
Tutorial on 3D Surface Reconstruction in Laparoscopic Surgery

Foundations of Time-of-Flight Cameras and their Application to Surface Reconstruction

Prof. Dr. Andreas Kolb
Computer Graphics Group, Institute for Vision and Graphics
University of Siegen, Germany

- Time-of-Flight Cameras: The Photonic Mixing Device (PMD)
 Principle
- PMD Characteristics and Calibration
- 2D/3D Sensor Fusion
- Endoscopic Application
- Summary

- Time-of-Flight Cameras: The Photonic Mixing Device (PMD) Principle
- PMD Characteristics and Calibration
- 2D/3D Sensor Fusion
- Endoscopic Application
- Summary

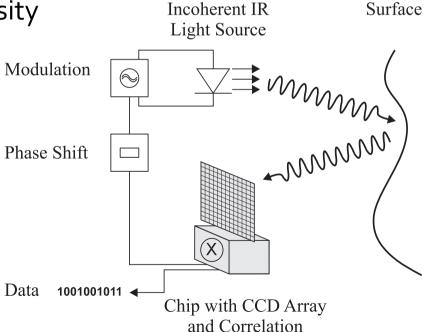
Time of Flight Cameras

- At a glance: Cameras ...
 - ... are camera-like distance sensors
 - ... deliver range maps plus intensity values instantaneously (up to 40 FPS)
 - ... have moderate resolution (max. 204² px)
- Basic Technological Approaches for ToF-Cameras
 - Photonic Mixing: Electrical, on-chip mixing in smart pixels
 - Optical Shuttering: Optical mixing
- Current Sensors

CamCube® PMD Technologies

SwissRanger 4000® Mesa Imaging

ZCam[®] 3DVSystems



Intensity Modulation Approach

- Photonic Mixing Device (PMD):
 - Active time-of-flight approach
 - Intensity modulation of incoherent light (NIR)
 - Correlation of reference signal and optical signal
- "Smart pixel" realizes a photo mixing detector to sample the correlation function with Standard CMOS-technology

Suppression of background intensity

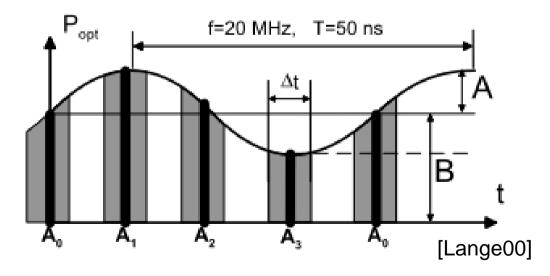
Intensity Modulation Approach

- Correlation Function $c(\tau)$
 - $_{\circ}$ Reference signal: g(t+ au) (au internal phase-shift)
 - $_{\circ}$ Optical signal: s(t)
 - . Correlation:

$$c(\tau) = s \otimes g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} s(t) \cdot g(t+\tau) dt$$

Sinusoidal signal: Trigonometric calculus yields

$$g(t) = \cos(\omega t),$$
 ω modulation frequency $s(t) = k + a \cdot \cos(\omega t + \phi),$ ϕ phase delay (distance) $c(\tau) = \frac{a}{2}\cos(\omega \tau + \phi)$

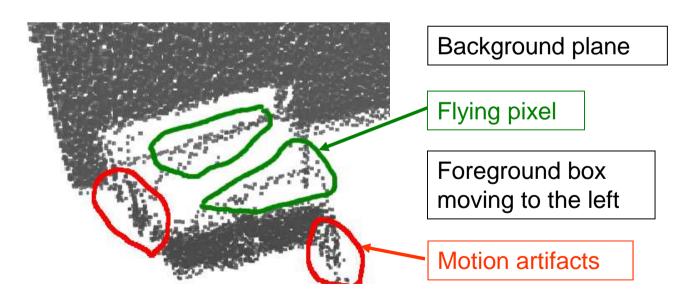

Intensity Modulation Approach

- Distance computation
 - Sampling c(au) for 4 different internal phase shifts yields four phase images $A_i = c(i \cdot \frac{\pi}{2})$
 - Demodulation gets phase delay

$$\phi = \arctan\left(\frac{A_3 - A_1}{A_0 - A_2}\right), \quad a = \frac{\sqrt{(A_3 - A_1)^2 + (A_0 - A_2)^2}}{2}$$

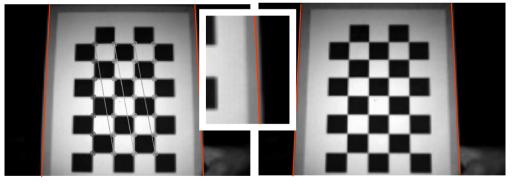
 $_{\circ}$ Applying speed of light gets distance $d=rac{c}{4\pi\omega}\phi, \quad cpprox 3\cdot 10^8rac{m}{s}$

- Time-of-Flight Cameras: The Photonic Mixing Device (PMD) Principle
- PMD Characteristics and Calibration
- 2D/3D Sensor Fusion
- Endoscopic Application
- Summary



Sensor Characteristics & Challenges

- Low Resolution compared to 2D sensors ⇒ "Flying Pixels"
- Systematic Error (wiggling): No ideal sine-signal
 ⇒ demodulation yields wrong distance
- Intensity-related Error: Low incident active light
 - yields increased noise level and
 - non-zero mean shift in distance measurement
- Motion artifacts due to multi-exposure approach



Calibration

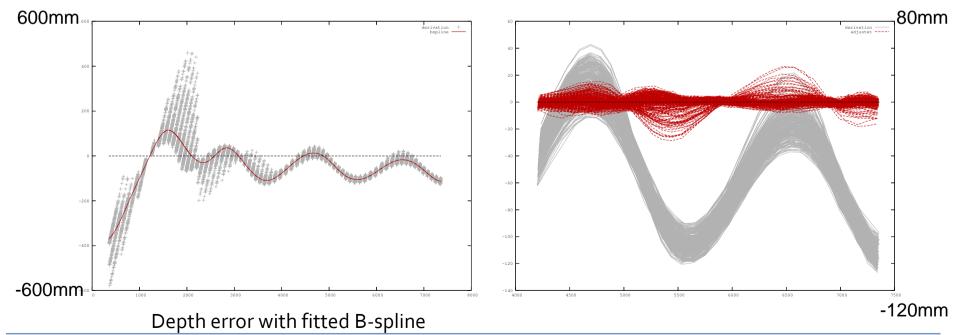
- Classical intrinsic and extrinsic calibration based on intensity images using e.g. OpenCV
- Depth-Calibration requires reference (depth) data
 - Track-line, robot (costs!)
 - Standard image based techniques for extrinsic parameters (plane estimation)
- Purely image based techniques works only for "high res", i.e. ≥

120x160 px

Distorted PMD-Image

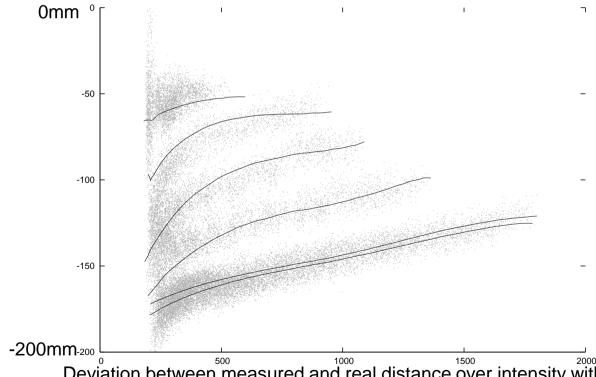
Undistorted PMD-Image

• Alternative: Calibration based on several sensors



Systematic Error (Wiggling)

- Observation:
 - Periodical distance error with varying periodicity and amplitude
- Correction functions used
 - Lookup tables , e.g. [Kahlmanno6]
 - 。 B-splines, e.g. [Lindnero6]



Illumination-Based Error

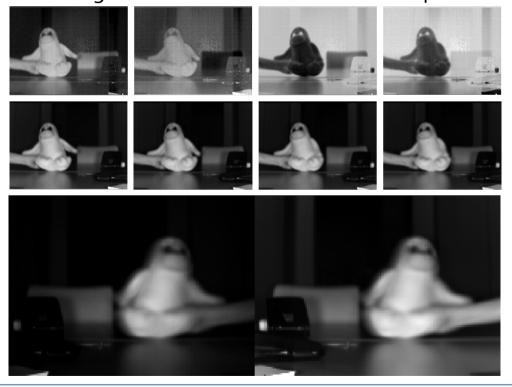
- Observation: Nonlinear dependency from illumination
- Approaches to considering this error:
 - Combined depth & illumination calibration using bi-variate B-splines ⇒requires a large amount of reference data [Lindnero8]
 - Separation of depth and intensity error ⇒ less amount of reference data

Illumination-Based Error (Cont'd)

- Approach: Separate systematic and intensity error correction
- Problem: Intensity relative error partially corrected by systematic correction → Intensity dependent correction need to correct wiggling offset
- Next ToF-cam generation may solve the problem electronically

		100%	80%	60%	40%	20%	0%
1.0 m	Wiggling Coupled Decoupled	0.1073 0.1973 0.1325	0.8905 0.1918 0.1239	1.6932 0.2714 0.1470	2.4432 0.2838 0.2032	2.7929 0.3498 0.3627	2.7218 0.7179 0.7572
1.4 m	Wiggling Coupled Decoupled	0.1088 0.3619 0.1095	0.7991 0.3220 0.1974	$ \begin{array}{c} 1.4507 \\ 0.3809 \\ 0.3848 \end{array} $	$ \begin{array}{c} 1.6025 \\ 0.3715 \\ 0.4257 \end{array} $	2.0964 0.6800 0.8659	2.5058 1.4711 1.7188
1.8 m	Wiggling Coupled Decoupled	0.2170 0.6699 0.2483	0.5018 0.5972 0.3338	0.7423 0.6131 0.4809	1.12713 0.7908 0.9292	2.1967 1.5728 1.8140	3.5027 3.4599 3.3225
$2.2\mathrm{m}$	Wiggling Coupled Decoupled	0.2438 0.9506 0.2257	0.6284 0.9824 0.5347	$ \begin{array}{c} 1.1121 \\ 0.8875 \\ 0.9104 \end{array} $	1.7288 1.2031 1.5165	$2.9523 \\ 2.0513 \\ 2.8597$	5.0360 3.3471 4.9302

Remaining distance error after wiggling correction (Ø 1.62cm), coupled (Ø 0.97cm) and decoupled (Ø 0.98 cm) intensity correction [Lindner10]

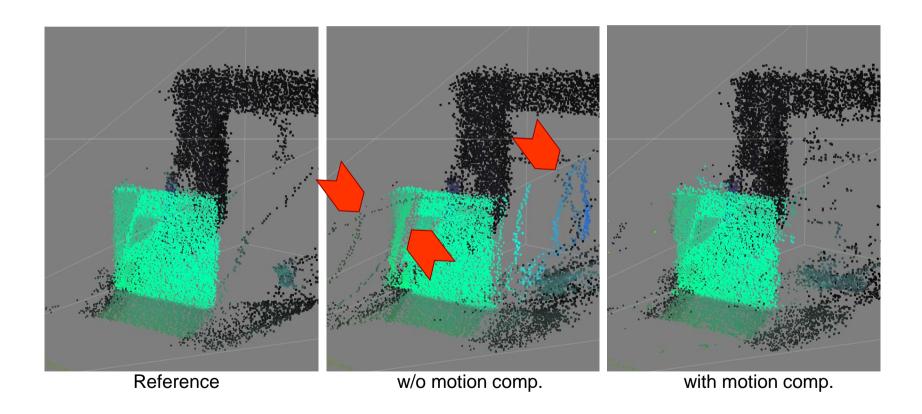


Motion Compensation

- Observation: Subsequent phase images yield motion artifacts
- Approach: Align phase images A_i using optical flow [Lindnero9]
- Problems to be solved:
 - PMD pixels have inhomogeneous gain behavior
 - $_{\circ}$ Mixing & inhomogeneous illumination \rightarrow non-comparable intensities

Correction for mixing

Correction for radial falloff



Motion Compensation

Results:

- Robust and accurate correction for motion artifacts
- Performance: 10-20 FPS on a current graphics hardware

- Time-of-Flight Cameras: The Photonic Mixing Device (PMD) Principle
- PMD Characteristics and Calibration
- 2D/3D Sensor Fusion
- Endoscopic Application
- Summary

2D/3D Sensor Fusion

- Goal: Combine ToF-camera with standard RGB-camera
 - Compensate for low ToF-resolution
 - Add additional colour information
- General fusion approaches
 - 。 Binocular, i.e. two separate cameras → two optical centers
 - Monocular, e.g. using a beam-splitter to separate NIR and VIS

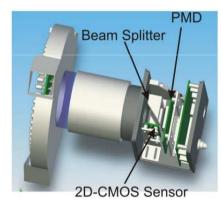
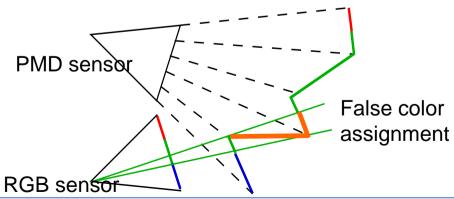


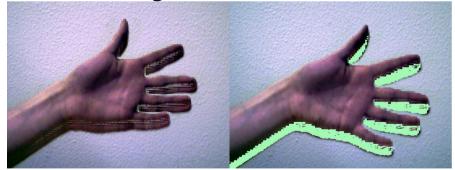
Image from [Ghobadi10]

- Calibration
 - o In general: Multi-camera 2D/3D fusion approaches are more robust
 - Tool download under: www.mip.informatik.uni-kiel.de



2D/3D Sensor Fusion: Some General Issues




Fusing Low Resolution ToF with High Resolution RGB Sensor

Left: Per-pixel colour assignment; Right: Texture projection

Binocular approach leads to false colour assignment (near field)

False color assignment below hand

- Time-of-Flight Cameras: The Photonic Mixing Device (PMD) Principle
- PMD Characteristics and Calibration
- 2D/3D Sensor Fusion
- Endoscopic Application
- Summary

3D ToF Endoscopy: System Setup

- Main Advantage of ToF-Cameras: Compact devise without any baseline requirement
- General technical concept
 - Coupling of the ToF-illumination with the endoscope's light transport system
 - Monocular approach: Beam splitter allows for 2D/3D data acquisition
- First Prototype [Penneo9]
 - Single fiber-coupled high-power laser diode replaces the illumination unit
 - Low resolution PMD-chip (48x64) only (no additional 2D camera)

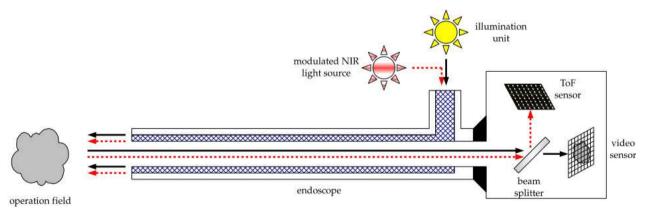
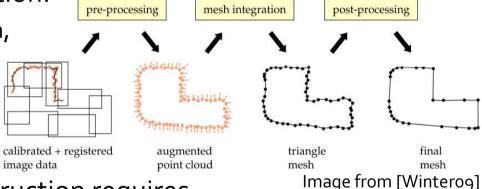


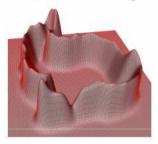
Image from [Wintero9]

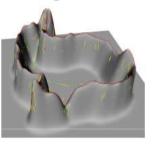


3D ToF Endoscopy: Data Processing

- General Goal & Challenge:
 - 。 Calibration: Standard ToF-calibration plus correction for endoscope length
 - High-speed processing of ToF data (204² px * 20FPS = 800k points per sec)
 - Incremental surface reconstruction requires new algorithms
- Classical Surface Reconstruction:
 - Successive steps for acquisition, pre-processing, mesh generation and postprocessing

- Incremental Surface Reconstruction requires
 - Parallel processing of new points and triangle in each step
 - o Advancing front approach: Ongoing finalization of geometry → finalized portions can not be altered if new data comes in




3D ToF Endoscopy: Ridge-Based Approach [Wintero9]

- General idea of the ridge-based approach
 - Each 3D point distributes "volume" in 3-space using a kernel function
 - Superposition of all points give a density-like scalar field (stored in a grid)
 - Final surface is found by following the ridge of the scalar field

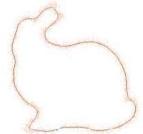
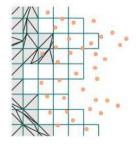
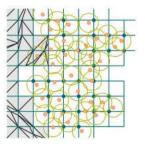
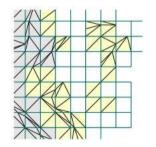





Image from [Wintero9]

- Incremental version
 - o Ongoing integration of point contributions into the scalar field
 - Reconstruction when some local criterion is met

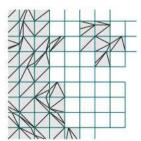
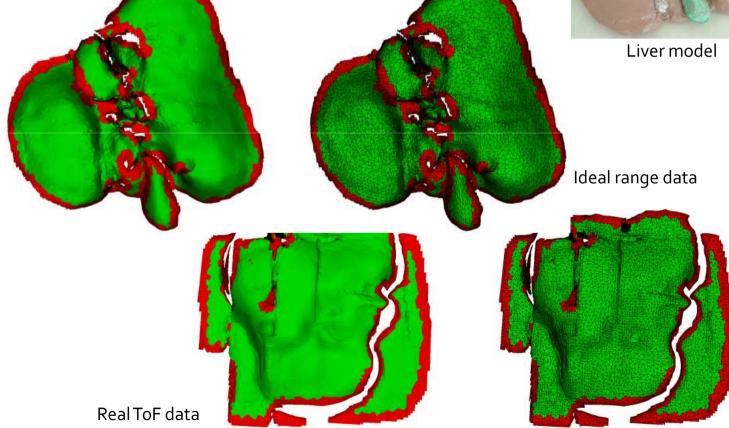


Image from [Wintero9]

3D ToF Endoscopy: Results [Wintero9]



• [Wintero9] evaluated his work using an silicon liver

。 Ideal data based on a 3D scan of the model

Real ToF-data (48x64 pixel)

Summary

- Time-of-Flight Technology is very promising for laparoscopic applications
 - Compact sensor principle (no baseline) for real-time range maps
- Advantages and Achievements
 - 。 Active technology → even weakly textured surfaces can be handled
 - Various calibration issues (wiggling, intensity related error, motion artefacts) have already been solved
 - Low resolution & missing colour can be overcome with sensor fusion
- Further Challenges for Laparoscopic Applications
 - Hardware integration is quite tedious
 - Real-time data processing, e.g. using the data redundancy is application dependant

Thank you for your attention

References

- [Ghobadi10] Ghobadi S.: Real time object recognition and tracking using 2D/3D images . PhD thesis, University of Siegen, 2000.
- [Kahlmanno6] Kahlmann T., Remondino F., Ingensand H.: Calibration for increased accuracy of the range imaging camera SwissRanger. In Image Eng. & Vision Metrology (2006).
- [Langeoo] Lange R.: 3D Time-Of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD-Technology. PhD thesis, University of Siegen, 2000.
- [Lindnero6] Lindner M., Kolb A.: Lateral and depth calibration of PMD-distance sensors. In Intl. Symposium on Visual Computing (2006), vol. 2 of LNCS, Springer, pp. 524–533.
- [Lindnero7] Lindner M., Kolb A.: Calibration of the intensity-related distance error of the PMD TOF-camera. In Intelligent Robots and Computer Vision XXV (2007), vol. 6764, SPIE.
- [Lindnero9] Lindner M., Kolb A.: Compensation of motion artifacts for time-of-flight cameras. In Dynamic 3D Imaging (2009), vol. 5742 of LNCS, Springer, pp. 16 27.
- [Lindner10] Lindner M.: Calibration and Real-Time Processing of Time-of-Flight Range Data. PhD thesis, University of Siegen, 2010.
- [Penneo9] Penne J., Höller K., Stürmer M., Schrauder T., Schneider A., Engelbrecht R., Feußner H., Schmauss B., Hornegger J.: Time-of-Flight 3-D Endoscopy. MICCAI, Springer LNCS, Volume 5761, 467-474, 2009.
- [Wintero9] Winter M.: Image-based Incremental Reconstruction, Rendering and Augmented Visualization of Surfaces for Endoscopic Surgery. PhD thesis, University of Erlangen, 2009.

