
Computer Graphics and
Multimedia Systems

Faculty of Science and Technology
Institute for Vision and Graphics (IVG)

Computer Graphics and
Multimedia Systems Group

Prof. Dr. Andreas Kolb

User Interface for Volume Rendering
in Virtual Reality Environments

Jonathan Klein, Dennis Reuling, Jan Grimm, Andreas Pfau,
Damien Lefloch, Martin Lambers, Andreas Kolb

Version: February 8, 2013



1. Introduction

Abstract

Volume Rendering applications require sophisticated user interaction for the definition
and refinement of transfer functions. Traditional 2D desktop user interface elements have
been developed to solve this task, but such concepts do not map well to the interaction
devices available in Virtual Reality environments.

In this paper, we propose an intuitive user interface for Volume Rendering specifically de-
signed for Virtual Reality environments. The proposed interface allows transfer function
design and refinement based on intuitive two-handed operation of Wand-like controllers.
Additional interaction modes such as navigation and clip plane manipulation are sup-
ported as well.

The system is implemented using the Sony PlayStation Move controller system. This
choice is based on controller device capabilities as well as application and environment
constraints.

Initial results document the potential of our approach.

1. Introduction

Volume Rendering visualizes 3D grids of voxels. Each voxel typically stores a scalar
value representing density, as retrieved via a 3D scanning technique such as CT or MRI.
Direct Volume Rendering techniques such as volume ray casting work directly on the
voxel data instead of extracted geometry such as isosurfaces. Such techniques use a
transfer function to map voxel values to opacity and color. The volume ray caster then
generates a ray through the 3D grid for every pixel in the image plane, samples the
voxel data along the ray, and composites the opacity and color information given by the
transfer function to compute the final pixel color.

A basic transfer function is a one-dimensional function that directly maps a scalar voxel
value to opacity and color. Volume Rendering applications require user interface con-
cepts that allow efficient and precise design and refinement of such transfer functions, to
enable the user to visualize the interesting parts of the volume data set. In the traditional
2D graphical user interface domain of desktop systems, this problem is solved using 2D
widgets that typically allow mouse-based manipulation of the functions [3]. This paper
focuses on one-dimensional transfer functions, but note that advanced two-dimensional
transfer functions models exist that take the gradient or the curvature at the voxel location
into account and require even more complex user interfaces.

Since Virtual Environments are especially well suited to explore spatial properties of
complex 3D data, bringing Volume Rendering applications into such environments is
a natural step. However, defining new user interfaces suitable both for the Virtual En-
vironment and for the Volume Rendering application is difficult. Previous approaches
mainly focused on porting traditional 2D point-and-click concepts to the Virtual Environ-
ment [8, 5, 9]. This tends to be unintuitive, to complicate the interaction, and to make
only limited use of available interaction devices.

2



2. Related Work

In this paper, we propose an intuitive 3D user interface for Volume Rendering based
on interaction devices that are suitable for Virtual Reality environments. We focus on
a simplified approach to design and refine transfer functions that allows intuitive use
of interaction devices, specifically the Sony PlayStation Move controller system. Our
demonstration system also supports other Volume Rendering interaction modes such
as navigation and clip plane manipulation.

The remainder of this paper is organized as follows. Sec. 2 discusses related work. In
Sec. 3, we describe our user interface concepts in detail, and present its implementation
based on Sony PlayStation Move controllers in a Virtual Reality Lab. Initial results are
shown in Sec. 4. Sec. 5 concludes this paper.

2. Related Work

One of the first applications of Volume Rendering in a Virtual Reality environment was
presented by Brady et al. in 1995 [1]. This early work concentrated on navigation using
a Wand-like device. In 2000, Wohlfahrter et al. presented a two-handed interaction sys-
tem with support for navigating, dragging, scaling, and cutting volume data in a Virtual
Reality environment [12]. Neither of these early approaches supported transfer function
manipulation.

One of the first works on transfer function editing for Volume Rendering in Virtual Reality
environments was presented by Schulze-Döbold et al. in 2001 [8]. Their transfer function
editor requires a 6 DOF controller with three buttons. The controller is primarily used to
point at an interaction element to select it for manipulation. To control scalar values, the
editor uses virtual knobs that are manipulated by twisting the hand. The three buttons
are used to manipulate position and size of the 2D transfer function editor inside the
3D environment. This interface is directly based on the 2D desktop point-an-click inter-
face. Consequently, the authors refer to the controller as a 3D mouse. Schulze-Döbold
later refined the user interface based on feedback collected in a user study [7], but the
principal design remained unchanged.

Wössner et al. reuse Schulze-Döbold’s work for the purpose of collaborative volume ex-
ploration in distributed setups [13]. Kniss et al. split the task of defining multidimensional
transfer functions into a classification step and an exploration step [5]. The classifica-
tion step, which defines the transfer function, is performed prior to visualization on a
classical 2D desktop system using the mouse. The Virtual Reality interface is based on
Schulze-Döbold’s work.

Later works also mainly use variations of this approach of bringing 2D point-and-click
interfaces to 3D environments [4, 9]. An exception is the work of Tawara and Ono from
2010, in which they combined a Wiimote and a motion tracking cube to get a tracked
manipulation device for a volume data application [11]. However, their approach focuses
on volume segmentation in augmented reality; in particular, it does not support transfer
function manipulation.

3



3. 3D User Interface for Volume Rendering

2,30 m

ca. 0,8 m
ca

. 1
,8

 m

2
,7

5
 m

r = 2,45 m

Top ViewSide View

Figure 1: Overview of the Virtual Reality environment

3. 3D User Interface for Volume Rendering

A user interface for Volume Rendering applications must support two key interaction
modes:

• Navigation. This allows to inspect the volume from various perspectives by ap-
plying translations and rotations. A Virtual Reality environment with user tracking
additionally allows the user to move around the volume.

• Transfer function manipulation. A transfer function allows to visualize the interesting
parts of the volume (by assigning color and opacity to the interesting voxel value
ranges) and at the same time remove other parts of the volume from view (by
mapping the corresponding voxel values to zero opacity).

In addition to these modes, Volume Rendering applications usually provide supplemental
tools such as clip planes.

In this paper, we focus on the transfer function manipulation mode of the user interface.

3.1. Choice of Input Devices

Our choice of input devices, interface concepts, and implementation details was based
on the interaction requirements given by the Volume Rendering application, with special
emphasis on transfer function manipulation, and on the specific constraints given by the
Virtual Reality environment.

The Virtual Reality environment which we used in this project has an open cylindrical
screen and a floor screen, providing a wide field of view. See Fig. 1 and 2. The cylindri-
cal screen has four rear-projection stereo channels and the floor screen has two front-
projection stereo channels. Additionally, the environment provides optical user tracking.

4



3. 3D User Interface for Volume Rendering

Figure 2: Interactive Volume Rendering in the Virtual Reality environment

We considered interaction devices that are based on readily available and affordable
hardware components and provide enough input facilities for both navigation and trans-
fer function editing. Devices that fulfill these criteria include the Microsoft Kinect, the
Nintendo Wiimote, and the Sony PlayStation Move. Traditional game controllers as well
as the Flystick provided by our optical tracking system were excluded since they do not
provide enough input facilities.

Microsoft Kinect uses an optical tracking system to follow the movement of the user, al-
lowing full-body gesture interaction. Unfortunately the Kinect system requires the cam-
era to be placed directly in front of the user, which was not possible in our environment.
We experimented with a Kinect camera placed at the top of the screen and looking at
the user with an angle of approximately 45 degrees, but this setup leads to unusable
tracking data.

The concepts of the Wiimote and the Move are similar. In both systems the user holds
a wand-like controller in his hand that can measure its movement and orientation. The
Move system additionally uses an optical tracking system to determine the absolute
position of the controller, and can therefore provide position and orientation data with
higher precision and reliability. In contrast to the Kinect system, the Move system works
fine with the camera mounted on top of the screen, as shown in Fig. 1. Furthermore,
the Move controller has a glowing bulb on top whose color can be changed. This gives
interesting opportunities for user feedback (see Sec. 3.2.1).

Recently, Takala et al. identified a lack of user interface concepts based on the PlaySta-
tion Move system, partly due to the locked-up nature of the SDK [10]. That situation
has changed: the SDK is now freely available for educational and research purposes.
Additionally, prices for the hardware part of system dropped significantly.

For these reasons, we chose to base our experiments on the PlayStation Move system.

5



3. 3D User Interface for Volume Rendering

Figure 3: The Sony PlayStation Move Nav-Pad (left) and controller (right). Both devices
provide digital buttons (green) and an analogue trigger (blue). The Nav-Pad provides an
additional analogue stick (red), while the controller has a bulb (orange) on its top that
can glow in different colors.

3.2. Interface Concept

To allow both navigation and transfer function manipulation and to have enough input
facilities for the various functionalities required by these two modes, we decided to use
both the Move controller (for the right hand) and an additional Move Nav-Pad (for the
left hand). See Fig. 3. The Move controller, whose bulb is tracked by the camera of the
system, is used for manipulation (translation and rotation in navigation mode, and modi-
fication in transfer function editing mode), while the Move Nav-Pad is used for selection
and switching purposes. This configuration is classified by Schultheis et al. [6] as an
asymmetric two-handed interface using two Wand-like input devices.

3.2.1. Transfer Function Editing

Small changes to a transfer function can result in significant changes in the visualization
result, and usually more than one range of voxel values represents interesting parts of
the volume data. For this reason, typical Volume Rendering applications allow to specify
the transfer function using piecewise linear building blocks. However, this requires a very
fine-grained control, typically using a Mouse-based interface.

In order to allow more intuitive manipulation of transfer functions using hand-held devices
that typically favor coarser control movements, we use a different transfer function model.
In our model, a transfer function is defined as the sum of window functions, called peaks.
Each peak highlights a small voxel value range in a specific color.

6



3. 3D User Interface for Volume Rendering

A peak p is defined by its center c, width w, and height h:

p(x) =

{
h · sin

(
π

2w(x− c+w)
)

c−w ≤ x ≤ c+w

0 otherwise
(1)

(Alternatively, different window functions could be used).

The result of a transfer function t for a voxel value x is then defined as the result of
alpha-blending the peak colors using the peak value p(x) as the opacity value.

In practical use, only a small number n < 8 of peaks is required, since more peaks tend
to clutter up the visualization result. An example is given in Fig. 4.

This transfer function model significantly reduces the number of parameters that a user
has to modify, while still allowing flexible and powerful transfer functions.

The user can add a peak to a transfer function and select its color from a list of predefined
colors using digital buttons on the Move Nav-Pad (see Fig. 3). Similarly, peaks can
be deleted, temporarily disabled, or selected for parameter adjustment using additional
Nav-Pad buttons.

To change the center c, width w, and height h of a peak, the Move controller is used.
We tried different combinations of mapping these three peak parameters to the x-, y-,
and z-axes of the Move controller. Using the z-axis proved to be unintuitive and therefore
difficult to control. Our current solution is that the user has to choose (using buttons
on the Move controller) to adjust either c and h or w. This has the advantage that both
adjustments take place in the x/y-plane. The reason for separating w from the other
parameters was that the visualization result is especially sensitive to changes of peak
widths, so that users tend to first define position and height of a peak and then fine-tune
the result by adjusting its width.

To provide the user with visual feedback about the current transfer function properties
and the selection state, we display an overview widget at a fixed position in the Virtual
Environment, as shown in Fig. 4. Note that this widget is for informational purposes only
and does not require traditional point-and-click functionality.

As an additional aid, we set the color of the glowing Move controller bulb to the color of
the transfer function that is currently selected. Experienced users can use this feedback
to determine the current state of transfer function manipulation without looking at the
overview widget.

3.2.2. Navigation

Navigation is implemented by performing translation and rotation using the tracked Move
controller. Translation is active while the largest digital button of the Move controller is
pressed, while rotation is active while the analogue trigger of the Move controller is
pressed. See Fig. 3. Translation works by directly applying Move controller position
changes to the volume. Rotation works by mapping horizontal controller movements to
volume rotations around the y-axis, vertical movements to volume rotations around the
x-axis, and controller rotations around the z-axis to volume rotations around the z-axis.

7



3. 3D User Interface for Volume Rendering

Figure 4: Transfer function defined by n = 5 peaks. Each peak assigns color and opacity
information to a voxel value range. The histogram of voxel values is displayed in white in
the background.

An obvious alternative would be to directly apply both Move controller position and ori-
entation changes to the volume while in navigation mode, but separating translation and
orientation in the way described above allows a more fine-grained control of movement,
which is useful to examine smaller volume areas in detail. Furthermore, mapping con-
troller movements to rotations instead of directly using the controller orientation avoids
uncomfortable wrist positions. Requiring a button to be pressed for navigation mode
allows the user to move freely in the Virtual Reality environment without unintentionally
moving the volume.

3.3. Implementation

The physical setup is described by Fig. 1.

Our software implementation is based on the Equalizer framework for parallel and dis-
tributed rendering [2]. This allows the application to run across the six nodes of our
render cluster, each of which renders one of the stereo channels using two graphics
cards.

We used the official Move.Me SDK from Sony for connecting the PlayStation Move sys-
tem to Equalizer. The controller sends its sensor data via Bluetooth to the PlayStation
console, on which the Move.Me SDK runs as a server application. Our application acts
as a client to this server and receives position, orientation, and button state data via
network UDP packets. This data is transformed to custom input events and handed over
to the Equalizer event handling mechanisms to allow consistent input event handling.

The GPU-based volume ray caster is based on a ray casting shader implementation pro-
vided by the Visualization Library project1. The ray caster is straightforward but proved
sufficient for our purposes while being fast enough for interactive use in a Virtual Reality
environment.

1http://www.visualizationlibrary.org

8

http://www.visualizationlibrary.org


4. Initial Results

Figure 5: Predefined result Figure 6: Result of the ex-
perienced user

Figure 7: Result of the in-
experienced user

4. Initial Results

In the figures throughout this paper, we used the “Baby Head” data set available from
the volume library of Stefan Roettger2.

As a first test of our concept, we performed an experiment involving one test user with
experience in both Virtual Reality and Volume Rendering applications and another test
user with no experiences in these domains.

The task for these two test users was to reproduce a visualization result for the “Baby
Head” data set, starting from a default transfer function. The predefined visualization
result was produced with a transfer function consisting of three peaks that separate the
skeleton (green), the teeth (red), and the skin (blue). See Fig. 5.

The experienced test user was able to solve the task in less than half a minute with good
results, shown in Fig. 6. After an introduction to controller usage and button configura-
tion, the inexperienced user was able to achieve a satisfying result, shown in Fig. 7, in
approximately one minute.

In this and similar experiments with several test data sets (only one of which is shown
here), the simplified transfer function model was powerful enough and the transfer func-
tion manipulation was precise enough to highlight interesting aspects the data. More de-
manding data sets might require more fine-grained control, which may require changes
to the transfer function model and/or adjustments to the interface sensitivity.

The two-handed interface requires some coordination between both hands which inex-
perienced users are unaccustomed to. However, after some practice, this does not seem

2http://schorsch.efi.fh-nuernberg.de/data/volume/

9

http://schorsch.efi.fh-nuernberg.de/data/volume/


5. Conclusion

pose a problem.

Another challenge especially for inexperienced users is to remember the mapping be-
tween controller movements and buttons to the various interaction functionalities of the
application. We plan to integrate an online help function that displays images of the con-
trollers on screen, along with schematic descriptions of their usage, in order to avoid the
need for leaving the Virtual Reality environment to look up user interface documentation.

Despite these shortcomings, we believe the approach has the potential to be usable in
real-world Volume Rendering applications.

5. Conclusion

We propose a 3D user interface concept for Volume Rendering in Virtual Environments.
Unlike previous approaches, this concept does not try to map traditional 2D point-and-
click concepts to the Virtual Environment; instead, it is based on a set of intuitive user
actions using the Sony PlayStation Move controller system.

For this purpose, a simplified transfer function model was designed that allows a reduc-
tion of interaction complexity. This comes at the cost of reduced flexibility and precision
when compared to a traditional 2D desktop interface, but we believe that our system is
still flexible and precise enough for exploration of most volume data sets, while allowing
faster and more intuitive manipulation of transfer functions.

In the future, we would like to refine the interface based on user feedback. Furthermore,
it would be interesting to explore the possibility to extent our approach to two-dimensional
transfer functions.

References

1. R. Brady, J. Pixton, G. Baxter, P. Moran, C. Potter, B. Carragher, and A. Belmont.
Crumbs: a virtual environment tracking tool for biological imaging. In Proc. Biomedi-
cal Vis., pages 18–25, 82, Oct. 1995.

2. S. Eilemann. Equalizer: A scalable parallel rendering framework. IEEE Trans. Visu-
alization and Computer Graphics, 15(3):436–452, May 2009.

3. K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and D. Weiskopf. Real-Time
Volume Graphics. AK Peters, 2006.

4. C. He, A. Lewis, and J. Jo. A novel human computer interaction paradigm for volume
visualization in projection-based virtual environments. In Proc. Int. Symp. Smart
Graphics, pages 49–60, 2007.

5. J. Kniss, J. Schulze, U. Wössner, P. Winkler, U. Lang, and C. Hansen. Medical
applications of multi-field volume rendering and VR techniques. In Proc. IEEE VGTC
Symp. Vis., pages 249–254, 2004.

10



5. Conclusion

6. U. Schultheis, J. Jerald, F. Toledo, A. Yoganandan, and P. Mlyniec. Comparison of a
two-handed interface to a wand interface and a mouse interface for fundamental 3D
tasks. In IEEE Symp. 3D User Interfaces (3DUI), pages 117–124, Mar. 2012.

7. J. Schulze-Döbold. Interactive Volume Rendering in Virtual Environments. PhD
thesis, University of Stuttgart, Aug. 2003.

8. J. Schulze-Döbold, U. Wössner, S. Walz, and U. Lang. Volume rendering in a virtual
environment. In Proc. Immersive Projection Technology Workshop and Eurographics
Workshop on Virtual Environments, pages 187–198, 2001.

9. R. Shen, P. Boulanger, and M. Noga. MedVis: A real-time immersive visualization
environment for the exploration of medical volumetric data. In Proc. Biomedical Vis.,
pages 63–68, July 2008.

10. T. Takala, P. Rauhamaa, and T. Takala. Survey of 3DUI applications and devel-
opment challenges. In IEEE Symp. 3D User Interfaces (3DUI), pages 89–96, Mar.
2012.

11. T. Tawara and K. Ono. A framework for volume segmentation and visualization using
augmented reality. In IEEE Symp. 3D User Interfaces (3DUI), pages 121–122, Mar.
2010.

12. W. Wohlfahrter, L. Encarnação, and D. Schmalstieg. Interactive volume exploration
on the studydesk. In Proc. Int. Projection Technology Workshop, June 2000.

13. U. Wössner, J. P. Schulze, S. P. Walz, and U. Lang. Evaluation of a collaborative vol-
ume rendering application in a distributed virtual environment. In Proc. Eurographics
Workshop on Virtual Environments (EGVE), page 113ff, May 2002.

11


	Introduction
	Related Work
	3D User Interface for Volume Rendering
	Choice of Input Devices
	Interface Concept
	Transfer Function Editing
	Navigation

	Implementation

	Initial Results
	Conclusion
	References

