
Topology-Caching

for Dynamic Particle Volume Raycasting

Jens Orthmann, Maik Keller and Andreas Kolb

Computer Graphics Group, Institute for Vision and Graphics (IVG), University of Siegen, Germany

Abstract

In this paper we present a volume rendering technique for the ad-hoc visualization of interactive particle systems.

We focus on methods for an efficient spatial caching (topology caching) of particles when applying a raycasting

approach. Thus, we get a fast reconstruction of the scalar field which is defined by the particles’ entities.

The node-cache allows for efficient caching and pre-fetching of a subset of the octree nodes. The influence-cache
provides fast access to all particles which contribute to a specific node including level-of-detail particles. Finally,

the introduced slab-cache allows for efficient volume rendering and gradient computation. Our algorithms are

completely built and managed on the GPU and interactive frame rates for up to several 105 particles are achieved.

Categories and Subject Descriptors (according to ACM CCS): Volume Raycasting [I.3.7]: Particle Visualization—

1. Introduction

Traditionally, there are two different approaches to repre-
sent spatial information in fluid simulations: grid-based (Eu-

lerian) or particle-based (Lagrangian). Having a fixed spa-
tial relation, Eulerian approaches have advantages regarding
spatial resolution and topology. In Lagrangian techniques,
however, the “data elements” do not have a fixed spatial re-
lation, and so these approaches are spatially more flexible.
The advantage of self-adaption comes at the expense of an
irregular particle distribution which makes any kind of fur-
ther processing more complex.

In this paper we aim at interactive, high quality volume
visualizations for large dynamic particle sets, as they arise
from Smoothed Particle Hydrodynamics (SPH) [GM77], for
example. In Lagrangian simulations, particles are the car-
riers of physical flow properties which are advected with
the flow field (see Koumoutsakos et al. [KCR08] for an
overview). Current ad-hoc rendering techniques mainly con-
centrate on the rendering of the fluid surface only. How-
ever, the flux profile of fluid quantities applies to the whole
particle set (see Figure 1 for the visualization of advection-
diffusion equations). Such distributed quantities require vol-
ume rendering techniques in order to be visualized correctly.

For raycasting, just as for any other kind of processing, the
continuous scalar field over the particle set Nx of all discrete

Figure 1: Our GPU-based visualization algorithm gener-

ates high quality images of dynamic particle simulations at

interactive frame rates. The visualization is directly applied

after each simulation step. The result shows the particle dif-

fusion layer within an SPH dam break simulation: 130k par-

ticles, 25k nodes, rendering at 800x600pixels at ∼ 10fps.

The small picture shows a point sprite rendering of the sim-

ulation.

c© The Eurographics Association 2010.

Vision, Modeling, and Visualization (2010)

DOI: 10.2312/PE/VMV/VMV10/147-154

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV10/147-154

J. Orthmann & M. Keller & A. Kolb / Topology-Caching for Dynamic Particle Volume Raycasting

field quantities qi is evaluated at a specified ray position x in
space:

q(x) =
∑pi∈Nx

qi K(‖x−pi‖ ,h)

∑pi∈Nx
K(‖x−pi‖ ,h)

, (1)

where K is a radial symmetric kernel function centered at
the particle positions pi with finite support radius h. There
are two computational strategies for the reconstruction of
q(x) as each particle has only a finite influence radius: With
scattering [ZSP08] the contributions of a particle are pushed
to each point of evaluation. Since these splats in general
have a non-distinct support, this introduces memory colli-
sions which require expensive atomic operations. Gathering

approaches [SDG08], on the other hand, collect the contri-
butions from neighboring particles for a given point of evalu-
ation. This approach fits better to the newly introduced GPU
streaming architecture but it requires a fast access mecha-
nism to neighboring particles.

In this paper, we propose a volume raycasting ap-
proach which utilizes data-parallel octrees proposed by
Zhou et al. [ZGHG10]. We enhance this acceleration data
structure for the use of various caching mechanisms in or-
der to gather the information of neighboring tree nodes ef-
ficiently. With this new, fully GPU-based approach we add
the following contributions:

• The node cache allows for caching and pre-fetching of a
local subset of octree nodes for an accelerated ray traver-
sal during the volume raycasting. A multi-level particle
hierarchy is set up during the octree construction by ag-
gregating particle data to coarser octree levels. This ap-
proach allows for efficient level-of-detail raycasting and
anti-aliasing.

• The gathering-principle is efficiently realized by the re-
dundant neighborhood assignment of particles for a fast
access to all particles that contribute to a specific node;
this structure is called influence cache. The approach is
also capable of handling adaptive particle support sizes.

• In order to reduce the large number of memory read-
operations even more we employ a local slab cache fol-
lowing Mensmann et al. [MRH10]. With this cache par-
ticles can contribute to more than one ray position within
each lookup. Additionally, gradients can be computed ef-
ficiently.

This paper is structured as follows: We start with an
overview of the previous work in Sec. 2, followed by a con-
ceptual overview of the raycasting system (Sec. 3). A de-
tailed description of the respective caching mechanisms is
presented in Sec. 4, 5 and 6. In Sec. 7 the results are evalu-
ated. Finally, Sec. 8 concludes this paper and comments on
future work.

2. Related work

The ad-hoc visualization of particle simulations mainly fo-
cuses on the reconstruction of the particle surface. Zhang

et al. [ZSP08] solve the equation for metaballs for close
particles. They seperate the metaballs to non-overlapping
groups. This allows them to apply the smooth kernel interpo-
lation in the image space as a post processing pass [ZP07].
However, this grouping mechanism cannot be applied to
volume rendering as inner particles are clipped away.
Van der Laan et al. [vdLGS09] splat particles without ex-
plicitly sorting the input stream. Being related to the volume
rendering integral they track the overdraw at each pixel po-
sition as an approximation for the volume’s thickness. Zhou
et al. [ZGHG10] apply a marching cube based method after
spatial organization of the particles.

State-of-the-art volume raycasting techiques, as summa-
rized in Hadwiger et al. [HLSR08], usually implement the
well-known volume rendering integral along rays in order to
accurately visualize semi-transparent datasets. These tech-
niques, which are constrained by the rasterization pipeline,
have been translated to programming interfaces for stream
processing [MHS08] which are better suited for raycast-
ing. Mensmann et al. [MRH10] utilize the on chip memory
to cache adjacent values of a slab along a small group of
rays. With shared samples they are able to compute gradi-
ents without re-reading isovalues which have already been
calculated. However, their methods deal only with Eulerian
grids. Parallel to our work Fraedrich et al. [FAW10] have in-
troduced a volume raycasting approach for SPH-based par-
ticle data. However, our technique is applied directly as an
ad-hoc visualization of a running particle simulation.

Splatting techniques as first introduced by West-
over [Wes90] handle an unstructured point data set di-
rectly. By sheet splatting, particles are projected onto view
aligned [NMM∗06] or axis aligned slices [SP09], before the
final composition. The resulting footprint images are then
composited front to back to the final image. This requires to
sort the particles whenever the ordering of splats becomes
invalid. Aliasing artefacts may occure due to the under-
sampling of the respective particle data over diverging rays
which then makes prefiltering necessary [ZPvBG02]. Splat-
ting is the state of the art technique to visualize particles
very efficiently. However, in contrast to GPU-based splatting
techniques, where texture-based implementations are used,
we perform a direct raycasting approach.

Kd-trees are usually the preferred spatial data struc-
ture for raytracing of point-based models [ZHWG08].
Popov et al. [PGSS07] have introduced a stackless method
for static scenes in order to eliminate the node traver-
sal along ray-packets. However, octrees are better suitable
for neighborhood queries because of their simple struc-
ture [ZGHG10]. This is important for the direct volume
raycasting of unstructured points. Linsen et al. [LLRR08]
spread the particle data over the octree nodes for
faster access of neighbors at each ray position. Guen-
nebaud et al. [GGG08] build a redundant octree on the
GPU in order to efficiently handle dynamic point set sur-

c© The Eurographics Association 2010.

148

J. Orthmann & M. Keller & A. Kolb / Topology-Caching for Dynamic Particle Volume Raycasting

Node Fetching

Field Reconstruction

Compositing

Node
Cache

Octree Construction

Traversal Decisions

Packet Traversal:

Influence
Cache

Slab
Cache

Running Particle Simulation

Figure 2: Overview: the basic components of the volume

raycasting algorithm. The visualization is applied immedi-

ately after the update of the unstructured particle set.

faces. Besides the memory consumption of their full oc-
tree they have to use mutex strategies to write the point up-
dates which in case of surface aligned points cause only a
small number of conflicts. However, for non-surface point
clouds this has a strong impact on the final performance.
Zhou et al. [ZGHG10] introduced a fast GPU octree algo-
rithm for point sets with direct access to neighbor nodes. We
build upon this system and extend it in various ways.

3. Volume Raycasting

This section introduces our approach to the raycasting al-
gorithm and its various improvements. The basic steps are
illustrated in Fig. 2. Our system aims at a very fast and ef-
ficient reconstruction of the unstructured particle set which
is dynamically updated, e.g. by lagrangian simulation. This
means that the visualization of the particle set is performed
directly after each simulation step. For this reason we utilize
several caching strategies which are explained in detail in the
following sections.

Octree Construction: According to Equation 1, the re-
construction of a particle set requires fast access to neigh-
boring particles. Thus, the unstructured particle set needs
a spatial organization which is usually done by the uti-
lization of a fast spatial data structure. This data structure
has to be rebuild in each frame, since the particle set is
dynamically updated. Our specific implementation of the
data structure follows the data parallel octrees introduced
by Zhou et al. [ZGHG10]. They developed a technique for
octree construction on the GPU which builds octrees in real-
time and uses level-order traversals to exploit the parallelism
of the GPU. We refer to Zhou et al. for implementation de-
tails concerning the basic octree construction.

Packet Traversal: The reconstruction of the particle set
needs many memory read operations in order to access all
relevant particles which contribute to the final field recon-
struction. The limitation by memory read operations can be

Points of
Reconstruction

Slabs

Ray
Packet

Slices

Figure 3: The slab based ray casting with four rays per

packet and three slices per slab. The image shows the fetched

octree nodes for two specific slabs. At distance, particles on

the finest level are replaced by coarser particles.

avoided by the use of coherent memory access and coher-
ent branch decisions of adjacent rays. This is achieved by
a packet traversal which consists of a bunch of several adja-
cent rays which access nearly the same particle subset for the
field reconstruction. All rays of a packet are traversed with
the same step size through the particle set. This means, the
viewing plane is subdivided into rectangular regions which
define the origin of the packet’s rays.

Node fetching: In the first step of the algorithm’s main
loop we advance the rays which defines the discrete points of
the field reconstruction. Then we need to identify all relevant
octree nodes which contain the particle subset for the whole
ray packet. Naive implementations would result in redundant
tree traversals within each packet. We solve this problem by
introducing the node-cache (see Sec. 4) which supports a
node pre-fetching mechanism for all rays of a packet.

Field reconstruction: The reconstruction of the particle
field is done by following the gathering-principle: all con-
tributions from neighboring particles are collected and eval-
uated for a specific position along the ray. The fast access
to the particles is efficiently realized by providing a redun-
dant neighborhood assignment of particles. This assignment
is called influence-cache (see Sec. 5).

Compositing: The Rays accumulate field values during
the traversal through the scene. In fact, the traversal is done
in a slab-based manner instead of a simple packet traversal.
Each slab consists of several slices along the viewing direc-
tion for a ray packet (see Mensmann et al. in [MRH10]).
Fig. 3 shows an illustration of a slab. Similar to Mensmann
et al. we take care of the starting points for each ray. We
use a proxy geometry which indicates the entry point for the
first slab into the particle set. Thus, all rays of a specific ray
packet start their traversal with the smallest distance to the
proxy geometry. The intermediate reconstruction results at
the slab’s positions are stored in a slab-cache (see Sec. 6).
The usage of this cache results in the further reduction of
memory read operations as particles can contribute to more
than one ray position at once. Finally, the values of the slab-
slices are composited in front-to-back order. Lighting tech-

c© The Eurographics Association 2010.

149

J. Orthmann & M. Keller & A. Kolb / Topology-Caching for Dynamic Particle Volume Raycasting

niques can easily extend the standard composition algorithm
by using the slab-cache.

Ray traversal decisions: Optimization strategies such as
empty space skipping and tests for early ray termination are
applied at the last stage of the main loop. Since the rays of
a packet advance simultaneously through the particle set, all
rays need to be synchronized. For early ray termination this
is achieved by comparing the individual results of the com-
positing step among the rays. The packet traversal is stopped
if all of the composited values are above a certain threshold.
In the case of empty space skipping the empty nodes are
skipped for the whole ray packet and the packet traversal is
advanced to the next node intersection.

4. Node-cache

The rays of a packet define the discrete points for the field
reconstruction. We need to traverse the tree in order to
obtain all relevant tree nodes which contain the particle-
subset at these positions. Data structures which implement
stackless traversals are well suited for GPUs as shown by
Popov et al. [PGSS07]. These trees are characterized by
nodes which store pointers to their neighboring nodes. Thus,
the nodes are directly linked to each other and the number
of traversal steps is reduced. In particular, we organize the
unstructured particle set in an octree which is based on the
idea of data parallel octrees by Zhou et al. [ZGHG10]. This
data structure follows the stackless implementation since all
neighbors of a node are accessible by using the relative posi-
tion of the nodes with respect to their parents and their par-
ents’ neighbors.

4.1. Stackless Traversal

The tree traversal of the raycasting algorithm extends the
mechanisms introduced by Samet [Sam89], see Fig. 4 for an
example. Since the rays of a packet are organized in a slab,
the mid-point of the slab is calculated in order to determine
the current position for the tree traversal. If this position re-
quires a traversal to a new node we distinguish three cases
then:

1. If the previously required node is at leaf-level and if
a valid pointer to the neighboring node exists then the
neighboring node is loaded (c).

2. If the pointer to the neighboring node is invalid (a), i.e. no
neighboring node exists at leaf-level, then the tree is tra-
versed in the upward direction following the parent links
until a valid neighboring node at another tree-level has
been found. Since this node must be an empty-node, i.e.
it contains no particles, the node is perfectly suited for an
empty space skipping algorithm.

3. If the previous node is at intermediate-level and if a valid
pointer to the neighboring node exists (b) then the neigh-
boring node is traversed following the child-pointers until
a node at leaf-level has been reached (see Appendix A for

a
b c

Figure 4: Node traversal along different tree levels. If no

direct neighbor address exists the tree hierarchy is traversed

until the required node-level is reached. For each slab the

relevant nodes (green) are stored in the node-cache.

details about a node’s spatial correlation and the traversal
of its children). If there is not any node at leaf-level avail-
able then the node closest to the leaf-level is loaded which
is also suited for an empty space skipping algorithm.

4.2. Pre-fetching

Each single ray would need to traverse its own local subset
of nodes in order to perform a proper reconstruction along
its positions. But this would result in a negative impact on
the overall performance because an enormous number of
memory read-operations is caused by multiple tree traver-
sals. Since the tree traversal is done in a slab-based manner,
all points for the field reconstruction are determined by the
size of the slab and the number of its slices. This means, the
spatial extend of the slab covers all the nodes which may
contain relevant particles (green in Fig. 4). Therefore, these
nodes are pre-fetched, and thus available to all rays of a slab
for the succeeding field reconstruction (see Sec. 6 for more
information about the field reconstruction). All pre-fetched
nodes are loaded into the node-cache. In detail, the node-
cache is filled according to the following steps:

1. The position of the slab’s mid-point determines the cur-

rent leaf-node of interest. Almost all rays of a slab would
need exactly the particles assigned to this node for the
field reconstruction.

2. However, some of the slab’s border points for the field
reconstruction may not been covered by the current leaf-
node of interest. These positions need the particles which
are assigned to a neighboring node in order to perform a
proper field reconstruction. Therefore, each point of a slab
needs to determine its respective node.

3. We restrict a slab’s spatial extent to be smaller than the
size of a leaf-node. Hence, a slab covers a maximum of
eight nodes in total (in three-dimensional space). The cur-
rent leaf-node of interest as well as all relevant neigh-
boring nodes are loaded into the node-cache. The use
of stackless tree traversals results in a very efficient pre-
fetching of the nodes which are covered by the slab’s ex-
tent.

As a result, each ray of a slab utilizes the node-cache for the
field reconstruction.

c© The Eurographics Association 2010.

150

J. Orthmann & M. Keller & A. Kolb / Topology-Caching for Dynamic Particle Volume Raycasting

4.3. Level-of-Detail

The spatial extend of a slab may cover more than the size of
a leaf-node, especially at large distances to the view plane.
Then, the tree traversals need to stop at a specific level-of-
detail (see the slab on the right side in Fig. 3). Additionally,
the level-of-detail may be defined by the user due to per-
formance considerations. Therefore, we perform a bottom-
up construction of a particle level-of-detail hierarchy where
particles are added to the next coarser tree-level and merged
into larger particles according to Hong et al. [HHK08] (see
also Fig. 5). Thus, aliasing artifacts [ZPvBG02] are avoided
when nodes are pre-fetched from the various tree-levels with
respect to their distance to the view plane. Our implementa-
tion of the data parallel octrees has been enhanced with the
particle level-of-detail hierarchy. The particle quantities are
also accumulated according to Hong. The level-of-detail par-
ticles are propagated through the tree hierarchy.

5. Influence-cache

In Sec. 4.2, we explain the principles of finding the mini-
mal subset of nodes for a slab-based field reconstruction in
order to fill the node-cache. The octree implementation by
Zhou et al. would exclusively assign a single particle to one
specific octree node at the finest-level. But up to now we did
not take the particle’s finite support radius h into account
(see Equation 1). This means if particles are close to the
boundary of the node they are assigned to, then their sup-
port radius may overlap into neighboring nodes. Instead of
pre-fetching only the nodes which are covered by the spa-
tial extend of a slab we actually would have to load their
neighboring nodes into the node-cache, too. This would re-
sult in a much larger node-cache referencing many particles
pi which do not contribute to the points of evaluation for
the field reconstruction x as they are outside of the points’
support radius: ‖x−pi‖> h.

We avoid this disadvantage by using an extended algo-
rithm of the octree construction: we introduce a redundant
particle assignment to multiple nodes according to the par-
ticle’s support radius. This technique leads to an algebraic
expansion of each node. Now the node addresses its rele-
vant particle subset directly. Particles are spread out over a
maximum of eight neighboring nodes as the particle’s maxi-
mum support radius is smaller than the node’s size. For each
node we utilize a reference array which stores pointers to
the particles (red arrows in Fig.5) if the support radius of the
particles is overlapping the node. We refer to this reference
array as the influence-cache of a node. This spreading mech-
anism is applied to all the particles including the merged par-
ticles which are generated on coarser tree-levels of the parti-
cle level-of-detail hierarchy. The extensions of the octree are
described in Appendix B.

x

pi

(a) (b)

Figure 5: The field reconstruction. The field is reconstructed

at each point of evaluation (green). With the redundant par-

ticle assignment (red arrows), a single node (light grey) in-

cludes all relevant particles (orange). The particles of a tree-

level (see 5(a)) are merged to larger particles at the next

coarser tree-level (see 5(b))

.

6. Slab-cache

The intermediate results of the field reconstruction for a sin-
gle slab are stored in the so-called slab-cache. Therefore, we
evaluate Equation 1 at each point of a slab. In detail, each
point defined by the slices along a ray gathers the respective
particle quantities qi towards its position x. The node-cache
is used in order to access the particles for the evaluation of
this position. Note, the influence-cache ensures that all the
required particles Nx are referenced by the respective nodes.
The algorithm can be optimized for adjacent points along a
ray which require the same node. Then, the node’s particles
contribute directly to multiple points at a time. This reduces
the number of particle read operations from global memory.
Memory collisions are avoided since rays compute their own
contributions without interfering adjacent rays. Finally, the
resulting image is computed by compositing the slices of a
slab in front-to-back order over all slabs.

With a slab-cache we are able to combine direct vol-
ume rendering with an isosurface rendering as described
by Mensmann et al. [MRH10]. The gradient computation
takes place in eye space and utilizes the slab-cache. Dur-
ing gradient computation the step-size ∆x of the central dif-
ferences must be adjusted for each slice of a slab. This is
necessary because adjacent rays are not parallel. Taking the
current distance α to the view plane into account, this leads
to: ∆x = α · w

n with the pixel-size w and the distance to the
near plane n. The computation of gradients would lead to
discontinuities at the borders of a slab due to the missing
neighborhood samples. However, this problem is solved by
overlapping the slabs by border-rays.

7. Results and Analysis

In this section we demonstrate the application of topology-
caching for dynamic particle volume raycasting. A table
with running-times of various simulation examples shows

c© The Eurographics Association 2010.

151

J. Orthmann & M. Keller & A. Kolb / Topology-Caching for Dynamic Particle Volume Raycasting

Figure 6: Fountain simulation. The diffusion of two different

fluids is visualized.

the speed-up which is achieved by using our enhanced oc-
tree data structure for raycasting purpose. The image qual-
ity is compared to a basic GPU raycaster with no explicit
performance strategies. Additionally, the scalability of our
algorithm is analyzed and discussed.

7.1. Examples

The algorithms described in the previous sections have been
tested on an Intel Dual Core 2.67GHz CPU with a NVIDIA
GeForce GTX 280 (1024MB) graphics card. For compari-
son reasons and scalability issues we have also tested our
algorithms on a GeForce GTX 480 (1.5GB) graphics card.
All algorithms are implemented using CUDA SDK 3.2. The
raycaster has been configured with a slab-size of 8x8pixels
and three slices for each slab. Note that the visualization is
directly applied after each simulation step.

We tested our algorithms with a variety of dynamic SPH
simulations as summarized in Table 1, see Figures 1, 6 and 7
for visual results. In the presented scenes the raycaster does
not benefit much from the level-of-detail approach. But even
at short distances to the viewport the influence on the perfor-
mance is noticeable. If no influence-cache is applied then
the number of read operations for particles increases sig-
nificantly. Thus, the influence-cache has the highest impact
on the performance. Furthermore, the node-cache as well
as the slab-cache strongly increase the frame rate. Specif-
ically, the slab-cache can be used efficiently for isosurface
rendering. The small building-times of the octree are will-
ingly accepted. This allows us to use the topology caches
which enormously speed-up the whole raycasting process.

7.2. Image Quality

The topology-caching rendering approach results in a very
efficient and fast rendering algorithm. However, the usage
of ray-packets and also the utilization of the level-of-detail
particles lead to an approximation of the final image. True,

Figure 7: T-Sensor simulation. The diffusion in a micro-

chemical device is simulated and visualized.

3%

0%

Figure 8: Difference-image of the scene which is shown in

Fig. 7: optimized raycaster vs. basic raycaster.

this speeds up the rendering time. But this is at the cost of
image quality. Fig. 8 displays the error image showing the
differences of the optimized raycaster and the basic raycaster
(ground truth) both rendering the scene of Fig. 7. The error
is hardly noticeable and gray-scale coded. The white regions
differ less than 3% from the dark regions. This means that
the resulting error is almost zero and thus our optimized ray-
casting approach produces nearly the same results.

7.3. Discussion

The raycaster’s slab-size has an enormous impact on the per-
formance and efficiency of the visualization algorithm. The
exact size of 8x8pixels has been chosen with respect to the
size of the shared memory which is limited to 16KB for all
threads residing in a streaming multi-processor. With our
slab-based raycaster we reserve approximately 1900 bytes
per packet as we have to store the results of the field re-
construction for 8x8x3 slab positions. As the results are
weighted we have to reserve two times the memory of 768
bytes which results in 1536 bytes. Additionally, the node-
cache requires 300 Byte of shared memory.

With this enormous shared memory consumptions the
compiler cannot outsource registers to shared memory. This
leaves us with 45 registers for each thread. With this high
number of registers we can get an occupancy of only 31.3%.

c© The Eurographics Association 2010.

152

J. Orthmann & M. Keller & A. Kolb / Topology-Caching for Dynamic Particle Volume Raycasting

Simulation #steps #ptcls #nodes tree tc_cast no_nc no_ic no_sc no_lod basic

T-Sensor 2048 50k 10k 11(7) 25(4) 132(27) 204(57) 103(16) 50(11) 634(201)
Fountain 512 60k 6k 15(5) 21(4) 251(31) 550(51) 230(9) 90(9) 971(205)
Dam 512 130k 25k 20(12) 45(7) 274(89) 510(109) 256(38) 88(19) 1115(530)

Table 1: Running-time in milliseconds for the simulation examples. Please note that the simulations are dynamic and that

the timings and numbers above are only valid for a specific frame (as shown in Figures 1, 6 and 7). #steps is the number of

reconstruction steps per ray, #ptcls is the number of particles of the simulation, and #nodes is the number of octree nodes.

The table shows the timings for building the tree, and the timings for the topology cached raycaster (tc_cast). Then, the

timings are shown with various caches disabled: no node-cache (no_nc), no influence-cache (no_ic), no slab-cache (no_sc),

and no application of the level-of-detail approach (no_lod). All the timings are taken with a NVidia GTX 280 (GTX 480). All

examples use an octree of depth 8. The raycaster’s screen resolution is 800x600pixels with empty space-skipping and early

ray-termination (α = 0.99), and number of slices-per-slab= 3. For comparison reasons, the last column shows the timings for

the basic raycaster (no tree and no caches).

However, even with this low occupancy our topology cached
raycaster is much faster then the basic raycaster (no caches
activated) which has an occupancy of 50%.

We also tested our algorithm on a GTX 480 in order to
show the scalability of the proposed methods. The shared
memory has been enlarged to 48KB for a streaming multi-
processor. Thus, with the GTX480 we have a much better oc-
cupancy resulting in a better performance as shown in paren-
theses of Table 1.

8. Conclusion

We have presented a new acceleration structure for dynamic
particle volume rendering. The resulting speed-up enables
the visualization of a large number of particles at interactive
frame rates on the GPU. The topology caching algorithms
provide a consistent speedup compared to a standard tree
structure due to the various caching abilities. The system is
capable to handle the visualization of dynamic particle sim-
ulations out of core. No preprocessing is required and no as-
sumptions about the particle simulation are necessary. There
are several directions for future investigation: additional flow
visualization may improve the visual results. The design of
(semi-)automatic transfer functions for a dynamic particle
simulation is a challenging topic, too. Todays current graph-
ics hardware (GTX 480) is worth further investigation due to
the scalability of our rendering approach in order to exploit
the GPU’s parallel architecture.

Acknowledgments

This work is partially funded by the Siegener Graduate
School “Development of Integral Heterosensor Architec-
tures for the n-Dimensional (Bio)chemical Analysis”.

References

[FAW10] FRAEDRICH R., AUER S., WESTERMANN R.: Effi-
cient high-quality volume rendering of sph data. IEEE Trans-

actions on Visualization and Computer Graphics (Proceedings

Visualization / Information Visualization 2010) 16, 6 (2010), to
appear. 2

[GGG08] GUENNEBAUD G., GERMANN M., GROSS M. H.: Dy-
namic sampling and rendering of algebraic point set surfaces. J.

Computer Graphics Forum27, 2 (2008), 653–662. 2

[GM77] GINGOLD R., MONAGHAN J.: Smoothed particle hydro-
dynamics: theory and application to non-spherical stars. Notices

of the Royal Astronomical Society 181 (1977), 375–389. 1

[HHK08] HONG W., HOUSE D. H., KEYSER J.: Adaptive par-
ticles for incompressible fluid simulation. Vis. Comput. 24, 7
(2008), 535–543. 5

[HLSR08] HADWIGER M., LJUNG P., SALAMA C. R., ROPIN-
SKI T.: Advanced illumination techniques for GPU volume ray-
casting. In Proc. ACM SIGGRAPH Asia 2008 (2008). 2

[KCR08] KOUMOUTSAKOS P., COTTET G.-H., ROSSINELLI

D.: Flow simulations using particles - bridging computer graph-
ics and CFD, Sept. 01 2008. 1

[LLRR08] LINSEN L., LONG T. V., ROSENTHAL P., ROSSWOG

S.: Surface extraction from multi-field particle volume data using
multi-dimensional cluster visualization. IEEE Trans. Vis. Com-

put. Graph 14, 6 (2008), 1483–1490. 2

[MHS08] MARSALEK L., HAUBER A., SLUSALLEK P.: High-
speed volume ray casting with cuda. In Proceedings of IEEE

Symposium on Interactive Ray Tracing (2008), pp. 185–185. 2

[MRH10] MENSMANN J., ROPINSKI T., HINRICHS K. H.: An
advanced volume raycasting technique using gpu stream process-
ing. In GRAPP: International Conference on Computer Graph-

ics Theory and Applications (Angers, 2010), INSTICC Press,
pp. 190–198. 2, 3, 5

[NMM∗06] NEOPHYTOU N., MUELLER K., MCDONNELL

K. T., HONG W., GUAN X., QIN H., KAUFMAN A. E.: GPU-
accelerated volume splatting with elliptical RBFs. In EuroVis

(2006), Eurographics Association, pp. 13–20. 2

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK

P.: Stackless KD-tree traversal for high performance GPU ray
tracing. J. Computer Graphics Forum26, 3 (2007), 415–424. 2,
4

[Sam89] SAMET H.: Implementing ray tracing with octrees and
neighbor finding. Computers And Graphics 13 (1989), 445–460.
4

c© The Eurographics Association 2010.

153

J. Orthmann & M. Keller & A. Kolb / Topology-Caching for Dynamic Particle Volume Raycasting

[SDG08] STANTCHEV G., DORLAND W., GUMEROV N. A.:
Fast parallel particle-to-grid interpolation for plasma PIC sim-
ulations on the GPU. J. Parallel Distrib. Comput 68, 10 (2008),
1339–1349. 2

[SP09] SCHLEGEL P., PAJAROLA R.: Layered volume splatting.
In Proc. Int. Symp. on Visual Computing (ISVC) (2009), vol. 5876
of Lecture Notes in Computer Science, Springer, pp. 1–12. 2

[vdLGS09] VAN DER LAAN W. J., GREEN S., SAINZ M.: Screen
space fluid rendering with curvature flow. In SI3D (2009), ACM,
pp. 91–98. 2

[Wes90] WESTOVER L.: Footprint evaluation for volume render-
ing. In Computer Graphics (SIGGRAPH ’90 Proceedings) (Aug.
1990), Baskett F., (Ed.), vol. 24, pp. 367–376. 2

[WG92] WILHELMS J., GELDER A. V.: Octrees for faster iso-
surface generation. ACM Trans. Graph. (Proc. SIGGRAPH)11, 3
(1992), 201–227. 8

[ZGHG10] ZHOU K., GONG M., HUANG X., GUO B.: Data-
parallel octrees for surface reconstruction. IEEE Trans. on Visu-

alization and Computer Graphics (2010). 2, 3, 4, 8

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time
KD-tree construction on graphics hardware. ACM Transactions

on Graphics 27, 5 (2008), 126ff. 2

[ZP07] ZHANG Y., PAJAROLA R.: Deferred blending: Image
composition for single-pass point rendering. Computers &

Graphics 31, 2 (2007), 175–189. 2

[ZPvBG02] ZWICKER M., PFISTER H., VAN BAAR J., GROSS

M.: EWA splatting. IEEE Trans. on Visualization and Computer

Graphics8, 3 (2002), 223–238. 2, 5

[ZSP08] ZHANG Y., SOLENTHALER B., PAJAROLA R.: Adap-
tive sampling and rendering of fluids on the gpu. In Proceedings

Symposium on Point-Based Graphics (2008), pp. 137–146. 2

Appendix A: Parallel Shuffled Keys

During raycasting we address a node array in order to obtain
the particle subset located in the neighborhood of a sampling
position. However, it is important to mention that each node
is identified by its shuffled xyz key [WG92]. In particular,
shuffled xyz keys encode the subregion of an octree node’s
eight children by using a 3-bit code, ranging from zero to
seven. The shuffled xyz key of a node at tree depth D is de-
fined as a tuple of 3-bit child-ids

x1y1z1 x2y2z2 . . . xDyDzD , (2)

which encodes the path from the root node to the respec-
tive octree node. With a packet-based traversal mechanism
these shuffled keys can be computed in parallel as shown for
quadtrees in Fig. 9. Firstly, each thread computes a shuffled
xyz key for a specific tree depth only and stores the result in
shared memory. Secondly, a prefix sum over the shared val-
ues is executed in parallel in order to receive a stack of shuf-
fled keys. As a result we have computed the shuffled keys
of all possibly required nodes along the tree hierachy. With
this location code at an intermediate node we can traverse
the child-nodes down to a leaf-node.

thread 0 thread 1 thread 2

11.... ..10..01

+ +

+

110000 111000 111001

depth 1 depth 2 depth 3

(a)

01

00

11

10

1001

(b)

Figure 9: The parallel computation of the shuffled key

stack 9(a) and the corresponding point in the scene 9(b).

Appendix B: Octree Construction

Listing 1 shows the extensions to the octree of
Zhou et al. [ZGHG10]. We refer to their paper for
the general octree construction algorithm. Two additional
steps are introduced in order to propagate level-of-detail
(LOD) particles over the tree. In step 2, particles create refer-
ences in the influence-cache (infcache) of their neighboring
nodes. Together with the particles the influence-cache is
sorted according to the shuffled keys (code). In step 7 the
particles of each node are merged to coarser particles. These
LOD-particles are appended to the particle array.

Listing 1 Construction of Depth D

1 // Step 1: compute bounding box ...
2 // Step 2: spread particles
3 code <− new array
4 infcache <− new array
5 for each i=0 to N−1 in parallel
6 for each neighboring node n=0 to 8
7 if particle[i] overlapping n
8 code[i∗8 + n] = key << 32 + n
9 infcache[i∗8 + n] = i

10 // Step 3: sort all sample points
11 sortCode <− new array
12 Sort(sortCode, code, infcache)
13 Generate the point array according to sortCode
14 // Step 4: find the unqiue nodes ...
15 // Step 5: augment uniqueNode ...
16 // Step 6: create node array ...
17 // Step 7: insert LoD particles
18 for each node n
19 particles[offset[D] + n] =
20 Merge(particles[offset[D−1]] + infcache[n])

c© The Eurographics Association 2010.

154

