracking cluster neighbor-
hoods. This tracking allows the identification of cluster neighborhoods, required for cluster
merging and for cluster optimization, without enforcing a disadvantageous storage of per-
element neighborhoods. This leads to a new Local Neighbors k-means algorithm, described
in Section 6.2. In Section 6.3 we describe how Multilevel data clustering can be performed.
The proposed approaches provide all necessary ingredients to support a GPU-based im-
plementation, the details of which are described in Section 6.4. Finally, Section 6.5 and
Section 6.6 presents different evaluation results. Section 6.7 draws some final conclusions.

1Parts of this chapter were published in [CK11].

120 CHAPTER 6. GPU-BASED DATA CLUSTERING

6.1 Neighborhood Identification and Tracking

Realizing a GPU-based Multilevel data clustering for “point clouds” comprises significant
challenges:

1. There is no “natural” neighborhood for the data elements as for the faces in a mesh.

2. As a consequence to this, there is no concept of a cluster boundary which is required
for the Boundary-based and ML clustering approaches. Thus, any algorithm described
in the last two chapters can not be carried over to data clustering directly.

Now, regarding the missing neighbors, one could reconstruct this neighborhood by
identifying the k nearest neighbors for each element [GDB08], see Figure 6.1. However,
doing this would require a static storage of this information on a per-point level. The
computation and storage of this information on the GPU will most probably have a negative
impact on the performance and scalability.

Furthermore, there is even a more severe problem with this idea. A careful analysis
shows that the identification of an appropriate value for k is rather difficult and is even
data dependent. Figure 6.1 (a) shows such an example for k = 3. Due to missing neighbor
information no merging between the final two clusters in the ML construction is possible.
Note that this may happen at any level in the ML construction. Increasing k, see Fig-
ure 6.1 (b), may solve the problem for this specific case. However, using a larger k is no
longer appropriate for the case presented in Figure 6.1 (c).

To deal with these problems, we propose a new neighborhood identification approach
based only on spatial relations between clusters, thus realizing a kind of “indirect” point-
cluster neighborhood. This is in contrast to the mesh clustering approach where per-face,
i.e. per-point, neighbor information is used.

Remember that in the case of a polygonal mesh, an Optimal Dual Edge (ODE) is
identified by looping over the Boundary Loop (BL) of the cluster, see Figure 6.2 (a). A DE
with smallest cost from all DEs is then chosen as an ODE. In the case of a discrete point
set no connectivity is present, thus there is no BL of the cluster to proceed in the same
way.

However, we can use the same analogy as for meshes to identify the cluster’s neighbor-
hood on a point set. For a given mesh, a loop over the BL of the cluster (Figure 6.2 (a)) can
be seen as sweep of the 2D space and a search for possible neighbors. Thus, if we subdivide
the point set space into a fixed number of subspaces, see Figure 6.2 (b), and try to identify
in each of these subspaces the closest cluster as neighbor we can obtain approximately the
same effect as for meshes, Figure 6.2 (c).

To establish a cluster neighborhood for the general case, we propose to subdivide the
space at the centroid Ci of cluster i into 2d subspaces S

i
n, n = 1, . . . , 2d in the d-dimensional

case according to:

Si
n = {Q : 2m(Q, i)− ((Q− Ci)m(Q,i) > 0) = n}, (6.1)

6.1. NEIGHBORHOOD IDENTIFICATION AND TRACKING 121

(a) ⇒

(b) ⇒

(c) ⇒

Figure 6.1: Left: Example of identified k nearest neighbors (points inside each circle) for:
(a) k = 3, (b) k = 5 and (c) k = 5. Corresponding query data points are represented by
×. Right: Final results of the ML construction. (a) & (c) The final two clusters cannot be
merged into one, because no neighbors connect them.

C2 C0C

C3

C1

C
S2 S1

S3

S4

C3

C0
C2

C6

C1

C5

C4

(a) (b) (c)

Figure 6.2: A 2D case: (a) Cluster C with its Boundary Loop (dashed line). (b) Space
subdivision with respect to a given cluster centroid C. (c) The ODE identification. The
local neighbors of the cluster C0 are N0

1 = C2, N
0
2 =null, N0

3 = C3, N
0
4 = C1.

122 CHAPTER 6. GPU-BASED DATA CLUSTERING

where m(Q, i) = argmaxj=1,...,d(
∣

∣Q− Ci

∣

∣

j
), and ((Q − Ci)m(Q,i) > 0) is a boolean ex-

pression.
For each of these subspaces the closest cluster is identified and referenced as local

neighbor N i
n, where i refers to the cluster Ci for which the neighbors are identified and n

to the subspace index. Note, that there may be no closest cluster in a region Si
n, in this

case N i
n is a null reference, for an example see Figure 6.2 (c).

With such a neighborhood definition, the ODE of a given cluster Ci is easily obtained
by checking only its local neighbors N i

n from each subspace, see Figure 6.2 (c). This yields
a very fast, i.e. efficient, ODE identification. Additionally, it overcomes the problem of the
k nearest neighborhoods described and exemplified in Figure 6.1.

As a result each cluster has a fixed number of maximum 2d neighbors, which must be
updated after any operation that changes a given cluster configuration, e.g. cluster merge
or optimization.

A cluster local neighbors update, implemented as the UpdateClusterLocalNeighbors()
subroutine, is done by considering all second order neighbors, i.e. all current neighbors and
their neighbors. Each of these neighbors is first checked to find the subspace in which it
is located, according to Eq. (6.1). It is assigned as a local neighbor if it is the closest to a
considered cluster.

One may argue, that the specific neighborhood tracking may not catch up with the
cluster motion and thus “better” assignment of neighbors may get lost. However, since
the cluster motion slows down rapidly after a few optimization cycles and because we use
for update not only the neighbors of a given cluster but also all second order neighbors,
it is expected that the neighborhood information will always correct itself perfectly. Even
though there is no guarantee for this, we did not encounter any false clustering result due
to (possibly partially existing) incorrect cluster neighborhoods.

6.2 Local Neighbors K-Means

Although the standard k-means algorithm (Section 2.2.1) is parallelizable and can be di-
rectly implemented on the GPU, as we show in Section 6.4.4, this is still a brute-force
k-means algorithm. More precisely, the classical k-means will perform k ·m distance com-
putations and comparisons for k clusters and m points. However, it can be easily observed
that in the clustering process a given data point Q most probably will be reassigned only
to its local neighboring clusters, see the example in Figure 6.3. Here, the point Q should
be checked only against clusters C0, C1, C2 and C3 but not against C4, C5 and C6. This
observation is based on spatial coherence, similar to the Boundary-based algorithm pro-
posed in Section 5.1.1, where a boundary triangle is checked only against its neighboring
clusters. Thus, an efficient data clustering algorithm must use this spatial coherence in the
clustering process.

Based on this observation, we propose a new algorithm, as a counterpart to the classical
brute-force k-means, namely the Local Neighbors k-means.

Suppose that a set of m discrete points Qj is provided. Clustering this point set into k

6.2. LOCAL NEIGHBORS K-MEANS 123

Q C2

C4

C6

C5

C3

C1

C0

Figure 6.3: An efficient reassignment check. The green and the red arrows indicate the
clusters that need and that do not need to be checked, respectively.

C0
C2

C4

C6

C5

C1

C3

C8

C7

Q

Figure 6.4: 2D example of the required checks in order to reassign the point Q to a closer
cluster. The green arrows indicate the clusters which must be checked, the red line shows
the current assignment of Q, the blue arrows indicate the 2-neighboring clusters.

clusters means partitioning the set such that points belonging to one cluster are “closer”
by some energy measure to this cluster than to any other cluster.

Now suppose that an initial configuration is provided, where each point Qj is already
assigned to some cluster not necessarily the closest, see Figure 6.4. According to this
configuration each cluster Ci has mi points and a centroid Ci. Additionally, using the
neighborhood definition proposed in Section 6.1, each cluster Ci has a reference to its 2d
local neighboring clusters N i

n.

The basic idea is to optimize a given clustering configuration by checking for each point

124 CHAPTER 6. GPU-BASED DATA CLUSTERING

Q only the “relevant” subspaces and the respective neighboring clusters, thus reducing sig-
nificantly the number of clusters to be checked. The steps of this approach are summarized
in Algorithm 6.1.

Algorithm 6.1. (Local Neighbors k-means)

1 while no point reassignment happens
2 {
3 //update clusters data
4 ComputeClusterCentroid();
5 UpdateClusterLocalNeighbors();
6
7 foreach point Q in the data set
8 {
9 // check current cluster of Q
10 Ci = cluster containing Q
11 check(Q, Ci);
12
13 // clusters in the subspace of Q w.r.t. Ci

14 // and its neighboring subspaces
15 Si

k = subspace containing Q in cluster Ci

16 foreach subspace Si
l of Ci

17 if (Si
k not opposite to Si

l AND N i
l != null) check(Q, N i

l);
18
19 // clusters in the subspace of Q w.r.t. N i

k

20 // and its neighboring subspaces
21 Cj = N i

k = neighboring cluster for Ci in Si
k

22 if (Cj == null) continue;
23 Sj

m = subspace containing Q in cluster Cj

24 foreach subspace Sj
n of Cj

25 if (Sj
m not opposite to Sj

n AND N j
n != null) check(Q, N j

n);
26
27 // final assignment
28 assign Q to the cluster with least energy
29 }
30 }

The ComputeClusterCetroid() and UpdateClusterLocalNeighbors() subroutines recom-
pute the cluster centroids and update the local neighbors of each cluster (Section 6.1),
respectively. The check(Qj, Ci) subroutine computes the energy of point Qj with respect
to a cluster Ci and references the cluster with the least energy so far. The process is al-
ternately repeated until no point reassignment happens. The result, as in the case of the
k-means algorithm, is a clustering that minimize the total energy E.

6.2. LOCAL NEIGHBORS K-MEANS 125

(a) (b)

Figure 6.5: 2D example of a Local Neighbors k-means clustering. (a) Initialization. (b)
Final clustering result.

Note, that this approach checks only relevant neighboring clusters in the same subspace
Si
k as the point Q or in the corresponding neighboring subspaces. The opposite subspace

is omitted. Furthermore, the neighbors of cluster N i
k are checked, if this cluster exists.

Again, the subspace opposite to the one containing Q is omitted, resulting in at most
4d − 1 clusters to be checked for each point. Thus, for k ≫ d, this algorithm performs
significantly less checks than the brute force variant of the k-means and the checks are still
independent from each other, i.e. they can be performed in parallel. Note that, in the case
of a specific neighborhood situation, clusters may be checked several times, as it can be
seen in Figure 6.4. Here, the point Q is finally assigned to cluster C3.

Up to now, we assumed that the initial configuration is given, i.e. each point is assigned
to a specific cluster and each cluster has reference to its local neighbors. To have a valid and
a good initial configuration we propose to do the initialization as follows, see Figure 6.5 (a)
for an example:

1. Subdivide the bounding box spanned by the data points into l = ad uniform voxels,
i.e. a voxels in each dimension.

2. Scatter points to corresponding voxels.

3. Consider each voxel as a starting cluster, with side voxels as local neighbors.

4. Merge zero sized clusters with non zero sized clusters.

Based on this initialization, the neighbors are directly assigned as the 2d voxels, i.e.
clusters, sharing a common face. As a result we obtain a valid initial configuration where
each point is assigned to a cluster and each cluster has 2d local neighbors.

Performing such an initialization has visible advantages over the random initialization
of the k-means algorithm. The starting seeds are distributed uniformly and in some way

126 CHAPTER 6. GPU-BASED DATA CLUSTERING

simulates the farthest-point initialization heuristic. Such an initialization always leads to
the same clustering result with no fluctuations and will give a number of clusters equal
to ad minus zero sized clusters, where a is the step-size. Thus, if a specific number of
clusters k is desired, the Multilevel approach must be used to obtain the level k, see next
section. Currently, a fixed step-size for all dimensions is used, which could be improved
using adaptive techniques.

6.3 Multilevel Data Clustering

In the hierarchical phase of the Multilevel construction an Optimal Dual Edge is collapsed,
i.e. two clusters with minimal merging cost are merged. A brute-force implementation
of this step in the case of data clustering requires k2 computations and comparisons for k
clusters. However, it can be again easily observed in Figure 6.6 that a cluster most probably
merges with one of its closest (local) neighbors. For example C0 should be checked for
merging only with C1, C2 and C3 but not with C4, C5 and C6. Thus, as in the case of the
k-means algorithm, an efficient implementation of this step for ML data clustering must
make use of the neighboring information of each cluster.

C2

C4

C6

C5

C3

C1

C0

Figure 6.6: More efficient Optimal Dual Edge identification. The green and the red arrows
indicate the clusters that need and that do not need to be checked, respectively.

The neighborhood definition proposed in Section 6.1 provides the base for performing
the ODE identification efficiently. For a given cluster an ODE is identified by checking only
its 2d local neighbors and choosing one with the smallest merging cost. This approach obeys
the spatial coherence in the process of cluster merging, i.e. only spatially near clusters can
merge.

Thus, the ML (Algorithm 5.2) and parallel ML (Algorithm 5.3) mesh clustering ap-
proaches smoothly carry over to data clustering. All these techniques can be applied in a

6.4. GPU IMPLEMENTATION DETAILS 127

flexible way, e.g. optimization can be deactivated to perform a classical hierarchical data
clustering, or one can switch between sequential ML and PML.

The initialization performed for the Local Neighbors k-means, see Section 6.2, already
yields a-priori well shaped clusters, if the classical Euclidean distance measure is used as
energy functional. Thus, starting with a very fine step-size and merging without optimiza-
tion or in parallel, i.e. using PML, yields very similar results compared to starting with a
larger step-size, providing a configuration where the number of points in each voxel is ≫ 1.

Therefore, to obtain all our results in Section 6.5 we use a variant of a Multilevel
approach that starts with a larger step-size a and applies only the sequential ML clustering
afterwards. In this case, the expectation is that the energy behavior will be similar to that
depicted in Figure 5.19 on page 115 for mesh clustering.

6.4 GPU Implementation Details

In this section we describe GPU-specific implementation details for the algorithms proposed
in Section 6.2 and 6.3. As for meshes, we aim at performing the complete clustering entirely
on the GPU, reducing any data transfer between CPU and GPU to a minimum.

With small changes, the techniques for GPU-based mesh clustering carry over to GPU-
based data clustering. Most of the implementation details described in Section 5.2 apply
equally to data clustering. Thus, the reader who is not familiar with these is referred to
read Section 5.2 first. In this chapter we address only the new elements which are related
to data clustering.

6.4.1 Data Representation and Processing

As for meshes, on the GPU a per-point and a per-cluster processing applies. Correspond-
ingly, 2D 32-bit textures are used to store the associated PointData and ClusterData.

Given a d-dimensional data set with m points, we save the input data set in an image
based pfs format [MKMS07]. This is done in order to obey the same input format as for
meshes. The number of channels in the pfs file corresponds to the d dimensions of the data
set. Note that no additional information besides this is saved in the pfs data file.

In contrast to meshes which are 3D, the data usually tend to be high dimensional, i.e.
d > 4. To cope with this, the Multiple Render Targets (MRT) mechanism is used to store
and process any point or cluster data information. Current hardware can support up to 8
RGBA targets. Thus, theoretically up to 32-dimensional data can be stored and processed
using ceil(d/4) render targets. Since each cluster needs to store 2d neighbors, we can only
process data up to 16 dimensions in the current implementation.

However, it must be recognized that this limit only applies to the current implemen-
tation. Thus, if the neighbors of each cluster are saved in two texels instead of one, i.e.
doubling the size of the NeighborsInfo texture, then up to 32 dimensions can be supported.
Interestingly, this technique can be used to deal with even higher number of dimensions.

128 CHAPTER 6. GPU-BASED DATA CLUSTERING

Now, regardless of whether the data point is clustered or not, each data entity belongs
to a specific cluster with index IDcl. In the beginning all data belong to the “null” cluster,
i.e. they have IDcl = −1. This information is saved in a PointInfo texture, where each
texel corresponds to a data entity in the original data set. As for meshes, reassigning a
data point which belongs to the cluster m, i.e. with IDcl = m, to a cluster n means that
the data IDcl index changes to IDcl = n, see Figure 5.8 on page 103.

6.4.2 Initial Clustering Configuration

Both the Local Neighbors k-means and the Multilevel algorithms proposed in Section 6.2 -
6.3 start with an initial configuration as described in Section 6.2.

Given a step-size a the bounding box spanned by the data set is subdivided into l = ad

voxels. Each voxel correspond to a starting cluster. Thus the cluster texture size is set
to clusterTexSize = ceil(sqrt(l)). From the bounding box limits for each dimension k
the voxelSizek, as the voxel size for a specific dimension, is computed as (limitMaxk −
limitMink)/a.

However, since the subdivisions are done in a d-dimensional space but we work on 2D
textures, we need a mapping from the subdivided d-dimensional space to the 2D texture
space. This is achieved using the following formula:

IDcl =
d−1
∑

k=0

(base)kmk. (6.2)

where base is the basis from which the mapping is done and the mk are the correspond-
ing numerals for each dimension with values between 0 and base − 1. As an example, for
ClusterData textures we have base = clusterTexSize and the numerals mk are exactly the
texture coordinates.

If the cluster index IDcl is known the numerals mk are obtained as:

mk =
IDcl

basek
% base. (6.3)

for k between 0 and d− 1, and % as modulo operation.
If we want to map from one base to another, the cluster IDcl is computed first in one

basis using Eq. (6.2) and then mapped to a different one using the numerals computed
according to the Eq. (6.3).

Having a valid initialization means that each d-dimensional data point has assigned a
correct cluster index IDcl and that each cluster with index IDcl has 2d valid local neighbors.
This is done as follows:

1. Assigning the d-dimensional data points to correct starting cluster IDcl is done using
a fragment shader. For each fragment which corresponds to a texel in PointInfo
texture an IDcl is computed according to Eq. (6.2) with base = a and base vectors
mk = Point[k]/voxelSizek. Where Point[k] is the k-th point coordinate component
and voxelSizek is the voxel size for a given k-th dimension.

6.4. GPU IMPLEMENTATION DETAILS 129

2. Initially, the neighbors are assigned according to the voxel-based spatial segmenta-
tion, see Section 6.2 and Figure 6.5 on page 125. For a given cluster with index IDcl

the numerals mk in basis a can be computed according to Eq. (6.3), see the getNu-
merals(int forID) subroutine in Algorithm B.1 in the Appendix B. These numerals
are used to identify the indices ID∗

cl of the neighboring clusters. Figure 6.7 depicts
a 2D example. By increasing and correspondingly decreasing by one the value mk

for each dimension (see the getNeighbors(int forDim) subroutine in Algorithm B.1 in
the Appendix B) different cluster’s indices according to Eq. (6.2) can be computed.
These are assigned as the indices of the neighboring clusters.

mcl
1

mcl
0
+ 1

mcl
0

mcl
1
− 1

mcl
0

mcl
1
+ 1

mcl
0

mcl
1

mcl
1

mcl
0
− 1

Figure 6.7: A 2D example for identifying the indices of the neighboring clusters. For a given
cluster with index IDcl and corresponding numerals (mcl

0 ,m
cl
1), the indices for four neigh-

bors (indicated by arrows) are computed according to Eq. (6.2) using four corresponding
numerals pairs.

6.4.3 Data Clustering

Local Neighbors k-means:

The approach, see Section 6.2, is implemented similarly to the Boundary-based algorithm,
as described in Section 5.2.3. The PointInfo texture is rasterized and for each fragment,
which corresponds to a given point Qj , the closest cluster is identified according to Algo-
rithm 6.1. The points which remain assigned to the same clusters are simply discarded. In
this case an occlusion query can be used to count the number of written fragments. If all
fragments are discarded the algorithm stops, meaning that no points can be reassigned to
other neighboring clusters such that the energy decreases.

130 CHAPTER 6. GPU-BASED DATA CLUSTERING

Multilevel clustering:

The workflow and the way in which the ML data clustering works is the same as for mesh
clustering, for additional details refer to Section 5.2.4. Here, the NeighborsInfo texture is
used instead of the FaceInfo texture. In the NeighborsInfo texture each cluster Ci has a
reference to its N i

k neighbors. Thus, for each of these neighbors a DE can be computed,
resulting in maximally 2d DEs.

6.4.4 Brute-force K-Means on the GPU

In order to compare the newly proposed Local Neighbors k-means, Section 6.2, with the
classical brute-force k-means algorithm, see Section 2.2.1, we integrated the latter into our
framework.

This can be achieved very easily. As described in Section 5.2.3, the PointInfo is used
to update the clusters centroid, i.e by applying GatherClusterData() and ComputeCluster-
Proxy() subroutines.

To perform the optimization step we load the current cluster’s centroid and the cluster
ID into a vertex stream. In the geometry shader we generate for each vertex, i.e. cluster, a
quad that covers the complete PointCoordinate texture. For each generated fragment the
“point to cluster energy” is computed. Using as fragment depth the computed energy and
performing the depth test one obtains for each point in the PointInfo texture the ID of the
closest cluster, i.e a new PointInfo texture. This process, i.e. computing clusters centroids
and reassigning the points to the closest clusters, is repeated until no points are reassigned
to other clusters.

6.5 GPU-based Data Clustering Results

It is known that there is a strong link between the Centroidal Voronoi Diagram [DFG99]
and the k-means clustering, see Section 2.2.1. Both minimize the within-cluster variance,
i.e. the squared distance between cluster’s centroid and its assigned data points. Thus, the
energy functional Eq. (5.4) equally applies to data clustering and can be written as:

E =
k−1
∑

i=0

Ei =
k−1
∑

i=0

∑

Qj∈Ci

‖Qj −Ci‖
2. (6.4)

where Qj and Ci is the data point and cluster’s centroid coordinates, respectively. The
cluster’s centroid is computed as Ci =

∑

Qj∈Ci
Qj/ni, where ni is the total number of

points in cluster Ci.

The Dual Edge collapse cost between two clusters C1 and C2 is computed as proposed
in [CK08] using:

DEcost = E1∪2 − E1 − E2. (6.5)

6.5. GPU-BASED DATA CLUSTERING RESULTS 131

start (27 cl.) (20 cl.) (10 cl.)

Figure 6.8: 2D example of ML data clustering. (start): The starting ML configuration as
shown in Figure 6.5. (20 cl.) and (10 cl.): ML clustering results for different number of
clusters.

start (27 cl.) (20 cl.) (10 cl.)

Figure 6.9: 2D example of hierarchical (HC) data clustering. (start): The starting HC
configuration. (20 cl.) and (10 cl.): HC clustering results for different number of clusters.

However, we must point out that, there are other merging cost definitions which for
different data clustering problems are considered to be more appropriate, e.g. some take
the cluster size into account, see for an overview [XW08] and [GMW07].

For an easier computation of the merging energy, Eq. 6.4 can be written in the form:

Ei =
∑

j

‖Qj‖
2 − 2Ci · (

∑

j

Qj) + ni‖Ci‖
2. (6.6)

Thus in the PointData texture, see Section 6.4.1, we only need to store the values ‖Qj‖
2,

Qj. Correspondingly, the ClusterData texture stores the following information:
∑

j ‖Qj‖
2,

∑

j Qj and ni.
Figure 6.5 and Figure 6.8 shows the clustering result for 10k 2D data points which

132 CHAPTER 6. GPU-BASED DATA CLUSTERING

represent 10 randomly distributed Gaussians. Figure 6.5 depicts the result after applying
the Local Neighbors k-means algorithm for a step-size equal to 6 resulting in 27 valid
clusters. Note that, similar to mesh clustering, the perfect symmetry present in the final
clustering. This indicates that the algorithm performs very well regardless of the initial
configuration. The visual quality observed for ML clustering results at 20 and 10 number
of clusters is also very pleasing, see Figure 6.8.

In contrast, the result of the classical hierarchical data clustering, as presented in Fig-
ure 6.9, is worse compared to the Multilevel approach. This is due to a strict containment
of the lower hierarchy levels in the upper ones.

Figure 6.10 shows the energy behavior of the ML clustering compared with the k-means
clustering, obtained for 100k 3D data points which represent 50 randomly distributed
Gaussians. As expected, in the region of interest the average energy of the k-means is
significantly higher compared to that of ML clustering. It is close to the ML energy only
when the number of seeds is much larger than the real number of clusters present in the
data set, i.e. at 102 clusters.

Due to a random initialization, large fluctuations are obtained in the final result of
the k-means algorithm, whereas the Local Neighbors k-means always leads to the same
final configuration due to its fixed initial spatial subdivision. Note, that there are cases
where the k-means energy, not the average energy, is lower than that of the ML. This only
happens after the first optimization in the ML construction, see Figure 6.10 at 102 and
57 clusters. This is due to the fact that the k-means (and that only by chance) may have
a better initial configuration compared to the uniform sampling initialization used for the
ML data clustering.

In order to correctly judge the difference in behavior between the newly proposed
Local Neighbors k-means and the brute-force k-means algorithms (which usually has a
random initialization), we generate the initial set of seeds for the k-means from the initial
configurations of the Local Neighbors k-means. Then the point closest to the obtained
cluster centroid is assigned as seed. This ensures that both algorithms start with the same
initial configuration.

Figure 6.11 shows the resulting timing for both algorithms for different numbers of
clusters k. For a fixed point data set with m points, the Local Neighbors k-means is
not affected by increasing the number of clusters, where the computation time for the
k-means increases linearly per iteration. In each iteration, the Local Neighbors k-means
performs m(4d− 1) point-to-cluster computations, thus increasing the number of clusters
does not affect the number of these computations. At the same time the k-means requires
mk point-to-cluster computations. This is a very important property of the Local Neighbors
k-means showing that the newly proposed algorithm scales much better than k-means with
increasing number of clusters.

To see how the algorithm scales with increasing number of points, we have generated
different data sets with different numbers of points for fixed positions of the Gaussians.
Figure 6.12 shows the timing for these different configurations. It can be observed that the
Local Neighbors k-means scales much better than the k-means, it is approximately two
times faster.

6.5. GPU-BASED DATA CLUSTERING RESULTS 133

 0

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

 1.2e+007

 1.4e+007

 20 30 40 50 60 70 80 90 100

E
ne

rg
y

E

clusters

GPU ML a = 5
GPU ML a = 4

GPU KM random init

Figure 6.10: k-means energy as a function of the number of clusters. (GPU ML) Energy
of the Multilevel data clustering. (GPU KM) Energy of the brute-force k-means. a - the
number of voxels per dimension. The error bars were obtained by repeating the k-means
100 times with different random initializations.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Ti
m

e
(m

se
c)

 /
Ite

ra
tio

n

clusters

LN KM
KM

Figure 6.11: Local Neighbors k-means (LN-KM) vs. k-means (KM) timing for different
number of clusters at fixed 100k number of points.

134 CHAPTER 6. GPU-BASED DATA CLUSTERING

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Ti
m

e
(m

se
c)

 /
Ite

ra
tio

n

points

LN KM
KM

Figure 6.12: Local Neighbors k-means (LN-KM) vs. k-means (KM) timing for different
number of points at fixed ≈ 100 number of clusters.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12

Ti
m

e
(m

se
c)

 /
M

L
st

ep

dimension

a=2
a=3
a=4
a=5
a=6

Figure 6.13: Average time of one ML step (merging and optimization) vs. dimensions.

6.6. IDENTIFYING THE NUMBER OF CLUSTERS 135

Data clustering usually requires high-dimensional processing. Therefore, it is important
to investigate how the algorithm processing time scales with the increasing number of
dimensions. Due to hardware restriction, our current implementation can support up to
16 dimensions, see the discussions in Section 6.4.1. To make a correct judgment we first
generate a data set with 50 Gaussians each containing 1k points for the highest supported
dimension d = 16. To obtain data sets for lower dimensions d < 16 we simply project
the first d dimensions on the original data set. Figure 6.13 presents the final result. It is
interesting to note that the average time to perform one ML step, which includes merging
two clusters and applying the Local Neighbors k-means, is nearly constant. This indicates
that the ML scales very well with increasing number of dimensions as well. The large timing
values which can be seen for different values of a are due to GPU memory management
problems. Remember that in the initialization, see Section 6.4.2, we start with l = ad

voxels, therefore with increasing number of dimensions the GPU memory limit is reached
very quickly as more memory resources are required.

6.6 Identifying the Number of Clusters

One of the major goals of data clustering is to identify the “true” number of clusters that
best describes a given data set. The ML approach does not provide a direct answer to this
question – however it provides the complete set of all solutions. Depending on a specific
problem, the algorithm can be designed to choose one best solution out of all possible
solutions.

The simplest approach in this case is to use the energy measure, e.g. as done in Sec-
tion 4.4 to identify different types of shapes present in the model. It is observed that as
long as the data is not naturally clustered smaller increases in the energy can be observed
as the number of clusters decreases, see Figure 6.10. However, if the data naturally clusters
then the energy very quickly increases – the so-called elbowing effect [DGJW06].

Another approach is to use the Bayesian Information Criterion (BIC) as done in [PM00]
for X-means algorithm2. The algorithm can then report the solution with highest BIC or
stop when the BIC score starts decreasing3.

Figure 6.14 shows the BIC values for different ML levels for the data set shown in
Figure 6.8. Here we compute the BIC score exactly as described in [PM00]. As expected,
the highest BIC score is obtained for 10 clusters. This way the ML algorithm can be
designed to report the solution with highest BIC or even stop and report the best solution
if the BIC score starts decreasing4.

In contrast to meshes for which there are no top-down approaches, for data clustering
such algorithms exist, see Section 2.2.2. Thus, it is important to compare the ML algorithm
to these.

2For more details on the BIC computation see Section 2.2.1.
3Note, that the same principle can be used with other measures. See [XW08] for other model selection

criteria.
4The results in Figure 6.15 were obtained using this idea.

136 CHAPTER 6. GPU-BASED DATA CLUSTERING

-70000

-68000

-66000

-64000

-62000

-60000

-58000

-56000

-54000

-52000

-50000

 0 5 10 15 20 25

B
IC

clusters

BIC

Figure 6.14: The BIC score at different ML levels for data set presented in Figure 6.8.

The bisecting k-means [SKK00], [SB04] could be considered in this case. However, as
already pointed out in Section 2.2.2, it provides a hierarchy of clusters (a binary tree). As
a result, it suffers from the strict containment of upper levels in the lower ones, although
less than agglomerative hierarchical clustering.

In contrast, the X-means algorithm [PM00] applies an optimization step after any
bisecting step, therefore the X-means leads to superior results compared to the bisecting k-
means. Thus, we choose to compare the ML approach with the X-means algorithm [PM00].
Even more, the X-means algorithm is specially designed to stop and report the “true”
number of clusters.

To compare how well both algorithms can identify the “true” number of clusters present
in the data, we generated different data sets with different numbers of spherical Gaussians
with a standard deviation of one, each with 500 points, in a fixed 3D volume with limits
between [−25; 25]. The ML algorithm stops when the BIC value starts to decrease. The
result of this experiment5 is presented in Figure 6.15. As expected, as long as the clusters
are well separated both algorithms are able to identify the original number of clusters
present in the data. However, starting from 100 clusters as more Gaussians begin overlap-
ping, the output of both algorithms start to diverge. The X-means always identifies with
large fluctuations less clusters as originally generated in the data, which is more or less in
agreement with the results presented in [PM00]. In contrast, the ML approach is always
very close to the original number of clusters present in the data. Thus, ML proves to be
better at revealing the “true” number of clusters compared to the X-means, which also
reflects on the quality of the clustering result.

5To obtain the results for X-means we used a publicly available implementation of the algorithm [PM].

6.6. IDENTIFYING THE NUMBER OF CLUSTERS 137

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

O
ut

pu
t #

 c
lu

st
er

s

Generated # clusters

true
ML

X-means

Figure 6.15: The output number of clusters for different number of generated Gaussians.
Each Gaussian contains 500 3D points. The error bars were obtained using 10 different
data sets.

-1.45e+006

-1.4e+006

-1.35e+006

-1.3e+006

-1.25e+006

-1.2e+006

-1.15e+006

-1.1e+006

-1.05e+006

-1e+006

-950000

-900000

 0 50 100 150 200 250 300 350 400

B
IC

clusters

BIC

Figure 6.16: The BIC score at different ML levels for 250 generated Gaussians.

138 CHAPTER 6. GPU-BASED DATA CLUSTERING

The explanation of this result can be seen in Figure 6.16 where the BIC score for differ-
ent ML levels for a data set consisting of 250 Gaussians is shown. Note that, in the range
from 1 to 100 clusters, there are several local maxima present in the BIC values. Thus, the
X-means most probably will be trapped in such regions and provides unsatisfactory results.
In this example the X-means reports 22 clusters. In contrast, doing an agglomerative ML
there are no such fluctuations in the BIC values and the maximum appears at 242 clusters.
This again emphasize the methodological advantage of the Multilevel approach, in this
case over the top-down approaches, i.e. the X-means algorithm.

6.7 Conclusions

In this chapter we have generalized the Multilevel approach to data clustering. As a result,
the major advantages of the ML technique, discussed in the previous two chapters, can
now readily apply to data clustering. As in the case of mesh clustering, the ML approach
has shown to be a good strategy in overcoming the stated problems of the k-means and
hierarchical clustering methods.

In this context, we have presented a method to resolve the missing topological informa-
tion by dynamically tracking cluster neighborhoods. This tracking allows the identification
of cluster neighbors required for cluster merging and for cluster optimization, without
enforcing a disadvantageous storage of per-element neighborhoods.

The clustering technique is formulated as parallel algorithm, which incorporates local
neighbor checks. Both the ML and the local neighborhood approach form the basis for
a framework solely based on GPU resources, thus making it more attractive. Using this
framework we have shown that considerable speedup can be obtained.

As a result the Multilevel approach becomes a powerful tool for mesh as well as data
clustering and analysis. It is very flexible in terms of enabling and disabling the optimization
and/or parallel cluster merging. Compared to classical approaches, our technique generates
results with at least the same clustering quality, and is better at revealing the number of
clusters present in the data set.

Furthermore, our approach scales very well, currently being limited only by the available
amount of graphics memory.

Summary and Future Work

In this dissertation we have presented a new generic Multilevel clustering technique. The
framework was applied to mesh clustering and to general data clustering. From a concep-
tual point of view, the topological information for meshes has been replaced by dynamic
cluster tracking in the case of general data clustering. The major algorithmic elements are
boundary-based queries, which strongly incorporate the spatial coherence present in the
optimization and the cluster merging steps without having any restriction regarding the
energy functional.

Our clustering technique has several methodological advantages:

1. The approach has been shown to be a good strategy to overcome the stated problems
of the iterative and hierarchical clustering methods, thus providing robust and high
quality clustering results.

2. Our formulation is free from any global data structures. This allows an efficient GPU-
based implementation and a further step in parallelization.

The technique is formulated as a parallel algorithm, which incorporates local neighbor
checks. This conceptual combination of optimization with hierarchical techniques and its
formulation as a parallel algorithm yields a multilevel clustering approach, that optionally
performs the cluster merging also in parallel. Both the parallel and the local neighborhood
approach form the basis of a framework solely based on GPU resources, resulting in an
algorithm which scales very well.

Using this framework we have shown that considerable speedups can be obtained, yield-
ing at least the same clustering quality compared to standard techniques. The proposed
parallel multilevel clustering approach is very flexible. It has no limitation on the way in
which parallel Multilevel clustering can be performed.

In the field of mesh processing the GPU-based Multilevel approach is an important
building block, since it is the first GPU-based approach that performs a “true” mesh
clustering. In this context, because of a steadily growing GPU power, we expect even more
techniques to emerge based on the concepts presented in this dissertation. New application
areas need to be identified by testing more standard energy functionals or developing new
ones.

In the field of data clustering the Multilevel approach proved to be a better strategy
compared to the top-down approaches, such as the X-means algorithm, at revealing the

140 CHAPTER 6. GPU-BASED DATA CLUSTERING

number of clusters present in the data. Its GPU-based implementation makes it even more
attractive, as considerable speedup can be obtained.

Nonetheless, we have to recognize that in both cases there is still room for optimization.
This regards the algorithm as well as the GPU-specific implementation parts. Thus, we
need to identify new GPU-based techniques to even further speed up the clustering process.
Here the newest hardware architecture specification must be taken into account.

Finally, we expect to see the Multilevel approach applied in many other clustering-
related applications, such as gene analysis, document clustering, image segmentation, etc.
Thus, the Multilevel concept together with a GPU-based implementation becomes more
generic and can be established as a standard approach for any clustering tasks.

Appendix A

Proof of Proposition 3.1

PROPOSITION 3.1 . Given a set of n different seeds {zi}
n−1
i=0 with associated positive

weights {wi}
n−1
i=0 and a density function ρ(x) in the domain Ω. Let {Dmw

i }n−1
i=0 denote any

tessellation of Ω into n regions. Define:

Emw =
n−1
∑

i=0

∫

Dmw
i

ρ(x) wi |x− zi|
2 dx

Emw is minimized if and only if {Dmw
i }n−1

i=0 is a Multiplicatively Weighted Centroidal
Voronoi Diagram (MWCVD).

Proof: Given a set of n different seeds {zi}
n−1
i=0 with associated positive weights {wi}

n−1
i=0 ,

a positive density function ρ(x) in the 2D domain Ω and a tessellation of Ω into n regions
{Dmw

i }n−1
i=0 . The Emw, according to Eq. (3.22), is minimized if and only if the regions

Dmw
i are the MW-Voronoi regions associated to the generators zi and, simultaneously, the

generators zi are the centroids z∗i of the regions Dmw
i , see Eq. (3.21).

We follow a similar argument as in [DFG99]:
First, assuming that Emw is minimized, we have to show that the generators {zi}

n−1
i=0

are the centroids corresponding to the regions {Dmw
i }n−1

i=0 .
Examine the variation of Emw with respect to a fixed zi, namely Emw(zi+ǫv)−Emw(zi),

where zi + ǫv ∈ Ω. Now, dividing by ǫ and taking the limit as ǫ → 0:

lim
ǫ→0

Emw(zi + ǫv)− Emw(zi)

ǫ
=

∫

ρ(x)wi |x− zi − ǫv|2 dx−
∫

ρ(x)wi |x− zi|
2 dx

ǫ
= 0

yields:

zi =

∫

Dmw
i

xρ(x)dx
∫

Dmw
i

ρ(x)dx

Second, we show that Emw is minimized if {Dmw
i }n−1

i=0 are MW-Voronoi regions associ-
ated with sites {zi}

n−1
i=0 .

142 APPENDIX A. PROOF OF PROPOSITION 3.1

Recall the fact that due to the construction of the MW-Voronoi diagram for x ∈ Dmw
i

we get for i 6= j:

wi |x− zi| < wj |x− zj|

⇐⇒ ρ(x)wi |x− zi|
2 < ρ(x)wj |x− zj|

2

Thus, for a fixed set of sites {zi}
n−1
i=0 the energy Emv defined according to Eq. (3.22) will

be smaller compared to the case when the tessellation is not a MW-Voronoi diagram.

Appendix B

Compute Cluster’s Local Neighbors.

Algorithm B.1. (GLSL code to compute cluster’s local neighbors.)

1 int numerals[dimension]; //global for numerals
2
3 //compute numerals with the base=subdivisions
4 void getNumerals(int forID) {
5 int temp = 1;
6 for(int d=0; d<dimension; d++) {
7 numerals[d] = (forID/temp)%subdivisions;
8 temp ∗= subdivisions;
9 }
10 }
11
12 //generic is good, but this is faster
13 int getClusterID2D(ivec2 texIndices)
14 { return clustersTextureSize∗texIndices[1] + texIndices[0]; }
15
16 //get the cluster index with an offset at given dimension
17 int compClusterID(int atDim, int offset) {
18 if((numerals[atDim] + offset) < 0
19 || (numerals[atDim] + offset) == subdivisions) return −150;
20 else {
21 int temp=0; int multBase=1;
22 for(int d=0; d<dimension; d++) {
23 if(d != atDim) temp += multBase∗numerals[d];
24 else temp += multBase∗(numerals[d] + offset);
25
26 multBase∗=subdivisions;
27 }
28 return temp;
29 }

144 APPENDIX B. COMPUTE CLUSTER’S LOCAL NEIGHBORS.

30 }
31
32 //compute bottom and upper neighbors for a given dimension
33 ivec2 getNeighbors(int forDim) {
34 ivec2 outVec=ivec2(0, 0);
35
36 if(forDim<dimension) {
37 outVec[0] = compClusterID(forDim, 1);
38 outVec[1] = compClusterID(forDim, −1);
39 }
40 return outVec;
41 }
42
43 //The main entry point of this GPU program
44 void main() {
45 //get cluster id
46 int clusterID = getClusterID2D(ivec2(floor(gl TexCoord[0].xy)));
47
48 //get the numerals in a new base
49 getNumerals(clusterID);
50
51 //get new neighbors
52 for(int rt=0; rt<clustersNeighborsRenderTargets; rt++)
53 gl FragData[rt] = vec4(getNeighbors(rt∗2+0), getNeighbors(rt∗2+1));
54 }

Bibliography

[AdVDI03] Alliez P., de Verdière E. C. d., Devillers O., Isenburg M.:
Isotropic Surface Remeshing. In Proc. of the Shape Modeling International
(SMI) (2003), IEEE Computer Society.

[AdVDI05] Alliez P., de Verdière E. C., Devillers O., Isenburg M.: Cen-
troidal Voronoi diagrams for isotropic surface remeshing. Graph. Models 67,
3 (2005), 204–231.

[AE84] Aurenhammer F., Edelsbrunner H.: An optimal algorithm for con-
structing the weighted Voronoi diagram in the plane. Pattern Recognition
17, 2 (1984), 251–257.

[AFS06] Attene M., Falcidieno B., Spagnuolo M.: Hierarchical mesh seg-
mentation based on fitting primitives. The Visual Computer 22, 3 (2006),
181–193.

[AKM∗06] Attene M., Katz S., Mortara M., Patane G., Spagnuolo M., Tal

A.: Mesh Segmentation - A Comparative Study. In Proc. of the IEEE Int.
Conf. on Shape Modeling and Applications (SMI) (2006), IEEE Computer
Society, p. 7.

[AMD02] Alliez P., Meyer M., Desbrun M.: Interactive Geometry Remeshing.
ACM Transactions on Graphics 21 (2002), 347–354.

[APP∗07] Agathos A., Pratikakis I., Perantonis S., Sapidis N., Azariadis

P.: 3D Mesh Segmentation Methodologies for CAD applications. Computer-
Aided Design and Applications 4, 6 (2007), 827 – 841.

[Bau72] Baumgart B. G.: Winged edge polyhedron representation. Tech. rep.,
Stanford, CA, USA, 1972.

[BPK∗08] Botsch M., Pauly M., Kobbelt L., Alliez P., Lvy B.: Geometric
Modeling Based on Polygonal Meshes. In Eurographics Tutorial (2008).

[Buc05] Buck I.: GPU Gems 2 - Programming Techniques for High-Performance
Graphics and General-Purpose Computation. AddisonWesley, 2005, ch. Tak-
ing the Plunge into GPU Computing, pp. 509–519.

146 BIBLIOGRAPHY

[CGF09] Chen X., Golovinskiy A., Funkhouser T.: A benchmark for 3D mesh
segmentation. ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 3
(2009).

[CK06] Chiosa I., Kolb A.: Mesh Coarsening based upon Multiplicatively
Weighted Centroidal Voronoi Diagrams. In Technical Report, Computer
Graphics Group, Institute for Vision and Graphics (IVG), University of
Siegen (2006).

[CK08] Chiosa I., Kolb A.: Variational Multilevel Mesh Clustering. In Proc.
IEEE Int. Conf. on Shape Modeling and Applications (SMI) (2008), pp. 197–
204.

[CK11] Chiosa I., Kolb A.: GPU-based Multilevel Clustering. IEEE Transactions
on Visualization and Computer Graphics (TVCG) 17, 2 (2011), 132–145.

[CKCL09] Chiosa I., Kolb A., Cuntz N., Lindner M.: Parallel Mesh Cluster-
ing. In Proc. Eurographics Symp. on Parallel Graphics and Visualization
(EGPGV) (2009), pp. 33–40.

[CKS98] Campagna S., Kobbelt L., Seidel H.-P.: Directed Edges - A Scalable
Representation for Triangle Meshes. Journal of Graphics Tools 3 (1998).

[Coh99] Cohen J. D.: Concepts and algorithms for polygonal simplification. SIG-
GRAPH Course Tutorial: Multiresolution Surface Modeling Course (1999).

[CP05] Cazals F., Pouget M.: Estimating Differential Quantities using Poly-
nomial fitting of Osculating Jets. Computer Aided Geometric Design 22
(2005), 121–146.

[CSAD04] Cohen-Steiner D., Alliez P., Desbrun M.: Variational shape approx-
imation. In Proc. SIGGRAPH (2004), pp. 905–914.

[CSM03] Cohen-Steiner D., Morvan J.-M.: Restricted delaunay triangulations
and normal cycle. In Proc. of symposium on Computational geometry (SCG)
(2003), ACM, pp. 312–321.

[CTZ06] Cao F., Tung A. K., Zhou A.: Scalable clustering using graphics pro-
cessors. In Lecture Notes in Computer Science (2006), vol. 4016, Springer,
pp. 372–384.

[Cun09a] Cuntz N.: gp3tools. http://www.cg.informatik.uni-
siegen.de/Programming/hase3d, 2009.

[Cun09b] Cuntz N.: Real-Time Particle Systems. PhD Thesis, Computer Graphics
Group, Institute for Vision and Graphics (IVG), University of Siegen, 2009.

BIBLIOGRAPHY 147

[DBvKOS00] De Berg M., van Kreveld M., Overmars M., Schwarzkopf O.:
Computational geometry: algorithms and applications. Springer, 2000.

[DFG99] Du Q., Faber V., Gunzburger M.: Centroidal Voronoi Tessellations:
Applications and Algorithms. SIAM Review 41, 4 (1999), 637–676.

[DGJ03] Du Q., Gunzburger M. D., Ju L.: Constrained centroidal voronoi tes-
sellations for surfaces. SIAM Journal on Scientific Computing 24, 5 (2003),
1488–1506.

[DGJW06] Du Q., Gunzburger M., Ju L., Wang X.: Centroidal voronoi tessel-
lation algorithms for image compression, segmentation, and multichannel
restoration. J. Math. Imaging Vis. 24, 2 (2006), 177–194.

[DW05] Du Q., Wang D.: Anisotropic centroidal voronoi tessellations and their
applications. SIAM J. Sci. Comput. 26, 3 (2005), 737–761.

[EDD∗95] Eck M., DeRose T., Duchamp T., Hoppe H., Lounsbery M.,

Stuetzle W.: Multiresolution analysis of arbitrary meshes. In Proc. SIG-
GRAPH (1995), pp. 173–182.

[For65] Forgy E.: Cluster analysis of multivariate data: efficiency versus inter-
pretability of classifications. Biometrics 21 (1965), 768–780.

[FRCC08] Farivar R., Rebolledo D., Chan E., Campbell R. H.: A parallel
implementation of k-means clustering on gpus. In Proc. of Int. Conf. on
Parallel and Distributed Processing Techniques and Applications (PDPTA)
(2008), pp. 340–345.

[Gar99] Garland M.: Multiresolution modeling: Survey & future opportunities.
EUROGRAPHICS - State of the Art Report (1999), 111–131.

[GDB08] Garcia V., Debreuve E., Barlaud M.: Fast k nearest neighbor search
using GPU. In CVPR Workshop on Computer Vision on GPU (2008).

[GG04] Gelfand N., Guibas L. J.: Shape segmentation using local slippage
analysis. In Proc. of Eurographics/ACM SIGGRAPH symp. on Geometry
processing (2004), ACM, pp. 214–223.

[GG06] Gatzke T., Grimm C.: Estimating curvature on triangular meshes. In-
ternational Journal of Shape Modeling 12, 1 (June 2006), 1–29.

[GGH02] Gu X., Gortler S., Hoppe H.: Geometry images. In Proc. SIGGRAPH
(2002), pp. 355–261.

[GH97] Garland M., Heckbert P. S.: Surface simplification using quadric error
metrics. In Proc. SIGGRAPH (1997), pp. 209–216.

148 BIBLIOGRAPHY

[GHJ∗97] Gieng T. S., Hamann B., Joy K. I., Schussman G. L., Trotts

I. J.: Smooth hierarchical surface triangulations. In Proc. of the conf. on
Visualization (VIS) (1997), IEEE Computer Society Press, pp. 379–386.

[GMW07] Gan G., Ma C., Wu J.: Data Clustering: Theory, Algorithms, and Ap-
plications. ASA-SIAM Series on Statistics and Applied Probability, 2007.

[GWH01] Garland M., Willmott A., Heckbert P. S.: Hierarchical face cluster-
ing on polygonal surfaces. In Proc. Symp. on Interactive 3D graphics (I3D)
(2001), pp. 49–58.

[Ham94] Hamann B.: A data reduction scheme for triangulated surfaces. Comput.
Aided Geom. Design 11, 2 (1994), 197–214.

[HE02] Hamerly G., Elkan C.: Alternatives to the k-means algorithm that find
better clusterings. In Proc. of the Int. Conf. on Information and knowledge
management (CIKM) (2002), pp. 600–607.

[HG97] Heckbert P. S., Garland M.: Survey of polygonal surface simplification
algorithms. Proc. SIGGRAPH: Multiresolution Surface Modeling Course
(1997).

[HH04] Hall J. D., Hart J. C.: GPU acceleration of iterative clustering. In
Manuscript accompanying poster at GP 2. The ACM Workshop on General
Purpose Comp. on Graph. Processors, and SIGGRAPH 2004 poster (2004).

[Hop96] Hoppe H.: Progressive meshes. In Proc. SIGGRAPH (1996), pp. 99–108.

[Hop97] Hoppe H.: View-dependent refinement of progressive meshes. In SIG-
GRAPH: Proc. of conf. on Computer graphics and interactive techniques
(1997), ACM Press/Addison-Wesley Publishing Co., pp. 189–198.

[HtLlDt∗09] Hong-tao B., Li-li H., Dan-tong O., Zhan-shan L., He L.: K-means
on commodity gpus with cuda. World Congress on Computer Science and
Information Engineering 3 (2009), 651–655.

[JKS05] Julius D., Kraevoy V., Sheffer A.: D-charts: Quasi-developable mesh
segmentation. Proc. EUROGRAPHICS 24, 3 (2005), 581–590.

[KJ01] Kolb A., John L.: Volumetric Model Repair for Virtual Reality Ap-
plications. In EUROGRAPHICS Short Presentation (2001), University of
Manchester, pp. 249–256.

[KJKZ94] Katsavounidis I., Jay Kuo C.-C., Zhang Z.: A new initialization
technique for generalized lloyd iteration. IEEE Signal Processing Letters 1,
10 (1994), 144–146.

BIBLIOGRAPHY 149

[Kle98] Klein R.: Multiresolution representations for surfaces meshes based on the
vertex decimation method. Computers and Graphics 22, 1 (1998), 13 – 26.

[KLRS04] Kolb A., Latta L., Rezk-Salama C.: Hardware-based Simulation and
Collision Detection for Large Particle Systems. In Proc. Graphics Hardware
(2004), pp. 123–131.

[KVLS99] Kobbelt L. P., Vorsatz J., Labsik U., Seidel H.-P.: A Shrink Wrap-
ping Approach to Remeshing Polygonal Surfaces. Computer Graphics Forum
18, 3 (1999), 119 – 130.

[KW03] Krüger J., Westermann R.: Linear algebra operators for GPU imple-
mentation of numerical algorithms. ACM Transactions on Graphics (TOG)
22, 3 (2003), 908–916.

[LE97] Luebke D., Erikson C.: View-dependent simplification of arbitrary
polygonal environments. In SIGGRAPH: Proc. of conf. on Computer graph-
ics and interactive techniques (1997), ACM Press/Addison-Wesley Publish-
ing Co., pp. 199–208.

[Lin00] Lindstrom P.: Out-of-core simplification of large polygonal models. In
Proc. SIGGRAPH (2000), pp. 259–262.

[Llo82] Lloyd S. P.: Least squares quantization in PCM. IEEE Transactions on
Information Theory 28, 2 (1982), 129–137.

[LRC∗02] Luebke D., Reddy M., Cohen J., Varshney A., Watson B., Hueb-

ner R.: Level of Detail for 3D Graphics. Elsevier Science Inc., 2002.

[LS03] Labelle F., Shewchuk J. R.: Anisotropic voronoi diagrams and
guaranteed-quality anisotropic mesh generation. In Proc. symposium on
Computational geometry (SCG) (2003), ACM, pp. 191–200.

[LSS∗98] Lee A. W. F., Sweldens W., Schröder P., Cowsar L., Dobkin D.:
MAPS: Multiresolution adaptive parameterization of surfaces. In Proc. of
SIGGRAPH (998), pp. 95–104.

[Mac67] MacQueen J. B.: Some methods for classification and analysis of multi-
variate observations. In Proc. of the Berkeley Symp. on Mathematical Statis-
tics and Probability (1967), vol. 1, University of California Press, pp. 281–
297.

[Män88] Mäntylä M.: An Introduction to Solid Modeling. Computer Science Press,
1988.

150 BIBLIOGRAPHY

[MGAK03] Mark W. R., Glanville R. S., Akeley K., Kilgard M. J.: Cg: a
system for programming graphics hardware in a c-like language. In ACM
SIGGRAPH (2003), pp. 896–907.

[MKMS07] Mantiuk R., Krawczyk G., Mantiuk R., Seidel H.-P.: High Dy-
namic Range Imaging Pipeline: Perception-Motivated Representation of
Visual Content. In Human Vision and Electronic Imaging XII (2007),
vol. 6492, SPIE, p. 649212.

[MS09] Moriguchi M., Sugihara K.: Generalized Voronoi Diagram: A
Geometry-Based Approach to Computational Intelligence. Springer, 2009,
ch. Constructing Centroidal Voronoi Tessellations on Surface Meshes,
pp. 235–245.

[NT03] Nooruddin F. S., Turk G.: Simplification and Repair of Polygonal
Models Using Volumetric Techniques. IEEE Transactions on Visualization
and Computer Graphics 9, 2 (2003), 191–205.

[OBS92] Okabe A., Boots B., Sugihara K.: Spatial Tesselations: Concepts and
Applications of Voronoi Diagrams. Wiley Publishing, 1992.

[OHL∗08] Owens J. D., Houston M., Luebke D., Green S., Stone J. E.,

Phillips J. C.: GPU Computing. Proceedings of the IEEE 96, 5 (May
2008), 879–899.

[OLG∗07] Owens J. D., Luebke D., Govindaraju N., Harris M., Krüger J.,

Lefohn A. E., Purcell T. J.: A Survey of General-Purpose Computation
on Graphics Hardware. Computer Graphics Forum 26, 1 (2007), 80–113.

[Ols95] Olson C. F.: Parallel algorithms for hierarchical clustering. Parallel Com-
puting 21, 8 (1995), 1313–1325.

[OS08] Ochotta T., Saupe D.: Image-based surface compression. Computer
graphics forum 27, 6 (2008), 1647–1663.

[PC04] Peyré G., Cohen L.: Surface segmentation using geodesic centroidal tes-
selation. In Int. Symp. on 3D Data Proc., Vis. and Transmission (3DPVT)
(2004), IEEE Computer Society, pp. 995–1002.

[PC06] Peyré G., Cohen L. D.: Geodesic remeshing using front propagation.
Int. J. Comput. Vision 69, 1 (2006), 145–156.

[PM] Pelleg D., Moore A.: Auton Lab: K-means and x-means implementa-
tion. http://www.cs.cmu.edu/∼dpelleg/kmeans.html.

BIBLIOGRAPHY 151

[PM00] Pelleg D., Moore A.: X-means: Extending K-means with Efficient Es-
timation of the Number of Clusters. In Proc. of the Int. Conf. on Machine
Learning (2000), Morgan Kaufmann, pp. 727–734.

[RB93] Rossignac J., Borrel. P.: Multi-resolution 3D approximations for ren-
dering complex scenes. In Modeling in Computer Graphics: Methods and
Applications (1993), pp. 279–286.

[Ros06] Rost R. J.: OpenGL(R) Shading Language (2nd Edition). Addison-Wesley
Professional, 2006.

[Rus04] Rusinkiewicz S.: Estimating curvatures and their derivatives on triangle
meshes. In Proc. of the 3D Data Processing, Visualization, and Transmission
(3DPVT) (2004), IEEE Computer Society, pp. 486–493.

[SAG03] Surazhsky V., Alliez P., Gotsman C.: Isotropic remeshing of surfaces:
A local parameterization approach. In In Proc. of Int. Meshing Roundtable
(2003), pp. 215–224.

[SB04] Savaresi S. M., Boley D. L.: A comparative analysis on the bisecting K-
means and the PDDP clustering algorithms. Intell. Data Anal. 8, 4 (2004),
345–362.

[Sch78] Schwarz G.: Estimating the Dimension of a Model. The Annals of Statis-
tics 6, 2 (1978), 461–464.

[SDK05] Strzodka R., Doggett M., Kolb A.: Scientific Computation for Simu-
lations on Programmable Graphics Hardware. Simulation Practice & Theory
13, 8 (2005), 667–680.

[SDT08] Shalom S. A., Dash M., Tue M.: Efficient K-Means Clustering Us-
ing Accelerated Graphics Processors. In Proc. of the Int. conf. on Data
Warehousing and Knowledge Discovery (DaWaK) (2008), Springer-Verlag,
pp. 166–175.

[SDTW09] Shalom S. A., Dash M., Tue M., Wilson N.: Hierarchical Agglomer-
ative Clustering Using Graphics Processor with Compute Unified Device
Architecture. Signal Processing Systems, International Conference on 0
(2009), 556–561.

[SG03] Surazhsky V., Gotsman C.: Explicit surface remeshing. In Proc. Symp.
on Geometry Processing (2003), ACM/Eurographics, pp. 20–30.

[SH07] Scheuermann T., Hensley J.: Efficient histogram generation using scat-
tering on gpus. In Proc. of the symposium on Interactive 3D graphics and
games (I3D) (2007), ACM, pp. 33–37.

152 BIBLIOGRAPHY

[Sha04] Shamir A.: A formulation of boundary mesh segmentation. In Int. Symp.
on 3D Data Proc., Vis. and Transmission (2004), pp. 82–89.

[Sha06] Shamir A.: Segmentation and shape extraction of 3D boundary meshes.
EUROGRAPHICS - State of the Art Reports (2006), 137–149.

[Sha08] Shamir A.: A survey on mesh segmentation techniques. Computer Graphics
Forum 27, 6 (2008), 1539 – 1556.

[She01] Sheffer A.: Model simplification for meshing using face clustering.
Computer-Aided Design 33, 13 (2001), 925 – 934.

[SKK00] Steinbach M., Karypis G., Kumar V.: A comparison of document
clustering techniques. In KDD Workshop on Text Mining (Boston, MA,
2000), pp. 109–111.

[SS05] Simari P. D., Singh K.: Extraction and remeshing of ellipsoidal repre-
sentations from mesh data. In Proc. of Graphics Interface (2005), Canadian
Human-Computer Communications Society, pp. 161–168.

[SSG03] Sifri O., Sheffer A., Gotsman C.: Geodesic-based surface remeshing.
In IMR (2003), pp. 189–199.

[SSGH01] Sander P. V., Snyder J., Gortler S. J., Hoppe H.: Texture map-
ping progressive meshes. In SIGGRAPH: Proc. of Computer graphics and
interactive techniques (2001), ACM, pp. 409–416.

[SZL92] Schroeder W. J., Zarge J. A., Lorensen W. E.: Decimation of
triangle meshes. In SIGGRAPH: Proc. of Computer graphics and interactive
techniques (1992), ACM, pp. 65–70.

[TK04] Takizawa H., Kobayashi H.: Multi-grain parallel processing of data-
clustering on programmable graphics hardware. In ISPA (2004), pp. 16–27.

[VC04] Valette S., Chassery J.-M.: Approximated Centroidal Voronoi Diagram
for Uniform Polygonal Mesh Coarsening. EUROGRAPHICS 23, 3 (2004),
381–389.

[VCP08] Valette S., Chassery J. M., Prost R.: Generic remeshing of 3D
triangular meshes with metric-dependent discrete voronoi diagrams. IEEE
Transactions on Visualization and Computer Graphics 14, 2 (2008), 369–
381.

[VKC05] Valette S., Kompatsiaris I., Chassery J.-M.: Adaptive Polygonal
Mesh Simplification With Discrete Centroidal Voronoi Diagrams. Proc. Int.
Conf. on Machine Intelligence ICMI (November 2005), 655–662. Tozeur,
Tunisia.

BIBLIOGRAPHY 153

[WK05] Wu J., Kobbelt L.: Structure Recovery via Hybrid Variational Surface
Approximation. Proc. Eurographics 24, 3 (2005), 277–284.

[WLR88] Willebeek-LeMair M., Reeves A. P.: Region growing on a hypercube
multiprocessor. In Proc. of the conf. on Hypercube concurrent computers
and applications (1988), ACM, pp. 1033–1042.

[WZS∗06] Wang R., Zhou K., Snyder J., Liu X., Bao H., Peng Q., Guo B.:.
The Visual Computer 22, 9 (2006), 612–621.

[XV96] Xia J. C., Varshney A.: Dynamic view-dependent simplification for
polygonal models. In Proc. of conf. on Visualization (VIS) (1996), IEEE
Computer Society Press, pp. 327–ff.

[XW08] Xu R., Wunsch D. C.: Clustering. Wiley-IEEE Press Series on Compu-
tational Intelligence, 2008.

[YLW06] Yan D.-M., Liu Y., Wang W.: Quadric surface extraction by varia-
tional shape approximation. In Geometric Modeling and Processing - GMP
(Lecture Notes in Computer Science) (2006), pp. 73–86.

[ZG09] Zechner M., Granitzer M.: Accelerating k-means on the graphics pro-
cessor via cuda. Intensive Applications and Services, International Confer-
ence on 0 (2009), 7–15.

[ZZ06] Zhang Q., Zhang Y.: Hierarchical clustering of gene expression profiles
with graphics hardware acceleration. Pattern Recogn. Lett. 27, 6 (2006),
676–681.

	Titelseite

	Abstract
	Zusammenfassung
	Contents
	List of Abbreviations
	1 Introduction
	1.1 Overall Goals
	1.2 My Contributions
	1.3 Outline

	2 Mesh and Data Clustering Algorithms
	2.1 Mesh Clustering
	2.2 Data Clustering
	2.3 GPU-based Processing

	3 Energy Minimization by Local Optimization
	3.1 CVD-based Mesh Coarsening
	3.2 Adaptive CVD-based Mesh Coarsening
	3.3 Energy Minimization by Local Optimization
	3.4 Conclusions

	4 Multilevel (ML) Mesh Clustering
	4.1 The Multilevel Clustering Algorithm
	4.2 Realizing Multilevel Mesh Clustering
	4.3 Multilevel Data Structure
	4.4 Multilevel Mesh Clustering Results
	4.5 Different Variants of the Multilevel Clustering
	4.6 Conclusions

	5 GPU-based Mesh Clustering
	5.1 Parallel Mesh Clustering
	5.2 GPU-based Mesh Clustering
	5.3 GPU-based Mesh Clustering Results
	5.4 Conclusions

	6 GPU-based Data Clustering
	6.1 Neighborhood Identification and Tracking
	6.2 Local Neighbors K-Means
	6.3 Multilevel Data Clustering
	6.4 GPU Implementation Details
	6.5 GPU-based Data Clustering Results
	6.6 Identifying the Number of Clusters
	6.7 Conclusions

	Summary and Future Work
	Appendix A Proof of Proposition 3.1
	Appendix B Compute Cluster’s Local Neighbors
	Bibliography

