
Efficient Range and Image Data Processing –
Algorithms and Software Paradigms

Effiziente Verarbeitung von Tiefen- und Bilddaten –
Algorithmen und Software-Paradigmen

DISSERTATION

zur Erlangung des Grades eines Doktors
der Ingenieurswissenschaften (Dr.-Ing.)

vorgelegt von
M.Sc. Dipl. Ing. (FH) Thomas Högg
geb. am 13.12.1982 in Memmingen

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2017

1. Gutachter: Prof. Dr.-Ing. Andreas Kolb, Universität Siegen
2. Gutachter: Prof. Dr.-Ing. Marc Stamminger, Friedrich-Alexander-Universität, Erlangen-Nürnberg
Vorsitzender:

Tag der mündlichen Prüfung: 18.10.2017.

Printed on non-aging wood- and acid-free paper.
Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier.

vii

Eidesstattliche
Erklärung

Die vorliegende Dissertation wurde von mir selbständig angefertigt. Die verwende-
ten Hilfsmittel und Quellen sind im Literaturverzeichnis vollständig aufgeführt.
Eingetragene Warenzeichen und Copyrights werden anerkannt, auch wenn sie nicht
explizit gekennzeichnet sind.

Lautrach, den 10.04.2017

Thomas Högg

ix

Abstract

T he growing demand towards industrial automation and autonomous systems
requires more flexible technologies in different but interdependent domains of

engineering. This thesis introduces and discusses two important areas: Time-of-Flight
(ToF) camera data improvement (algorithm development) and related model driven
engineering techniques (software development). In the last decades, these areas have
been extensively studied and important progress was made.

The first part of this thesis discusses the special challenges of data quality improve-
ment on a very deep layer of ToF cameras. It deals with different challenges related to
the working principle of this kind of sensor. A new method for a fast motion artifact
compensation for ToF cameras is presented. It is shown that the algorithm gives good
results for simulated as well as real data while providing real-time performance. The
second proposed algorithm deals with the automatic integration time estimation of
ToF cameras. An online integration time adaption algorithm that works on a per-
pixel basis and uses knowledge gained from an extensive analysis of the underlying
inherent sensor behavior is introduced. Finally, an industrial real-time 3D car recon-
struction example is presented. It shows how the data of three PMD (Photonic Mixer
Device) cameras has to be preprocessed and combined, using an extensive depth data
processing and filtering pipeline.

The second part of this thesis addresses the challenges of data related model
driven software engineering. It introduces and contributes the new domain specific
language GU-DSL and two data and image processing related extensions: GPGPU
(General Purpose Computation on Graphics Processing Unit)-programming and
CBSE (Component-Based Software Engineering) principles. The presented GU-DSL
GPGPU extension contributes a convenient combination and mixture of textual and
graphical model- and dataflow-driven design. Using a code generator, GU-DSL code
can be transformed into C++, compiled and executed. All the GPU related features are
encapsulated into a C++ Heterogeneous Computing framework. The GU-DSL CBSE
system introduces a concept for component based software engineering in the domain
of data- and image-processing. It proposes several new concepts for component- and
component-instance-diagrams in combination with class- and activity-diagrams. Us-
ing a newly developed Rich Client Platform supporting a plugin based extension
system, it shows how the GU-DSL CBSE concept can be realized and used in practice
using C++. Exemplary, a simple processing pipeline is implemented to demonstrate
the new concepts.

x

xi

Kurzfassung

D ie wachsende Nachfrage nach industrieller Automatisierung und autonomen
Systemen erfordert flexiblere Techniken in verschiedenen, aber stark voneinan-

der abhängigen Bereichen des Ingenieurwesens. Die vorliegende Arbeit beschäftigt
sich mit zwei wichtigen Bereichen: Verbesserung der Time-of-Flight (ToF) Kamer-
adaten (Algorithmen-Entwicklung) und den damit verbundenen modellgetriebene
Engineering Techniken (Software-Entwicklung). In den letzten Jahrzehnten wurde
ausgiebig in diesen Bereichen geforscht und es konnten zahlreiche Fortschritte erzielt
werden.

Der erste Teil dieser Arbeit beschäftigt sich mit den besonderen Herausforderun-
gen der Datenqualitätsverbesserung von Time-of-Flight (ToF) Kameras. Es wird
ein neues Verfahren zur schnellen Kompensation von Bewegungsartefakten von ToF-
Kameras vorgestellt und gezeigt, dass der Algorithmus gute Ergebnisse für simulierte
sowie reale Daten in Echtzeitausführung erzielt. Der zweite vorgestellte Algorithmus
befasst sich mit der automatischen Anpassung der Integrationszeit von ToF Kameras.
Es wird ein Algorithmus entwickelt, mit dessen Hilfe die Integrationszeit des Sen-
sors auf einer „pro Pixel“-Basis im Live-Betrieb automatisch angepasst werden kann.
Der erste Teil der Dissertation schließt mit einem Industrie-Beispiel ab. Dabei wird
gezeigt, wie Fahrzeuge in Echzeit unter der Verwendung von drei PMD (Photonic
Mixer Device) Kameras nach umfangreicher Datenvorverarbeitung in 3D rekonstru-
iert werden können.

Der zweite Teil dieser Arbeit befasst sich mit den Herausforderungen der mod-
ellgetriebenen Softwareentwicklung im Bereich Bild- und Datenverarbeitung. Im
Rahmen dieser Arbeit wird die domänenspezifische GU-DSL mit zwei Daten- und
Bildverarbeitung relevanten Erweiterungen entwickelt: GPGPU-Programmierung
und GPGPU (General Purpose Computation on Graphics Processing Unit)-
Programmierung und Component Based Software Engineering (CBSE). Die GPGPU
Erweiterung verwendet dazu eine Kombination aus textueller und grafischer Model-
lierung. Die Entwicklung findet dabei datenfluss- und modellgetrieben statt. Mittels
Code-Generator, kann der GU-DSL Code in C++ transformiert, anschließend kom-
piliert und ausgeführt werden. Alle GPU relevanten Funktionen sind dazu in ein
C++ Heterogeneous Computing Framework gekapselt. Das GU-DSL CBSE System
ist ein Konzept zum komponentenbasierten Software Engineering. Es werden neue
Ansätze für Komponenten- und Komponenten-Instanz-Diagramme in Kombinan-
tion mit Klassen- und Aktivitätsdiagrammen vorgeschlagen und umgesetzt. Mit
Hilfe einer plugin-basierten Rich Client Platform, wird exemplarisch demonstriert
wie diese neuen Konzepte in C++ umgesetzt werden können. Abschließend wird
eine vereinfachte Verarbeitungspipeline implementiert, um die neuen Konzepte zu
evaluieren.

xii

CONTENTS xiii

Contents

Abstract ix

Kurzfassung xi

Contents xiii

1 Introduction 1

2 Fundamentals 7
2.1 Time-of-Flight Cameras . 7

2.1.1 Time-of-Flight Principle . 7
2.1.2 Time-of-Flight Calibration . 8

2.2 Time-Of-Flight Camera Error-Analysis and Parameter Estimation . . . 10
2.2.1 Systematic Error Correction . 10
2.2.2 Intrinsic Calibration . 13
2.2.3 Extrinsic Calibration . 14

2.3 Iterative Closest Point Algorithm . 16
2.3.1 Point-to-Point Error Metric . 17
2.3.2 Point-to-Plane Error Metric . 17

2.4 Domain Specific Languages . 17
2.4.1 DSL - Advantages . 18
2.4.2 DSL - Disadvantages . 18
2.4.3 Development . 19

I Time-of-Flight Algorithms 21

3 Introduction 23

4 Compensation of Motion Artifacts 25
4.1 Related Work . 26
4.2 A Method for Fast Linear Motion Compensation 26

4.2.1 Problem Analysis . 27
4.2.2 The Motion Compensation Approach 27
4.2.3 Search Space Reduction . 32

xiv CONTENTS

4.2.4 Flow Field Optimization . 32
4.2.5 Raw Phase Value Correction . 33

4.3 Results . 33
4.3.1 Quantitative Results . 33
4.3.2 Qualitative Results . 37

4.4 Summary . 39

5 Automatic Integration Time Estimation 41
5.1 Related Work . 42
5.2 PMD Sensor Analysis . 42

5.2.1 Spatial Intensity Distribution . 43
5.2.2 Intensity and Amplitude Behavior 44
5.2.3 Amplitude-Error Correlation . 45
5.2.4 Amplitude-Intensity Mapping 46
5.2.5 Intensity Correction . 47

5.3 The Proposed Method . 47
5.3.1 Algorithm . 47

5.4 Algorithm Evaluation . 50
5.4.1 Evaluation Method . 51
5.4.2 Static Metal Plate Scene Evaluation 51
5.4.3 Dynamic Scene Evaluation . 52

5.5 Summary . 53

6 3D Car Reconstruction –
An Industrial Application 55
6.1 System Overview . 56
6.2 Contribution . 57
6.3 Related Work . 58
6.4 System Challenges . 59
6.5 Data Processing Concept . 61

6.5.1 Preprocessing Stages . 61
6.5.2 Segmentation . 68
6.5.3 Registration . 70
6.5.4 Model Integration and Accumulation 72

6.6 Hardware Setup and Calibration . 74
6.7 Results . 76

6.7.1 Feature Based Image Registration 79
6.7.2 Result Summary . 79

6.8 Summary . 80

7 Depth Data Processing Summary 83

CONTENTS xv

II Model Driven Software Engineering Paradigms 85

8 Introduction of Model Driven Engineering 87

9 GU-DSL – A Generic Domain Specific Language 91
9.1 Language Features and Concepts . 92

9.1.1 Structural Modeling using Class-Diagrams 92
9.1.2 Definition of Behavior Modeling 94
9.1.3 Behavior Modeling using Expressions 94
9.1.4 Behavior Modeling using Activity-Diagrams 95

9.2 The Combination of Graphical And Textual Modeling 97
9.2.1 Class-Diagrams . 98
9.2.2 Activity-Diagrams . 98

10 Model Driven GPGPU Programming 101
10.1 Related Work . 103
10.2 A Generic Data- and Image-Processing-Language for GPGPU-

programming . 105
10.2.1 GPGPU Behavior Modeling using Expressions and Activity-

Diagrams . 105
10.3 Heterogeneous Computing and Code Generation 109

10.3.1 Heterogeneous Computing . 109
10.3.2 The Code Generator . 111

10.4 Evaluation . 114
10.4.1 Mean Filter . 114
10.4.2 Bilateral Filter . 115
10.4.3 Reduction . 115
10.4.4 Implementation Details . 115
10.4.5 Results . 118
10.4.6 Evaluation Summary . 122

10.5 Summary . 122

11 Component-Based Data And Image Processing Architectures 125
11.1 Related Work . 126
11.2 System Concept and Overview . 127
11.3 GU-DSL – Component-Based Engineering 129

11.3.1 Interface Definitions . 129
11.3.2 Component Definitions . 130
11.3.3 Port Definitions and Connections 132
11.3.4 Component Instance Definitions 133
11.3.5 Component Initialization and Execution 134
11.3.6 Graphical Design Assistance . 135
11.3.7 Summary . 135

xvi CONTENTS

11.4 A CBSE System as an Exemplary Implementation of GU-DSL 136
11.4.1 Component Realization . 136
11.4.2 Port Realization . 138
11.4.3 Component and Port Interaction 139
11.4.4 Prototype-Factory Pattern - A Way for Dynamic Object Creation

and Registration . 141
11.4.5 Component Diagram Realization 142
11.4.6 The Rich Client Platform . 144

11.5 A Component-Based Modeling Example 144
11.6 Summary . 147

12 Model Driven Engineering Summary 149

13 Summary And Conclusion 151

Bibliography 155

List of Figures 165

List of Tables 167

Abbreviations 169

Glossary 173

A GU-DSL Important Syntax Constructs 177

B GU-DSL Examples 181

CHAPTER 1. INTRODUCTION 1

1 Introduction

The requirements on software systems have risen dramatically in the last years.
Especially the usage of complex software architectures for technical applications,
such as image processing or similar (sensor-) data processing tasks, has heavily
increased due to cheaper and more powerful hardware.

In the domain of distance data measurement, significant advances have been
made. An example are Time-of-Flight (ToF) sensors such as the Photonic Mixer
Device (PMD) camera. Offering a cheap and elegant way to measure depth/distance
data, they become more and more important for the computer vision and graphics
domain and also for industrial applications. Having advantages, such as high
performance and no mechanical overhead compared to e.g. laser scanners, they
also have many problems, especially in accuracy and noise behavior. Most of these
errors can be corrected well by applying good calibration models and pre-filtering
(e.g. low-pass filtering). However, artifacts arising from dynamic scenes are still not
resolved satisfactorily. Moving objects in scenes cause a blur effect (motion artifacts)
in acquired depth images. A fast movement leads to strong artifacts, related to
the sensor’s working principle which is based on the sequential acquisition of four
so-called phase images in order to generate a depth map. Artifacts occur in areas
where corresponding phase image values do not refer to the same object position.
Noise and motion result in an incorrect distance calculation, which is why ToF data
denoising has always been an important discipline in depth data processing.

Several techniques have been established during the last years. Methods for
outlier removal and outlier correction have been developed to improve acquisition
quality of noisy data. Denoising and optimization can be applied at different stages:
at image acquisition level and/or during data processing. Previous works have shown
that combining both optimization stages gives the best result. All these techniques
require fast processing. This can be achieved by using Graphic Processing Unit
(GPU)s and related frameworks like Nvidia Compute Unified Device Architecture
(CUDA) [NVI16] or the more generic and standardized Open Computing Language
(OpenCL) [Khr16]. However, increasing data processing performance via paral-
lelization of tasks leads to an increase of programming complexity and reduction

2 CHAPTER 1. INTRODUCTION

of maintainability. This kind of programming has special requirements due to the
parallelization of tasks. Hence, there must be special control structures on the one
hand and simple ways to allow parallel execution of operations on the other hand.
Therefore, such systems are usually split into two parts: a host (e.g. a PC) and
multiple devices (e.g. a graphics card) which is the case for OpenCL and CUDA.
Executable device programs (kernel) are based on a version of the International Or-
ganization for Standardization (ISO) C99 standard, extended by types and functions.
Calculations are performed by work-items arranged in work-grids. Data always has
to be transferred between host memory and device kernel memory, which can lead
to big bottlenecks if this process is performed too often. This means the developer
also has to decide when and how often the memory synchronization is performed.

Besides hardware improvements, there were also important advances in the do-
main of software engineering. The topic of rising complexity is a general problem in
software engineering. Several methods have been introduced to overcome this dur-
ing the last years. As example Unified Modeling Language (UML) was introduced
by the Object Management Group (OMG) and accepted by the ISO (International
Organization for Standardization) as a standard in 2000. It allows to model high-
level abstractions of real-world problems by using graphical descriptions. Different
kinds of diagrams such as class-, activity- or state-machine diagrams are the basis
of modeling the the system’s structure and functionality. The usage of UML can
improve the general software quality and can reduce the Time-to-Market. Another
way to improve software development are Domain Specific Languages (DSLs). They
have become more and more important in the past years due to tools simplifying
the language development, for example xText [EEK+16] (textual modeling) and
Graphical Modeling Framework (GMF) [EC16] (graphical modeling). DSLs can be
divided into two types: external (completely new and independent language) and
internal (using a host language such as C)[EEK+12]. Both kinds of DSLs improve the
readability and the formulation of domain-specific, often real world problems.

While UML can be extended by profiles (for e.g. adding new types and/or model
elements), DSLs provide the possibility to even start the formulation of problems
from scratch, which means writing a completely new language.

Problem Statement

Summarizing the problems stated in the previous sections, several interesting chal-
lenges arise in the two different but closely connected domains of ToF data denoising
and data processing that should be mentioned here. Common issues, that virtually
all active optical systems encounter, include

Low reflective objects result in low optical signals which reduce the Signal-to-Noise
Ratio (SNR), thus degrading the measurement reliability.

3

Highly specular surfaces may lead to oversaturation effects, which severely alter the
signal values resulting in wrong distance measurements.

Further ToF specific issues, that need to be taken into account, include

Systematic intensity-related distance errors, i.e. the mean (and not only the vari-
ance) of the measured distance is influenced by the total amount of incident
light (Sec. 2.1.2.2).

Systematic distance (wiggling) errors occur because the theoretically required sinu-
soidal signal is not achievable in practice (Sec. 2.1.2.2).

Flying pixels occur in spatial regions with inhomogeneous depth; here superim-
posed phase shifts result in mixed signals leading to wrong distance values (see
Sec. 6.5.1.3).

Motion artifacts: In case of motion, individual pixels no longer relate to the same
object point during the successive acquisition of the four phase images Pi; this
leads to motion artifacts at object boundaries and in regions of inhomogeneous
reflection (see Sec. 6.5.1.1).

Lateral intensity attenuation in the image plane results from the non-uniform illu-
mination of the scene.

The stated points bring up several interesting and complex challenges. A very
general problem is the usage of ToF cameras in combination with Computer Vision
based image registration algorithms. Firstly, ToF cameras have a comparably low
resolution. Secondly, the data characteristics are very different from standard 2D
grayscale or RGB-cameras. For example, the PMD-intensity data is not a true gray
data, it is a measure of the amount of reflected light and depends on the infrared
reflectivity of the reflecting material.

Besides the stated ToF problems, there are also important and significant chal-
lenges in the domain of Model Driven Engineering, e.g. when modeling the ToF-
denoising algorithms. Graphical modeling and also external DSLs are unfortunately
hardly used in the domain of image processing and computer vision. The community
mainly wants to concentrate on the development of algorithms. But in most cases
they have to begin their work from scratch and start with the development of GUIs
and the abstraction of data and image processing interfaces. It is widely known that
GUI development can rapidly grow to become a long and error-prone task, which
often leads to loss of focus. Having the possibility of using a specially adapted devel-
opment environment and toolchain like the one proposed in this thesis, the focus can
be shifted back to the initial scope of algorithm development.

4 CHAPTER 1. INTRODUCTION

Contributions

The introduction has shown the most important and significant challenges in the
domain of Depth Data Processing and Software Engineering. Thus, the corresponding
specific contributions of this thesis are twofold and divided as follows.

Depth Data Processing Contributions
1. Compensation of Motion Artifacts

• A new algorithm to perform a fast real-time motion compensation with
high frame rates (above 50 FPS). The focus lies on high flexibility to allow
the algorithm to be either computed in parallel on a GPU using CUDA or
to simply be ported to small devices like a Field Programmable Gate Array
(FPGA) preprocessing platform. [HLK13a, LHK13]

2. Automatic Integration Time Estimation

• A new approach to automatically determine the best integration time for
arbitrary scenes using the knowledge of underlying inherent sensor be-
havior and properties. The approach benefits from a detailed sensor data
analysis and integrates this knowledge into a novel algorithm that is more
flexible and stable than a proportional feedback control system, especially
in unknown, arbitrary scenes. [HBK15]

3. A Complex Depth Data Processing Pipeline

• A novel approach for online acquisition and reconstruction of a vehicle’s
outer hull. The key features of the system are the integration of three active
range sensing ToF cameras based on the Photonic Mixing Principle (PMD),
an appropriate preprocessing of the sensor data, registration, data fusion
and geometry extraction. All data processing is done on GPUs to minimize
reconstruction time. [HLK13b]

Data Processing Related Software Engineering Contributions
1. GU-DSL

• A novel Domain Specific Language, specially designed for data and image
processing tasks. [HFKK15]

2. Model Driven General Purpose Computation on Graphics Processing Unit
(GPGPU) Programming

5

• Special GPGPU programming related GU-DSL textual and graphical lan-
guage features to simplify and improve the error prone task of GPU algo-
rithm development. [HFKK16]

3. Component-Based Data And Image Processing Architectures

• A special extension of GU-DSL allowing for component-based textual and
graphical modeling of data and image processing algorithms and systems
[HKK16]

• A novel Architecture Definition Language (ADL) to simplify architecture
definitions [HKK16]

• A C++ Component-Based Software Engineering (CBSE) system to provide
a tested default runtime environment for data and image processing sys-
tems and to show an exemplary implementation of a system that can be
developed with GU-DSL. [HKK15]

Outline

Initially, this thesis gives an overview of depth measurement and related software
engineering problems in Chapter 1. Chapter 2 provides the necessary fundamentals to
understand the parts of depth data processing and the related software engineering
techniques.

The structure of Part I consists of the following chapters:

Chapter 3 gives an introduction to ToF related problems.

Chapter 4 shows how ToF motion artifacts can be reduced using a novel algo-
rithm that performs fast real-time motion compensation with high frame rates,
especially on GPUs or FPGAs.

Chapter 5 introduces a new approach to automatically determine the best ToF
integration time for arbitrary scenes.

Chapter 6 shows a novel approach for online acquisition and reconstruction of a
vehicle’s outer hull using three ToF cameras in an industrial example application.

Chapter 7 summarizes the results of the previous depth data processing chapters
and concludes Part I.

The structure of Part II consists of the following chapters:

6 CHAPTER 1. INTRODUCTION

Chapter 8 gives an introduction to data processing related software engineering
problems.

Chapter 9 introduces GU-DSL, a generic DSL for textual and graphical modeling
of data and image processing problems.

Chapter 10 shows how three different image processing algorithms can be im-
plemented for GPGPU processing using GU-DSL.

Chapter 11 introduces a new component-based data and image processing ap-
proach using GU-DSL.

Chapter 12 summarizes the results of the previous model driven engineering chapters
and concludes Part II.

The last chapter (Chapter 13) of this thesis concludes this work with a summary
and conclusion.

CHAPTER 2. FUNDAMENTALS 7

2 Fundamentals

This chapter introduces the most important and relevant fundamentals of the ToF
technology, such as working principle, calibration, error analysis and data processing.
Additionally, it also shortly explains Domain Specific Languages.

2.1 Time-of-Flight Cameras

T he following sections give a brief introduction to the functionality of PMD ToF
cameras. It gives an basic overview of the working principle, effects and also

parameters.

2.1.1 Time-of-Flight Principle

ToF cameras, such as the PMD, estimate distances from each pixel to related points on
a target using the phase shift of intensity modulated, incoherent infrared (IR) light,
induced by the time of flight. The scene is irradiated by the camera’s illumination
unit with a modulated optical signal, generated by a modulator with modulation
frequency f , which is then reflected off the target back to the sensor. Each pixel
correlates the incoming optical signal s(t) with the reference signal r(t).

Several phase delays are acquired in order to demodulate the correlation function
and thus retrieve the distance-related phase shift. Theoretically, three phase delay
images are necessary to demodulate the correlation function, however phase shift
ToF devices usually sample the phase images four times, in order to keep a good
Signal-to-Noise Ratio. Moreover, PMD-based devices acquire two phase images
PA

i ,P
B
i at one point in time, where in case of perfect pixel behavior PB

i = PA
(i+2) mod 4.

Internally, the camera device proceeds with Pi = PA
i −PB

i in order to suppress hardware
inhomogeneities [LNL+13].

Based on the four phase images Pi=0−3, the phase shift φ, the amplitude A and the

8 CHAPTER 2. FUNDAMENTALS

intensity I can be retrieved:

φ = atan2(P3−P1,P0−P2)

I =
P0 + P1 + P2 + P3

4

A =
1
2
·

√
(P3−P1)2 + (P0−P2)2.

The resulting distance D is then calculated using the angular modulation frequency
ω and the speed of light c ≈ 3 ·108ms−1:

D =
c

2ω
φ.

ToF cameras have a limiting range measurement capability which is called unam-
biguous distance range δ. This is directly related to the modulation frequency:

δ =
c

2 f
.

An additional concept is the Suppression of Background Illumination (SBI) of the
PMD-cameras. It is a mechanism to enlarge the ratio between the distance carrying
signal and the uncorrelated extraneous light. The same amount of unnecessary charge
carriers within pixel channels A and B (e.g. the symmetric steady component in both
channels) are removed what of course affects the signal behavior. As a result, the
cameras can be used e.g. in direct sun light. The PMD CamCube and its corresponding
Software Development Kit (SDK) indicates that the SBI became active by a flag. Note:
the presented measurements and algorithms in this thesis don’t consider the SBI.

2.1.2 Time-of-Flight Calibration

ToF calibration is one of the most important preprocessing steps and is usually done
once at setup configuration. Two different calibration processes will be presented in
this section. One to deal with usual calibration problems such as intrinsic parameters
and extrinsic camera position, the other covers the depth measurement provided by
a ToF camera.

2.1.2.1 Intrinsic/Extrinsic Parameter Estimation

Precise intrinsic parameters and extrinsic camera positions are crucial for applications
to achieve correct spatial data fusion. Using an additional high-resolution RGB cam-
era can drastically improve the estimation of intrinsic (focal length, principle point,
lens distortion) and extrinsic (position, orientation) parameters of low resolution ToF
devices, as shown by Schiller [SBK08]. Providing a free Multi-Camera Calibration
software [MIPG16] which uses a full calibration model of a ToF camera, it is possible

2.1. TIME-OF-FLIGHT CAMERAS 9

to determine intrinsic and also extrinsic camera parameters. Furthermore, it also
provides ToF depth correction function parameters which can be used to overcome
bias errors and also the so called wiggling error. Experiments for the estimation of
the intrinsic and extrinsic parameters can be found in Sec. 2.2.2 and Sec. 2.2.3.

2.1.2.2 Time-of-Flight Distance Correction

Systematic distance (wiggling) errors occur because the theoretically required sinu-
soidal signal is not achievable in practice. The wiggling error is corrected using the
PMD CamCube SDK (detailed information about wiggling correction can be found
in [LSKK10]), since the system presented in Chapter 6 uses three PMD cameras with
different modulation frequencies and different integration times. It provides a precise
correction of the wiggling error for each camera configuration. Another error source
related to ToF devices is the intensity-related distance error [LSKK10], which is of
great interest, since the application is dealing with arbitrary cars (e.g. different color
reflectivities). The basic idea is to use a complex acquisition protocol utilizing the
different checkerboard reflectivities in the test rig. A high-resolution RGB camera
is mounted onto the ToF device allowing the estimation of "ground-truth" distances
thanks to the RGB checkerboard size. This is possible by the usage of the intrinsic
parameters and the Field Of View (FOV) of the RGB camera and the exact known
size of the checkerboard. See Fig. 2.1 for a comprehensive description of the influ-
ence of measured intensity on the distance error. For more details, see [LSKK10] and
Sec. 2.2.1.

The method described in [LSKK10] has been extended in [HLK13b] in order to
correct the intensity related depth error of the ToF device using a different wiggling
correction method. Since the measured intensity of a ToF device is linearly dependent
on its integration time (see Sec. 2.2.1, Fig. 2.2), the final distance correction is extracted
in relation to the integration time:

Dp
c = Dp

m−δcalib

(
Ip,intT
m ·

intTcalib

intT

)
,

where

• Dp
c is the corrected distance of pixel p

• Dp
m the initial measured distance of pixel p with wiggling correction

• intT the current integration time

• intTcalib the integration time used in the calibration process

• Ip,intT
m the measured intensity of pixel p using the integration time intT

• δcalib intensity-related distance function modeled as a quadratic polynomial
during the calibration process. Note that this function is computed using the
measured distance of each pixel to its corresponding ground-truth.

10 CHAPTER 2. FUNDAMENTALS

Detailed experiments and results can be found in Sec. 2.2.1.

2.2 Time-Of-Flight Camera Error-Analysis and Parame-
ter Estimation

This section describes the main experiments performed to setup the physical and data
processing system. It provides a detailed description as to how the necessary param-
eters, such as the camera position and also the system thresholds, are determined.

2.2.1 Systematic Error Correction
As mentioned in Sec. 2.1.2, systematic errors like the wiggling error or intensity related
distance errors have to be corrected. Since the PMD camera SDK already provides a
good wiggling correction, the focus is the optimization of bias and intensity related
errors. The necessary experiments are described in Sec. 2.1.2.

In order to adjust the PMD distance based on the intensity, a precise acquisition
should be operated. Here different checkerboards with different reflectivities (100 %
dark, 80 %, 60 %, 40 %, 20 %, white) are used to describe the complete intensity range.
Each pattern was fixed on a plane wall and several acquisitions were done between
1 and 3 meters. The camera system, composed of an RGB (resolution 1280x960px,
focal length 12mm) and a PMD camera (resolution 200x200px, focal length 8mm),
was moved approximately 5cm between each measurement which leads to roughly
40 different Cartesian distances acquired. Note that the camera’s movements does not
need to be precise since the reference distance has been computed precisely using the
2D cameras and the checkerboard geometry. For each Cartesian distance acquisition,
two integration times were used (250, 500µs).

2.2. TIME-OF-FLIGHT CAMERA ERROR-ANALYSIS AND PARAMETER
ESTIMATION 11

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.05

0

0.05

0.1

0.15
Error intensity related function based on different patterns

Measured Intensity

E
rr

or
 d

ev
ia

tio
n(

m
)

Black
80% Dark
60% Dark
40% Dark
20% Dark
White

Figure 2.1: Error distance measurement of a PMD camera in relation to the measured
intensity (using six light-absorption patterns). [HLK13b]

Fig. 2.1 shows the distance error in relation to different light-absorption patterns.
The main difficulty of a reliable PMD intensity calibration is, to retrieve precise
reference distance measurement in a first step. A high-resolution RGB camera was
mounted and strongly fixed to the top of the PMD camera. Using the MIP Multi-
Camera Calibration tool [MIPG16], the relative transformation between the PMD
camera and the color camera has been computed as well as both intrinsic parameter
sets. The extrinsic parameters of the color camera have been computed using its
intrinsic parameters and the checkerboard’s 2D corner points.

12 CHAPTER 2. FUNDAMENTALS

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.5

1

1.5

2

2.5

3
x 10

4 Relation of Intensity with the Polar Distance

Reference polar distance (m)

In
te

ns
ity

 (m
ax

 =
 6

55
35

)

250µs
250µs corrected
500µs
500µs corrected

Figure 2.2: Red and blue plot: distance-dependent intensity function (white pattern);
Magenta and light blue plot: distance-dependent intensity function offset corrected
using the black intensity PMD image (white pattern). [HLK13b]

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.5

1

1.5

2

2.5

3
x 10

4

Ref. polarDistance (m)

In
te

ns
ity

 (
m

ax
 =

 6
55

35
)

Relation of black rectified Intensity with the Polar Distance

250µs
500µs

Figure 2.3: Distance-dependent intensity function corrected using the black intensity
PMD image (100 % dark pattern). [HLK13b]

Fig. 2.2 shows the PMD intensity response (red and blue plot) of the bright white

2.2. TIME-OF-FLIGHT CAMERA ERROR-ANALYSIS AND PARAMETER
ESTIMATION 13

pattern in relation to the polar distance reference. Each set of points is described with
its mean error and the corresponding standard deviation by an error bar. It shows
two different plots, one using 250µs integration time (in blue) and the other 500µs (in
red). Note the saturation effects (nearly constant intensity) for the distance acquisition
with less than 1.4 m and an integration time of 500µs. This graph directly shows that,
even by using a twice the integration time, the intensity is not doubled. This is due to
an intensity offset in the PMD intensity measurement which can be easily corrected
using a "black image" PMD acquisition (see Fig. 2.2, magenta and light blue plot).
It illustrates the corrected intensity by subtracting the offset intensity from the black
image. It clearly shows the linear relation of the intensity to the integration time. The
same relation can be seen using a completely dark pattern (100 % black, see Fig. 2.3).

Fig. 2.4 shows the intensity-related distance correction for a low reflectivity pattern.
Each red error bar (mean and standard deviation of all measured distance pixels)
represents a specific reference distance acquisition. Note the high uncertainty for
distances greater than 2.5 m using a low reflectivity object. It can be seen that applying
the distance correction reduces the overall error.

1 2 3

−0.1

−0.05

0

0.05

0.1

0.15
Adjusted Depth comparision (m)

Reference Distance (m)

E
rr

or
 o

f C
or

re
ct

ed
 d

is
ta

nc
e

(m
)

1 2 3

−0.1

−0.05

0

0.05

0.1

0.15
Measure Depth comparision (m)

Reference Distance (m)

E
rr

or
 o

f m
ea

su
re

d
di

st
an

ce
 (

m
)

Figure 2.4: Left: intensity-related distance error using a black pattern (for measure-
ment between 1 and 3 meters). Right: corresponding distance error after correction
using δcalib. [HLK13b]

2.2.2 Intrinsic Calibration

The intrinsic calibration is the process of estimating camera parameters describing the
lens distortion, focal length and the principle point. Knowing these parameters allows
for lens undistortion and the conversion from ToF polar into Cartesian distances. The

14 CHAPTER 2. FUNDAMENTALS

calibration is done using the tool from Schiller [MIPG16]. Detailed information about
the used algorithm can be found in [SBK08].

The input for the calibration method is a sequence of checkerboard images, all
taken from different poses. The goal is to cover the whole sensor area as good as
possible. This allows for a good correction of the distortion, especially near image
borders where the degree of distortion is the highest.

Parameter Value
Image width 200 px
Image height 200 px
Focal length X 176.14 px
Focal length Y 176.70 px
Center X 103.83 px
Center Y 99.06 px
Radial distortion X -0.295140
Radial distortion Y 1.191152
Tangential distortion X 0.004619
Tangential distortion Y -0.001630

Table 2.1: Exemplary intrinsic calibration results of a PMD camera. [HLK13b]

Table 2.1 shows the intrinsic calibration result for the PMD camera used with 70◦

FOV lens.

2.2.3 Extrinsic Calibration

The extrinsic parameters, i.e. the transformation between the two cameras, are es-
timated similarly to the intrinsic data. An image sequence with different poses of
the checkerboard is acquired. The only difference is that the checkerboard always
has to be visible to the top mounted RGB camera (used as reference camera [SBK08])
and the camera, for which the relative transformation to the RGB reference should be
determined.

The RGB camera provides the reference coordinate system for the whole setup,
which means that all point clouds are transformed into this coordinate system.

2.2. TIME-OF-FLIGHT CAMERA ERROR-ANALYSIS AND PARAMETER
ESTIMATION 15

Figure 2.5: An exemplary partial sequence of checkerboard images to cover the whole
sensor area for the extrinsic calibration.[HLK13b]

Figure 2.6: Reprojection results after applying the estimated transformation between
the RGB (left image) and the PMD (right image) camera. [HLK13b]

The green circles in Fig. 2.6 represent the detected corners in the RGB image, the
red circles show the corners of the PMD image. It can be seen that the transformation
estimation between the RGB and PMD camera works well. The remaining reprojection
error over the whole image sequence (see Fig. 2.5) can be seen in Table 2.2.

16 CHAPTER 2. FUNDAMENTALS

Camera Type Value
RGB camera 0.717589 px
PMD camera 0.356076 px

Table 2.2: Reprojection error of a PMD camera. [HLK13b]

2.3 Iterative Closest Point Algorithm

The Iterative Closest Point (ICP) algorithm is widely used for alignment of 3D data. It
is able to minimize distances between corresponding points of two different datasets
by iteratively refining a 3D rigid body transformation, which transforms the source
data towards the destination data. It was introduced by Besl and McKay [BM92],
who established correspondences by pairing closest points from the two datasets.
Then, "the sum of the squared distance between points in each correspondence pair
is minimized" [Low04a]. This is also known as point-to-point error metric.

Independently, Chen and Medioni [CM92] proposed a similar approach, where
the sum of squared distances from each source point to the tangent plane at the
destination point is minimized. This is also known as point-to-plane error metric. The
usage of the algorithm can be seen in the industrial 3D reconstruction application
shown in Chapter 6.

destination
point

d2

destination
surface

source
surface

destination
point

d1

destination
point

d3

source
point

s1
source
point

s2

source
point

s3

point
normal

n1 point
normal

n2

point
normal

n3

tangent plane
tp3

l1

l2

l3

Figure 2.7: Point-to-plane metric between two surfaces. Red: source surface, blue:
destination surface. si and di, i ∈N, indicate sample points of the source and des-
tination surface, ni the normals at the destination points, tpi the tangent planes and
li the distances of the source points to their corresponding planes as proposed by
Low [Low04a, HLK13b]

2.4. DOMAIN SPECIFIC LANGUAGES 17

2.3.1 Point-to-Point Error Metric
The point-to-point metric tries to minimize the sum of squared distances between
corresponding points (si,di). The minimization problem can be formulated with the
following equation:

E =
∑

i

(Rsi + t−di)2

where si is a source point, di the corresponding destination point, R the required
rotation matrix and t the required translation vector.

This can be solved using standard linear least-squares methods, such as the singu-
lar value decomposition, as "for an error metric of this form, there exist closed form
solutions" [RL01].

2.3.2 Point-to-Plane Error Metric

The point-to-plane metric tries to minimize the sum of squared distances from each
source point to the tangent plane at the destination point. The minimization problem
can be formulated with the following equation:

E =
∑

i

((Msi−di) •ni)2

where si is a source point, di the corresponding destination point, ni the unit
normal vector at di and M the required transformation matrix including rotation and
translation.

This equation has to be solved using non-linear methods, because for this error
metric, "no closed-form solutions are available" [RL01] (see Fig. 2.7).

2.4 Domain Specific Languages

Domain Specific Languages offer an elegant way to model data processing tasks in
a more abstract way using a textual or graphical representation or a combination of
both. As an example, UML was introduced by the OMG and accepted by the ISO
(International Organization for Standardization) as a standard in 2000. It allows to
model high-level abstractions of real-world problems by using graphical descriptions.
Different kinds of diagrams, such as class-, activity- or state-machine diagrams, are
the basis of modeling structure and functionality.

DSLs are divided into two types: internal and external [Fow10, EEK+12].

18 CHAPTER 2. FUNDAMENTALS

Internal DSLs use the existing infrastructure of host programming languages. Ex-
amples for such DSLs are OpenCL or Open Graphics Library (OpenGL). Both lan-
guages are a C dialect, extending C to their requirements.

External DSLs however are designed from scratch after a full analysis of the
problem description. Using special keywords, abstractions and control structures,
they are able to illustrate complex problems mostly in simpler and more compressed
forms. A big drawback is that the whole infrastructure such as parsers, lexers and
compilers has to be built. Well-known examples are the unix shell scripts or the
Structured Query Language (SQL).

Both kinds of DSLs improve the readability and the formulation of domain-specific,
often real world problems. Using tools such as xText [EEK+16] (textual modeling)
and/or GMF [EC16] (graphical modeling) can help significantly in creating specific,
problem related languages.

2.4.1 DSL - Advantages

The usage of a Domain Specific Language has several advantages over the usage of
generic (programming-) languages as e.g. C++:

• Full domain relation

• Reduction/Hiding of technical code

• Improved readability

• Possibility to validate for the specific domain

• More simple to learn for domain experts, even non-programmers

2.4.2 DSL - Disadvantages

Besides the mentioned advantages in the previous section a Domain Specific Lan-
guage has also several disadvantages:

• Missing language features can stop the full development process

• The quality of the DSL depends on the quality of the language developer

• A DSL is not standardized in most cases, which makes it difficult to find new
experts

• Special trainings for the new DSL are necessary

2.4. DOMAIN SPECIFIC LANGUAGES 19

• The DSL development is maybe bound to design tools which have no long term
support

• Additional effort to maintain the newly developed tools is often necessary

2.4.3 Development
The previous sections have given an overview of several advantages and disadvan-
tages of Domain Specific Languages. But still DSLs make sense in many scenarios.
Their development can be split into three phases:

1. Language Definition

2. Sentence Development

3. Sentence Evaluation

Language Definition During this phase, an alphabet of domain specific keywords
and rules how to combine these keywords has to be designed.

Sentence Development In this phase, domain experts have to design sentences
(using the alphabet from the language definition) to formulate and solve their domain
problems.

Sentence Evaluation The last phase evaluates the domain specific sentences from
the development phase either by transforming the language into another DSL or by
directly evaluating it. This can be performed by using code generators, interpreters
or compilers.

The design of new DSLs is possible in two different ways:

• By designing custom tools: lexer, parser and compiler/interpreter and additional
development tools

• By using tools as e.g. Xtext [EEK+16] which automatically create a new set of
tools

Design of Custom Tools Designing custom tools has the advantages that it will
exactly fit to the problem description. The tools can be faster and better maintainable
as generated tools. But at the same time, these tools have a big overhead especially
for the development time because special experts for lexer, parser and/or compiler
development are necessary and the project can rapidly grow in complexity.

20 CHAPTER 2. FUNDAMENTALS

Using DSL Creation Tools These kind of tools have the advantage that DSLs can
also be quickly designed from developers who are maybe no experts for formal
language design. The developer has just to create a language description. Using this
description, the tools are able to create parts or the full set of required engineering
tools. But these tools have also several disadvantages as e.g. the dependency on their
creation tools. Furthermore the maintainability of automatically generated tools is
sometimes difficult.

21

Part I

Time-of-Flight Algorithms

CHAPTER 3. INTRODUCTION 23

3 Introduction

T ime-of-Flight (ToF) sensors like the PMD camera [PMD16] offer an elegant way to
measure depth data. However, artifacts arise during capturing. Image denoising

has always been an important discipline in image processing. Several techniques
have been established during the last years. Methods for outlier removal and outlier
correction have been developed to improve acquisition quality of noisy data. Denois-
ing and optimization can be applied at different stages: at image acquisition level
and/or during data processing. Previous works have shown that combining both
optimization stages gives the best result [LKS+13][LNL+13]. Compared to other in-
dustrial suited range sensing systems like laser-scanners, ToF cameras provide fully
lateral 3D information at high frame rates, additional grayscale information and full
eye safety. Furthermore, cheap industrial cameras, that can handle difficult environ-
ment conditions, are currently under development and are already available with a
resolution of 176×132 pixels. [IFM16]

Problem Statement

There are several challenges in using ToF range sensing cameras, that should be
mentioned. Common issues, that virtually all active optical systems encounter and
which are specially related to the topics of this thesis will be shown in this section.

A huge problem for ToF sensing are low or high reflective objects. Low reflective
objects result in low optical signals which reduce the SNR, thus degrading the mea-
surement reliability. Highly specular surfaces however, as e.g. reflectors at cars (see
also Chapter 6), often lead to oversaturation effects and cause a wrong distance mea-
surement. Further ToF specific issues, that need to be taken into account, are different
ToF error types. A typical error is the systematic intensity-related distance error.
The mean and not only the variance of the measured distance is influenced by the
total amount of incident light (Sec. 2.1.2.2). An other type is the systematic distance
(wiggling) error. It occurs because the theoretically required sinusoidal signal is not
achievable in practice (Sec. 2.1.2.2). Flying pixels are the next type of error. It occurs
in spatial regions with inhomogeneous depth (see Sec. 6.5.1.3). The next error type
is visible only in case of motion: motion artifacts. Individual pixels no longer relate

24 CHAPTER 3. INTRODUCTION

to the same object point during the acquisition of the four phase images. This leads
to motion artifacts at object boundaries and in regions of inhomogeneous reflection
(see Sec. 6.5.1.1). An other error is a result from the non-uniform illumination of the
scene. It causes a lateral intensity attenuation in the image plane.

The stated points bring up several interesting and complex challenges. A very
general problem is the usage of ToF cameras in combination with computer vision
based image registration algorithms. Firstly, ToF cameras have a comparably low
resolution, secondly, the data characteristics are very different from standard 2D
grayscale or RGB-cameras. For example, the PMD-intensity data is not a true gray
data, it is a measure of the amount of reflected light and depends on the infrared
reflectivity of the reflecting material.

Corresponding to the significant challenges in the domain of depth data process-
ing, several contributions are made with this thesis. These contributions are the
Compensation of Motion Artifacts, an Automatic Integration Time Estimation Algo-
rithm and a Complex Depth Data Processing Pipeline for the 3D reconstruction of a
moving car.

Outline

The structure of this part of the thesis consists of the following four chapters:

Chapter 4 shows how ToF motion artifacts can be reduced using a novel algo-
rithm developed to perform a fast real-time motion compensation with high frame
rates especially on GPUs or FPGAs.

Chapter 5 introduces a new approach to automatically determine the best ToF
integration time for arbitrary scenes.

Chapter 6 shows a novel approach for online acquisition and reconstruction of a
vehicle’s outer hull using three ToF cameras in an industrial example application.

Chapter 7 summarizes the results of the previous depth data processing chapters
and concludes the first part of this thesis.

CHAPTER 4. COMPENSATION OF MOTION ARTIFACTS 25

4 Compensation of
Motion Artifacts

T ime-of-Flight sensors as the PMD camera [PMD16] offer an elegant way to
measure depth data. However, artifacts arising from dynamic scenes are still

not resolved satisfactorily. Moving objects in scenes result in a blur effect (motion
artifacts) in acquired depth images. A fast movement leads to strong artifacts, related
to the sensor’s working principle which is based on the sequential acquisition of
four so-called phase images in order to generate a depth map (see also Sec. 2.1.1).
Artifacts occur in areas where corresponding phase image values do not refer to the
same object position, resulting in an incorrect distance calculation.

This dissertation proposes a new algorithm to perform a fast real-time motion
compensation with high frame rates (above 50 FPS). The focus lies on high flexibility
to allow the algorithm to be either computed in parallel on a GPU using CUDA
[NVI16] or to simply port it to small devices like an FPGA preprocessing platform.
To fulfill these requirements, a linear movement with constant motion between the
four consecutive phase images is assumed. Hence, the algorithm still allows to
correct motion in all directions assuming this linear behavior for each individual
pixel (see Sec. 4.3). Invalid pixels are replaced by corresponding values of the spatial
neighborhood. This leads to simpler and faster processing compared to standard
methods shown in Sec. 4.1. For the evaluation, a PMD CamCube 3.0 with a reso-
lution of 200× 200 pixel is used. The big advantages of the proposed method are
the possibility of an automatic motion detection, a search direction restriction, the
system performance and also the repeatability of results in different applications
(other algorithm often don’t support an arbitrary degree of freedom or have at least
performance problems with it, see Sec. 4.1).

Publications: Real-Time Motion Artifact Compensation for PMD-ToF Images [HLK13a];
Real-Time Motion Artifacts Compensation of ToF Sensors Data on GPU [LHK13]

26 CHAPTER 4. COMPENSATION OF MOTION ARTIFACTS

4.1 Related Work

In the last years, several methods have been proposed to detect and compensate
motion artifacts.

Hussmann et al. [HHE11] introduce a motion compensation for linear object
motion on a conveyor belt. Areas of motion artifacts are identified using phase image
differences. These areas are binarized for each individual difference image using a
threshold. The length of motion is determined by processing each line of the binary
images and counting the lines with white pixels. Once knowing the length, every
phase image is moved accordingly before the distances are calculated. The algorithm
is implemented exemplary on an FPGA platform, but it is restricted to a linear motion
in a range between 90− 100cm due to the small object size and the camera’s field of
view.

Schmidt [Sch11] proposes a method handling motion artifacts as disturbances in
the raw data. Motion artifacts are calculated for each phase image using a temporal
derivative. High temporal derivatives of the raw data are then replaced by previously
valid values. An advantage compared to Hussmann et al. is the arbitrary degree
of freedom. Lee et al. [LKKK12] propose a similar approach where they detect
motion artifacts by temporal-spatial coherence of neighboring pixels directly on the
hardware level.

Another method was proposed by Lindner et al. [LK09]. This method computes a
dense optical flow to compensate spatial shifts between subsequent phase images
(three flow calculations). Lefloch et al. [LHK13] proposed a method improving this
approach. Necessary computation steps can be reduced to two flow calculations.
The missing step is replaced by a polynomial approximation. One big disadvantage
is the system performance. The optical flow computation is a very time consuming
task and thus is a heavy burden for real-time processing, if further processing tasks
need to be performed.

The proposed method uses particular parts from Lindner and Lefloch [LK09, LHK13]
(flow field) and Hussmann [HHE11] (binarization of the motion area). The algorithm
restricts the motion to blurred areas only and optimizes the flow field detection.

4.2 A Method for Fast Linear Motion Compensation

This section starts with an analysis of the origin of motion artifacts and continues
with a detailed description of the proposed method.

4.2. A METHOD FOR FAST LINEAR MOTION COMPENSATION 27

4.2.1 Problem Analysis
ToF-cameras like the PMD camera have the advantage to be able to acquire full
distance-/depth-images of the whole scene at once. This is done using a sequence of
four phase images, as described in Sec. 2.1.1 and shown in Fig. 4.1.

time

Acquisition
P0

Readout
P0

Acquisition
P1

Readout
P1

Acquisition
P2

Readout
P2

Acquisition
P3

Readout
P3

Figure 4.1: Schematic view of the acquisition process of a PMD frame using four
phase images. [HLK13a]

One full phase acquisition is split in two parts: acquisition and readout. The
acquisition time is equal to the integration time set, the readout time of actual PMD
cameras is stated as about 3.5ms. Ideally all four phase images would simultaneously
be recorded. In reality the acquisition is done sequentially (see Fig. 4.1). Motion
artifacts typically arise in areas of unmatching raw phase values due to motion (see.
Fig. 4.2). It mainly occurs at object boundaries and in regions of inhomogeneous
reflection. This effect becomes more extensive the faster an object moves, the closer
the object is to the camera and the longer the scene is exposed (high integration times)
[LK09].

Fig. 4.2 shows the default demodulation of a car (top images), moving from the
right to the left and of a moving hand (bottom images). In both scenes, the blurred
areas are marked red. It can be seen that especially these areas contain many motion
artifacts.

Blurred areas in depth maps lead to incorrect distance computations. The goal
of motion compensation approaches is the elimination of these areas in order to
minimize errors. The motion during a single acquisition is not considered here and
is nearly negligible for small integration times (< 1ms).

4.2.2 The Motion Compensation Approach

The proposed method works on a per pixel basis allowing arbitrary motion directions.
It is divided into several steps, starting with a phase normalization. The normalization
is done to compensate the sensor’s pixel gains and to equalize the inhomogeneous
illumination of the scene. This is necessary due to the block-matching like working
principle of the approach and to obtain comparable raw values. In a second step the
area of motion is estimated to improve the processing time. The motion direction
is then determined by a correspondence search in the spatial neighborhood. Once

28 CHAPTER 4. COMPENSATION OF MOTION ARTIFACTS

Figure 4.2: Top: demodulation of the car’s phase image sequence and a corresponding
closeup. Bottom: a moving hand scene and a corresponding closeup. Left: motion
areas are marked red. Right: The closeups of the marked motion areas.[HLK13a]

knowing this kind of flow field, the raw values can be corrected. The processing
pipeline can be seen in Fig. 4.3 and will be explained in the following sections.

Raw
Images

Normalization

Motion
Detection

Flow Field
Estimation

Raw Value
Correction

Depth
Image

Figure 4.3: The motion detection and processing pipeline used for the algorithm.
[HLK13a]

4.2. A METHOD FOR FAST LINEAR MOTION COMPENSATION 29

4.2.2.1 Phase Normalization

According to the behavior and design of PMD cameras, there are several aspects for
the pixel correspondence search, which have to be taken care of. One point is the
radial light attenuation. Images become darker from the center to the border. Another
aspect is the difference in pixel gains, which has to be individually corrected for each
sensor and every pixel.

To compensate these two problems, Lindner et al. [LK09] propose to create a set
of reference images with different reflectivities at different distances and to pixel-wise
apply the fit intensity correction functions:

fPA(PAi) = P̃Ai , fPB(PBi) = P̃Bi with i = 0 . . .3 (4.1)

This allows to minimize the following equation:

3∑
i=0

(P̃Ai + P̃Bi) = href. (4.2)

The brightest pixel in a homogeneous surface is taken and used as reference
intensity, the fitting functions are assumed to be logarithmic as fX(Xi) = a

√
Xi + b +

cXi + d.
Applying these corrections improve the search as shown by Lindner et al. [LK09].

4.2.2.2 Motion Detection

Since the motion estimation is a computationally intensive task, an important prepro-
cessing step is to detect areas of apparent motions first. Motion can be detected using
the changes in the total per-pixel intensity for the subsequent phase images, i.e.

P+
i = PAi + PBi (4.3)

M =

3∑
i=1

∣∣∣P+
i −P+

0

∣∣∣ (4.4)

In a next step, the estimated motion image M is binarized

B = M > θ (4.5)

where B is the binary image and θ a threshold value that is determined experimen-
tally. Tests have shown that for θ = 650 (about 1% of the maximum of PAi/Bi = 65535)
the results are the most reliable. Fig. 4.4 shows the motion image and its correspond-
ing binary image. White areas (ones) on the right side indicate unmatching raw
values.

30 CHAPTER 4. COMPENSATION OF MOTION ARTIFACTS

Figure 4.4: The moving hand from Fig. 4.2 with extracted motion artifacts. Left:
the motion image M calculated using Equation 4.4. Right: the binarized image B
thresholded using Equation 4.5. [HLK13a]

4.2.2.3 Motion Direction Estimation using Block Matching

Inspired by the idea of the optical flow motion estimation, a block matching algo-
rithm is used to determine a 2D vector displacement map (D(u,v)) without subpixel
precision. Each pixel value represents a unique displacement vector (u,v)T in D.

The approach assumes a linear motion between all raw phase images with a constant
velocity (see Sec. 4.3). A pixel-wise motion displacement is estimated for all detected
invalid pixels in B. Therefore a motion window around every invalid pixel is defined,
which limits the detectable motion around these pixels. The window is assumed to
be square with an odd size between 3 and 11 pixels (Motion Window Size, MWS).
Vectors from the center (the invalid pixel) to all neighbors are calculated and scaled
according to the phase image index. Let (dx,dy) be a single delta for a possible pixel
correspondence shift between adjacent phase images, then the respective shifted
phase values for the i-th phase image are given as:

Pshi f ted,i,dx,dy(x, y) = Pi(x + i ·dx, y + i ·dy)

i ∈ {0,1,2,3}
(4.6)

Pi and Pshi f ted,i represent the particular phase image with index i. dx and dy are
the applied deltas from the center (see also Fig. 4.6) with a maximum value of:

dxmax = dymax = (MWS−1)/2 (4.7)

and an odd MWS. The maximum euclidean pixel distance l between two corre-
sponding points of phase image P0 and P3 is given as:

l = 3 ·
∣∣∣∣∣∣ # »

(dxmax,dymax)
∣∣∣∣∣∣ (4.8)

4.2. A METHOD FOR FAST LINEAR MOTION COMPENSATION 31

In compliance with Equation 4.8 and some knowledge about the expected motion
in a scene, the Motion Window Size can be preset to optimize the system perfor-
mance. Setting MWS = 5 lead to reliable results in most of the situations (see Sec. 4.3).
Fig. 4.5 shows how search vectors are defined and introduces the coordinate system
exemplary for a 5×5 motion window.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

x

dx

dy

y

Figure 4.5: Left: the coordinate system and an example offset dx = dy = 2. Right: the
grid cells are numbered in a row-wise order. Index ’13’ indicates the start position.
Five sample vectors are presented here. [HLK13a]

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15 … …

16 17 18 19 20

21 22 23 24 25

P0 P1 P2 P3

dx 2dx 3dx
dy 2dy 3dy

dx=1
dy=0

Figure 4.6: An exemplary flow for a shift dx = 1 and dy = 0. This leads to a maximum
shift between the four phase images of 3 pixels. [HLK13a]

For the estimation of the best corresponding flow, experiments have shown, that
the Sum of Squared Differences (ssd) is a good method to determine and calculate all

32 CHAPTER 4. COMPENSATION OF MOTION ARTIFACTS

possible flow vectors within the defined motion window for all dx and dy combina-
tions:

ssdindex(x, y,dx,dy) =

3∑
i=1

(P0(x, y)−Pshi f ted,i(x, y,dx,dy))2

index ∈
{
0,1, ...,MWS2

} (4.9)

Accordingly, the best correspondence value has the minimal deviation from the
first phase image. So the final flow vector for the currently processed pixel can be
expressed as:

V(u,v) = (dx(u,v),dy(u,v))T = argmin(ssd(x, y,dx,dy)) (4.10)

The number of possible vectors MWS2 is leading to a time complexity T(MWS) =
O(MWS2). A quadratic complexity allows only small Motion Window Sizes (about
11×11) to perform the algorithm in real-time. To overcome this problem, the search
direction can be restricted to an initial or mean direction from a previous frame.

4.2.3 Search Space Reduction

An additional performance optimization can be achieved using a search space reduc-
tion as can be seen in Fig. 4.7. Therefore the mean direction angle of a previous frame
is used as initial guess for the current motion. The direction angle ϕ(u,v)T for one pixel

is calculated between the positive x-axis −→x and the corresponding flow vector
−−−−→
f (u,v).

The mean motion direction angle ϕ is defined as average of all estimated flow vector
direction angles. Assuming a small motion between two consecutive frames, the
amount of change of the mean direction angle is small. Now using this assumption,
all pixels (x’, y’) in the search window whose position vector has an angle in the range
of ϕ ± ρ/2 (0° ≤ ρ ≤ 359°) are taken into consideration for the motion estimation. The
raw phase value correction is then applied to the reduced flow field as described in
Sec. 4.2.5.

All possible flow direction angles in a motion window can be precalculated which
offers simple portability to small platforms, e.g. an FPGA, by using lookup-tables.

An alternative to using the mean direction angle of the previous frame can be the
usage of a local direction vector average around the motion window. This can be
combined with the vector length to make a comparison more meaningful.

4.2.4 Flow Field Optimization
In order to improve the robustness of the approach, a possible optimization is option-
ally applied taking the spatial neighborhood into account. A median filter is used

4.3. RESULTS 33

x

y

ρ = 180°

x

y

ρ = 180°

mean direction vector/angle

ϕ = 115° ρ/2
ρ/2

ϕ = 115°

Figure 4.7: Left: the mean motion vector (ϕ = 115° in this example) calculated in
a previous frame (red arrow) and an exemplary search space reduction to ρ = 180°.
Right: valid motion vectors resulting from the reduction are marked green. [HLK13a]

to filter outliers. For this, all motion vectors in a neighborhood with size MWS are
considered. Median filtering is then performed using the direction angle as defined
in Sec. 4.2.3. The vector length is kept.

4.2.5 Raw Phase Value Correction

Once the flow field (V(u,v)) is determined, it can be applied to the raw phase values
PA0−3 and PB0−3 according to Equation 4.6. Each vector of the flow field is applied
to its corresponding raw value. After this data correction, the depth values can
be reconstructed according to the principle described in Sec. 2.1.1. The results and
evaluation can be seen in Sec. 4.3.

4.3 Results

The following subsections give detailed information about the motion compensation
results obtained with the proposed method. To perform a comprehensive analysis,
the evaluation is split in two parts. In the first part, a quantitative evaluation is done to
allow for the comparison of results against ground-truth data. Using artificial scenes
gives reproducible and reliable results. In the second part, a qualitative evaluation
in real scenes is shown. Having the disadvantage that generally no ground-truth
models are available, a visual evaluation makes it possible to see if the correction
could successfully be applied.

4.3.1 Quantitative Results
The method has been tested in a variety of scenes of different complexities (simulated
and real environments). A robustness and peformance evaluation can be done using
simulated data (see Table 4.2 and Table 4.3). Similar to Lefloch et al. [LHK13]

34 CHAPTER 4. COMPENSATION OF MOTION ARTIFACTS

different data sets generated with a simulator [KK09] have been used. The data sets
are generated without white noise, but with flying pixels and motion (translation
and/or rotation). Statistic evaluations are done with the tool CloudCompare1. The
first data set is a buddha figure, the second is a dragon. Both figures are used as input
for the simulator. An artificial, planar wall is placed in a distance of 4 meters. In
front of this wall, in a distance of about 3 meters, the figures are placed. This setup
provides reliable ground-truth data. To obtain motion data, several different images
at different camera positions are acquired. The camera is transformed between each
individual phase acquisition. For the buddha, a simple lateral camera translation of
1cm (about 2m/s motion speed) is used. In the dragon figure setup, the camera is
rotated 1 degree (about 200◦/s angular velocity) around the z-axis (line of sight).

3D model Distance without motion Distance with motion

Figure 4.8: Two different data sets (buddha (top) and dragon (bottom)) that have
been used for the robustness evaluation of the approach. Left: the ground-truth
3D model. Center: The Cartesian distance image without any motion. Right: the
Cartesian distance image with motion. [HLK13a]

Using the ground-truth of Fig. 4.8, comparable results between the different motion
compensation approaches (see also Fig. 4.9) can easily be generated.

1http://www.danielgm.net/cc/

4.3. RESULTS 35

Proposed method Lindner et al. Lefloch et al.

Figure 4.9: The results of the three evaluated methods. As can be seen, all the methods
yield good results visually when comparing them to the ground-truth distance with
no motion shown in Fig. 4.8. [HLK13a]

Scenes Distance errors from ground-truth (cm)
Static (no motion) Dynamic (with motion)
Mean Sigma Mean Sigma

Buddha 0.64 3.12 5.96 9.32
Dragon 1.25 4.62 7.75 14.37

Table 4.1: The deviation of the ground-truth depth data (flying pixels included)
of the buddha and dragon scene from the underlying meshes (before correction).
It shows the mean distance error and the deviation for the static and the dynamic
scene.[HLK13a]

Table 4.1 shows a statistical evaluation of the buddha and dragon scene without
motion compensation where static background pixels are discarded. The dynamic
scene is created as previously described.

For further evaluation, several different setups are created to verify the quality
of the proposed method. The first test shows the behavior of the algorithm with

36 CHAPTER 4. COMPENSATION OF MOTION ARTIFACTS

different settings for the Motion Window Size (MWS, see Sec. 4.2.2.3), neighborhood
filtering (NH, see Sec. 4.2.3), motion area estimation (θ with a maximum of 65.535)
and also search space restriction (ρ) (see Sec. 4.2.2.2). Table 4.2 and Table 4.3 contain
the test results of the different setups and show the detailed behavior of the proposed
algorithm using different parameter sets. Especially the remaining depth error com-
pared to the ground-truth data and the system performance is highlighted. It can be
seen that as expected, the best results are given without any limitation and restriction
of the search space (θ = 0%, ρ = 0). The mean error of the buddha motion scene is
reduced from 5.96cm (±9.32cm) to 1.14cm (±3.02cm), the dragon scene is corrected
from a mean error of 7.75cm (±14.37cm) to 2.07cm (±5.65cm). Furthermore it can be
seen that with an increasing θ the correction performance gets better, but the quality
decreases. Another fact that becomes apparent is that using the neighborhood flow
smoothing technique also improves the mean error compared to the initial error, but
with the disadvantage of losing performance: with the same settings and neighbor-
hood filtering the buddha scene can be corrected in 16.13ms, without neighborhood
filtering it takes only 11.57ms. A similar behavior can be seen for the dragon scene
in Table 4.3. In addition, restricting the algorithm to a maximum direction deviation
also improves the correction quality (mean error) and the system performance. This
can be achieved by the rejection of a large number of search vectors in the motion
window (Maximum number of vectors MWS = 5: 1.000.000; MWS = 7: 1.960.000). Up
to 36% of the possible directions are rejected (MWS = 7, ρ = 90°, 1.960.000 direction
search vectors, rejected directions between 110770 and 716877) in the buddha scene
and up to 30% (MWS = 7, ρ = 90°, 1.960.000 direction search vectors, rejected direc-
tions between 118916 and 583470) in the dragon scene. Please note that the execution
time is an average value of 100 measurements. Furthemore it can be seen that the
mean motion direction ϕ most closely approximates the expected linear translation
of the buddha scene of 180°.

Additionally the algorithm is compared against the methods proposed by [LK09]
and [LHK13]. The approach reduces the mean error of the buddha scene to 1.14cm
(±3.02cm), compared to Lindner 1.13cm (±4.39cm) and Lefloch 1.46cm (±4.40cm). For
the dragon scene, the remaining mean error with the method is 2.07cm (±5.65cm), for
Lindner 2.26cm (±7.57cm) and for Lefloch 3.14cm (±8.00cm). The results between the
three compared methods are nearly equal, but the newly proposed method can score
with the execution time, which is about half the time of the method from Lefloch et
al. and an eighth of Lindner et al.

The result of the tested setups is a good correction compared to the input mean
error that can be seen in Table 4.1. Furthermore in comparison with Lindner and
Lefloch, the method gives slightly better (dragon scene) or nearly equal (buddha
scene) results and is also suitable for real-time applications with a framerate of 50–100
FPS allowing for additional data processing. Note: compared to the evaluation of
Lefloch et al. [LHK13], a smaller clamping distance (3.85m) is used to remove the wall,
explaining the slightly different mean and sigma values. A good default parameter set

4.3. RESULTS 37

is a threshold θ = 1% and MWS = 5. Another helpful setting is a direction restriction
to the mean motion direction. The default settings and the search area restriction
significantly optimize the system performance and the motion compensation quality.
The tests were executed on an Intel Core i7-3770K CPU @ 3.50 GHz and an NVIDIA
GeForce GTX 680, 2GB graphics card using CUDA.

Buddha scene Distance errors from ground-truth corrected
MWS NH θ(%) ρ (°) Mean

(cm)
Sigma
(cm)

ϕ (°) Rejected
directions (%)

� Time
(ms)

5 - 0.00 - 1.15 3.10 - 0 12.58
5 - 1.00 - 1.70 3.54 - 0 11.57
5 - 5.00 - 3.49 4.70 - 0 10.59
5 - 8.00 - 4.22 5.18 - 0 10.13
5 x 1.00 - 1.38 3.05 - 0 16.13
5 - 1.00 90 1.34 3.33 206.36 11.89 9.79
5 x 1.00 90 1.46 3.24 223.98 11.08 13.18
5 - 1.00 180 1.34 3.38 179.21 21.24 11.08
5 x 1.00 180 1.27 3.04 190.33 21.24 13.49
7 - 0.00 - 1.14 3.02 - 0 25.04
7 - 1.00 - 1.16 3.08 - 0 23.54
7 x 1.00 - 1.34 3.03 - 0 31.86
7 - 1.00 90 1.35 3.35 174.34 36.58 12.15
7 x 1.00 90 1.35 3.13 178.90 36.58 21.16
7 - 1.00 180 1.35 3.37 179.74 24.38 15.18
7 x 1.00 180 1.37 3.04 187.10 24.38 23.53

Method Lindner et al.
- - - - 1.13 4.39 - - 71.87

Method Lefloch et al.
- - - - 1.46 4.40 - - 25.60

Table 4.2: The statistic evaluation of the buddha scene and the behavior of the mean
error in relation to different parameters. Statistics are shown for different Motion
Window Sizes, neighborhood filtering (NH) on(x) and off(-), binarization thresholds
θ (in percent relative to 65.535) and a search space restriction ρ.[HLK13a]. The tests
were executed on an Intel Core i7-3770K CPU @ 3.50 GHz and an NVIDIA GeForce
GTX 680, 2GB graphics card using CUDA

4.3.2 Qualitative Results
This part of the evaluation shows the behavior of real environments and applications.
Two different setups are built. Unfortunately, there are no ground-truth values for

38 CHAPTER 4. COMPENSATION OF MOTION ARTIFACTS

these real world data sets, therefore they are limited to a visual comparison. The first
scene shows a moving hand as can be seen in Fig. 4.10. The hand is moved very fast
from one side to the other. The figure shows how the blurred images are corrected
using the proposed method. Furthermore the images also show the motion area and
direction restriction (MWS = 5,θ = 1%,angle = 90°). It can be seen that the blur is fully
corrected.

Dragon Scene Distance errors from Ground-truth corrected
MWS NH θ(%) ρ (°) Mean

(cm)
Sigma
(cm)

ϕ (°) Rejected
directions (%)

� Time
(ms)

5 - 0.00 - 2.08 5.70 - 0 12.09
5 - 1.00 - 2.09 5.71 - 0 11.97
5 - 5.00 - 2.43 6.04 - 0 11.57
5 - 8.00 - 2.62 6.01 - 0 10.89
5 x 1.00 - 2.22 5.51 - 0 14.31
5 - 1.00 90 2.12 5.49 186.68 25.93 9.40
5 x 1.00 90 2.37 5.75 206.36 11.89 11.89
5 - 1.00 180 2.16 5.68 182.36 17.29 9.83
5 x 1.00 180 2.33 5.70 198.20 13.13 13.13
7 - 0.00 - 2.07 5.65 - 0 21.44
7 - 1.00 - 2.07 5.65 - 0 20.55
7 x 1.00 - 2.35 5.48 - 0 26.45
7 - 1.00 90 2.44 5.63 210.65 8.98 11.30
7 x 1.00 90 2.17 5.66 184.70 29.77 17.61
7 - 1.00 180 2.18 5.77 184.02 19.85 14.28
7 x 1.00 180 2.42 5.64 201.35 10.55 20.67

Method Lindner et al.
- - - - 2.26 7.57 - - 80.76

Method Lefloch et al.
- - - - 3.14 8.00 - - 24.07

Table 4.3: The statistical evaluation of the dragon scene and the behavior of the mean
error in relation to different parameters. Statistics are shown for different Motion
Window Sizes, neighborhood filtering (NH) on(x) and off(-), binarization thresholds
θ (in percent relative to 65.535) and a search space restriction ρ.[HLK13a]. The tests
were executed on an Intel Core i7-3770K CPU @ 3.50 GHz and an NVIDIA GeForce
GTX 680, 2GB graphics card using CUDA

The second evaluated scene contains a car moving laterally in front of the camera.
Motion occurs mainly on edges, the mirror and the wheels. The visually determined
movement direction is about 180°. The algorithm is parameterized with MWS = 5,θ=

4.4. SUMMARY 39

Figure 4.10: Hand scene: the left column contains images with motion artifacts,
the middle column contains the corresponding motion compensated images using
the proposed method and the right column contains the related flow images (red:
horizontal motion, green: vertical motion). The mean estimated motion direction for
the top row is � = 125.08°, for the bottom row � = 91.91°. [HLK13a]

1%,angle = 90°. Area, direction and also the correction is successfully applied which
leads to the expected results as can be seen in Fig. 4.11.

4.4 Summary

In the previous sections a new method for a fast motion artifact compensation for
ToF cameras was presented. The approach is based on several assumptions such as
linear motion between the four consecutive phase images and also absolute phase
intensities (PAi + PBi) of the PMD camera. The algorithm uses a thresholding and
binarization method to restrict the artifact correction area to spaces where in fact
motion occurs. Furthermore an approach to find pixel correspondences in a local
neighborhood (motion field estimation), a local search area minimization by tracking
the mean motion direction of a previous frame and an optional motion field smoothing
is proposed. It is shown that the algorithm yields good results for simulated data

40 CHAPTER 4. COMPENSATION OF MOTION ARTIFACTS

Figure 4.11: Car scene: the left column contains images with motion artifacts, the
middle column contains the corresponding motion compensated images using the
proposed method and the right column contains the related flow images (red: hori-
zontal motion, green: vertical motion). The mean estimated motion direction for the
top row is � = 138.20°, for the bottom row � = 142.71°. [HLK13a]

(linear and non linear motion) and also for real data. Furthermore it is shown that
the results are comparable to the mean value correction of Lindner et al. [LK09] and
Lefloch et al. [LHK13] and that the algorithm can work in real-time.

The proposed method could be extended for support of phase image motion
correction. Furthermore the threshold θ can be automatically adapted via statistics
of the observed scene. The algorithm is also designed in a way that allows for
easy porting to embedded hardware like an FPGA (no subpixel flow, possibility of
lookup-tables for the search area reduction and parallelization).

CHAPTER 5. AUTOMATIC INTEGRATION TIME ESTIMATION 41

5
Automatic

Integration Time
Estimation

T ime-of-Flight (ToF) data denoising has always been an important discipline since
the initial development of this technique. Several methods have been estab-

lished during the last years. Algorithms for outlier removal and outlier correction
have been developed to improve acquisition quality of noisy data. Denoising and
optimization can be applied at different stages: at image acquisition level and/or dur-
ing data processing. Previous works have shown that combining both optimization
stages gives the best result [LKS+13][LNL+13]. This chapter presents a new approach
to automatically determine the best integration time (where the noise is lowest) for
arbitrary scenes using the knowledge of underlying inherent sensor behavior and
properties. The approach benefits from a detailed sensor data analysis and integrates
this knowledge into a novel algorithm that is more flexible and stable than a propor-
tional feedback control system ([MWSP06]) especially in unknown, arbitrary scenes.
While prior work [MWSP06][GPT10] concentrates on a global optimization of inten-
sities or amplitudes, this approach focuses on a per-pixel based improvement. The
results compared to previous approaches in regard of adaption performance and thus
in reduction of the mean error over time are significantly improved. For evaluation,
the PMD CamCube 3.0 has been used. However, the findings are applicable for
other sensors as well since different ToF sensors depict a similar behavior [LHL12].
The PMD working principle can be found in Sec. 2.1. This approach comprises the
following contributions:

• A per-pixel online auto integration time estimation algorithm

• An extensive sensor behavior analysis

• A ToF evaluation scheme based on real physical data for data evaluation

Publication: Online Improvement of ToF Camera Accuracy by Automatic Integration Time
Adaption [HBK15]

42 CHAPTER 5. AUTOMATIC INTEGRATION TIME ESTIMATION

5.1 Related Work

In this section important existing work related to ToF error sources, noise reduction
and automatic integration time estimation will be discussed.
The measurement quality of ToF cameras is influenced by several factors. Foix et al.
[FAT11] have shown different systematic errors such as depth distortion (wiggling
error), pixel-, amplitude-, temperature- and also integration time related errors. In
[LNL+13], several methods are discussed on how ToF noise can be reduced. They
give an overview on how errors and noise occurs and state that a longer integration
time causes a higher amplitude due to more incident light and in this case to e.g.
oversaturation. This enhances the Signal-to-Noise Ratio and the depth variance. Sev-
eral other works concentrate on the performance and measurement uncertainty of
ToF sensors [LHL12], [EHK14].
Noise is an unavoidable source of measurement uncertainty. Its reduction has been
studied very well during the last years. Several techniques have been established
mainly concentrating on denoising in a post processing step. Methods for detect-
ing and repairing defective areas have been developed and presented. Those ap-
proaches work either on raw data or on the final amplitude, intensity or depth image
([LKS+13],[JPP07], [EOHM10], [JSHWY14]).
While most of the works for data denoising concentrate on post processing, data im-
provement can also be achieved by optimizing the integration time as proper satura-
tion yields a high Signal-to-Noise Ratio and thus reduces noise. May et al. [MWSP06]
present an approach for dynamic integration time estimation by approximating an
overall mean intensity using a proportional controller. Gil et al. [GPT10] propose an
automatic integration time adaption approach for visual servoing of mobile robots
by approximating a mean amplitude. This is related to [MWSP06], but optimized for
robots.

5.2 PMD Sensor Analysis

The main goal of this approach is the reduction of the overall error due to inappropri-
ate integration times in arbitrary scenes. As previous work has shown (see Sec. 5.1),
this can be achieved by preventing or at least by minimizing under- and oversatura-
tion to increase the number of usable data points. To get a better understanding on
how amplitudes, intensities and the distance error correlate with each other, an initial
PMD sensor analysis is necessary. For this purpose eight metal plates with differ-
ent colors and reflectivities are used: black, metallic, blue, green, red, silver, yellow
and white. These plates are fixed on a planar wall at a distance of approximately 1
meter and are recorded with a distance and intensity calibrated PMD camera with
an integration time range between 50 and 8000 µs with a step size of 1 µs. These
measurements are used for the sensor data evaluation in the next sections. The polar
ground-truth for the error analysis has been calculated per pixel, using the median

5.2. PMD SENSOR ANALYSIS 43

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

6500

7000

7500

8000

8500

9000

9500

0

50

100

150

200

0

50

100

150

200

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.1: The left image shows an intensity image from the test scenario (see Sec. 5.2).
Two dark blue circular spots in the center have been invalidated due to very high
oversaturation, caused by a total reflection. The right image shows a weight map
with values of a Gaussian distribution that is used to weight pixels in the algorithm
(see Sec. 5.3.1). [HBK15]

of various hundred measurements with different integration times while omitting
under- and oversaturated values, and a final 2D median filtering step. Using a refer-
ence plane fitted to temporally averaged Cartesian distance data yielded very similar
results.

5.2.1 Spatial Intensity Distribution

Pixels near the image border yield a much lower intensity and amplitude, even when
the measured distance is approximately the same (see Fig. 5.1). Such areas are much
harder to properly saturate. Often very high integration times are needed. But
choosing such high integration times causes an oversaturation in the image center
while properly saturating the image borders. If all pixels are weighted equally when
estimating the optimal integration time, the integration time will be optimized to what
most pixels need to be properly saturated. Since most pixels reside outside the image
center, the calculation will yield an integration time that optimizes the image borders
and oversaturates the image center. If oversaturation causes a growth in error to
the same degree as non-optimal saturation, then optimizing areas where most pixels
reside, namely image borders, will actually reduce the overall error. However, if a
system detects and excludes oversaturated values, such an approach will reduce the
number of valid points. Also, the image center often captures more important objects
than the image borders and should thus be regarded as more important.
As a result, a weight map has been incooperated into the approach (see Sec. 5.3.1).
This allows to weight each pixel according to its importance. As Fig. 5.1 shows, a
Gaussian value distribution has been used for the weight map, normalized between
0 and 1.

44 CHAPTER 5. AUTOMATIC INTEGRATION TIME ESTIMATION

5.2.2 Intensity and Amplitude Behavior

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Integration time in us

In
te

n
s
it
y
 a

n
d
 c

o
rr

e
s
p
o
n
d
in

g
 l
in

e
a
r

fi
tt
in

g

blue
blue fitted line
yellow
yellow fitted line

green
green fitted line
metallic
metallic fitted line

red
red fitted line
black
black fitted line
silver

silver fitted line
white
white fitted line

ambiguity threshold

Measurement

Figure 5.2: Intensity to integration time and corresponding lines fitted to the in-
tensity’s linear behavior. Values above the ambiguity threshold (brown line) are
considered ambiguous. [HBK15]

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Integration time in us

A
m

p
lit

u
d
e
 a

n
d
 c

o
rr

e
s
p
o
n
d
in

g
 l
in

e
a
r

fi
tt
in

g

blue
blue fitted line
yellow
yellow fitted line

green
green fitted line
metallic
metallic fitted line

red
red fitted line
black
black fitted line
silver

silver fitted line
white
white fitted line
ambiguity border

Measurement

Figure 5.3: Amplitude to integration time and corresponding lines fitted to the ampli-
tude’s approximately linear behavior. Values above the ambiguity threshold (brown
line) are considered ambiguous. [HBK15]

Fig. 5.2 shows the intensity as function of the integration time and linear fits to
the intensity-curves based on their initial linear behavior. When oversaturation oc-
curs (starting with values around 10000), the intensity starts deviating from its linear
behavior (dashed lines) and reduces its gradient, which in some cases (e.g. white
or silver) becomes even negative. Areas where the intensity function is not strictly
increasing are considered ambiguous, as they cannot be mapped back to a distinct
integration time, and reside above the ambiguity threshold (brown line). Also note

5.2. PMD SENSOR ANALYSIS 45

the black measurement’s extremely low reflectivity.
Fig. 5.3 shows the amplitude as function of the integration time and, as with the in-
tensity functions, linear fits to the curves based on their initial linear behavior. It can
be seen that with an increasing integration time, the amplitude values reach a peak
and then decrease in value. Compared to the intensity, the amplitude has a much
larger area of ambiguity. Also, the amplitude behaves less linearly than the intensity
as its gradient becomes a bit larger before the values reach the peak.
In both figures, the effects of oversaturation can be seen as deviation from linear
behavior. This has also been observed by May et al. for the Swiss Ranger SR-2 ToF
camera and denoted as "oversaturation gap" [MWSP06, p.3].
As already explained, values above the ambiguity threshold cannot be mapped back
to a distinct integration time. This essentially means that, from their value alone, they
cannot be distinguished between being slightly or strongly oversaturated.
Overall the intensity shows to be much less susceptible to ambiguous behavior com-
pared to the amplitude. Also, its linear behavior is much more consistent.

5.2.3 Amplitude-Error Correlation

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Amplitude

E
rr

o
r

in
 m

blue

yellow

green

metallic

red

black

silver

white
ambiguity
border

Measurement

Figure 5.4: Error to amplitude. Amplitude values on the right of the ambiguity
threshold (brown line) can have both small and very large errors, but cannot be
differentiated due to the ambiguous behavior explained in Sec. 5.2.2 and Fig. 5.3.
[HBK15]

In the effort to improve quality by automatic integration time estimation, the error
behavior in regard to the integration time and resultant intensity and amplitude has
to be analyzed.

Fig. 5.4 shows the correlation between the average error and the amplitude. Am-
plitude values above 18000 can have both small and very large errors, but cannot
be differentiated due to the ambiguous behavior explained in Sec. 5.2.2 and Fig. 5.3.
However, it can be seen that for unambiguous amplitude values, the error is smallest
between 10000 and 18000. This is true for all measurements, even black.
May et al. show that the "most precise mean accuracy could be acquired with an

46 CHAPTER 5. AUTOMATIC INTEGRATION TIME ESTIMATION

integration time located near the amplitudes maxima" [MWSP06, p.3]. This is true for
both their Swiss Ranger SR-2 and the used PMD CamCube 3.0, however, as already
shown in Fig. 5.3 and Fig. 5.4, values near the maxima are ambiguous and thus cannot
be used. May et al. also omit these values but attribute this to the fact "that the image
has a non-neglective saturation at the amplitudes maximum" [MWSP06, p.4].
Choosing an amplitude a bit too low only causes the error to rise slightly while choos-
ing an amplitude too large causes values to exceed 18000. Such values cannot be
differentiated between being only slightly or strongly oversaturated (see Fig. 5.4) and
may carry large errors.
It can be argued that every value in-between is a viable candidate for the optimal
amplitude. E.g., if omitting a substantial portion of the image due to oversaturation
in order to optimize the remaining values is conceivable, choosing a value close to
18000 is adequate. However, if preventing oversaturation is the main goal, a value
close to 10000 is better suited for this task.

5.2.4 Amplitude-Intensity Mapping

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

Amplitude

In
te

n
s
it
y

blue

yellow

green

metallic

red

black

silver

white

fitted line
ambiguity
border

Measurement

Figure 5.5: Intensity to amplitude. In non-oversaturated areas, the intensity and
amplitude are directly proportional to one another. The orange line represents the
mapping function between amplitude and intensity values. Values to the right of the
ambiguity threshold (brown line) are considered ambiguous (see Fig. 5.3). [HBK15]

Fig. 5.5 shows the correlation between the intensity and the amplitude. It can be
seen that there is a linear relationship between the amplitude and the intensity, as long
as values stay within ranges outside of oversaturation (amplitude ≤ 18000). By fitting
a line (orange) for amplitude values below 18000 (values above cannot be mapped
by a function as they are ambiguous; see Fig. 5.3), a mapping between the amplitude
and intensity is established. The black measurement exhibits a unique behavior that
distinguishes it from the other colors. This stems from its unique intensity behavior
that was already observed in Fig. 5.2. Since this behavior is an exception and cannot be
easily compensated, the black measurement is not applicable for amplitude-intensity
matching and thus omitted from the fitting process.

5.3. THE PROPOSED METHOD 47

5.2.5 Intensity Correction

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2

4

6

8

10
x 10

4

Measured intensity

C
o

rr
e

c
t

in
te

n
s
it
y

blue

yellow

green
metallic

red

black

silver
white
fitted
polynomial
ambiguity
border

Measurement

Figure 5.6: Measured intensity to correct (linearized) intensity. The orange line
represents the correction polynomial for intensity values. [HBK15]

The correct intensity is defined as the value an intensity would have reached if
the oversaturation did not have any effects regarding the linear behavior. Fig. 5.6
shows the correlation between the measured and the correct intensity. The correct
intensity is derived from the intensity and its corresponding line that has been fitted to
non-oversaturated values (see Fig. 5.2). The difference in values shows the enormous
discrepancy between oversaturated measurements and what their values would have
been if they had not been oversaturated.
To compensate for this discrepancy, a 3rd-degree polynomial is fit to the data left of the
ambiguity threshold (see Fig. 5.6) but only for values above 10000 (see Equation 5.3).
This polynomial serves as correction function that allows to approximate an intensity’s
actual value in case of oversaturation.

5.3 The Proposed Method

Optimizing a ToF camera’s integration time for the current scene is an important
aspect of reducing sensor errors from both under- and oversaturation. Fig. 5.7 shows
how the appropriate choice of integration time significantly reduces noise-related
errors in a scene.
In this section an approach is presented that chooses the optimal integration time for
a ToF camera. It uses the knowledge of sensor specific characteristics and works on
arbitrary scenes, which can contain randomly placed objects with different reflectivi-
ties.

5.3.1 Algorithm
The basic idea of the proposed algorithm is to calculate the optimal integration time
for the next frame on a per-pixel basis (expecting that the best possible integration

48 CHAPTER 5. AUTOMATIC INTEGRATION TIME ESTIMATION

0

1

2

3

4

5

6

7

Figure 5.7: The figure shows two different measurements of the same office scene in
jet color encoding. The left image uses a low integration time of 50 µs while the right
image uses a better fitting integration time of 2000 µs). [HBK15]

ToF-
Camera

Initial
Integration Time Correct Pixel

Intensity

Calculate pixel
proportional

factor

Calculate overall
factor

Calculate next
integration time

Figure 5.8: The principle schema of the integration time estimation algorithm.
[HBK15]

time for the pixel should be achieved) instead of averaging the whole image as
prior work does. To accomplish this, the knowledge about specific sensor behavior
regarding intensity, amplitude and distance error has been used. The algorithm
schema can be found in Fig. 5.8.

Having a look at Fig. 5.2 and Fig. 5.3 it can be seen that neither the intensity
nor the amplitude behave linear. The intensity shows to be much less susceptible to
ambiguous behavior compared to the amplitude. Also, its linear behavior is much
more consistent (see Sec. 5.2.2). Considering this and the deviation from the linear
behavior (which can also be described as degree of oversaturation) brings up the
main idea of the algorithm. The complex intensity behavior (nonlinear) is mapped
to a linear function, which makes it ideal for approximating a desired intensity by
estimating a proportional factor (see Sec. 5.2.5).

The amplitude has a direct correlation with the distance error (see Sec. 5.2.3),
but only intensities can reliably be approximated not amplitudes. However, there

5.3. THE PROPOSED METHOD 49

is a linear correlation between the amplitude and intensity (see Sec. 5.2.4). So, by
defining an ideal amplitude, correlating with the smallest error, an ideal intensity can
be derived that is to be approximated.
With this knowledge, the optimal integration time (the integration time at which the
error is lowest) topt per-pixel can be calculated in the following manner:

• Perform evaluation and preprocessing steps (optimal amplitude estimation,
estimate amplitude/intensity mapping and the intensity linearization function)

• Perform the online integration time estimation

Evaluation and Preprocessing Steps

1. Determine the optimal amplitude Aopt, i.e. the amplitude where the error is the
lowest. This is explained in detail in Sec. 5.2.3.

2. Determine the optimal intensity Iopt that corresponds to the optimal amplitude
Aopt using the linear amplitude-intensity mapping

m(x) =

1∑
i=0

aixi (5.1)

Iopt = m(Aopt) (5.2)

a linear function fit to amplitude and intensity data (see Sec. 5.2.4).

3. Determine the intensity correction function

h(x) =

3∑
i=0

aixi (5.3)

a polynomial of 3rd degree, fit to the intensity’s measured and correct values.
The extraction of correct intensity values and its connection to measured ones
is explained in detail in Sec. 5.2.5.

Online Integration Time Estimation

Having determined Iopt, m and h during the preprocessing steps, the optimal
integration time topt per-pixel can be calculated:

1. Calculate the corrected intensity from the current intensity, using the intensity-
correction function:

Icorr,x,y = h(Icurr,x,y) (5.4)

50 CHAPTER 5. AUTOMATIC INTEGRATION TIME ESTIMATION

2. Calculate the proportional factor:

fx,y =
Iopt

Icorr,x,y
(5.5)

3. Calculate the optimal integration time:

topt,x,y = fx,y · tcurr (5.6)

This yields an individual optimal integration time for each pixel. Now an overall
optimal integration time for the whole image can be calculated. For this task a
weight map is used, incorporating a compensation for sensor-specific behavior and
regarding pixels near the image center as more important than near image borders
(see Sec. 5.2.1). The weight map based calculation of the optimal integration time for
the whole image is done in the following manner:

1. Calculate the pixel weight from the weight map and a pixel based gain factor:

w′x,y = wx,y · gx,y (5.7)

2. Calculate the optimal integration time for the whole image as a weighted average
of the pixel specific optimal integration times:

topt =

∑
w
′

x,y · topt,x,y∑
w′x,y

(5.8)

Compared to prior work on integration time estimation, the proposed algorithm
has several advantages. It estimates the integration time on a per-pixel basis. This
enables one to use only portions of the image or even apply per-pixel weighting,
counteracting sensor properties and allowing to adjust importance of certain image
regions (see Sec. 5.2.1). Additionally, it uses knowledge gained from an extensive
analysis of the underlying inherent sensor behavior regarding intensity, amplitude
and distance error. This knowledge is used to minimize the overall error and to
prevent oversaturation or at least escape from it quickly. This works well in presence
of highly various reflectivities and quick changes in the scene.

5.4 Algorithm Evaluation

The previous sections have presented the new algorithm (see Sec. 5.3.1) and depicted
an extensive analysis of the underlying inherent sensor behavior (see Sec. 5.2). This
section compares the approach to the work proposed by May et al. [MWSP06] and
details differences in quality, quantity and adaption speed. For further evaluation
purposes, the parameters estimated in Sec. 5.2 are used. These parameters can be
found in Table 5.1.

5.4. ALGORITHM EVALUATION 51

Parameter Value(s)
Optimal amplitude (Aopt) 18000
Optimal intensity (Iopt) 7353
Amplitude-intensity-mapping function (m(x))0.6067281 -3475.016

6000 ≤ x ≤ 18000
Intensity-correction function (h(x)) 2.2026e-10 4.417871e-05

0.4276858 1100.069
10000 ≤ x ≤ 25000

Gain factor for all pixels 1.11

Table 5.1: The table shows the estimated sensor and correction parameters. [HBK15]

5.4.1 Evaluation Method
Two kinds of evaluation are performed. In the first measurement, a static scene with
metal plates of different colors/reflectivities (black, metallic, blue, green, red, silver,
yellow and white) in a distance of approximately 1 m (see Sec. 5.4.2) is used. However,
since the results have been very similar for all plates, the plots for the red plate are
presented exemplarily. In the second measurement, an arbitrary office scene with the
camera orientation changing in-between every frame by about 15° around the x-, y-
and/or z-axis, representing a highly dynamic scene scenario (see Sec. 5.4.3) has been
recorded.
For both scenes, each frame has been recorded with the full spectrum of integration
times, ranging from 50 to 8000 µs. This allows one to use a scene for reproducible
tests with different and differently parametrized auto integration time estimation
approaches. The evaluation scheme chooses the integration time for the next frame
according to the optimal integration time calculated in the previous frame. To achieve
a fair and meaningful comparison, the simulation has been performed with various
initial integration times.

5.4.2 Static Metal Plate Scene Evaluation

Fig. 5.9 compares the approach of May et al. (left column) to the new algorithm
(right column). The static scene has been recorded for 20 frames. Five different
initial integration times have been used, covering strong under- and oversaturation
as well as average saturations. The development of the integration times, the mean
error to the ground-truth (see Sec. 5.2) and also the number of well saturated values
(amplitude values between 250 and 18000) in the image is compared over the course of
the algorithm. It can be seen that May’s algorithm slowly converges to the optimum
after about 8 frames while this approach is already close to the optimum after 3
frames. Additionally it can be seen, that the new algorithm has a smaller mean error
(0.013 m) compared to May et al. (0.027 m). Also the number of well saturated pixels
is higher for the proposed algorithm (19000) compared to May et al. (17000).

52 CHAPTER 5. AUTOMATIC INTEGRATION TIME ESTIMATION

The approach’s fast adaption to the proper integration time, especially in areas of
oversaturation (the first 3 frames) and the resultant lower error can be attributed
to the fact that the intensity values are corrected before calculating the proportional
factors.

0 5 10 15 20
0

2000

4000

6000

8000

Frame index

In
te

g
ra

ti
o
n

 t
im

e
 i
n

 u
s

100

1000

2500

5000

8000

Initial integration time in us

0 5 10 15 20
0

2000

4000

6000

8000

Frame index
In

te
g

ra
ti
o
n

 t
im

e
 i
n

 u
s

100

1000

2500

5000

8000

Initial integration time in us

0 5 10 15 20
0

0.05

0.1

Frame index

M
e

a
n

 e
rr

o
r

fr
o

m

G
ro

u
n

d
 T

ru
th

 i
n

 m

Mean error

10 frames

100

1000

2500

5000

8000

Initial integration time in us

0 5 10 15 20
0

0.05

0.1

Frame index

M
e

a
n

 e
rr

o
r

fr
o

m

G
ro

u
n

d
 T

ru
th

 i
n

 m

Mean error

10 frames

100

1000

2500

5000

8000

Initial integration time in us

0 5 10 15 20
0

1

2

3

4

x 10
4

Frame index

W
e
ll

s
a
tu

ra
te

d
 v

a
lu

e
s

Mean well
saturated pixels

100

1000

2500

5000

8000

Initial integration time in us

0 5 10 15 20
0

1

2

3

4

x 10
4

Frame index

W
e
ll

s
a
tu

ra
te

d
 v

a
lu

e
s

Mean well
saturated pixels

100

1000

2500

5000

8000

Initial integration time in us

Figure 5.9: Comparison between the approach of May et al. (left column) and the new
approach (right column). A static scene capturing a red metal plate from a distance
of 1 m is recorded for 20 frames. The integration time (top), the mean error (center)
and the number of well saturated pixels (bottom) are compared. [HBK15]

5.4.3 Dynamic Scene Evaluation
Fig. 5.10 compares the approach of May et al. (left column) to the new algorithm (right
column) in the highly dynamic office scene over the course of 35 frames and with 5
different initial integration times. The novel approach converges within 8 frames to
the global optimal integration time, while the algorithm of May et al. needs up to
20 frames. However, the mean error is approximately the same for both approaches
(0.047 m). The number of well saturated pixels is higher for the new algorithm (35700)
compared to May et al. (33500).
This shows several things. As explained in Sec. 5.2.1, if oversaturation causes a
growth in error to the same degree as non-optimal saturation, then optimizing areas

5.5. SUMMARY 53

where most pixels reside, namely image borders, will actually reduce the overall
error. Also, just because amplitudes reach beyond the ambiguity threshold, they are
not necessarily oversaturated and thus carry only small errors.
Overall this new approach shows a faster adaptability, especially in oversaturated
scenes, which can, like with the static scene, be attributed to the intensity correction.

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

Frame index

In
te

g
ra

ti
o

n
 t

im
e

 i
n

 u
s

100

1000

2500

5000

8000

Initial integration time in us

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

Frame index
In

te
g

ra
ti
o

n
 t

im
e

 i
n

 u
s

100

1000

2500

5000

8000

Initial integration time in us

0 5 10 15 20 25 30 35
0

0.05

0.1

Frame index

M
e

a
n

 e
rr

o
r

fr
o

m

G
ro

u
n

d
 T

ru
th

 i
n

 m

Mean error

35 frames

100

1000

2500

5000

8000

Initial integration time in us

0 5 10 15 20 25 30 35
0

0.05

0.1

Frame index

M
e

a
n

 e
rr

o
r

fr
o

m

G
ro

u
n

d
 T

ru
th

 i
n

 m

Mean error

35 frames

100

1000

2500

5000

8000

Initial integration time in us

0 5 10 15 20 25 30 35
0

1

2

3

4

x 10
4

Frame index

W
e
ll

s
a
tu

ra
te

d
 v

a
lu

e
s

Mean well
saturated pixels

100

1000

2500

5000

8000

Initial integration time in us

0 5 10 15 20 25 30 35
0

1

2

3

4

x 10
4

Frame index

W
e
ll

s
a
tu

ra
te

d
 v

a
lu

e
s

Mean well
saturated pixels

100

1000

2500

5000

8000

Initial integration time in us

Figure 5.10: Comparison between the approach of May et al. (left column) and the
new approach (right column). A highly dynamic office scene is recorded for 35 frames.
The integration time (top), the mean error (center) and the number of well saturated
pixels (bottom) are compared. [HBK15]

5.5 Summary

This chapter presented a novel online integration time adaption algorithm that works
on a per-pixel basis and uses knowledge gained from an extensive analysis of the
underlying inherent sensor behavior regarding intensity, amplitude and distance error
to reduce the overall error, to prevent oversaturation and to minimize the adaption
time. It also works well in presence of various reflectivities and quick changes in the
scene. The per-pixel character enables one to use only portions of the image or even
apply pixel-specific weighting, counteracting sensor properties (e.g. spatial intensity

54 CHAPTER 5. AUTOMATIC INTEGRATION TIME ESTIMATION

distribution) and allowing to adjust importance of certain image regions. Overall,
this represents a significant improvement over previous methods. Furthermore an
evaluation scheme has been introduced that allows to perform reproducible and
comparable tests with different and differently parametrized auto integration time
estimation approaches.
Future work will concentrate on applying and optimizing this method to other ToF
sensors.

CHAPTER 6. 3D CAR RECONSTRUCTION –
AN INDUSTRIAL APPLICATION 55

6
3D Car

Reconstruction –

An Industrial Application

T he global development regarding new vehicle registrations clearly shows an
increasing demand towards the automotive service infrastructure. In parallel,

economic issues put more and more pressure onto producers of electromechanical
engineering systems to offer sustainable and efficient systems. This trend can for
example be seen in the final report of the Automechanika, Frankfurt 2012 [Fra16].
Thus, to be able to persist in the market of car wash systems, appropriate technical
innovations are required in order to improve on effectivity, i.e. the quality of the
washing result, efficiency, i.e. the amount of employed energy, water, detergent and
time, as well as safety, i.e. prevention of damages to the car and/or the washing system
(e.g. due to car superstructures).

Current car wash systems are generally controlled by light barriers and power
measurement sensors. The horizontal fixtures and fittings are controlled by the usage
of sensors. These sensors are all directly placed on the movable parts of the system,
e.g. the height control of the roof brush and the dryer are realized with light barriers.
In contrast to the horizontal brushes, the position of the vertical brushes is regulated
with the contact pressure by monitoring the current consumption of the brush unit.
A higher contact pressure implies a higher current consumption of the brush unit.
Actual values lower than the nominal value move the brush towards the vehicle.
Crossing the nominal value moves the brush away from it, thus implementing an
inertial regulating system. This approach is not optimal in many ways. For example,
geometric variations in the car profile can not properly be reflected by a single brush
pressure force, resulting in either imperfect cleaning results or increased risks of
damages [AG16].

To achieve improvements in terms of effectivity, efficiency and safety, this section
proposes a concept for an automatic, contactless online 3D measurement of vehicles.
Knowing the car’s shape in advance allows for a "global" optimization of the wash
process. The approach utilizes ToF cameras for online optical distance measurement.
Compared to other industrial suited range sensing systems like laser-scanners, ToF
cameras provide fully lateral 3D information at high frame rates, additional grayscale

56
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

information and full eye safety. Furthermore, cheap industrial cameras, that can
handle the difficult environment conditions (water and detergent), are still under
development. [IFM16]

The technological and scientific challenges are in the scope of the camera setup
and data processing to fulfill the required accuracy of at least 5 to 10 cm and also to
process the data in real time.

This work focuses on the calibration process and the extensive data preprocessing
required due to reflections (diffuse, specular) and environmental influences (light,
wetness, temperature). Furthermore, a prototype 3D reconstruction system, that can
be used in a car wash system, is proposed and prepared.

Publication: ToF Camera Based 3D Point Cloud Reconstruction of a Car [HLK13b]

6.1 System Overview

The acquisition system is composed of three electronically synchronized ToF cameras
(PMD camcube 3.0), all mounted on an arch (see Fig. 6.1). Each camera observes
different parts of the passing car (left, right and top) and provides images at a rate
of 20 frames per second with a resolution of 200×200 pixels (exposure time between
2 ms and 10 ms).

Figure 6.1: Hardware set-up of the current prototype. Left, top and right: mounted
PMD cameras. Top: additional RGB camera mounted for the extrinsic calibration.
[HLK13b]

Note that an additional RGB camera was fixed to the top mounted PMDtop camera

6.2. CONTRIBUTION 57

for the extrinsic calibration process. Further information can be found in section
Sec. 2.1.2.1.

The ToF data processing concept comprises several steps (see also Fig. 6.2):

1. Acquisition from three synchronized ToF cameras.

2. Data Preprocessing, i.e. optimization and segmentation of the ToF data.

3. Fusion of the three point clouds.

4. Registration of the acquired image sequences.

5. Accumulation of the registered point data to the accumulated data from prior
frames.

6. Reconstruction of the final point cloud.

The data processing modules are mainly implemented using CUDA to fulfil the
above stated performance requirements.

6.2 Contribution

The contribution of this work is twofold. On the system level, a novel approach for
online acquisition and reconstruction of the outer vehicle hull is presented. The key
features of the system are the integration of three active range sensing ToF cameras
based on the Photonic Mixing Principle (PMD) [PMD16], an appropriate preprocessing
of the sensor data, registration, data fusion and geometry extraction (Fig. 6.2). All
data processing is done on GPUs in order to achieve a fast reconstruction.

On the technical level, this work presents the following contributions, which are
mainly due to the specific data characteristics present in the application scenario:

• a data preprocessing concept, including handling of interferences caused by the
multiple concurrent ToF measurements (see Sec. 6.5.1),

• robust outlier detection and segmentation in the raw range images in the pres-
ence of a comparably high noise level and strongly varying reflectivities (see
Sec. 6.5.1.2 and Sec. 6.5.2),

• registration of low resolution data using a multiple ToF camera setup (see
Sec. 6.5.1),

• an analysis of PMD cameras in a multi camera setup with an industrial back-
ground (Sec. 6.6) and

• a full 3D data scan of moving objects (for example a car as presented here, see
Sec. 6.7).

58
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

Left Camera

Hardware-trigger
Top Camera

Right Camera

Distance correction
via calibration

Distance correction
via calibration

Distance correction
via calibration

Pre-processing
• Outliers
• Segmentation
• Smoothing

Pre-processing
• Outliers
• Segmentation
• Smoothing

Pre-processing
• Outliers
• Segmentation
• Smoothing

Spatial Merging

Extrinsic
calibration

Point Cloud
Accumulation

Figure 6.2: Data processing pipeline. [HLK13b]

6.3 Related Work

In this section, the prior work related to 3D reconstruction in general and specifically
to correspondence finding and registration is presented.

3D reconstruction of real world objects has been a well studied field of research
for more than two decades. Thus, many approaches are available to perform image
registration by handling multiple point sets and images. State of the art approaches
are divided in two kinds of image and point cloud-registration, using either a global
or local matching metric [Bes88, BM92, BSGL96].

Global matching metrics try to minimize the matching error over the whole data set.
This leads to a global optimal registration transformation for the new incoming data,
but in general it is slow. In contrast, the local matching metric tries to find an optimal
transformation just by comparing spatial data. If the starting point for the registration
is well known, the local matching can result in a good solution and is normally much
faster than a global metric. However, without a good starting position, it leads to
false matching and misalignment.

In this work, a local metric is used to perform the point cloud registration, with
the assumption of a small motion between two consecutive PMD frames.

Image registration methods have been studied for years [Bro92, ZF03]. The major-
ity of the methods are implemented using the four steps shown in [ZF03]: feature
detection, feature matching, transform model estimation and image resampling.

In literature, for image based feature detection, many different methods for detection,

6.4. SYSTEM CHALLENGES 59

description and matching of features are available. Well known and often used
detectors and descriptors are the Harris Corner Detector [HS88], Good features to
track [ST94], SIFT (Scale Invariant Feature Transform) [Low04b], SURF (Speeded-Up
Robust Features) [BETG08], BRIEF (Binary Robust Independent Elementary Features)
[CLSF10] and Optical Flow [HS81, LK81].

This work shows that these detectors are not working well for this situation due
to the missing corners and edges in the design of cars (see Sec. 6.7.1).

Object based registration methods, are usually based on point set merging. The
commonly used algorithm is the ICP introduced by Besl [BM92]. It formulates the
matching process as an iterative least square minimization problem by finding the
minimal error between all corresponding points of two point clouds (point-to-point
metric, see Sec. 2.3.1). Depending on the initialization, the algorithm converges to
good results in the local neighborhood. One of the biggest disadvantages is the brute
force finding of point correspondences. In Zhang [Zha94] the search was sped up by
the usage of a k-d tree.

A more efficient version of the ICP was introduced by Chen [CM92] using a
point-to-plane metric (see Sec. 2.3.2 and [Low04a]).

Under the assumption that the displacement and angle between the source and
destination surface is small, this ICP version converges much faster than the point-
to-point ICP [Low04a]. A more detailed description can be found in Sec. 6.5.3.3.

Based on these two kinds of ICP, many approaches to construct full point clouds
and 3D meshes are described in literature [RHHL02, CSC+10, Sim96]. [IKH+11]
and [NIH+11] proposed a very interesting version of the ICP (KinectFusion) using a
Microsoft Kinect camera [Mic16c].

This work focuses the point cloud registration on the algorithm published in
[IKH+11, NIH+11] and extends it by a preprocessing pipeline which can be found in
Sec. 6.5.1.

6.4 System Challenges

In the following sections an overview on hardware and application specific challenges
is given to set up a concept of an online 3D reconstruction system for the acquisition
of cars. A real, industrial system has different challenges compared to lab-systems,
which are designed to work under controlled environmental conditions. Many spe-
cific tasks have to be considered and restrictions are often not acceptable. E.g. the
assumption of a static background, equal lighting conditions or linear motion do not
hold in real situations. The next sections give an overview of special application
related challenges.

60
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

6.4.0.1 Car Materials

An important issue when measuring and reconstructing cars is the kind of materials
and surfaces that occur. Statistically, the white, silver and black paintings are the
preferred colors (especially metalloid and glossy effects) over the past years. This
leads to the problem of selecting proper exposure times for the ToF cameras, i.e.
dark/black cars need long exposure times in order to get sufficient signals, bright cars
need short exposure times in order to prevent oversaturation effects.

Additionally, other materials frequently used for cars are reflectors, commonly
used in car lights and glass. Reflectors reflect the ToF camera’s incoming active
infrared light, which may lead to oversaturation of this area. Glass, on the other
hand, is transparent to the infrared light, thus the camera sees the interior of the car
which leads to additional unwanted and noisy data.

As cars are made of the previously mentioned materials and coatings, it is nec-
essary to find an optimal integration time to get as much reliable data as possible.
(For this work an experimental determined integration time value of 2500µs has been
used; see also Chapter 5)1.

Another big problem is the design of cars. In general smooth surfaces are used to
model the geometry. However, state-of-the-art 2D intensity and color based image
registration algorithms like SIFT, SURF or Optical Flow rely on sufficient edges and
corners in order to detect features robustly. See also Sec. 6.5.1.1, Sec. 6.5.3 and Sec. 6.7.1.

6.4.0.2 Car Wash Environment

As the car moves under the camera arch, motion artifacts occur. Another big challenge
are the random environment conditions that occur in car wash systems. Beside spray
and detergent in the air, reflecting materials such as metal parts in the background,
ground grids on the floor or moving objects in the background are influencing the
sensor and cause additional noise or may confuse the system. These challenges are
solved by good segmentation and preprocessing as e.g. the motion compensation
(see Chapter 4, Sec. 6.5.1 and Sec. 6.5.2).

6.4.0.3 Performance

To be able to bring the system to market, beside the price, the performance of the
system is one of the most important points. It is not acceptable if the washing time is
extended. At least it should be equal or faster. So the main requirement is a real-time
system that provides the prepared data as fast as possible to the Programmable Logic
Controller (PLC).

1Note: The Automatic Integration Time Estimation Algorithm has been development as a require-
ment from the car reconstruction project afterwards.

6.5. DATA PROCESSING CONCEPT 61

6.5 Data Processing Concept

The goal of the data processing stage is to build a geometric representation of the
car by analyzing the data from the three ToF cameras. For this purpose, the basic
calibration methods are applied to each camera input frame to reduce systematic
errors (see Sec. 2.1.2). Afterwards, advanced preprocessing methods that further
improve the raw data are used (see Sec. 6.5.1).

The corrected and improved data is then segmented into relevant parts (the car)
and irrelevant parts (background); see Sec. 6.5.2. The relevant parts of the three input
data frames are then passed to the transformation step, where they are put into a
single coordinate system using the extrinsic data from the initial system calibration
(see Sec. 6.5.3). This representation of the three merged camera frames is then passed
to an accumulation step that transforms and merges all input data into the single
model of the car (see Sec. 6.5.4.2).

6.5.1 Preprocessing Stages

Preprocessing of ToF depth data is the basis for a successful registration and merging.
Related to the way how ToF cameras acquire their depth data (extraction of four phase
images), an initial motion compensation is required (see Sec. 6.5.1.1). Furthermore,
the depth data contains many outliers, mainly due to noise and so called flying pixels
(see Sec. 6.5.1.3). Flying pixels occur in inhomogeneous areas as for example in
edge jumps between foreground and background objects. The sensor area covers
more than one distance which results in a distance in between of them (see upper
part of Fig. 6.8). Lindner [LLK08] and Sabov [SK10] introduce approaches to reduce
these error pixels. Beside noise and inhomogeneities another issue is the interference
between the independent light sources of the individual cameras (See Fig. 6.3 and
Fig. 6.4). The here presented algorithms are sequentially applied in this order: Motion
Compensation, Median Filter, Gaussian Filter, Outlier Removal.

62
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

Figure 6.3: Left: single camera data acquisition (intensity image). Here saturation
is present in areas which directly reflect the light (white/light gray areas). Right:
acquisition of multiple cameras (intensity image). Overexposure is also visible in
areas on the left and right side. [HLK13b]

Figure 6.4: The two images show the depth data acquisition result of a single camera;
Left: distance data acquisition with only one active camera. Oversaturation is only
visible at the center. Right: distance data acquisition with multiple active cameras.
The oversaturation is also visible on the left and right side. The impact of the interfer-
ence in the distance measurements can be seen in the white holes in the right image.
[HLK13b]

6.5. DATA PROCESSING CONCEPT 63

6.5.1.1 Motion Artifacts and Compensation

As seen previously, the PMD technology works in the way that four subsequent
images are acquired. It leads to motion artifacts in dynamic scenes (induced by object
or camera movement). In this application the car is thus sampled four times, each
time at a different location due to its lateral motion.

60 px 58 px 56 px 54 px

Figure 6.5: The four phase images with marked movements of the car (about 6 pixels
between phase 1 and 4). Top: phase channels PA1 −PA4. Bottom: phase channels
PB1−PB4. [HLK13b]

Motion artifact correction was introduced by Lindner [LK09] using an Optical
Flow approach. It works according to the following principle: the algorithm tries to
track surface points (on a per pixel basis) between all the phase images of the PMD
image (see Fig. 6.5). This allows to determine the correct phase values used for the
distance calculation. A detailed explanation can be found in Chapter 4.

The PMD sensor measures two different raw images at the same time: a shifted
reference signal PAi and the inverted signal image PBi (Sec. 2.1.1). Internally these
two signals are subtracted and give the resulting phase image Pi (see Fig. 6.5).

The Anisotropic Huber-L1 Optical Flow (see [WTP+09]) is applied to the raw in-
tensity values (PAi + PBi) by estimating the flow between the reference phase image
P+

0 and the images P+
1 - P+

3 . The raw values are then resampled according to the calcu-
lated flow vectors and then processed by the standard PMD demodulation scheme.
The result can be seen in Fig. 6.6.

64
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

Figure 6.6: Left: motion artifacts of the moving car, e.g. at the mirror (intensity
image). Right: successful motion compensation. No more artifacts are visible at e.g.
the mirror (intensity image). [HLK13b]

6.5.1.2 Noise Reduction

An important and non-negligible problem is the noise of a PMD sensor. Beside the
Fixed Pattern Noise (FPN) [FAT11, HHE11], unreliable depth measurements occur
due to low (small SNR, undersaturation) or high amplitudes (oversaturation). The
rest of the noise is usually interpreted as white Gaussian noise [FB07].

Fixed Pattern Noise Fixed-pattern-noise [HHE11] is an offset (additive noise, bias)
and gain (multiplicative noise) error in the PMD pixel. The gain factor can be handled
by the wiggling correction [HHE11]. The additive noise can be removed using the
so-called black image unique for each chip. The black image is then subtracted from
each acquired PMD image.

Under- and Oversaturation Low and high amplitude values have an important
impact on the quality of the sensor measurements. Low amplitudes (i.e. undersat-
uration) are caused for various reasons. One reason is due to a low reflective Near
Infrared (NIR)-light area that is currently covered by a sensor pixel. As described
in Sec. 6.4.0.1 a low reflective material has a high absorption rate which leads to a
reduced amount of reflected light. Using an averaged integration time (to get the best
exposure for the whole scene), a low amplitude will be measured for those pixels.
The second reason is the light attenuation due to large distances between objects and
camera. Areas far away from the camera, or distances greater than the unambiguous
range of the PMD camera (see Sec. 2.1.1) result in low amplitudes. Due to the high
noise level of PMD pixels and the low amplitude values, the Signal-to-Noise Ratio is
very low. The counterpart is oversaturation. It leads to high amplitude values in these
areas. Here the raw values of the sensor are considered to identify overflow. Both can

6.5. DATA PROCESSING CONCEPT 65

basically identified using thresholding [Rap07]. Thus the measured distances from
low and high amplitude pixels are considered to be unreliable and can be removed
with this method:

Ox,y = Ax,y < θmin_amplitude OR Ax,y > θmax_amplitude (6.1)

where (x, y) is a pixel coordinate, Ox,y the outlier mask, Ax,y the measured am-
plitude, θmin_amplitude the adaptive minimal and θmax_amplitude the maximal allowed
amplitude for the given environment.

As described in the introduction of this section, even if different modulation
frequencies are used for all cameras (e.g. 19 MHz, 20 MHz, 21 MHz), interference
influences will be still present for a multiple ToF camera system. The result is an
oversaturation in all illuminated areas (see Fig. 6.3 and Fig. 6.4). These areas can
also be determined and segmented using the simple thresholding as described above.
An other method (Automatic Integration Time Estimation) to reduce under- and
oversaturation effects has been shown in Chapter 5.

6.5.1.3 Outlier Detection and Removal

Outliers Beside under- and oversaturated pixels, outliers are also related to noise,
moving objects in the scene, texture/material changes or flying pixels.

In many cases they can be detected and removed using neighboring pixel infor-
mation.

Median Another well working algorithm to remove outlier is the median filter. Like
the previously discussed algorithms it also takes the neighborhood into account. A
sliding window with a fixed size of e.g. 5 x 5 pixels is used to perform the filtering.

The median is a good way to eliminate outliers. It is robust towards single outliers
within the window area, due to the fact that the high and low values are moved
(sorted) to the start and end of the value sequence.

66
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

Figure 6.7: Left: no median filter applied. Right: same image as left with 5 x 5 median
filter applied. [HLK13b]

Outlier Removal Filter Another simple outlier removal method is a threshold based
method on a 3×3 neighborhood check. The binary outlier classification function foutlier
is defined as following:

foutlier (i) =

{
0 if

∣∣∣Di−Dx,y
∣∣∣ < θrange

1 else

D are distance values and θrange is the outlier threshold. A good, experimentally
determined threshold for this application is about 0.05 m.

Ox,y =

{
true if count(

∑8
i=1 foutlier (i)) > θneighbors

false else

Ox,y defines a possible outlier at position x, y while θneighbors defines the minimum
number of pixels similar to the currently evaluated pixel Dx,y. If the minimum number
of neighbors θneighbors (in this application θ >= 3) is reached, the current evaluated
pixel is marked as a valid pixel. Note that this approach also eliminates most of the
flying pixels (see Fig. 6.7 and Fig. 6.8).

6.5. DATA PROCESSING CONCEPT 67

Figure 6.8: Top: calibrated depth data of a simple box acquired from PMDtop-camera
(2D color jet map and associated 3D point cloud representation). Bottom: outlier
removal applied (outliers are marked black in the 2D image). [HLK13b]

The outlier removal is performed in a second step. After median and Gaussian
filtering, outliers such as flying pixels are still present. The distance thresholded
outlier filtering presented here removes these remaining points as can be seen in
Fig. 6.8.

Smoothing Due to the noise influence in the depth values, values around the center
pixel remain often unstable. Assuming that a single pixel is part of a surface, distance
changes in the neighborhood indicate edges. If the pixel cannot uniquely be assigned
to one of these edges, it should be corrected in a way that it is assignable to e.g. the
closest surface. This assumption makes spatial denoising necessary and has been
studied for decades: e.g. diffusion techniques [PM90], wavelet methods [RKN00]
or smoothing using Gaussian filters. Due to its simplicity compared to other filter
techniques, the Gaussian filter has become a standard in digital image processing for
smoothing and spatial denoising:

68
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

Gσ,ν
(
p,q

)
= exp

−
∥∥∥p−q

∥∥∥2

2σ2

Figure 6.9: Top: calibrated depth data from the PMDleft camera (2D color jet map
and associated 3D point cloud representation). Bottom: Gaussian Filter applied.
[HLK13b]

The experiments with PMD distance data have shown, that σ = 4 (spatial relation)
yield good filtering results in the case of noisy data, but has the negative effect of
blurring images strongly. This is especially a problem in the area of contours or
distance discontinuities. Tomasi et al. [TM98] introduced an edge-preserving filter
known as Bilateral Filter to counter this effect. But it could not improve the results in
this application.

6.5.2 Segmentation
In addition to preprocessing, segmentation takes an important role before performing
the full registration of the moving car. Because the background can vary over the day
and the camera alignment can differ between setups (e.g. open scenes where the
unambiguity range of the PMD camera is violated, see Sec. 2.1), a more dynamic
segmentation (than just a distance clamping) is strongly required. Since registration
works in a way that point correspondences of two subsequent images are taken

6.5. DATA PROCESSING CONCEPT 69

and aligned, it works quite well for a static scene where only cameras move. As
long as a moving object in the scene has to be tracked and registered, the standard
approach fails and causes misalignment to the object of interest. The reason for the
misalignment is the usage of correspondences in the static part of the images. To avoid
misalignement, a pre-segmenation of the image data into back- and foreground via
simple binary classification is required. This process is called background subtraction
and has been studied and used for several decades. Fig. 6.10 schematically shows the
main background subtraction principle.

Preprocessing
Background

Modelling
Foreground
Detection

Data
Validation

Delay

Background Subtraction

Foreground
Masks

Video
Frames

Figure 6.10: Schematic view of the standard background subtraction process.
[HLK13b]

These algorithms are generally divided into four steps. The Preprocessing (see
Sec. 6.5.1) allows to reduce noise in the data by modeling the fixed noise and applies
some smoothing filters. The second step is known as the learning phase and consists
of the extraction of a Background Model B(x, y). It must be robust against environmental
changes such as lighting and at the same time sensitive enough to discriminate from
the moving objects [CK05, McI00], thus a median background image (without the
object to extract) is calculated:

B(x, y) = med
(
It(x, y)

)
, with t = 0...n, n ∈N

The next step is the Foreground Detection. Using the background model and the
current image, a boolean mask St(x, y) can be defined using a simple image subtraction
operation:

St(x, y) =
∣∣∣It(x, y)−B(x, y)

∣∣∣ > θ
In most of the approaches, the thresholdθ is experimentally determined, according

to the requirements specified. The last step is the Data Validation. Most background
models neglect the relationship and influences between neighboring pixels. In this
step the detected foreground is validated and corrected by using a morphological
opening operation to eliminate single pixels.

This kind of thresholding can be easily applied to the intensity and distance data
of the PMD image. This additional knowledge is combined with a boolean operation
to receive a more stable boolean segmentation mask St(x, y):

70
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

St(x, y) = SI(x, y) AND SD(x, y)

with SI(x, y) as the intensity and SD(x, y) as the distance segmentation mask. St
contains valid foreground pixels only.

In a last step, a morphological closing is applied in combination with a contour
detection algorithm to close holes. The results can be seen in Fig. 6.11, especially in
the left image.

Figure 6.11: Left to right: segmented background image after applying the final
morphological closing; distance segmentation; intensity segmentation; combination
of distance and intensity segmentation. [HLK13b]

The presented algorithm works exactly in the way as shown in Fig. 6.10.

6.5.3 Registration

The registration process is the final part in the system after the correction and seg-
mentation of the data. As base algorithm, the KinectFusion ICP approach has been
chosen due to its working principle of e.g. a dense correspondence search (see also
Sec. 6.7.1 why a sparse method does not work in this case). Furthermore it assumes
small transformations between to consecutive frames and has real time capabilities.
For the registration process, it is assumed to have the same transformation for all
three cameras in the system. For this reason, the following three registration steps are
executed for one camera only (e.g. the left camera):

1. Normal estimation

2. Correspondence search

3. Registration using the ICP algorithm

The following sections will describe the important steps in detail.

6.5. DATA PROCESSING CONCEPT 71

6.5.3.1 Normal Estimation

It is the initial step of the correspondence search. A point normal represents the
surface orientation at the corresponding point. To calculate stable point normals
the neighborhood is taken into account. This can be done by simply using central
differences.

This kind of normal calculation is very fast and gives satisfying results concerning
the stability (see Fig. 6.12). However, at the cost of performance, the quality and sta-
bility can be improved by using more advanced surface normal estimation techniques
such as a principal component analysis.

Figure 6.12: A PMD intensity image on the left and its corresponding normal image
using central differences on the right. [HLK13b]

6.5.3.2 Correspondence search

It is the second step in the registration. In general, good correspondences give good
alignment results with the ICP algorithm. The algorithm presented here uses the
Point-To-Plane metric that can be seen in Fig. 2.7.

This part of the registration is normally the most time consuming step. The point-
to-plane metric can be implemented in real-time, assuming small motions between
two consecutive images, as shown by Izadi and Newcombe [IKH+11, NIH+11]. Here
the correspondence search is done using a 3D representation of the current accumu-
lated surface PM (containing all valid points at this time) and an image to register
PR. An additional step needs to be performed before the correspondence search can
be applied. The image points PR have to be transformed to an accumulated camera
position (based on previous registered valid transformation). Then the points of both
data sets (model and image) are projected onto a 2D image using the known camera
intrinsic parameters. Under the assumption of small movements only, possible point
correspondences are points at the same 2D-image location PM(x, y) and PR(x, y). To
reject invalid correspondences the following two conditions are defined:

72
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

1. Similar point normal

2. Similar distance

Therefore thresholds for the angle (θangle) and distance deviation (θdistance) are
defined. Experiments with the PMD cameras for this application have shown that an
angle of 20° and a distance of 0.2m as deviation give good results.

6.5.3.3 The ICP

The Iterative Closest Point is an often used and well studied algorithm. Over the
last two decades it became the preferred algorithm to merge point clouds. Using
the method proposed by [IKH+11, NIH+11], it is possible to implement the point-to-
plane metric using CUDA. The big advantage is that this method does not require
any special data structure, thanks to the simple projection to a 2D image. This kind
of data can easily be represented as linear or 2D-memory on the GPU and makes
real-time processing possible.

The algorithm is formulated as a common least square minimization problem:

Mopt = argmin
M

∑
i

‖ (M · si−di)•ni‖
2

 (6.2)

where M is the current transformation matrix composed of the translation vector
T
(
tx, ty, tz

)
and a rotation matrix R

(
α,β,γ

)
; Mopt the optimal transformation matrix, si

a source point, di a destination point and ni the unit normal vector.
The equation system is solved by an iterative linear approximation. Except for the

final Cholesky decomposition of the reduced equation system (6×6 linear system),
all the calculations are done in parallel on the GPU as described in [IKH+11]. The
algorithm initializes the transformation M with the identity matrix, which means that
the first processed frame is the starting point. All transformations are then relative to
this. The absolute transformation for the current frame Ft=n is an accumulation of the
single, small transformations between the frames Ft=0 to Ft=n−1.

What has be shown here is, that the point-to-plane metric ICP is able to robustly
register 3D image data from low resolution (200×200 pixel) PMD images. With a
suitable preprocessing step, the depth data from the PMDleft and PMDright cameras
contain enough reliable information of the car’s surfaces to allow robust alignment
of consecutive images.

6.5.4 Model Integration and Accumulation
After successful registration, the data has to be integrated into a model. The model
PM contains all the available point data from frame Ft=0 till Ft=n (n = current frame).
Therefore the current frame data PD has to be integrated into the model. Two different
approaches for the final point cloud are available:

6.5. DATA PROCESSING CONCEPT 73

1. Using the volumetric representation of KinectFusion provided by [IKH+11,
NIH+11].

2. Integrating the point clouds into an independent point cloud representation of
all three cameras.

6.5.4.1 KinectFusion: The volumetric representation and integration

In this approach the method presented by [IKH+11, NIH+11] has been used. They
use a volumetric representation, that appears as a 3D voxel grid data structure. The
points are registered in the grid using a Truncated Signed Distance Function (TSDF)
[IKH+11, NIH+11, CL96]. This makes it possible to encode the uncertainty of ToF data
directly in the 5123 voxel volume. It is a continuous and iterative updating process
which averages measured distances to the assumed smooth surface. Referring to the
ICP, it allows to have a realistic, smooth model PM for the point and normal extraction
of the next iteration step.

The implementation shows that this approach does not only work for high-
resolution depth map cameras (640× 480 resolution for the Kinect camera) as pre-
sented by Izadi and Newcombe [IKH+11, NIH+11], but also for the low-resolution
data of PMD cameras (see Fig. 6.13).

Figure 6.13: Left: segmented intensity image of the car provided by the PMDright
camera and filtered of outliers. Right: the corresponding volumetric representation.
[HLK13b]

6.5.4.2 Integration of All Cameras and Accumulation

In general, the presented image based ICP, in combination with a voxel grid, is a per-
formant but high memory (512MB) consuming algorithm. Applying the ICP for the
three separate PMD cameras would be a big overhead in performance and memory
consumption. For that reason, only one camera information is used to retrieve the

74
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

registered transformation instead of using three separate ICPs. Furhtermore using the
information of the three PMD cameras would make the image based correspondence
search impossible.
Experiments show that only the left or right camera is usable for the registration. This
is due to the top camera providing too little information of the car’s surface which
leads to false correspondences (planar regions). The whole data is then merged using
the transformation of the ICP presented here and the known extrinsic transformation
from the calibration process. These transformations are applied to the three prepro-
cessed point clouds (left-, top- and right-PMD-camera). Integrating frame after frame
leads to a fully accumulated point cloud. Since the same transformation is used for
all the three point clouds, a camera synchronization mechanism is required. An elec-
tronic synchronized trigger circuit is used. This ensures that all images are taken at
the same time. An example of a fully accumulated car point cloud can be seen in
Fig. 6.14.

Figure 6.14: Left: left view of the car point cloud. Right: right view of the car point
cloud. [HLK13b]

6.6 Hardware Setup and Calibration

This section describes the main experiments performed to setup the physical and data
processing system. It goes into a detailed description how the necessary parameters
like the camera position and also the system thresholds are determined. One of
the critical points to allow for successful depth registration is the hardware setup,

6.6. HARDWARE SETUP AND CALIBRATION 75

especially the camera orientation. Fig. 6.15 shows two possible angles for the left
camera. It exemplary shows the FOV and which areas of a car are covered.

arch

cross section
of a car
 FOV,

camera angle 0°

FOV,
camera angle -40°

Figure 6.15: Sketch of the left camera setup with two different camera angles.
[HLK13b]

A well known restriction of the ICP [IKH+11, NIH+11] is that flat surfaces do
not provide enough correspondences for the algorithm to converge successfully. The
experiments with different camera angles, in combination with the registration algo-
rithm presented in Sec. 6.5.3, have exactly shown this behavior. So it has been decided
to use a side camera angle of -40◦ to cover the roof and the side of the measured car.

To receive a complete system calibration, the cameras are extrinsically calibrated
using the method shown in Sec. 2.2. The result is a transformation between RGB
(which represents the reference coordinate system, Fig. 6.16) and PMD camera, as can
be seen in Table 6.1, where the translation is in the unit meter.

Z

X

Y

PMD PMD

PMD + RGB

Figure 6.16: This figure shows the reference coordinate system related to the top
mounted RGB camera. The transformation matrix in Table 6.1 is relative to it.
[HLK13b]

76
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

Rotation TranslationAxis
0.621669 0.034382 0.782525 -1.97145 X

0.02067140.997968-0.0602701 -0.0490192 Y
-0.7830080.053644 0.619695 0.319617 Z

0 0 0 1

Table 6.1: Transformation matrix between the left PMD camera and the top-RGB
camera (translation part in meter). [HLK13b]

This calibration process is performed for the left, top and right camera respec-
tively.

6.7 Results

The previous sections have introduced a hardware setup, mechanisms, algorithms
and a processing pipeline to reconstruct a point cloud of car. Fig. 6.14 shows the fully
reconstructed point cloud. On the roof side a lot of noise is still visible. Reasons
for this are the inherent noise of the cameras as well as measurements of points (e.g.
background objects) that lie beyond the unique distance for ToF (in general 7.5m with
a frequency of 20 MHz).

One goal is to achieve real-time data processing. Tests were executed on an Intel
Core i7-3770K CPU @ 3.50 GHz and an NVIDIA GeForce GTX 680, 2GB graphics card.
It gives the following timing results for the individual processing modules:

6.7. RESULTS 77

Module/Filter type Average time of 110
frames in ms

Average time of 41
frames in ms

Motion Compensation 25.315521 26.26309
Median 0.986592 0.953216
Segmentation 0.15550 0.17341
Outlier removal 0.10756 0.11094
Bilateral Filter 0.69742 0.46539
PMD to point cloud 0.95627 0.91442
Point cloud extrinsic merge 0.78604 0.61030
ICP Bilateral Filter 0.86885 0.47001
ICP registration filter 15.62808 10,04618
Point cloud transformation 0.14510 0.12066
Point cloud accumulation to model 1.00250 0.83022
Total time 46.649433 40.957836

Table 6.2: Execution timing for 110 frames (all frames) and for 41 frames (valid frames
only)[HLK13b]

Table 6.2 shows the average execution time for one of the cameras (the other
two are similar) and the time needed for registration. The 110 processed frames also
contain images that cannot be processed or which will cause the fail of the ICP (invalid
frames; either the car is not visible or there are too few valid pixels). The 41 frames
contain valid frames only. It can be seen that the average execution time for the ICP
is 5 ms lower compared to the 110 frames. This is related to the rejection of 40 % of
the frames. In consequence thereof, the ICP fail rate is lower which leads to the better
average ICP registration performance.

The result is an average execution time for all frames and all cameras of about
41ms. This gives a theoretically possible frame rate of about 25 frames per second. The
realistic frame rate, containing additional processing overhead (memory allocation
and transfer from CPU to GPU) and considering the restrictions of the PMD cameras
(see Sec. 6.1) is about 20 frames. The here provided timing results are reproducible
and also applicable for other cars than the one used for the experiments. This shows
that the presented solution can handle the data in real-time.

The average number of acquired data points is about 4.4 million. Due to outlier
removal, filtering and smoothing the average final number of processed points is
around 0.9 million. This is a rejection rate of 80 %. The results show that this is still
enough for a successful registration.

The error comparison against real cars is still a problem because there is no access
to real CAD models from the car manufacturers. First comparisons to the dimensions
(e.g. from the technical manual) of a car show deviations of 3 to 10 % to these numbers.

Despite the lack of detailed reference data, some evaluation about the accuracy
can be made. Fig. 6.17 shows the reconstruction of a Peugeot 206. The real wheel

78
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

distance (physically measured) is about 2.45 m. Data from the reconstruction process
shows it to be 2.52 m (measured with the tool MeshLab), which is a deviation of about
3 %.

Figure 6.17: Wheel distance of a measured Peugeot 206. [HLK13b]

Furthermore, a BMW E46 has been reconstructed with the proposed processing
pipeline (see Fig. 6.18). The real wheel distance is about 2.72 m. The reconstruction
result is 2.65 m (measured with the tool MeshLab), which is also a deviation of about
3 %.

Figure 6.18: Wheel distance of a measured BMW E46. [HLK13b]

As a last car, a Skoda Octavia II has been reconstructed with the pipeline (see
Fig. 6.19. The real wheel distance is about 2.55 m. The reconstruction result is 2.49 m
(measured with the tool MeshLab), which is a deviation of about 2 %. It can be seen,
that it is difficult to measure the wheel distance in the point cloud due to the lack of
information in the wheel area. This is a common problem for all measurements.

6.7. RESULTS 79

Figure 6.19: Wheel distance of a measured Skoda Octavia II. [HLK13b]

6.7.1 Feature Based Image Registration
The section is focused on different feature detection algorithms using a masked image
that has been created with the proposed segmentation method (see Fig. 6.20). The
red circles indicate features, the size represents their reliability and the green lines
connect matches.

It is shown that SURF [BETG08] is not working in the feature rare environment
of car measuring. The same results as in Fig. 6.20 were visible for SIFT and Good
Features To Track. This shows that it is not possible to use approaches well known
from Stereo Vision for image registration in this field of work [LF96].

Figure 6.20: SURF extraction of moving car. Features are mainly found in oversatu-
rated ares or reflections. [HLK13b]

6.7.2 Result Summary
Summarizing the results from this section it can be seen, that the presented algorithm
already gives acceptable results in performance and quality. It can be seen that the
applied outlier removal already gives good results but still has to be optimized.

80
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

Furthermore, a proper working background subtraction is one of the most important
parts and has to be improved. Even though there is a lot of potential for optimization
and improvement of quality, the point cloud can be used for further processing where
the extraction of following information can be performed:

• Bounding box to determine length, width and height

• The car contour of the sides and the height (see Fig. 6.21)

Fig. 6.17, Fig. 6.18 and Fig. 6.19 show that, especially in regions of windows and
wheels, problems still remain. This has to be optimized in future work. Due to the
inertial behavior and the flexibility of the brushes in a car wash system, the achieved
accuracy is sufficient, but has still to be improved.

Furthermore the results show, that the usage of a dense ICP is a good way to
perform this kind of 3D car reconstruction (see also Sec. 6.7.1).

The speed of the car (between 1 m/s and 3 m/s) has been a typical speed (about
preferred walking speed) when entering a wash system. Higher speeds cause the ICP
to fail due to the large lateral distances between consecutive images. In this case, the
standard dense ICP as used for the KinectFusion algorithm fails.

6.8 Summary

A GPU based data processing pipeline has been presented allowing the real-time
data fusion of three synchronized PMD cameras. The pipeline supports multiple
pre-processing steps to optimize incoming depth data. Also the presented challenges
such as over- and undersaturation, flying pixels, motion artifacts and the rough
environment, that are specific to this project, are successfully handled by the extensive
preprocessing. The presented pipeline can handle different kinds of materials, such
as reflectors, glass and metallic car paintings by performing outlier removal.

Another important contribution is the extension to the standard segmentation
algorithm. The logical conjunction of the depth and intensity data in combination
with the morphological operation and the contour estimation stabilize the algorithm.

Furthermore it was shown that the existing KinectFusion algorithm works with
low resolution ToF depth images. Large moving objects like cars can be sampled and
reconstructed to a full point cloud by driving the car through a measurement arch.
While some aspects require a lot of optimization, it was shown that a contactless 3D
measurement and reconstruction of a car is possible by using PMD-ToF cameras.

In a next step, each preprocessing step has to be optimized to avoid misalignment
of the ICP algorithm. Therefore especially the background subtraction has to be
optimized to avoid wrong point correspondences and to fully remove the restriction
of a static background model. Furthermore the 3D point cloud has to be rendered to
a contour representation to make it usable for a PLC device (Fig. 6.21).

6.8. SUMMARY 81

Figure 6.21: The car contour: the red lines are the extracted contours that can be used
and processed by a connected PLC device. [HLK13b]

In detail, the height and side contour has to be extracted by rendering the point
cloud from top (side contour) and side (height contour). Additionally these extracted
contours can be interpreted to predict invalid abnormal superstructures like roof
racks as mentioned in the beginning. Having the full point cloud of the car opens up
new research areas such as point cloud interpretation (localization of windows and
wheels) and 3D mesh reconstruction to use the models, e.g. for usage in a CAD tool.
To improve the final point cloud and to optimize the contour extraction, a resampling
of the points can be helpful.

Finally it can be said, that the first measurement results fulfill the required accuracy
(size deviation of about 5 to 10 cm) and also the performance requirement (real-time
processing). Further improvements, as e.g. the optimization of the normal estimation,
outlier removal, contour extraction and the finalization of the contour extraction, will
be done in the future.

82
CHAPTER 6. 3D CAR RECONSTRUCTION –

AN INDUSTRIAL APPLICATION

CHAPTER 7. DEPTH DATA PROCESSING SUMMARY 83

7
Depth Data
Processing

Summary

The previous chapters have shown two ways how ToF data can be improved. Fur-
thermore an industrial application using this specific sensor knowledge has been
presented. This chapter summarizes the results and contributions of Part I.

First a new method (see Chapter 4) for a fast motion artifact compensation for
Time-of-Flight cameras was presented. The approach is based on several assump-
tions such as linear motion between the four consecutive phase images of the PMD
camera. The algorithm uses a thresholding and binarization method to restrict the
artifact correction area to spaces where actual motion occurs. It is shown that the
algorithm gives good results for simulated data (linear and non linear motion) and
also for real data. Furthermore a big advantage of this algorithm is that it can work
in real-time with an execution time of about 10 ms and a frame rate of up to 100
FPS). However, there is still a lot of optimization potential, e.g. support for phase
image motion correction. Additionally the threshold can be automatically adapted
via statistics of the observed scene.

The second proposed algorithm (see Chapter 5) deals with the automatic inte-
gration time estimation of ToF cameras. A novel online integration time adaption
algorithm that works on a per-pixel basis is presented. It uses knowledge gained from
an extensive analysis of the underlying inherent sensor behavior regarding intensity,
amplitude and distance error to reduce the overall error, to prevent oversaturation
and to minimize the adaption time. Working well in presence of various reflectivities
and quick changes in the scene, the per-pixel character also allows to use only
portions of the image or even apply pixel-specific weighting, counteracting sensor
properties (e.g. spatial intensity distribution) and allowing to adjust importance
of certain image regions. Overall, this represents a significant improvement over
previous methods.

As third and last contribution of this part of the thesis, an industrial 3D car re-

84 CHAPTER 7. DEPTH DATA PROCESSING SUMMARY

construction example has been presented (see Chapter 6). A GPU based data
processing pipeline has been introduced allowing the real-time data fusion of three
synchronized PMD cameras. The pipeline supports multiple preprocessing steps
to optimize incoming depth data. Also the presented challenges like over- and
undersaturation, flying pixels, motion artifacts and the rough environment, that are
specific to this project are successfully handled by the extensive preprocessing. The
presented pipeline can handle different kinds of materials, such as reflectors, glass
and metallic car paintings by performing outlier removal. By using KinectFusion
based on the ICP algorithm with the preprocessed low resolution data, it was possible
to reconstruct a full 3D model of moving cars.

Summarizing the results of the previous chapters and the contributions of this
thesis, it is shown that the ToF technology is an interesting, helpful and promising
technology that can be used in various scientific and industrial areas. But still a lot of
work has to be invested, especially to improve the data quality of this kind of sensor.

85

Part II

Model Driven Software Engineering
Paradigms

CHAPTER 8. INTRODUCTION OF MODEL DRIVEN ENGINEERING 87

8
Introduction of

Model Driven
Engineering

T he complexity of image processing tasks has risen during the last years for several
reasons. On one side, more and more industrial machines profit from image

processing support, e.g. by using a camera system for visual inspection. An example
can be found in Chapter 6. On the other side, camera systems and the processing
components (as e.g. desktop PCs) have become better and cheaper. The complexity
and demand for a short Time-to-Market requires improving development processes.

During the past years, several techniques have been established in software engi-
neering but are rarely used for image processing. The two most important approaches
are graphical modeling and DSLs. Graphical modeling gives modelers the possibility
to create a relatively simple, high-level, iterative graphical architecture design, where
all relevant parties (programmers and non-programmers such as project leaders) can
have an abstract but graphical view on the system in development. This can help
with identifying and solving problems at an early stage. For this purpose UML was
introduced by the OMG and accepted by the ISO as a standard in 2000 [OMG16e].
It allows to model high-level abstractions of real-world problems by using graphical
descriptions. Different kinds of diagrams such as class-, activity- or state-machine-
diagrams are the basis of modeling the system’s structure and functionality. This
improves general software quality and reduces the Time-to-Market.
DSLs are the second important approach. They have become more and more impor-
tant in the past years for improving software development due to tools simplifying
the language development, e.g. xText [EEK+16]. DSLs are divided into two types:
internal and external [Fow10, EEK+12]. Internal DSLs use the existing infrastructure
of host programming languages. Examples for such DSLs are OpenCL or OpenGL.
Both languages are a C dialect, extending C to their requirements. External DSLs
however are designed from scratch after a full analysis of the problem description.
Using special keywords, abstractions and control structures, they are able to illustrate
complex problems mostly in simpler and more compressed forms. A big drawback
is that the whole infrastructure such as parsers, lexers and compilers has to be built.
Well-known examples are the unix shell scripts or SQL. Both kinds of DSLs improve

88 CHAPTER 8. INTRODUCTION OF MODEL DRIVEN ENGINEERING

the readability and the formulation of domain-specific, real world problems. While
UML can be extended by profiles (for e.g. adding new types and/or model elements),
external DSLs provide the possibility to even start the formulation of problems from
scratch, which means writing a completely new problem related language. The ap-
proach presented here combines the best of both worlds using xText to design a
DSL and GMF [EC16], allowing graphical modeling of data processing and vision
problems as those presented in Part I.

The following chapters present a novel DSL based on Eclipse xText (textual mod-
eling) in combination with Eclipse GMF (graphical modeling). It is developed from
scratch, while using some concepts from Java and C#. Furthermore, it adopts the
idea of encapsulating classes and flow-models using diagrams as done by UML, but
in a textual and graphical form. This has the advantage of giving developers the
freedom of modeling as they see fit (round-trip engineering). But at the same time,
the DSL forces the developer to keep special structures and requirements using flow
modeling. This helps reducing recurring mistakes. The DSL is specially designed
to make the model-to-text transformation as easy as possible and to support C++ as
intermediate textual representation in a first step.

Problem Statement

Both approaches, graphical modeling and also external DSLs, are unfortunately
hardly used in the domain of image processing and computer vision. The com-
munity mainly wants to concentrate on the development of algorithms. But in most
cases they have to begin their work from scratch and start with the development
of GUIs and the abstraction of data and image processing interfaces. It is widely
known that GUI development can rapidly grow to become a long and error-prone
task, which often leads to loss of focus. Having the possibility of using a specially
adapted development environment and toolchain as the one proposed in this the-
sis, the concentration and focus can be shifted back to the true scope of algorithm
development.

This thesis makes several contributions which are the result from the significant
challenges in the domain of Model Driven Engineering for data and image processing.
These contributions are the generic Domain Specific Language GU-DSL supporting
textual and graphical design and development of data and image processing related
algorithms [HFKK15]. Furthermore on the basis of GU-DSL, a Model Driven GPGPU
Programming approach is introduced to improve and simplify the error prone task
of GPU algorithm development [HFKK16]. Finally a special extension of GU-DSL is
contributed supporting Component-Based Data And Image Processing Architectures
in a textual and graphical representation [HKK16].

89

Outline

The structure of Part II of this thesis consists of the following chapters:

Chapter 9 provides the necessary fundamentals of GU-DSL.

Chapter 10 shows how three different image processing algorithms can be im-
plemented for GPGPU processing using GU-DSL .

Chapter 11 introduces a new component-based data and image processing ap-
proach using GU-DSL.

Chapter 12 summarizes the results of the previous model driven engineering chapters
and concludes Part II.

90 CHAPTER 8. INTRODUCTION OF MODEL DRIVEN ENGINEERING

CHAPTER 9. GU-DSL – A GENERIC DOMAIN SPECIFIC LANGUAGE 91

9
GU-DSL – A Generic

Domain Specific
Language

The development of Domain Specific Languages becomes more and more popular,
since the release of tools like xText and GMF. These tools lower the barrier for pro-
grammers to develop application related languages which can simplify their problem
descriptions and solutions.

GU-DSL is such a Domain Specific Language, based on Eclipse xText and GMF.
It is especially designed for textual and graphical, object-oriented modeling of data
and image processing problems as described in the chapters of Part I. Different from
other languages in this domain, it is designed in a way that model driven, flow driven
problem solutions (important for image processing), are the main focus while other
languages often concentrate on the compression and simplification of code only.

The domain of image processing has requirements as e.g. the following:

• A higher level representation (as e.g. a graphical model) but with low level data
access (e.g. memory) at the same time

• Access to a textual language representation to lower the entrance level for low
level programmers

• High performance execution of tasks/functions

• Support of reference types

– Simplification of data manipulations

– Performance issues

GU-DSL is developed from scratch, but using some well established concepts from
Java and C# to fulfill these requirements. Using this syntax, it is easy to learn and it
offers an abstract way for textual modeling of tasks, especially in the area of data and
image processing. Furthermore, it is adopting the idea of encapsulating classes and
flow-models using diagrams as done by UML, but in a textual and graphical form.
This has the advantage of giving developers the freedom of modeling as they see fit.

92 CHAPTER 9. GU-DSL – A GENERIC DOMAIN SPECIFIC LANGUAGE

But at the same time, the DSL forces the developer to keep special structures and
requirements using flow modeling. This helps reducing recurring mistakes. The DSL
is specially designed to make the model-to-text transformation as easy as possible
and to support C++ as intermediate textual representation.

The language introduces several new or/and adapted concepts providing the nec-
essary functionality to fulfill the previously stated requirements:

• A diagram based, object oriented, textual modeling language

• Class-Diagram support

• Activity-Diagram support

• An expression language allowing to implement sequential code sections within
classes, class-methods and activity-diagram nodes

• A graphical modeling toolchain, based on Eclipse GMF

The following sections will give an introduction into the GU-DSL’s concepts and
functions as a basis for Chapter 10 and Chapter 11.

Publication: GU-DSL – A Generic Domain Specific Language for Data- and Image Processing
[HFKK15]

9.1 Language Features and Concepts

The following section will introduce the most important features of GU-DSL, allowing
the implementation of image- and data-processing algorithms.

9.1.1 Structural Modeling using Class-Diagrams

Modern object oriented programming languages in general use classes and names-
paces to form an abstraction of real-world objects. This allows structuring software
by encapsulating functionality belonging together. As long as there are only a few
number of classes or objects, it is easy to keep track. Class-diagrams are a good tool to
model complex structures. While allowing the design of individual class structures
(variables and methods), they also provide the possibility to visually show object
interconnections as associations or inheritance between related classes.

This concept has been adopted and allows the definition of classes, interfaces and
attributes (used to visualize meta-information). Listing 1 shows the definition of a
simple diagram with an abstract image class, an example for class inheritance and
interface implementations. This is in general well-known from languages like C# and
Java and forms the base of the new system.

9.1. LANGUAGE FEATURES AND CONCEPTS 93

1 ClassDiagram TypeDefinitions
2 {
3 // Interface definition
4 public interface IImage
5 {
6 public bool load(string filename);
7 public bool save(string filename);
8 }
9
10 // Interface implementation
11 public abstract class Image implements IImage
12 {
13 public int width;
14 public int height;
15
16 public bool load(string filename);
17 public bool save(string filename);
18 }
19
20 // Class Extension
21 public class ExtImage extends Image
22 {
23 public void filterNoise();
24 public void smooth();
25 }
26 }

Listing 1 Extended class diagram showing interfaces and class
inheritance.

Besides classes, enumerations are another important kind of structure allowing
value grouping (Listing 2).

1 enum ImageFormat
2 {
3 Format_RGB32 = 2,
4 Format_ARGB32 = 3,
5 }

Listing 2 Definition of an enumeration.

Enumerations can be used as independent types as the built-in types byte, int,
float, real, string, bool and void.

Method parameters and fields can have qualifiers applied. This gives the possi-
bility to restrict or to grant access rights and define the visibility (Listing 3).

1 // A constant , public field
2 public const int i = 0;
3 // A protected reference field
4 protected ref real j;
5 // A private static field
6 private global int g = 100;
7 // A public constant reference to a static field
8 public global const ref int k = ref g;
9 // A public static method
10 public global void memcpy(ref void dst, ref void src, int numBytes);

Listing 3 Field, method and parameter access qualifiers and
visibility.

To allow modeling of meta-information, e.g. to support a more flexible code
generation, attributes (comparable to C# attributes and Java annotations, see Listing 4)
have been introduced.

94 CHAPTER 9. GU-DSL – A GENERIC DOMAIN SPECIFIC LANGUAGE

1 ClassDiagram Attributes
2 {
3 public attribute CppType
4 {
5 public string name;
6 }
7
8 public attribute GeneratorVisibility
9 {
10 public bool visible = true;
11 }
12 }

Listing 4 Definition of generator attributes.

Attributes can be used on classes, methods, fields and enumerations (see Listing 5).

1 [Attributes.GeneratorVisibility(visible = false)]
2 public abstract class Image{}

Listing 5 Definition of generator attributes.

Besides simple classes, interfaces and enumerations, class- and interface-templates
as well as reference types are supported. Using these definitions, a complete structural
representation of image- and data-processing algorithms can be modeled.

9.1.2 Definition of Behavior Modeling

The second important part is the definition of object and system behavior. UML
provides several kinds of diagrams (activity-, state-machine or sequence-diagrams).
This approach uses two incorporating methods. The first one uses an expression
language (similar to Xbase [EEK+12]), allowing sequential coding and lowering the
barrier using the presented approach. A second method uses an extended activity-
diagram allowing flow-modeling. The diagram fully supports and incorporates the
expression language to solve the main drawback of rapidly rising visual complexity
of pure activity-diagram modeling, as stated in the introduction.

9.1.3 Behavior Modeling using Expressions

As mentioned previously, the expression language uses the base concepts of Xbase
and other well-known programming languages. It is based on the types introduced in
Sec. 9.1.1 and is specially designed in a way to make the text-to-text (T2T) transforma-
tion (code generation) as easy as possible. It has special domain-specific extensions,
e.g. references to improve algorithm performance. The next sections will introduce
the most important expression features.

Variable Expressions The expression grammar allows to declare variables. For a
detailed description have a look at Appendix A.

9.1. LANGUAGE FEATURES AND CONCEPTS 95

Other Expressions The language also supports basic expressions like assignments
(=), equality checks (==, ! =), logical operations (&&, ||), bitwise operations (&, |), com-
parisons (>=,<=,>,<) and expression grouping in blocks ({}) that are used in the same
way as in C/C++.

All the expressions previously described can be attached to class methods to
allow sequential behavior modeling. Furthermore, it is possible to use the grammar
in activity-diagram nodes introduced in Sec. 9.1.4.

9.1.4 Behavior Modeling using Activity-Diagrams
The previous section introduced the expression language allowing simple textual
behavior modeling. This section shows how to use textual activity-diagrams to give
the developer the possibility to abstract algorithms or behavior in a more object
oriented manner. Activity-diagrams provide an easy way to model data flow or
single system parts. They support concurrency, conditional decisions and also loops.
The UML activity-diagrams have been extended by the following features to make
them more reusable:

• Class-assignments

• Diagram input parameter (like in UML 2.x)

• Activity-diagram variable definitions

• Action-node definition

• Expression support within nodes

Activity-diagram

Variable section

Swimlane section

Swimlane 1 Swimlane 2 Swimlane n

Figure 9.1: The two sections of an activity-diagram. [HFKK15]

As can be seen in Fig. 9.1, an activity-diagram consists of a variable section defining
local variables and an arbitrary number of swimlanes. Swimlanes are elements to split
an activity-diagram into several concurrent sub-processes. This approach assumes
that an activity diagram describes the flow within a class method and is called as
shown in Listing 6.

96 CHAPTER 9. GU-DSL – A GENERIC DOMAIN SPECIFIC LANGUAGE

1 call behavior AdMemberAccess("C:\\example.png",
2 "C:\\example_filtered.png");

Listing 6 Call of an activity-diagram.

Listing 8 shows an example diagram containing important diagram features,
which are described in the next sections.

Class-assignments This implementation allows assigning owner classes to either a
diagram or to the individual swimlanes. This offers the possibility to directly interact
with classes. It provides access to all class member variables and methods as can be
seen in Listing 8 (load- and save-node).

Diagram input parameter The UML defines activity diagram input and output
parameters as well as objects, which is an essential extension to allow the re-usage of
diagrams. Listing 8 shows the re-usage of these parameters as object flow between
nodes.

Activity-diagram variable definitions Another newly introduced feature is the us-
age of local variable definitions. Class-assignments allow access to class member-
variables. But in most cases, this isn’t enough. The definition of local variables that
can be used in the same way as member variables for transition guards and also
within expression statements is possible.

Action-node definition Action-nodes are the main modeling nodes. They provide
the basic functionality and allow visualizing all kind of problems. The connection
between nodes is realized as either guarded ([] =>) or non-guarded (=>) transitions
(see Listing 7). Transitions are always evaluated after the full execution of the node’s
content.

1 // An example action with introducing transitions
2 action example_action()
3 {
4 // The => operator defines a transition to another node without any restriction
5 => nonguardedAction;
6
7 // [i < 10]: transition guard; The content within the
8 // parentheses is evaluated and decides if the transition
9 // has to be executed
10 [i < 10] => guardedAction;
11 }

Listing 7 An example action node with transitions.

This provides the possibility to model conditional and loop flows, but most of the
time it is complicated and confusing. UML has already introduced special kinds of
nodes such as forks, joins and decisions. But from this point of view, it is not enough
to provide a simple programming interface. The additional and extended node types

9.2. THE COMBINATION OF GRAPHICAL AND TEXTUAL MODELING 97

are introduced in the following sections. Furthermore, three different kinds of action-
node declarations are available. The first one represents a method call of an assigned
class (e.g. load or save in Listing 8), while the second method (filterImage) shows
the possibility of defining collections of expression statements. The third possibility
is defining action-nodes that are assumed to be a method call, but they don’t have
to be members of a class. Having the same signature as method-call nodes, they are
treated in a special way by the code generator. This allows the reduction of generated
code by reusing them in a second occurrence as a simple method call.

Other node-types Besides the shown new nodes, start-, final-, decision-, fork- and
join-nodes are also supported.

1 ActivityDiagram AdMemberAccess(string filenameLoad ,
2 string filenameSave)
3 {
4 // Diagram specific variable declarations
5 public int i = 0;
6
7 swimlane Swimlane1 , owner TypeDefinitions.Image
8 {
9 start S1 { => load(filenameLoad); }
10
11 // The action represent the load method
12 // of the Image class
13 action load(string name)
14 {
15 i = 0;
16 => filterImage;
17 }
18
19 // A simple action-node doing some filtering
20 action filterImage
21 {
22 i = i + 1;
23 // Do some filtering
24
25 // Recursive node call ==> lowwop
26 [i < 10] => filterImage;
27 // Call the save method
28 [i >= 10] => save(filenameSave);
29 }
30
31 // The action represent the save method
32 // of the Image class
33 action save(string name)
34 {
35 => Finish;
36 }
37
38 final Finish
39
40 }
41 }

Listing 8 An example activity-diagram.

9.2 The Combination of Graphical And Textual Model-
ing

The preceding sections have shown the most important novel features of GU-DSL.
In this section, it is described how graphical editors incorporate the underlying DSL
and especially the expression language. The editors allow the placement of as many

98 CHAPTER 9. GU-DSL – A GENERIC DOMAIN SPECIFIC LANGUAGE

class- and activity-diagrams as possible next to each other. This provides a better
overview and allows keeping structural- and behavior-models close together, but still
separated. The graphical editors are combined with the textual editors in a very
convenient way, to make editing as easy as possible.

9.2.1 Class-Diagrams
Class diagrams can be modeled in a typical UML-like style which is shown in Sec. 9.1.1.
Classes, interfaces, attributes and enumerations are placeable, movable and resizable
objects from a predefined toolbox. Methods, fields and enumeration values are added
by the default GMF functionality directly from the graphical editor (see Fig. 9.2, left).
This editing mechanism is extended, allowing in-place editing, with auto-completion
and syntax highlighting (comparable to [MN16]), which is the ideal add-on and im-
provement for easy programming in model-driven development scenarios and tools
introduced here. E.g., a method is added and can directly be declared, parameters
can be defined and also the implementation can be carried out (see Fig. 9.2, right).
This behavior is implemented for all modifiable parts in the diagrams. Inheritance,
associations etc. can also be created using the toolbox.

Figure 9.2: Left: adding a new new method to a class. Right: modifying a method
using the in-place xText editor.

As well known from other editors and state-of-the art tools, the class diagrams
support all kinds of data- and structure-types (classes, interfaces, enumerations,
etc.) and corresponding connections as extensions (inheritance) and interface-
implementations.

9.2.2 Activity-Diagrams
The other kind of diagram that can be designed in a graphical editor is the activity-
diagram. As could be seen in Listing 8, the activity-diagrams are split into two main
sections: a variable and a swimlane section.

9.2. THE COMBINATION OF GRAPHICAL AND TEXTUAL MODELING 99

9.2.2.1 Variable Section

The variable section is a novel GU-DSL specific extension, introduced because local
variables are unavoidable. The sections have been implemented as xText-editor
analogously to the already shown class-method editors in Fig. 9.2. The variables are
strung together in a multi-line editor and can be written as described in the DSL
specification.

9.2.2.2 Swimlane section

The swimlane section consists of an area allowing the placement of multiple, con-
current swimlanes. Properties, as e.g. the owning class, can be changed in the
Eclipse property-editor. Due to the direct interoperability between class- and activity-
diagrams, only accessible objects can be chosen. This helps to reduce bugs and is one
of the biggest benefits in using the underlying DSL as basis for the graphical editors.
In the case of the swimlane owner class, the choice is limited to classes. A swimlane
itself is the main modeling area of an activity-diagram. It is the parent of all available
diagram nodes and allows adding and modifying nodes by drag-and-drop.

9.2.2.3 Node Types

In Sec. 9.1.4, the most important node types of the DSL have been introduced. All
of the textual nodes are also available in the graphical modeling environment. This
makes it easy for developers to also share code within a team. That means team mem-
bers can decide on their own whether they prefer textual or graphical programming
(round-trip engineering). This is a big advantage compared to other model-driven
development systems. All graphical elements, except initial and final nodes, are
constructed in the same way, in order to keep the usage as easy as possible.

<Node name>

Modeling section

Expression
Container

Optional:
Node Container

Figure 9.3: The principle schema of graphical nodes.
nodes

All node types start with a name section. The modeling section contains two
parts. The first part is the expression container (see also Fig. 9.4). It allows entering
expression statements using the full textual editor functionally in the same way as

100 CHAPTER 9. GU-DSL – A GENERIC DOMAIN SPECIFIC LANGUAGE

for pure textual modeling. This simplifies behavior modeling and bridges the gap
between the complexities of solely textual or graphical modeling. So it is up to the
developer to decide how fine or how coarse the graphical diagram is designed, either
splitting all statements into single nodes or combining larger statements within one
big node (see Fig. 9.4).

Figure 9.4: Left: An action-node. Right: Activated xText-Editor.

The second, but optional part is a node container section. Node types such as loop-
and conditional nodes allow for modeling hierarchical flows using nested nodes. This
provides opportunity to also model complex scenarios in a graphical way instead of
switching over to textual modeling. But developers should keep in mind that pure
graphical modeling rapidly ends up in an unclear representation.

9.2.2.4 Node Connections

Nodes can directly be connected with other nodes using directed node transitions (see
Appendix B). As explained in Sec. 9.1.4, transitions can be guarded. This is realized in
the graphical modeling view using labels. So every transition has an additional label,
that is directly editable using a syntax highlighting text editor. This makes modeling
different flow paths easy.

CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING 101

10
Model Driven

GPGPU
Programming

C omputing on GPUs became popular about one decade ago (an example can be
found in Chapter 6). However, increasing data processing performance via par-

allelization of tasks leads to an increase of programming complexity and reduction
of maintainability. GPGPU programming poses special requirements due to the par-
allelization of tasks. Hence, there must be special control structures on one hand and
simple ways to allow parallel execution of operations on the other hand. Therefore,
such systems are usually split into two parts: a host (e.g. a PC) and one or multiple
devices (e.g. a graphics card). For example, this is the case for OpenCL and CUDA.
Executable device-programs (kernel) are based on a version of the ISO C99 standard
[AMD16], extended by special types and functions. Calculations are performed by
work-items arranged in work-grids (see Fig. 10.2). Data always has to be transferred
between host memory and device OpenCL-Kernel memory, which can be a big bot-
tleneck if this process is performed too often. The experience shows that algorithm
development on the GPU is often an empiric, incremental process when trying to
achieve the best performance. Abstracting algorithms into a generic, dataflow-driven
form using the proposed language GU-DSL allows to automatically analyze the flow
graph and optimize it with respect to best performance. While even small algo-
rithms for classic sequential problem solving rapidly grow in complexity, CUDA and
OpenCL also impose the whole initialization, memory-managed and code execution
to the developer, which can be an error-prone and sophisticated task. Hence, the new
type-safe, dataflow-driven textual and graphical programming language GU-DSL in
combination with a C++ based Heterogeneous Computing (HC) framework has been
developed. An additional Object Contstraint Language (OCL) [OMG16d] based code
validation helps to reduce errors already during the modeling stage. A code generator
generates fast C/C++ code that is compiled to a platform dependent executable. The
underlying HC library allows to delegate GPU initialization, memory management
and also code execution to the HC framework. Additionally, automated tests and
performance optimizations can be performed by the code generator analyzing the
flow graph.

102 CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING

This work contributes a convenient combination and mixture of textual and graph-
ical model- and dataflow-driven design by extending GU-DSL class- and activity-
diagrams to fulfill the explained requirements (e.g. reducing complexity, high per-
formance, parallelization, special control structures, host/device management, kernel
and memory management, Region Of Interest (ROI) handling) of GPGPU program-
ming , which is unique in this domain. The main focus lies on the improvement
of GPU code structure and not just its simplification. Therefore novel concepts like
adding of meta-information by using attributes in class-diagrams, are introduced.
Furthermore, new node types such as conditional-, loop- and calculation-nodes, in
combination with an expression language in activity-diagrams, are added. The con-
tribution includes the following ideas, tools and frameworks (see also Fig. 10.1):

• A data and image processing language with special GPU related language con-
structs, allowing dataflow-driven textual, object oriented programming

• Novel modeling concepts like conditional-, loop-, calculation- and loop-
window-nodes

• GPU related control structures and types

• A code generation framework

• A GPU accessing and programming framework using OpenCL

Especially activity-diagrams and expressions give the developer a good possibility
to abstract algorithms or behaviors in an object oriented manner. Activity-diagrams
provide an easy way to model data flow or single system parts (see Listing 8). They
support concurrency, conditional decisions and also loops. Besides action-nodes,
transitions and transition guards (see Listing 7), special new features are proposed,
to make GU-DSL’s activity-diagrams more reusable and adaptable for GPGPU pro-
gramming:

• Diagram input and output parameters

• Transition arguments

• Calculation-, loop- and loop-window-nodes

• GPU specific data types and keywords also supporting shared memory

• Special control structures, e.g. to support the simple processing of a Region Of
Interest

Using the proposed new concepts with the textual and graphical editors, com-
bined with a C++ code generator, it can reduce the complexity of data processing
tasks as will be shown in the remaining sections. The language and the surrounding
framework can be used to create an almost platform independent vision software
and especially improve GPGPU development.

10.1. RELATED WORK 103

Eclipse Xtext/GMF/Java

Xtext-DSL

C/C++/OpenCL-Code Generator

GMF-Editors

OpenGL-GUI-Framework

Heteregenous Computing
Framework

Real-World-Problem
Description/Algorithm

Modeling

Generation

Runtime

Framework Runtime

Figure 10.1: Overview of the proposed system, highlighted in light gray. [HFKK16]

Publication: Flow Driven GPGPU Programming combining Textual and Graphical Pro-
gramming [HFKK16]

10.1 Related Work

This chapter presents GU-DSL with a special GPGPU related extension. The next
sections will have a look at the most important work directly related to this approach.

An interesting approach is OptiML [SLB+11]. It is a DSL with a Matlab-like syntax
and has been especially designed for CUDA GPU interoperability and allows for a
simplified and more abstract way of GPU modeling.

In 2011, Han and Abdelrahman presented hiCUDA [HA11], a directive-based
language. Using specially designed compiler directives, it reduces the necessary
overhead for memory allocation and performance optimizations.

Forma [RHG15] is another DSL specially designed for image processing applica-
tions. Written code can be translated to GPUs and multi-core CPUs also supporting
their individual special architectural features.

Another important language is HIPAcc [MRH+16] allowing to design image pro-
cessing kernels and algorithms using a high-level DSL. High-level code can be trans-
lated into different GPU-types using a new compiler.

Different from the approach presented here, the shown related work just tries
to simplify the GPU programming while GU-DSL integrates all development steps
required for CPU and GPU interaction and programming, which is unique in this
domain. Furthermore, compared to other works, GPGPU programming is brought
to a high-level, dataflow-driven textual and also graphical abstraction which can
additionally improve and speed-up development. The main focus lies on the im-
provement of GPU code structure and not just its simplification as most related work
does.

104 CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING

In 2012, Kehrer et al. [KBKR12] have presented a system for modeling GPU
applications, showing how it can improve GPGPU programming. Therefore they
use the Eclipse Modeling Framework and a code generator. The difference to this
approach is that they base their work directly on the Eclipse Modeling Framework
domain model, restricting them to graphical modeling. In contrast to it, GU-DSL also
supports generic and GPU-specific textual and graphical modeling specially adapted
to the needs of this domain.

Besides the GPU related work, also other interesting related work about data and
flow modeling exists.

Using flow diagrams is a common practice in behavior modeling of data and com-
puter vision processing systems. Schumacher et al. [SHGR11] propose an approach
to allow the modeling and code generation of signal processing systems to extend
activity-diagrams in order to improve support for repetitive and recursive process
modeling.

In [SP09], Sulistyo and Prinz show how to combine top-down (recursive model
refinements) and bottom-up (extending programming environments) modeling ap-
proaches to allow full code generation, resulting in an executable system. Therefore
they recursively optimize an activity-diagram from a very coarse to a fine model
representation, which can then be transformed into an executable using predefined
rules.

An important work directly related to the presented approach is the work of
Efftinge et. al [EEK+12]. They present Xbase as a reusable part of xText, allowing the
usage of expressions in a control flow. Furthermore, they provide full interoperability
between Java and Xbase based DSLs. This gives engineers the possibility to start the
development of new DSLs from a generic base. Parts of the Xbase Extended Backus
Naur Form (EBNF) notation are used for the expression language.

Engelen and Van Den Brand [EvdB10] propose an approach to textually represent
activity-diagrams and transform them into the diagram’s graphical UML representa-
tion. Scheidgen [Sch08] shows how textual modeling can be integrated into Eclipse
Graphical Modeling Editors. It maps the textual and also the graphical elements
to meta-model objects and allows the transformation between both representations.
This approach uses GMF and xText to combine and transform between the textual
and graphical representations.

Another important tool that has to be mentioned here is LabVIEW [Ins16], de-
veloped and maintained by National Instruments. It is a visual programming sys-
tem, providing reusable function blocks, that can be connected and parameterized in
an Integrated Development Environment (IDE). It also supports visual CUDA Pro-
gramming, allowing algorithm development, but it is mainly limited to graphical
modeling.

Besides CUDA and OpenCL, Microsoft also introduced a native programming
model called C++ AMP [Mic16a]. This library is based on DirectX and directly
integrates itself into the C++ runtime environment, using parallel programming

10.2. A GENERIC DATA- AND IMAGE-PROCESSING-LANGUAGE FOR
GPGPU-PROGRAMMING 105

capabilities of both CPU and GPU. But still, the complexity of parallel algorithm
development is not sufficiently reduced.

10.2 A Generic Data- and Image-Processing-Language
for GPGPU-programming

Modern object oriented programming languages in general use classes and names-
paces to form an abstraction of real-world objects. This allows structuring software
by encapsulating functionality belonging together. The following sections will show
the special novel GPGPU GU-DSL extension fulfilling the special GPU requirements
as parallelization, special control structures, host/device management, kernel and
memory management and ROI handling (see also Chapter 10).

The following sections will show the special novel GPGPU GU-DSL extension
fulfilling the special GPU requirements as parallelization, special control structures,
host/device management, kernel and memory management and ROI handling.

10.2.1 GPGPU Behavior Modeling using Expressions and Activity-
Diagrams

This section shows how to use textual activity-diagrams and expressions to give the
developer the possibility to abstract algorithms or behaviors in a more object oriented
manner. Activity-diagrams provide an easy way to model data flow or single system
parts as stated in the introduction.

10.2.1.1 Class-Assignments

GU-DSL allows the assignment of classes to activity-diagrams or to individual swim-
lanes as shown in Sec. 9.1. This allows the developer to directly interact with the
owner class. It provides access to all class member variables and methods as can be
seen in Listing 8 (e.g. the load-node). There are several ways on how GPU support
can be added to the DSL. The first possibility is extending the DSL itself, but with
the drawback that adding new features always requires rebuilding the DSL. A sec-
ond possibility is the definition of a GPU class interface containing all GPU related
methods. This allows a simple extension of the range of functions while keeping the
DSL simple. To make the functionality available for algorithm design, a two-step
approach is used. In the first step, a new class containing all GPU related filters has
to be modeled extending the GPU interface class. Next, the class is assigned as owner
to all required and implemented activity-diagrams.

106 CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING

…

…
 …

Gx Wx

…

…

…

…

Gy Wy

w00
… wn0

w0m
… wnm

…

Figure 10.2: 2D work-grid G (left) with an exemplary work-group w (right) (based on
[AMD16]).

10.2.1.2 Diagram Input Parameter, Transition-Arguments and Guards

One of the most important system features is the implementation of diagram input
and output parameters, as well as objects, which are an essential extension to allow
the re-usage of diagrams. The second important newly introduced feature is tran-
sition arguments. They are passed along a transition (data- and object-flow) to the
destination action, allowing to call the action multiple times having different entry
parameters. This is the key feature for the presented GPGPU programming system
as will be seen in Sec. 10.2.1.3. Listing 8 shows the implementation of the load-method
introduced in Listing 1 using input parameters and transition arguments between
nodes. Besides arguments, transitions can be guarded by guard expressions. This
allows to design multiple flow paths, which e.g. is required for loops.

10.2.1.3 Calculation nodes

Calculation nodes are a GPGPU specific extension. As stated in the previous sections,
algorithms or data processing tasks have to be split in multiple, small sub-tasks that
can be executed in parallel. The developer has to decide if the problem is treated as
1D, 2D, or 3D, since the proper number and dimension of work-groups depend on
this. For example, in image processing tasks, npixels = widthimg× heightimg have to be
processed.

In this case, the problem can be assumed to be 2D. Applying the filtering step
means that a work item has to be created for every pixel on the GPU (see Fig. 10.2). The
number of work-groups nwork−groups can be chosen in the following manner, assuming
16×16 = 256 work-items per work-group:

nwork−groupsx = ceil(widthimg/16)
nwork−groupsy = ceil(heightimg/16)

Among other things, the ideal number of work-items depends on the GPU hard-
ware capabilities. The calculation-nodes allow passing the dimension (dimension-x,

10.2. A GENERIC DATA- AND IMAGE-PROCESSING-LANGUAGE FOR
GPGPU-PROGRAMMING 107

dimension-y, dimension-z; in this case the image width and/or image height, z can be
ignored at this time) along the incoming source transition (see Listing 9). For a more
detailed description of work-groups and work-items have e.g. a look at [AMD16].

1 // Pass the image size along the transition to the calc-node.
2 // It is used to determine the ideal number of work-groups and work-items
3 => filterData (image.width(), image.height(), 0);

Listing 9 Transition arguments.

The ideal number of work-groups and work-items is chosen by the underlying
heterogeneous-computing-system and its declaration can be done like in Listing 10.

1 // Definition of GPU calc-node. Note: The work-size
2 // parameters don’t have to be declared
3 calc filterData()
4 { // call the GPU filter that is modeled in a separate class
5 call Filter::filterBilateral(imageContainer ,
6 outImageContainer , 13.0f, 10.0f, 50.0f);
7
8 => showFilteredImage;
9 }

Listing 10 An exemplary calculation node.

Knowing that the ideal number of items cannot always be chosen automatically, a
second type of calculation node has been added allowing to manually pass the global-
and local-processing kernel ranges (see Listing 11).

1 // Definition of GPU calcRang -node with two parameters. Note: The global-
2 // and local work-size parameters don’t have to be declared
3 calcRange filterDataRange(int arg1, int arg2) { }

Listing 11 Defintion of a range based calculation node.

As already shown for the standard calculation node, the dimensions are passed
along the incoming transition. Instead of the three arguments, six arguments can be
passed to the node, representing the global-range (x, y, z) and also the local-range (x,
y, z). This kind of node is used in the GPU-reduction example shown in Sec. 10.4.

10.2.1.4 Loop- and Loop-Window-Nodes

Image processing tasks often require looping across image areas to set neighboring
pixels into relation. Typically, this kind of problem is solved using two or more nested
for-loops. For this reason, two new additional node types:

• Loops: a loop-node is a simple node comparable to either a for- or a while loop
well known from Java or C++

• Loop-Windows: a loop-window is the representation of an arbitrary number of
nested loops

108 CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING

Loop-nodes allow the direct definition of loops within flow diagrams. Instead of
the more complex and confusing connection of several action nodes to a ring, loop-
nodes have up to four sections: a setup-, a test-, an increment- and an expression
area. Depending on which of the first three sections are used, the node is either
interpreted as for-, while- or do-while-loop. Loop-Windows are the second new node
type that has been newly designed in the DSL. They allow to directly model nested
loops within a single node. Depending on the number <n> of declared setups, the
node is interpreted as <n> nested loops (see Listing 12).

1 // Declaration of a loop window using two different control variable types.
2 // The loopWindow node directly defines two nested loops compared to e.g. C++
3 loopWindow filterKernel(var int u = -n_radius , var float v = (float)-n_radius;
4 u < n_radius , v < n_radius;
5 u = u + 1, v = v + 1.0f)
6 {
7 => writeOutput;
8 }

Listing 12 Definition of a loop-window node.

Using these two kinds of nodes gives a much better system overview and improves
the diagram maintainability. Both types are used in the examples in Sec. 10.4.

10.2.1.5 GPU specific data types and keywords

Programming on GPUs has special functional requirements for programming lan-
guages. Fundamental data types, as int, float etc., have been well known for a
long time. But this is in most cases not enough for 2D and 3D image processing
tasks. Special data types such as int4 or float4 can help making complex tasks bet-
ter understandable. Imagine a 4-channel image (red, green, blue, alpha; RGBA).
Reading this data would result in four single values, but float4 can simply group
the values into one single structure. For this purpose, OpenCL and also CUDA
add some special vector-data-types. Natively the following types t are supported:
(u)short<n>, (u)int<n>, (u)long<n>, float<n>, double<n> with <n> ∈ {2,3,4,8,16}.
Also, special image-types, image2D_<t>, image3D_<t>, respectively buffer-related
types, buffer2D_<t><n> and buffer3D_<t><n>, with <t>∈ { c(char), uc(unsigned
char), s(short), us(unsigned short), i(int), ui(unsigned int), l(long), ul(unsigned long),
f(float), d(double)} and <n> ∈ {2,3,4,8,16}, have been added to the DSL. Adding type
information to data types solves the drawback of the original OpenCL types (im-
age2D_t, image3D_t and default vector-data-types), where the underlying type or at
least the dimension is not available in a kernel call. Knowing the underlying type
allows the validation and verification of parameter types before and during the code
generation process, which can of course reduce the number of typical OpenCL ker-
nel memory access violations. Furthermore, image access qualifier flags (write and
read) have been added to the DSL allowing to pass image buffers with read, write or
read-write access to an activity-diagram, respectively to a kernel call.

10.3. HETEROGENEOUS COMPUTING AND CODE GENERATION 109

In Fig. 10.2 the concept of work-grids and -groups has been introduced. Each work-
item within a work-group is processed separately. But very often, the exchange of
information is required during execution. To share data between work-items, shared
memory is used. The keyword shared has been added for this purpose. Declaring
a method parameter with this keyword forces the code generator and OpenCL to
reserve a special shared memory block for each work-group. The size in bytes of
the memory block is passed along the node-transition as an argument instead of a
variable.

10.2.1.6 New control structures

Beside the previously introduced GPU data-types, the need for additional novel con-
trol structures has been identified. Similar to the introduced loop- and loop-window
node-types, two new control structures have been added to the GU-DSL expression
language part: loopwindow2D and loopwindow3D. Both of them are interpreted as
nested for-loops in 2D and 3D respectively. This simply shortens the expression parts
within nodes and helps avoiding mistakes.

10.3 Heterogeneous Computing and Code Generation

The DSL is designed in a way to provide best support and compatibility to C and
C++, while supporting extensions of managed and type safe languages like Java or
C# and it is also compatible with them. C and C++ are used as an intermediate
state to transform the model to an executable. The generator is designed to meet the
requirements of GPGPU programing as well as possible which will be shown in the
next sections.

10.3.1 Heterogeneous Computing

Due to the fact that GPGPU framework initialization is a frequently recurring task,
this code and additional processing code, such as kernel calls (see Fig. 10.5) and
GPU memory management (see Fig. 10.6), has been encapsulated into a framework
called Heterogeneous Computing. Furthermore, an OpenGL GUI framework is used,
developed from scratch using Qt [QT16] as base user interface, to give the possibility to
show and manipulate images processed by the GPU. The flow of code processing and
executable-generation can be seen in Fig. 10.3. Starting from the graphical and/or from
the textual model, the model is transformed to C++ and OpenCL code using an Xtend-
based code generator. It fully incorporates the GUI- and the HC-framework. Finally,
the generated code is compiled to an executable file. The Heterogeneous Computing
framework works with a multi-layer principle (see Fig. 10.4). Structurally, there is the
native OpenCL implementation (or/and other GPU frameworks in the future, Layer 1),
encapsulating the available platforms and computing devices (e.g. the graphic cards)

110 CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING

(Layer 2). Layer 3 abstracts the wrappers to a common framework, hiding platform
specific implementations from the programer. On top of this abstraction layer, the
simplification Layer 4 has been added, giving programmers the opportunity to use
simple kernel and memory containers, instead of the more complex framework layer.
Depending on the requirements, it is possible to mix Layer 3 and Layer 4 and to switch
between them. This means that the designer/developer has always full access to the
underlying HC-framework of Layer 3 to e.g. manually do some kind of kernel- or
memory management.

OpenGL-GUI-Framework

Heteregenous Computing
Framework

C/C++/OpenCL-Code Generator

Generation

Framework Runtime

DSL and/or graphical model

Model

Executable GPGPU Application

Application

Figure 10.3: Code generation flow starting from the model as entry point. [HFKK16]

The two most important framework classes will be introduced here. The first one is
the KernelCall class. It abstracts the setting of arguments, the kernel execution and has
additional timing information (see Fig. 10.5). This class wraps the framework kernel
HCKernel and is used by the code generator for the generation of calculation-nodes.

Heterogeneous Computing Framework

Image-Container, Buffer-Container, Kernel-Container, …

Heterogeneous Computing Framework,
wrapping the Computing Framworks

OpenCL Wrapper

OpenCL

e.g. CUDA Wrapper

e.g. CUDA Layer 1

Layer 4

Layer 2

Layer 3

Figure 10.4: The multi-layer schema of the proposed Heterogeneous Computing
Framework.

Other important classes are the image- and buffer containers wrapping GPU mem-
ory and allowing CPU/GPU memory copy and synchronization (see Fig. 10.6) and are
used often in these examples. The framework internally allocates the memory, stores
the containers and handles the full lifecycle, which makes it unnecessary to manually
release it (but it is still possible) and allows the reusage without a reallocation.

Another important concept introduced with the computing framework are val-
idators. Every memory container owns a unique validator that can be extended using

10.3. HETEROGENEOUS COMPUTING AND CODE GENERATION 111

rules. During the generation it is possible to verify the initialization by checking all
registered validation rules, as e.g. checking the dimensions or type. Furthermore this
concept is added to the KernelCall class (see Fig. 10.5).

HeterogeneousComputing
::OpenCLNDKernel

HeterogeneousComputing
::OpenCLKernel

HeterogeneousComputing
::HCKernel

HeterogeneousComputing
::KernelCall

HeterogeneousComputing
::KernelCallTimings

HeterogeneousComputing
::Utilities::HCStopWatch

Figure 10.5: Left: the kernel container inheritance diagram. Right: the kernel call
inheritance diagram of the GPGPU framework.

The code generator is able to add parameter specific rules to the KernelCall class
instance, allowing for runtime validation against the wrapped OpenCL kernel pa-
rameters. This can reduce errors due to wrong parameter types.

HeterogeneousComputing
::HCContainer< T >

HeterogeneousComputing
::BufferContainerBase< T >

HeterogeneousComputing
::ImageContainerBase< T >

HeterogeneousComputing
::BufferContainer< T >

HeterogeneousComputing
::BufferGLContainer< T >

HeterogeneousComputing
::ImageContainer< T >

HeterogeneousComputing
::ImageGLContainer< T >

Figure 10.6: The memory container inheritance diagram of the GPGPU framework.

10.3.2 The Code Generator
This section will introduce the most important features of the code generator and how
special GPU control structures, presented in the previous sections, are transformed
from GU-DSL to OpenCL and C++.

10.3.2.1 Main Diagram

The code generator itself has special extensions supporting the generation of executa-
bles. Applications need a special main-function that is called during start-up. It is the
entry point for all kinds of executables and has the base logic for program execution.
The generator always tries to find an activity-diagram with the name Main to find
the entry point of the model. An alternative solution can be to define and bind a

112 CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING

special entry attribute to the diagram, similar to the class attributes described in the
next section. This main diagram is compiled to the C++ main function and builds the
start-up of the model.

10.3.2.2 Class Attributes

A second special feature of the code generator is the possibility of hiding classes from
generation or treating them in a special way, which is necessary for this approach’s
OpenCL code generation (see Sec. Sec. 10.3.2.3 - OpenCL support and Listing 14).
Before a class or interface is compiled, the generator checks if the developer has put
one or both of the following attributes on the top of the class:

• GeneratorVisibility

• CppType

The GeneratorVisibility attribute (see Listing 13) decides if the class is generated
to C++-code. CppType allows mapping a modeled class to an already existing C++
type, including additional import files. In combination, the two attributes allow the
re-usage and the full C++ class and framework interoperability, especially with the
Heterogeneous Computing and GUI framework.

1 // Hide the class from being generated as additional C++ code, but map all the occurrences
2 // to the already existing C++ type: HeterogeneousComputing::Image2DContainer
3 [Attributes.GeneratorVisibility(visible = false),
4 Filtering.Attributes.CppType(name="HeterogeneousComputing::Image2DContainer")]
5 public class Image2DContainer <T> { /*some code*/ }

Listing 13 Usage example of generator attributes.

10.3.2.3 OpenCL support

OpenCL provides predefined keywords, types and functions. The interoperability
between the modeling toolchain and OpenCL can be achieved using the following
mechanism: an interface with the name OpenCL has to be defined and marked in-
visible for generation: GeneratorVisibility(visible = false). The interface defines all
available OpenCL functions and classes implementing this special interface will now
be interpreted as OpenCL file by the generator (see Listing 14). Activity-diagrams
receive OpenCL support by assigning the OpenCL extension classes as owner (see
Sec. 10.2.1.1). OpenCL itself is a C dialect and can easily be created in a similar way
to the other expressions from the GU-DSL expression-language. Once the GPU side
is generated, the host side (CPU) has to be generated. Therefore, all the calculation
nodes are generated as methods filling a KernelCall-class instance with all the required
arguments and the execution call. The problem size estimation is done in an under-
lying worksize-calculator. So just the 1D-, 2D- and 3D- problem size is passed along
a transition to the calculation node. The ideal local ranges can then automatically be
chosen.

10.3. HETEROGENEOUS COMPUTING AND CODE GENERATION 113

1 // All declarations have to be invisible for the generator and are just used for modeling
2 ClassDiagram GPU
3 {
4 // Hide the enumeration from generation
5 [Generator.Attributes.GeneratorVisibility(visible = false),
6 Generator.Attributes.CppType(name="sampler_t")]
7 enum sampler_t
8 {
9 CLK_NORMALIZED_COORDS_FALSE ,
10 CLK_ADDRESS_REPEAT ,
11 CLK_FILTER_NEAREST
12 }
13
14 // ... All other OpenCL type declarations
15
16 import "<QImage>";
17 import "<vector>";
18
19 import Generator.Attributes.*;
20
21 // Hide the interface from generation
22 [GeneratorVisibility(visible = false)]
23 public interface OpenCL
24 {
25 public int get_global_id(int dimension);
26 public int get_global_size(int dimension);
27
28 public float4 read_imagef(image2D_f image, sampler_t sampler, int2 coordinate);
29 public void write_imagef(image2D_f image, int2 coordinate , float4 value);
30
31 // ... All other OpenCL declarations
32 }
33 }

Listing 14 OpenCL interface declaration.

10.3.2.4 Activity-Diagram Generation

In general, activity-diagrams are comparable to directed graphs. They can be trans-
formed in a recursive way. Starting from the initial-node, the diagram can recursively
be traversed from node to node until the final-node is reached. Special method-nodes,
accepting in- and out-parameters are generated as methods, while simple nodes are
generated in place. But this concept would be too simple, if performance and code
reduction were one of the goals. Furthermore, it has several drawbacks such as code
redundancy and the missing loop detection. Both stated problems are handled by
the code generator. Code redundancy can be reduced by a look-up in a graph-node-
table. Therefore, the activity-diagram is treated as a directed graph and stored in a
graph-node look-up table to analyze all reachable nodes from a single node. Once a
transition of a node is generated, a backward look-up in the graph-table is performed
to check, if the transition target is also reachable unguardedly by a preceding node.
If this is the case, the code is not generated again at this place. This reduces code
redundancy enormously. The second problem are loops. For loop-detection a way
similar to the one for redundancy reduction is used. For this a forward look-up in
the graph-node-table is performed. It is checked, if the current node is reachable by
a following node. If this is the case, a while-loop is generated. This is implemented
for an arbitrary number of nested nodes.

114 CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING

10.3.2.5 Generation of Control Structures and OpenCL keywords

In Sec. 10.2 several new control structures, OpenCL types and keywords have been
introduced. The GPU code generator part is able to handle these structures, especially
the loop-windows and the shared memory. Loop-nodes are generated either as
while-loop (if only the condition section is filled), as do-while-loop, if a specific
do-while-loop-flag is set, or a for-loop. To simplify nested loop usage, additional
loop-window-nodes that are directly generated as <n> nested for loops have been
defined, depending on the number of loop control variable declarations in the loop
setup section. Another important feature that is handled by the code generator is the
OpenCL shared memory. The desired size is directly passed as a kernel argument
to tell the OpenCL-compiler to allocate shared memory accessible to all work-items
within a work-group. The OpenCL specific DSL-data-types are first translated into
the correct OpenCL names and types and can then directly be created and used.

10.4 Evaluation

The previous sections introduced the proposed modeling framework in a generic
way. An overview of the general possibilities using the textual language and the
corresponding graphical editors has been given. In this section it will be shown
how three different problems can be modeled and implemented with this Computer
Aided Software Engineering (CASE) toolchain. Two different noise-reducing image
processing filters (as e.g. described in Sec. 6.5.1) have been implemented: a Mean Filter
(averaging the neighborhood pixel-values, see Sec. 10.4.1) and the more complex,
edge-preserving Bilateral Filter (see Sec. 10.4.2). Furthermore, a typical reduction
problem will be shown and analyzed (see Sec. 10.4.3).

10.4.1 Mean Filter

A Mean Filter is a rather simple filter. It allows for noise reduction by averaging a
neighborhood window of fixed size. Depending on this window size, images are
smoothed to a smaller or larger degree. In general, the filter size should be an odd
number. This ensures, that the window center can represent the pixel that is to be
filtered. Noise reduction is a recurring task and this filter can be parallelized easily.
It was taken as a first example and reference implementation using GU-DSL. Every
pixel can be handled on its own. The neighborhood pixel look-ups are realized using
the previously introduced loop-window-node. This keeps the filter clear and short.
The only special point that should be kept in mind is that border pixels (pixels where
the filter window does not fully fit into the image) have to be handled in a special
way (e.g. by using the original value or setting them to black). The corresponding
textual activity diagram can be found in Listing 15 and its graphical counterpart is
available in Fig. 10.7

10.4. EVALUATION 115

10.4.2 Bilateral Filter
The Bilateral Filter [TM98] is another kind of noise reduction filter and has an edge
preserving characteristic. It can be implemented in a very compact way similar to the
Mean Filter using the 2D loop-window nodes. It has the same restrictions as all the
other neighborhood related convolution filters for border pixels (see Sec. 10.4.1). Due
to the Gaussian weighting functions, it is much slower compared to the Mean Filter,
as can be seen in Sec. 10.4.5, despite using heavy parallelization. The important parts
of the corresponding textual activity diagram can be found in Listing 16.

10.4.3 Reduction
Reduction problems are typical and required data processing tasks on GPUs. The
general principle of reduction is to take a data array and to reduce it to a single
remaining element. Depending on the aims of the reduction (building a sum, finding
the minimum or maximum, ...), the elements are reduced in different ways (by e.g.
arithmetic or logical operations). The reduction is performed on a per work-group
basis, meaning all work-groups are reduced to a single element each. Using OpenCL-
thread synchronization, the number of work-items is reduced step by step by first
reading from global memory to shared memory and performing e.g. a comparison.
The winning work-item then continues this comparison until one work-item per
work-group remains. This remaining value is finally written back to global memory.
In a second step, the remaining values can be reduced to a single element (see e.g.
[AMD16]). A special kind of reduction has been chosen, which essentially searches
for the array-index of the first value v that satisfies the condition v ≥ x. The full
implementation can be found in the appendix (see Listing 34).

10.4.4 Implementation Details
The implementation itself can be done using the elements introduced during the
previous sections. Depending on the preferences of the developer, the textual or
the graphical editors can be used. For all three examples, a Main-activity-diagram
(see Sec. 10.3.2.1 and Listing 30) has been used for the control flow. The diagram is
divided into several sections, such as GPU buffer initialization and synchronization,
the viewer setup, processing and displaying results. Beside the heavy usage of the
expression language, the most important newly introduced language features used
are loop- (viewer image initialization), calc- (Bilateral and Mean Filter execution)
and calcRange-nodes (findIndex-execution). The usage can be seen in the full Main-
activity-diagram in the appendix (see Listing 31 and Listing 32). While the Bilateral
and Mean filter calculation nodes benefit from the framework’s work-size calculator,
the findIndex-reduction is formulated as 1D problem. So the optimal work-range
calculation is implemented in the Main-diagram. Necessary framework C++ classes
(GPU buffer, viewer, Qt, ...) are mapped using the attribute-mechanism shown in

116 CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING

Sec. 9.1.1. On the GPU side of implementation, an activity-diagram called by the
execution Main-diagram is used, using the OpenCL implementing filter classes (and
class assignments) (see Sec. 10.3.2). Special features used are the loop-window nodes,
shared memory, as well as the newly introduced data-types (see Sec. 10.2.1).

10.4. EVALUATION 117

1 ActivityDiagram AdFilterMean(image2D_uc inBuffer , image2D_uc outBuffer , int kernelSize)
2 {
3 import \gls{ac-OPENCL}.\gls{ac-GPU}.*;
4
5 public int gidx;
6 public int gidy;
7 public int n_radius;
8 public int2 coordinate;
9 public const sampler_t _sampler = ((sampler_t.CLK_NORMALIZED_COORDS_FALSE|sampler_t.CLK_ADDRESS_REPEAT)|

sampler_t.CLK_FILTER_NEAREST);
10 public int4 outValue = new int4(0, 0, 0, 255);
11 public int count = 0;
12 public float3 accumulated = new float3(0, 0, 0);
13
14 swimlane P1, owner Filtering.Filter2.MeanFilter
15 {
16 start S1
17 {
18 => init;
19 }
20 // Initialize filtering
21 action init
22 { // Read the global work-item coordinates
23 gidx = get_global_id (0);
24 gidy = get_global_id (1);
25 n_radius = kernelSize/2;
26 coordinate = new int2 (gidx , gidy);
27
28 => checkValid;
29 }
30 // Check border values
31 action checkValid
32 {
33 var int dst_width = get_global_size (0);
34 var int dst_height = get_global_size (1);
35 outValue = new int4(0, 0, 0, 255);
36 // Check using guarded transitions , if a border
37 // pixel is processed and possibly write an invalid output value
38 [(gidx >= (dst_width - n_radius)) || (gidy >= (dst_height - n_radius)) || (gidx < n_radius) || (

gidy < n_radius)] => writeOutputInvalid;
39 [] => filterKernel;
40
41 }
42 // Use the new filter window node to process a 2D window of pixels
43 loopWindow filterKernel(var int u = -n_radius , var int v = -n_radius;
44 u < n_radius , v < n_radius;
45 u = u + 1, v = v + 1)
46 {
47 var int i = gidx + u;
48 var int j = gidy + v;
49 var int2 localCoordinate = new int2 (i , j);
50 var int4 currentPixi = read_imagei (inBuffer , _sampler , localCoordinate);
51 var float3 currentPixf = new float3(currentPixi._x/255.0f, currentPixi._y/255.0f, currentPixi._z/255.0f);
52 accumulated = accumulated + currentPixf;
53 count = count + 1;
54
55 => writeOutput;
56 }
57 // Write a default output value, and finish
58 action writeOutputInvalid
59 {
60 write_imagei(outBuffer , coordinate , outValue);
61
62 => f;
63 }
64 // Write the mean filtered value and finish
65 action writeOutput
66 {
67 var float3 outValuef = accumulated/count;
68 outValue = new int4(outValuef._x*255, outValuef._y*255, outValuef._z*255, 255);
69 write_imagei(outBuffer , coordinate , outValue);
70
71 => f;
72 }
73 final f
74 }
75 }

Listing 15 Important parts of the Mean Filter activity-diagram using several
of the newly proposed features.

118 CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING

1 ActivityDiagram AdFilterBilateral(image2D_uc inBuffer , image2D_uc outBuffer , int kernelSize)
2 {
3 // Declarations ...
4
5 swimlane P1, owner Filtering.Filter2.BilateralFilter
6 {
7 // Other node definitions ...
8
9 // Use the new filter window node to process a 2D window of pixels
10 loopWindow filterKernel(var int u = -n_radius , var int v = -n_radius;
11 u < n_radius , v < n_radius;
12 u = u + 1, v = v + 1)
13 {
14 var int i = gidx + u;
15 var int j = gidy + v;
16 var int2 localCoordinate = new int2 (i , j);
17 var int4 currentPixi = read_imagei (inBuffer , _sampler , localCoordinate);
18 var float3 currentPixf = new float3(currentPixi._x/255.0f, currentPixi._y/255.0f, currentPixi._z/255.0f);
19 accumulated = accumulated + currentPixf;
20 count = count + 1;
21
22 => writeOutput;
23 }
24
25 // Other node definitions ...
26 }
27 }

Listing 16 Important parts of the Bilateral Filter activity-diagram. Most parts
are comparable to the mean filter implementation of Listing 15.

10.4.5 Results

This section will show the results of the previously described examples. It mainly
focuses on a performance analysis of the generated OpenCL code in comparison to
manually written OpenCL code.

10.4.5.1 Performance Analysis

The analysis starts with a performance comparison of generated OpenCL kernel
calls against manually optimized OpenCL kernel calls. There are two goals of this
analysis. The first one is to evaluate the influence of the proposed framework on
the execution time, while the second one is to analyze the speed of the generated
OpenCL code. Therefore a sequential native C++ application has been implemented
doing all the OpenCL initialization by hand (optimized executable). This reduces the
overhead of the object oriented GPU framework. Additionally, all three examples
have been implemented by hand (OpenCL code manually coded). In parallel the
same functionality has been implemented using the proposed CASE toolchain (ex-
ecutable and OpenCL code generated). To make the comparison more meaningful,
the graphical implementation was designed using a similar code structure, but as
an activity-diagram. Fig. 10.8 shows the execution time and the lines of code (LOC)
results achieved on an Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz, with a NVIDIA
GeForce GTX 770 graphics card by averaging 1000 iterations. The image used for
bilateral and mean filtering is ”Lena” (512x512 pixels), generally used for image pro-
cessing demonstrations (it can be found in the image database of the University of
Southern California [USC16]).

10.4. EVALUATION 119

Figure 10.7: Important parts of the graphical Mean Filter activity-diagram using
several of the newly proposed features. [HFKK16]

On the left top of Fig. 10.8, it can be seen that the average execution time of the
optimized Bilateral Filter is 9.73159 ms and the generated version takes 9.65517 ms. In
comparison to it, the execution times are shown that have been reached with the fully
generated executable. The optimized OpenCL code runs within 10.99037 ms while
the generated OpenCL kernel takes 10.80856 ms. This means, that the optimized
code requires 1.25878 ms and the generated 1.15339 ms more time for execution in the
fully generated code (this is about 12% slower compared to the optimized code). The
left center figure shows the different execution times of the Mean Filter, where the
average execution time of the optimized Mean Filter in the optimized environment
is 0.79074 ms and for the generated OpenCL code 0.80438 ms. In the generated
executable, the execution time is 1.47328 ms for the optimized OpenCL and 1.32343
ms for the generated code. The generated OpenCL code is 0.68254 ms slower in
the optimized executable, while it is 0.51906 ms slower in the generated executable.
This is about 87 %, respectively 65 % slower compared to optimized code. The third
example (the findIndex-reduction) can be seen in the left bottom figure. The optimized

120 CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING

OpenCL-Code -
Bilateral Filter

manually coded

OpenCL-Code -
Bilateral GU-DSL

generated

OpenCL-Code
Bilateral-Filter -
Execution Time

Difference

Optimized
Executable

9,73159 ms 10,99037 ms 1,25878 ms

Generated
Executable

9,65517 ms 10,80856 ms 1,15339 ms

0,0

2,0

4,0

6,0

8,0

10,0

12,0

Ex
e

cu
ti

o
n

 T
im

e
 in

 m
s

Bilateral Filter

Bilateral Filter Mean Fillter
FindIndex
Reduction

Textual code 32 29 83

Graphical code 47 42 160

Total code 79 71 243

0

50

100

150

200

250

300

Li
n

e
s

O
f

C
o

d
e

DSL Lines Of Code Overview

OpenCL-Code -
Mean-Filter

manually coded

OpenCL-Code -
Mean Filter

GU-DSL generated

OpenCL-Code -
Mean-Filter

 Execution Time
Difference

Optimized
Executable

0,79074 ms 1,47328 ms 0,68254 ms

Generated
Executable

0,80438 ms 1,32343 ms 0,51906 ms

0,0

0,3

0,6

0,9

1,2

1,5

1,8

Ex
e

cu
ti

o
n

 T
im

e
 in

 m
s

Mean Filter

Bilateral manually
coded

Mean manually
coded

FindIndex
manually coded

OpenCL Optimized 38 30 141

OpenCL Generated 56 51 174

0

20

40

60

80

100

120

140

160

180

200

Li
n

e
s

O
f

C
o

d
e

OpenCL Lines Of Code Overview

OpenCL-Code -
FindIndex

manually coded

OpenCL-Code -
FindIndex

GU-DSL generated

OpenCL-Code -
FindIndex

Execution Time
Difference

Optimized
Executable

0,14690 ms 0,29999 ms 0,15309 ms

Generated
Executable

0,15357 ms 0,30850 ms 0,15493 ms

0,0

0,1

0,1

0,2

0,2

0,3

0,4

Ex
e

cu
ti

o
n

 T
im

e
 in

 m
s

FindIndex Reduction

Bilateral Mean FindIndex

Optimized 41 41 102

Generated 23 20 69

Textual -24 -22 -91

Graphical -9 -9 -14

-150

-100

-50

0

50

100

150

Li
n

e
s

O
f

C
o

d
e

DSL-OpenCL Difference Lines Of Code

Figure 10.8: Left side: the figures show the average execution time of generated
OpenCL code in comparison to manually optimized OpenCL code in a raw OpenCL-
executable (manually coded) and an executable using the proposed framework (GU-
DSL generated). Right side: the figures show the lines of code overview of all
examples. Top: lines of GU-DSL code split in textual (pure implementation), graphical
(e.g. node declarations and transitions) and total code. Center: lines of OpenCL code
optimized and generated. Bottom: the difference between the lines of code of GU-DSL
and OpenCL. [HFKK16]

OpenCL code requires 0.14690 ms and the generated OpenCL code requires 0,15357
ms in the optimized executable. Using the fully generated executable, the optimized
OpenCL code can be executed within 0.29999 ms and the generated code within

10.4. EVALUATION 121

0.30850 ms. This means that compared to the optimized executable, the generated
code is slower by 0.15309 ms and 0.15493 ms respectively (which is about half as
fast). In summary, it can be inferred from these results that the purely generated
OpenCL code is comparable to the manually optimized code in performance, at least
for algorithm implementations with larger execution times (e.g. the Bilateral Filter).
For algorithms with short execution times, the acceptability depends on the system
requirements. The explanation of the high percentage differences is simple and can
be deduced from the Bilateral Filter. For short or fast kernels, the proportionate cost
for passing OpenCL kernel arguments and kernel calls is rather high. The slower
the kernel runs, the less this overhead carries weight. This can be a typical result for
object oriented programming in comparison to fast, but often confusing sequential
development. This means in total that the generated OpenCL code itself can be
fully accepted in the performance domain, while the overhead of the underlying HC
framework can unfortunately not be completely ignored. But it is acceptable in many
cases.

10.4.5.2 Lines Of Code Analysis

The second interesting evaluation are the lines of code used for representing the
algorithms (see Fig. 10.8). It is clear, that high-level structuring causes additional
lines of code, which is generally applicable for high-level programming languages.
In this section GU-DSL code (right top and right center in Fig. 10.8) and also generated
versus optimized OpenCL code (right bottom figure) will be compared. In the right
top figure the number of required lines for the examples can be seen, being split into
three different textual metrics: the total number of necessary lines, pure textual code
and also the graphical, respectively the activity-diagram code. In the right center
figure, optimized OpenCL code is compared against the GU-DSL generated code.
The right bottom figure concludes the lines of code analysis showing the differences
of lines of code between GU-DSL and OpenCL code. It can be seen that 79 LOC
are necessary for the Bilateral Filter, 71 LOC for the Mean Filter and 243 LOC for the
findIndex-reduction using GU-DSL. Having a look on the optimized OpenCL code 38
LOC are required for the Bilateral Filter, 30 LOC for the Mean Filter and 141 LOC for
the findIndex, while the generated code uses 56 LOC (≈ 47 % more) for the Bilateral
Filter, 51 LOC (≈ 70 % more) for the Mean Filter and 174 LOC (≈ 23 % more) for
the findIndex-reduction. The reasons for these differences are related to the way how
the code-generator works. Every node is encapsulated into a block of curly braces.
This leads to a huge number of potentially unnecessary braces but has no influence
on performance. Finally, when comparing the GU-DSL code against the OpenCL
code, it can be seen that 41 LOC (optimized, ≈ 108 %) and 23 LOC (generated, ≈
41 %) more are required for the Bilateral Filter, 41 LOC (optimized, ≈ 136 %) and 20
LOC (generated, ≈ 39 %) more lines for the Mean Filter and 102 LOC (optimized,
≈ 72 %) and 69 LOC (generated, ≈ 39 %) for findIndex-reduction. At a first glance,
these numbers seem to be very high, but when splitting the GU-DSL code into a pure

122 CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING

textual (expressions) and separated graphical part (diagram-, node- and transition-
definitions), it can be seen that the difference isn’t that large. That means in detail that
depending on the algorithm length, the additional graphical amount of LOC raises.
But this is compensated using the graphical modeling approach presented in this
thesis where the nodes just have to be placed and filled with necessary expressions.
It can be said that a LOC overhead is present using the textual variant of GU-DSL,
but in combination with the graphical editors, the overall advantages prevail.

10.4.6 Evaluation Summary
In total, GU-DSL and the corresponding generator have of course a non negligible
overhead in both performance and lines of code (LOC). However, a performance
gap using strong object orientation, as done with the proposed HC framework, will
always occur independently to this approach (see also Sec. 10.4.5.1). Furthermore, it
has been shown that the performance of the generated OpenCL code compared to
the optimized code is approximately identical. Besides the performance comparison
also a LOC comparison has been executed. It could be seen, that depending on
the algorithm length, the additional graphical amount of LOC rises. However, this
is compensated using the presented graphical modeling approach depicted in this
thesis where the nodes just have to be placed and filled with necessary expressions.
It can be said that an LOC overhead using the textual variant of GU-DSL is present,
but in combination with the graphical editors, the overall advantages prevail. The
LOC can mostly be ignored using the graphical model-driven development approach
in combination with the built-in editors. Under observance of some simple points
(splitting flows not to finely granular, using graphical editors and using the provided
framework as often as possible), the presented approach for GPGPU programming
has more advantages than disadvantages and it has potential improving the Time-to-
Market by reducing many common mistakes.

10.5 Summary

In the previous sections, the novel GU-DSL GPGPU language extension has been
introduced in combination with graphical editors, allowing developers and mod-
elers to design fully runnable GPGPU applications in a model driven way. The
modeling toolchain is based on Eclipse-xText to design the novel DSL and its text
editors. Eclipse-GMF is used to develop the corresponding graphical designers. In
combination with the code generator and the high-level abstraction Heterogeneous
Computing OpenCL framework, it is possible to easily develop fast image processing
filters, e.g. a Bilateral Filter or even more complex processing methods (e.g. the
findIndex-reduction).

The proposed language and the HC framework are already used in several in-
dustrial projects. Feedback has already been integrated into the language and in-

10.5. SUMMARY 123

frastructure design. An import result is that too fine- or coarse-granular modeling
of algorithms minimizes the advantages (e.g. clarity and maintainability) of using
the proposed toolchain. A good mixture between expression grouping in a node and
nodes that represent single operations has to be found. If a developer keeps this in
mind, then this toolchain can really improve the development of complex image and
data processing GPGPU systems. It structures the code that has to be written and can
assist the developer in avoiding common mistakes.

The future work will focus on CUDA support, further case studies and the support
of automatic test- and documentation generation, which will additionally increase
the significance of the presented novel DSL and editors in the sense of model-driven
GPGPU development.

124 CHAPTER 10. MODEL DRIVEN GPGPU PROGRAMMING

CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING
ARCHITECTURES 125

11
Component-Based

Data And Image
Processing

Architectures

S etting up new data and image processing systems (e.g. such as Chapter 6) is an
always recurring task. Having predefined DSLs and tested generic default run-

time architectures, supporting functionality as Graphical-User-Interface (GUI) and
algorithm interaction can catalyze development. As an add-on on top of a data pro-
cessing runtime, Component-Based Software Engineering can help separating data
processing problems and algorithms into packed, reusable software components. Af-
ter designing such a component, engineers and developers are able to instantiate it
and connect it to other components using predefined interfaces. However, one of
the biggest drawbacks in the domain of data and image processing is that no real
standard architecture has been established yet.

This work proposes an external DSL in combination with graphical modeling
based on GU-DSL [HFKK15]. Furthermore, the complete infrastructure of a data and
image processing runtime environment in combination with a C++ CBSE system is
introduced, allowing algorithm development to remain in focus. The newly proposed
language extensions are designed in a way to best fit the object and model oriented
concept of GU-DSL.

GU-DSL and the C++ CBSE system realize a component approach supporting and
introducing the following novel main features and the necessary infrastructure:

• A language concept and implementation of components using ports and inter-
faces based on xText

• Component- and novel component-instance-diagrams

• An exemplary C++ based CBSE system mapped to the GU-DSL features

• A prototype-based factory pattern for dynamic object registration and genera-
tion

126
CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING

ARCHITECTURES

• A Rich Client Platform (RCP) (console and GUI based) supporting a plugin
based extension system (GUI and components)

Publications: Abstracting Data and Image Processing Systems using a Component-Based
Domain Specific Language [HKK16]; Component based data and image processing systems:
A conceptual and practical approach [HKK15]

11.1 Related Work

This thesis presents GU-DSL with a component extension and a C++ CBSE framework
allowing for Component-Based Software Engineering. The next sections will have a
look at some important related work.

The basis of this proposed work is GU-DSL [HFKK15]. It is a generic image
processing DSL allowing engineers to develop image processing algorithms and tools
in an abstract and simplified manner. It has a Java and C# like syntax supporting class-
(structural modeling) and activity-diagrams (behavior modeling). Furthermore, it
includes an expression language allowing sequential algorithm development.

Several other related languages and software engineering frameworks have been
developed during the last years. Architecture Definition Languages play an important
role for this development, allowing description of hardware as well as software
architectures. GU-DSL and its infrastructure is exemplary compared to the most
important of them.

A very early approach of formal architecture definitions is Wright [AG97]. It
was introduced by R. Allen et. al in 1997, proposing ways how components can be
interconnected.

In [MDK92], Magee et al. have introduced Darwin, a configuration language
that allows for grouping process instances (an early kind of modern components)
communicating by message passing.

Another standardized example of an ADL is AADL [FLVC05]. It was developed es-
pecially for automotive embedded hard- and software real-time systems, supporting
several different types as devices, buses, processors (hardware-side) and threading or
data processing (software-side). Furthermore, it can encapsulate visible functionality
into connectable components.

UML [OMG16e] is another standardized, ADL like language supporting struc-
tural, sequential and behavioral graphical modeling of real world problems. It is
proposed to be a generic applicable system and architecture language, giving archi-
tects the possibility of graphically designing and solving problem descriptions.

Besides ADLs, also other related component-based approaches and frameworks
have been installed in several domains of software engineering in the past two
decades.

11.2. SYSTEM CONCEPT AND OVERVIEW 127

An early example of a component-based robotic controlling framework is Smart-
Soft [SW99b, SW99a] on basis of CORBA (Common Object Request Broker Architec-
ture, supported by the OMG [OMG16a]), originally developed in the late 1990s. They
propose concepts and patterns how electronic and software components of a robot
can interact and how they can be designed in a reusable way. Furthermore, they in-
troduce concepts of event driven communication and also model driven approaches
[SHLS09].

In 2002, the CORBA Component Model (CCM) [OMG16b], based on CORBA
3.0, has been released supporting component-based distributed architectures and
services.

Another widely spread approach of component-based architectures is Microsoft’s
Component Object Model (COM) and its distributed version (DCOM) [Mic16b]. It
is mostly language independent using instantiable interfaces for an abstract view of
distributed components.

Other interesting image-processing frameworks are OpenCV [Ope16] and the
Point Cloud Library (PCL) [PCL16]. Both libraries have the main focus on providing
simple interfaces to generic 2D and 3D image processing algorithms and viewers.
But in general, to use the frameworks in real applications, the GUI and algorithm
usage has to be manually coded. Using the GU-DSL attribute concept proposed in
[HFKK15] it is easy to integrate this kind of library into the system.

In contrast to the mentioned languages and component systems, GU-DSL and
the implemented framework provides the full functionality necessary for develop-
ing fast, interactive image processing pipelines. Furthermore, the framework sup-
ports the concept of round-trip engineering necessary for arbitrary switching between
graphical and textual modeling. It specially focuses on object oriented textual and
graphical modeling in the sense of model driven engineering. Starting with object
abstractions (from object to class to component) up to the final system generation
using the proposed C++-CBSE framework, the full development process is assisted.

Besides the presented ADLs, frameworks and concepts, many other systems exist,
e.g. LabView [Ins16] with its dataflow visual programming language. But no system
comparable to the proposed one in the domain of data and image processing has
been available until now, supporting its own DSL (graphical and textual), an ADL, a
code-generator and a corresponding C++-CBSE runtime system.

11.2 System Concept and Overview

GU-DSL is a diagram based, object oriented modeling language supporting structural-
and behavior-modeling in a textual and graphical, model driven way. Apart from
using class- and activity-diagrams to model objects and system behaviors, it also
gives architects the possibility for sequential behavior coding using its embedded
expression language (see [HFKK15]).

This chapter shows the component-based extension to GU-DSL. For component-

128
CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING

ARCHITECTURES

Eclipse Xtext/GMF/Java

Basic-GU-DSL
(Xtext-DSL)

C/C++/OpenCL-Code Generator

GMF-Editors

OpenGL-GUI-Framework

Heteregenous Computing
Framework

Real-World-Problem
Description/Algorithm

Modeling

Generation

Runtime

Framework Runtime

Component-
based GU-DSL

C++ CBSE Framwork

Figure 11.1: The principle schema of the component-based GU-DSL framework.
[HKK16]

oriented modeling, the basic concepts specified in literature as interfaces, classes,
components, ports and interface connections are picked up and integrated in a novel
way into GU-DSL. Hence, special novel keywords, structures, component imple-
mentations and communication concepts have been added as will be shown in the
following sections.

Fig. 11.1 shows the principle setup of the GU-DSL framework. Novel added
features, like the component support, are highlighted in green, while the extended
schema parts are marked blue. The system comprises three collaborating parts:
modeling, code-generation and the runtime framework. The framework itself is also
split into three parts: a Heterogeneous Computing framework (see also Chapter 10),
based on OpenCL, an OpenGL GUI framework (allowing the interactive visualization
of images or data) and the newly introduced C++ CBSE framework.

Data and image processing tasks can rapidly grow in complexity. The abstraction
towards reusable components helps handling this. Having a look at such a process-
ing system (see the examples in Chapter 6 and Sec. 11.5) shows, that it is in general
a pipeline system starting with a source (often a camera, sensor or a database), con-
tinuing with filters (e.g. noise reduction or data evaluation) and finishing with sinks
(e.g. showing or storing data). In software-engineering, this problem description can
be mapped by the pipe and filter architectural pattern, allowing pipeline based data pro-
cessing. It serves as a basis for the novel concept of a CBSE system as will be shown in
the next sections. A detailed description of the particular GU-DSL framework parts
can be found in Sec. 11.3.

Components form the basis of the system. Interfaces, known e.g. from UML, allow
communication between components. The direction depends on the interface defini-
tion and can be either uni- or bi-directional. GU-DSL is defined with the following
restrictions:

11.3. GU-DSL – COMPONENT-BASED ENGINEERING 129

• Sources: outgoing communications (uni-directional)

• Filters: incoming and outgoing communications (bi-directional)

• Sinks: incoming communications (uni-directional)

Ports are used as flexible input and output points of components by providing
required interfaces. Every port is uniquely assigned to a component and can be
connected to other valid ports, allowing a predefined, direct communication as shown
in the later sections.

11.3 GU-DSL – Component-Based Engineering

This section shows all the new features required for understanding the concept and
novel ideas of component-based engineering using GU-DSL. In [HFKK15] and Chap-
ter 9, the basic principles of GU-DSL have been introduced supporting classes, in-
terfaces and activity-diagrams. But for the component concept, several extensions
have to be implemented. Components are a well established concept in software
engineering, however, the novel contribution of this approach is the way how all
the different diagrams and language features interact to reduce errors (e.g. bugs,
side-effects) and to speed up development using this tested and reusable framework.
Especially the way how components interact with classes, types and methods using
behavior-diagrams or sequential coding are unique in this domain and will be shown
in the following section. Additionally, the proposed component extension can be used
as a standalone approach for pure architectural design and modeling in the sense of
Architecture Definition Languages, even without the GU-DSL basic functionality.

To better support reusable components, the system is split into two main parts:

1. Component-diagrams

2. Component-instance-diagrams

As typical for ADLs, this gives architects the opportunity of splitting a system into
an architectural modeling layer (component-diagrams, where the basic system setup
can be defined) and an instantiation layer (component-instance-diagrams, where
components can be instantiated). This can be partly compared to the OMG Meta-
Object-Facility (MOF, a four layer modeling architecture [OMG16c]).

The following sections will introduce all necessary new language features.

11.3.1 Interface Definitions

A central role in the CBSE system is played by interfaces. GU-DSL already supports
them, but for the novel component extension, they are not sufficient. To make the
system type- and communication-safe, two new keywords have been added: processor

130
CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING

ARCHITECTURES

and provider. As shown in Listing 17, the new keywords can directly be applied to
either defining an output-interface (provider) or an input-interface (processor). The
keywords classify the new interface types to be usable with component ports, as will
be shown in Sec. 11.3.3.

1 Interface:
2 visibility=(’public’|’protected ’|’private ’)? ’interface ’
3 (’provider ’|’processor ’)? name=ID
4 ’{’ (methods+=Method)* ’}’

Listing 17 Component interface definitions.

An automatic communication specialization has been added in a way, that a
provider-interface can talk to a corresponding processor-interface only. For this pur-
pose, there is a restriction that a provide-method-signature needs a corresponding
process-method-signature as can be seen in the example in Listing 26. It simplifies
the usage, makes automatic code generation easier and allows for complete model
validation. Which processor and which provider interface correspond to each other
can be defined in the component-diagram by connecting ports (see Sec. 11.3.3).

11.3.2 Component Definitions

Components and their simple (re-)usage are the central new contribution of this thesis.
In this approach, they are directly interconnected with the class-system known from
class diagrams and are the base of the system architecture definition.

Therefore, an important extension in the GU-DSL’s class diagram is added. The
new keywords source, filter and sink can be used in a similar way as the standard class-
keyword (see Listing 18). Stemming from the domain of data and image processing,
these special keywords characterize the components as specified in Sec. 11.2.

1 BaseClass:
2 visibility=(’public’|’protected ’|’private ’)?
3 (’class’|’source’|’filter’|’sink’) name=ID
4 ’{’
5 (attributes+=Attribute)*
6 (methods+=Method)*
7 ’}’

Listing 18 Component class definitions.

Once having a component-class defined, it is used as basis for the final compo-
nent. Designing components this way gives architects the possibility to split the
definition (component-diagram) from the concrete implementation (class-diagram,
activity-diagram). Components are designed in the newly introduced component-
diagrams (Listing 19). As for class-diagrams, there are also the three main types
(source, filter, sink) available. To support generic components that cannot be mapped
to these three types, the class-keyword is also available. The component definition
syntax (see Listing 19) itself is quite simple: it is the previously defined fully qualified
name (Fqn) used in the class-diagram (see Listing 1 and Listing 18).

11.3. GU-DSL – COMPONENT-BASED ENGINEERING 131

1 Diagram:
2 ’ComponentDiagram ’ name=ID
3 ’{’
4 (components+=Component)*
5 ’}’;
6
7 Component:
8 (’class’|’source’|’filter’|’sink’| name=[BaseClass|Fqn]
9 ’{’
10 (ports+=Port)*
11 (connections+=Connection)*
12 ’}’;

Listing 19 Component-diagram and component definitions.

As other GU-DSL diagram types (e.g. class- and activity-diagrams), component-
diagrams support nesting of additional component-diagrams in arbitrary depth.

1 Component:
2 (’class’|’source’|’filter’|’sink’| name=[BaseClass|Fqn]
3 ’{’
4 (components+=Component)*
5 ’}’;

Listing 20 Nested component definitions.

For embedded components, the same design principles are applicable as for all
other components. That means the underlying classes have to be defined first and
ports have to be used in the same way (see Sec. 11.3.3).

11.3.2.1 Component Interfaces

Components need interfaces to be able to communicate. Hence, two types of compo-
nent interface implementations are provided:

1. Interfaces by inheritance

2. Anonymous interfaces

Interfaces by Inheritance They are the default interfaces that should be used dur-
ing the component definition. In this case, the component classes inherit from the
necessary interfaces and provide all the methods that can later be used by ports and
during the component functionality implementation. An important feature is that, in
this case, the interfaces’ methods have to be implemented only if they require a special
implementation. Otherwise, they are automatically available assuming a default im-
plementation. This has the advantage of interface methods being directly accessible
and usable without any additional code. By default, the code generator interprets
missing interface method implementations and fills the missing implementation part
with signal based interface-method calls (see Sec. 11.4.2). However, if a special kind
of implementation is required, the interface methods can also be implemented using
GU-DSL.

132
CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING

ARCHITECTURES

Anonymous Interfaces They are a special version of interface implementations. In
this case, the component class does not have to implement the interface, but the
interface method can still be called directly, e.g. in the sequential expression language
introduced with GU-DSL [HFKK15]. Therefore a new kind of interface call has been
added:

1 InterfaceCall:
2 (’call’ (’interface ’)?)? interfaceName=Fqn ’.’ methodName=ID
3 ’(’ parameterValues+=ParameterValue
4 (’,’ parameterValues+=ParameterValue)* ’)’

Listing 21 Anonymous interface calls.

Anonymous interfaces are completely loose and the full interface definitions do
not have to be available during design time. This gives designers the possibility to
model components without having the full interface code. It can also be used to call
interface methods from arbitrary places during component execution.

11.3.3 Port Definitions and Connections

Ports are the door to the outer and inner world of components. Allowing data
exchange between components and nested components, ports provide the ability to
define interfaces that handle how data can be transferred to and from a component.
Therefore the previously defined interfaces (see Listing 17) can be chosen. The port
definition within a component has a simple syntax (see Listing 22).

1 Port:
2 (’async’ (’buffered ’)?)? ’port’ name=Fqn
3 ’(’ connectors+=Connector
4 (’,’ connectors+=Connector)* ’)’
5
6 Connector:
7 (Processor | Provider);
8
9 Processor:
10 ’processor ’ name=Fqn ’:’ interfaceref=[Interface|Fqn];
11
12 Provider:
13 ’provider ’ name=Fqn ’:’ interfaceref=[Interface|Fqn];
14
15 Connection:
16 ’[’ name=ID ’source’ sourceport=[Connector|Fqn] ’==>’ ’target’ targetport=[Connector|Fqn] ’]’;

Listing 22 Port and connection definitions.

The special preceded keyword async characterizes the port to be asynchronous,
which means communication is forced to be non-blocking. Compared to standard
blocking ports, a called interface method directly returns to the component and its
sequential execution. A special variant of asynchronous ports are buffered ports.
Incoming data can be buffered and is forwarded to the component if needed.

The detailed usage of components in combination with interfaces and ports can
be found in the example in Sec. 11.5.

11.3. GU-DSL – COMPONENT-BASED ENGINEERING 133

Ports play an important role when designing the system. By connecting two ports
(source ==> target), it is defined which interfaces and which interface methods can
be connected in the component-instance-diagram (see Sec. 11.3.4).

Once all components, interfaces, ports and connections are defined, the architec-
ture definition is completed and the instantiation phase can begin as will be shown
in the next sections.

11.3.4 Component Instance Definitions
Once components have been designed and interface/port wiring is completed,
the architectural definition can be used in the component-instance-diagram. The
component-instance-diagram is an important new feature added to be able to reuse
components and to guarantee a type- and interface-safe component wiring. The di-
agram can be compared to the object-diagram known from UML, but it is specially
designed for component-based engineering. Splitting the instantiation from the defi-
nition of types and objects is a well-known practice in software engineering, but is not
fully established for component-based ADL approaches (or also UML) in this form.

The separation of definition and instantiation ensures two things:

1. Defined components can simply be reused and parametrized

2. Interface connections can be checked for validity during design

Using the component and port definitions of the component-diagram, the compo-
nent instantiation can be realized as shown in Listing 23.

1 ComponentInstanceDiagram:
2 ’ComponentInstanceDiagram ’ name=ID
3 ’{’
4 compinstances+=ComponentInstance*
5 ’}’;
6
7 ComponentInstance:
8 name=ID ’instantiates ’ componentType=[BaseClass|Fqn]
9 ’(’ (fieldName+=ID ’=’ fieldValue=FieldValue
10 (’,’ fieldName+=ID ’=’ fieldValue=FieldValue)*)? ’)’
11 ’{’
12 (ports+=CID_Port)*
13 ((bindings+=Binding)*)
14 (compinst+=ComponentInstance*)?
15 ’}’;

Listing 23 Component instance definitions.

While the component definition just defines fields and methods in the class decla-
ration, the instantiation step assigns a unique instance name and initialization values
to a component and its fields. Three points are necessary to completely instantiate
a component. The first one is a unique name. As second point, the component
type has to be assigned using the fully qualified name of a component defined in
the component-diagram. The third important point is the assignment of new initial-
ization values. They can directly be assigned within two parentheses after the type
specification by a name-value combination.

134
CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING

ARCHITECTURES

Besides the component instantiation, the other important step is having connec-
tions allowing the communication and data-exchange between components. For this
purpose, instances of ports are created first. Newly instantiated ports can then be
wired. This syntax can be seen in Listing 24.

1 CID_Port:
2 name=ID ’:’ type=ID
3 ’(’ connectors+=CID_Connector (’,’ connectors+=CID_Connector)* ’)’ ’;’;
4
5 CID_Connector:
6 (CID_Processor | CID_Provider);
7
8 CID_Processor:
9 ’processor ’ name=ID ’=’ processorInterfaceType=Fqn
10 ’(’ (fieldName+=ID ’=’ fieldValue=FieldValue (’,’ fieldName+=ID ’=’ fieldValue=FieldValue)*)? ’)

’;
11
12 CID_Provider:
13 ’provider ’ name=ID ’=’ providerInterfaceType=Fqn
14 ’(’ (fieldName+=ID ’=’ fieldValue=FieldValue (’,’ fieldName+=ID ’=’ fieldValue=FieldValue)*)? ’)

’;
15
16 Binding:
17 (’[’ ’source’ sourceport=[CID_Connector|Fqn] ’==>’ ’target’ targetport=[CID_Connector|Fqn] ’]’);

Listing 24 Component connection definitions.

Connections are possible between processor and provider ports only. This is guar-
anteed by the architecture definition specified in the component-diagram. Validity
checks can be applied by an Object Contstraint Language (see [OMG16d]) model
validator (used in this approach) or any other kind of validator. Depending on the
final kind of code generation and how ports are implemented on the target platform,
it is also possible to initialize and assign values to port instances. This can e.g. be
necessary for buffered ports shown in Listing 22, giving the opportunity to define the
buffer size and so forth.

The connections are created between instantiated ports. Only port instances are
used as source or target. The direction is unidirectional and it doesn’t matter if the
source is a provider and the target a processor or vice versa.

11.3.5 Component Initialization and Execution

While the previous sections have shown how components can be defined in general,
this section shows how they can be implemented. Hence, three methods are automat-
ically available. The first one is responsible for initialization (init()) and it is assumed
to be called during the instance initialization, while the second method is called dur-
ing the component execution process(). The third important method is the cleanup()
and is responsible to release e.g. memory or other resources. It is important to know
that the process()-method is assumed to be executed in a thread but this depends on
the code-generator and the underlying CBSE framework. The implementation of all
three methods is performed in the corresponding component class, either by using
activity-diagrams or sequential code as shown in the example in Sec. 11.5.

11.3. GU-DSL – COMPONENT-BASED ENGINEERING 135

11.3.6 Graphical Design Assistance
Besides the textual new features, special graphical editors have also been added
allowing full graphical modeling in the sense of model driven development. Us-
ing graphical editors, system architects profit from the higher level of abstraction.
Multiple lines of code can be added by drag and drop operations from a toolbox,
placing e.g. complete components on a component-diagram. Also, connections can
intuitively and interactively be added by simply selecting source and target ports.
Sequential coding of method implementations is added using in-place editors sup-
porting the full GU-DSL language specification, especially the expression language.
This gives architects the possibility to decide on their own if they prefer either tex-
tual, graphical or mixed design. Since textual and graphical representations are fully
compatible (round-trip engineering), the designer starts e.g. with textual modeling
and can go over to graphical modeling and vice versa. This can facilitate the entry to
this new kind of programming language and the component-based engineering. An
example of the graphical design system can be seen in Sec. 11.5.

11.3.7 Summary

The previous sections have introduced the novel textual and graphical language
contributions as provider and processor interfaces, components, ports, component-
instances and also component- and component-instance-diagrams. It has been shown
how components can be designed and how they can be connected using ports and
interfaces.

Once the system architecture is specified in the class- and component-diagrams,
component, port and connection instances have to be created in the novel component-
instance-diagram. The separation of definition and instantiation in this case has the
big advantage of giving two clear points of view onto the system implementation. Fur-
thermore, the new component-instance-diagrams give the opportunity to uniquely
name and initialize the component and port instances. By the usage of e.g. OCL
validators, it is guaranteed that names and field-value assignments are unique and
that instantiated component connections are applicable (provider to processor only).

All the previously introduced novel GU-DSL language extensions in combination
with standard GU-DSL features allow for a complete architectural system specification
and instantiation. One possible CBSE system implementation, which maps to GU-
DSL and all its features, will be shown in Sec. 11.4. An example system can be found
in Sec. 11.5.

136
CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING

ARCHITECTURES

11.4 A CBSE System as an Exemplary Implementation
of GU-DSL

This section introduces a highly complex, but effective and simple to use, novel
Component-Based Software Engineering system using C++ in combination with
OpenGL and OpenCL to guarantee fast data and image processing. It is an ex-
emplary implementation of GU-DSL and is fully compatible to all its features. All
types and objects are mapped to the C++ framework using Xtend [EEK+12] as code
generation framework. Furthermore, it proposes several new concepts and ideas as
will be shown in the next sections.

The basis of the system and all other CBSE classes is the IObject-interface shown
in Fig. 11.2. It provides some basic functionality required for dynamic object creation,
which is necessary for further usage as will be shown in Sec. 11.4.4. The main
component classes (Class, Source, Filter, Sink and Port) introduced in Sec. 11.3 can
also be found in this figure as part of the CBSE system. In the following sections, the
main important and novel features will be introduced.

Filter

Sink

SourceClass

Port
«Interface»

IPort

«Interface»
IObject

ComponentDiagram

«Interface»
IInterface

«Interface»
IProcessor

«Interface»
IProvider

Figure 11.2: The CBSE schema. [HKK15]

11.4.1 Component Realization
Components are the basis of this CBSE framework. They are represented as C++
classes and provide predefined functionality. Fig. 11.3 shows the principle of com-
ponent classes. Every component supports an init(), process() and cleanup()-method
as mentioned in Sec. 11.3.5. While init() and cleanup() are mainly responsible for re-
source management (e.g. creating or releasing references to camera drivers, files or

11.4. A CBSE SYSTEM AS AN EXEMPLARY IMPLEMENTATION OF GU-DSL137

Class

f+fstart()
f+fstop()
f1finit()
f1fprocess()
f1fcleanup()
f+fregisterProcessorPortListeners()
f+faddPort(ffinfport:fIPort)

PortMap

StopWatch

Source

Filter

Sink

Port

«Interface»
IPort

f+f

f+fportMap

ff[1] ff[1]

f+f

f+fstopWatch

ff[1] ff[1]

f+f

f+f

ff[1]

ff[*]

Figure 11.3: The basic component class. [HKK15]

databases), process() is the execution method of a component. In this CBSE system,
all components are placed in a multithreaded environment, which means that the
execution of every component is performed within its own thread. In general, this
thread can sleep as long as there is no data processing required and it can wake up
as soon new data arrives. This is called data-driven mode. The system realizes it for
all kinds of components. A special continuous-mode is also provided. In this mode,
the process()-method is continuously executed. This can be helpful e.g. for simulation
purposes where internal data has periodically to be sampled or updated.

As proposed with GU-DSL, the full implementation of the process()-method can
be realized using either activity-diagrams or sequential expressions and is in general
also generated by the code-generator. But of course, it can also be coded manually,
if the CBSE framework is to be used as standalone version without GU-DSL and its
toolchain.

Furthermore, every component can contain an arbitrary number of named ports
(portMap). Port naming allows the unambiguous identification of identical port in-
terfaces. An example of using identical interfaces multiple times can be an image
processing filter accepting two incoming images, one that has to be processed and
another one that is used as mask image. The same interface types can be used for this
purpose and the identification is then performed using the unique port names.

Besides the previously mentioned methods, two additional methods are added.
The first method starts a component (start()), while the second method stops it (stop()).
This is necessary and helpful for data acquisition or any kind of UI interaction allowing
e.g. a manual start or stop of a data source, filter or sink. The registerProcessorPortLis-
teners()-method functionality will be discussed in Sec. 11.4.3.

138
CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING

ARCHITECTURES

«Interface»
IPort

 # connectInterfaces()
 + connectInterfaceMembers()
 + requestData()

«Interface»
IProvider

«Interface»
IProcessor

Port

«Interface»
IInterface

ImageProviderPortImageProcessorPort

Figure 11.4: An exemplary port realization. [HKK15]

11.4.2 Port Realization

Ports are a substantive part of the newly proposed CBSE system and give compo-
nents the possibility to connect their interfaces with the outer world. An exemplary
realization of an image processor and provider port can be seen in Fig. 11.4.

Interface connections are established using the connectInterfaces()-method. It is
called during the component instantiation whenever two interfaces have to be con-
nected. By overwriting the connectInterfaceMembers()-method, every port can decide
on its own which interface-methods of a provider and processor are connected. This
allows ports to connect arbitrary method-signatures to act e.g. as converter functions.
Using GU-DSL with its newly proposed component-based features, the connections
are automatically generated using compatible method signatures (see also Sec. 11.3.1).

At first glance, a connection is just something like a method of how interface A
calls the corresponding method of interface B (see also Fig. 11.5). However, this is
not that easy if these calls are not supposed to be implemented manually in every
port and something like reflection and type introspection (e.g. Java or C#) cannot be
used. Since the framework is based on C++, reflection is not available in this form
and would in most cases be slow anyway, which is why a signal based approach
has been used. Thanks to modern libraries (in this case Boost.Signals [Boo16]),
this is a simple and flexible, but also a fast method to connect all port interface
members. Using macros, the whole signal and method declaration is hidden be-
hind one single line of code (MEMBER_SIGNAL_X(returntype, name, parameters ...)).
Type safety is achieved with the underlying framework’s C++ template architec-

11.4. A CBSE SYSTEM AS AN EXEMPLARY IMPLEMENTATION OF GU-DSL139

ture. This makes the usage easy and minimizes sources of error. Another macro
is provided to connect methods during the connectInterfaceMembers()-call (MEM-
BER_SIGNAL_CONNECT_X(sourcemethodname, targetmethodname, parameters), with X
as number of passed parameters for both macros). Using signals instead of hard
coded connections slightly slows down the data transfer, but it is more flexible and
fits better into the generic textual and graphical design concept of GU-DSL and the
CBSE system.

Besides the generic concept of ports, another big advantage was introduced in
Sec. 11.3.3 using the async and/or buffered keywords. Using ports, it is easy to add new
kinds of functionality (e.g. data converters or buffering) even to existing components
where only interfaces are available. Asynchronous and buffered connections are a big
advantage for data processing purposes. The main goal of this new component-based
data processing system is reducing design overhead as much as possible. Hence, to
simplify the component development, data buffering is already added. Two kinds of
buffering are possible:

1. A component is responsible for buffering, e.g. by using ring-buffers

2. A port is responsible for data buffering and asynchronous execution

Both methods have their advantages and are thus realized in this system, but it
is the best choice to use the ring-buffers already embedded within the components.
However, if realized components do not support buffering due to design issues,
buffering ports are a good alternative. Therefore, a callback to all component-ports
(requestData()) is performed after each successful execution of the component process()-
method. This instructs a port to forward the next data-elements stored inside buffers
to the defined component-interface-methods (see also Sec. 11.4.3). Besides passing
the full data at once to a connected port, this also allows to provide data streaming
solutions. The requestData()-method is then used to signal, that new streaming data
is required. If the ports are generated by the code-generation framework of GU-DSL,
the necessary buffers for all methods can automatically be created.

11.4.3 Component and Port Interaction
Once components and ports are designed and implemented or generated, it is im-
portant to know how the connection in-between can be realized. For that purpose, a
signal based connection has been implemented.

The system initialization is a three-stage process which will be examined closer
in Sec. 11.4.5. In the first stage, a component is created. A second stage creates all
ports and adds them to the corresponding component using the addPort()-method of
a component class. The third stage performs the interface connection using the IPort
interface methods.

If a newly added port is a kind of processor, the component’s registerProcessor-
PortListeners()-method is called to connect and register port interfaces (see Sec. 11.4.2).

140
CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING

ARCHITECTURES

Component A Port A Port B Component B

synchronous
communication

synchronous
interface call

asynchronous
interface call

processX process()provideX

processX wake process()

return result

provideX

return result

processX()

processX

return result

processX

return result

provideX()

return result

processX()

return result

wake process()provideX() processX() processX()

return resultreturn result return result

provideX processX processX

provideX processX processX process()

return resultreturn resultreturn result

wake process()

wake process()

Figure 11.5: The three different kinds of communication. [HKK15]

As already mentioned, the connection from a port into a component is also realized
using signals. This makes the usage simple, reduces errors and allows for buffered
and/or asynchronous interface calls.

As can be seen in Fig. 11.5, three types of communication are provided:

1. Synchronous communication

2. Synchronous interface calls

3. Asynchronous interface calls

Synchronous Communication It is a completely synchronous, direct communica-
tion and also the fastest way for data processing in a system. However, in most cases
it is not the best choice, because the execution of the calling component is blocked
until the answer from the called interface-method arrives. This can take a long time
if a large processing system is used. The big advantage is that it is easy to react to
the return state of the interface call and the caller can be sure that the data is directly
processed after the method call without doing some extra synchronization.

Synchronous Interface Calls This kind of communication is only partially syn-
chronous. Interface-calls are executed synchronously up to the call/signal into the
component. The receiving component thread is woken up and the data is stored in
buffers until processing begins. The interface-call itself directly returns with a positive
result back to the caller and the execution can immediately continue. It is guaranteed

11.4. A CBSE SYSTEM AS AN EXEMPLARY IMPLEMENTATION OF GU-DSL141

that all listening ports/components receive the new data. No additional info about a
successful data processing is given back to the interface caller. The big advantage is
that at least some state information can be received and that there is only a small time
loss. This kind of communication is the best choice and is assumed to be the default.

Asynchronous Interface Calls It is a fully asynchronous kind of communication.
Directly after the interface call from a component, the communication is delegated to
the output ports performing a multithreaded, asynchronous method call. There is no
guarantee on a non real-time system when the listening port will receive the new data.
However, this has the advantage to immediately continue the component execution
without losing nearly any time. This way of execution offers the highest performance.

Two types of component interface calls are proposed. The one and more sophisticated
way is to manually find a corresponding port and call the assigned interface. The
other and simpler way is using the provided macros CALL_INTERFACE_X (inter-
faceType, parameters ...) (all ports) and CALL_INTERFACE_NAMED_X (interfaceType,
portName, parameters ...) (named port only).

Using signals has also another big advantage. In Sec. 11.3.2, nested components
have been proposed. To hold on to the concept of components, generating the nested
components as sequential code is not the recommended way in the novel CBSE
system (but also a possible option). The presented implementation uses the same
signaling concept as the previously introduced components. That means nested
components are normally created and ports are added and finally connected. Until
this state is reached, the nested components are hidden from the outer world. This is
handled using ports, which are first added to the outer and the inner component and
then connected using the proposed signaling concept.

11.4.4 Prototype-Factory Pattern - A Way for Dynamic Object Cre-
ation and Registration

The CBSE system is based on C++ and it is extendable using plugins (any kind of li-
brary, depending on the operating system, e.g. Dynamic Link Libraries on windows).
Unfortunately, C++ neither supports reflection nor other types of dynamic object
creation (e.g. by name). However, this drawback can be bypassed using special con-
structs and design patterns such as the newly proposed prototype-factory pattern.
It is a combination of the well-known prototype-pattern and the factory-method-
pattern [GHJV95]. The plugin idea of the CBSE framework is not that easy to realize
in C++ if all components are supposed to interact, the types are not known during
compile-time and the overhead should be kept minimal for developers. For dynamic
registration, one instance of each object contained in the plugin is created during
the initialization of the static/global library content (the prototype). Using anonymous

142
CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING

ARCHITECTURES

structs in combination with an object creation and registration function (encapsulated
in a C-macro GENERIC_REGISTER_OBJECT) reduces the overhead to a single line
(see REGISTER_OBJECT(PluginType, ObjectType), Listing 25).

1
2 #define CONSTRUCTOR_FUNCTION(FUNC)
3 namespace
4 {
5 static const struct FUNC ## __ctor__
6 {
7 inline FUNC ## __ctor__() { FUNC(); }
8 }
9 FUNC ## _ctor_instance_;
10 }
11
12 #define GENERIC_REGISTER_OBJECT(PluginType , ObjectType , RegisterFunction)
13 namespace
14 {
15 void RegisterFunction()
16 {
17 Core::Processing::Interfaces::ConstIObjectPtr sObject = ObjectType::createObject();
18 PluginType::instance()->RegisterFunction(sObject);
19 }
20 CONSTRUCTOR_FUNCTION(RegisterFunction)
21 }
22
23 #define REGISTER_OBJECT(PluginType , ObjectType)
24 GENERIC_REGISTER_OBJECT(PluginType , ObjectType , registerObject)
25
26 // Example usage
27 REGISTER_OBJECT(Processing::Plugin::ProcessingPlugin , ComponentClassDefinitions::Sources::Camera)

Listing 25 Dynamic object creation and registration.

The ObjectType can be any kind of an IObject implementation proposed in Fig. 11.2
and its static method createObject() creates a new instance of this type (in this case the
prototype instance). The fully qualified object name is automatically assigned during
object creation using the stringification mechanism of the C++ preprocessor. This
allows to register the object-prototype in a plugin specific, global name-object-map.
Once the plugin is loaded, the global initialized map can be extracted and all the
objects are added to the CBSE object factory.

Calling its createObject()-method and passing the unique object name, the factory
can clone the prototype by calling the prototype’s IObject createObject(IObject instance-
ToClone)-method. This newly created clone is then provided as a new instance to the
CBSE system. The functionality is available for all objects inheriting from the abstract
interface IObject. Using the new pattern in this way, it is quite simple to realize plugins
also in C++. The necessity of this kind of object creation can be seen in Sec. 11.4.5.

11.4.5 Component Diagram Realization
In Sec. 11.3.4, the new concept of component-instance-diagrams has been introduced.
The component-instance-diagram is used for the implementation of component in-
stances and it is realized as a discrete object as shown in Fig. 11.2. Two different kinds
of this diagram are proposed.

1. An XML-based version (see Sec. 11.4.5.1)

2. A fully generated, code-based version (see Sec. 11.4.5.2)

11.4. A CBSE SYSTEM AS AN EXEMPLARY IMPLEMENTATION OF GU-DSL143

ComponentDiagram

x+xload(xxinxfilename:xstring)
x+xsave(xxinxfilename:xstring)
x+xgetObjects()
x+xrun()
x+xstop()

«Interface»
IObject

ExampleComponentDiagram

x+xload(xxinxfilename:xstring)

x+xobjects

x+x

xx[*]

xx[1]

Figure 11.6: Component-instance-diagram realization. [HKK15]

Fig. 11.6 shows the realization of both diagram versions (ComponentDiagram and
ExampleComponentDiagram). The basic ComponentDiagram-class is responsible for
loading and saving the XML-based instance diagrams, while the ExampleComponent-
Diagram-class is an exemplary, specialized implementation of a code based diagram.
Both version use the prototype-factory to instantiate new components and ports.

11.4.5.1 XML based Component-Instance-Diagrams

The XML based version is the simplest but also the most flexible realization of the
newly introduced component-instance-diagrams. It allows users to dynamically de-
fine full systems while only being restricted to the underlying architecture definition
described in the previous sections. All objects, including components and ports, are
stored with their initialization values (see also Sec. 11.3.4) and the fully qualified name
as type specification. Additionally, the connections are stored as well. Using XML
has several advantages. One big advantage is the readability. Small changes, such as
modifications of property values, can simply be done using text editors, even if the
design tools are not available. Furthermore, XML documents can be loaded (generic
load-method), saved (generic save-method) or exchanged (run()- and stop()-methods)
on the fly which is often required in productive environments. However, the biggest
advantage is that the XML-based diagram version automatically supports all kinds
of newly user defined components.

11.4.5.2 Code based Component-Instance-Diagrams

The code based version is represented by a sequential creation of all required com-
ponents, ports and connections. For this purpose, a new class inherits from the
ComponentDiagram-class and the load()-method is overloaded. The load mechanism is
then replaced by a less generic, manual C++ implementation. In general, the initial-

144
CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING

ARCHITECTURES

ization process is much faster compared to the XML version, because no XML-parsing
is required. This can be helpful on small systems with slow hardware. The drawback
of this, however, is the loss of flexibility of dynamic diagram reloading.

11.4.6 The Rich Client Platform
The proposed CBSE system is a powerful framework that can simplify development.
To round off the CBSE implementation, it is embedded into a rich client platform
(RCP), enabling programmers to build new and individual standalone applications.
The implemented RCP supports the processing- and GUI-extension using the pro-
posed CBSE system as basis. As is typical for RCPs (e.g. Eclipse [EC16]), the GUI is
expandable using a plugin system in a similar way as proposed for the CBSE system
(see Sec. 11.4.4). The current implementation supports OpenGL based image viewers,
fast data processing using OpenCL, port implementations using network transfers
and also the interaction between GUI and components using an event system. The
RCP is just mentioned here for completeness and is not directly part of this thesis.

11.5 A Component-Based Modeling Example

In the next sections, a simple example of an image processing scenario extracted from
Chapter 6 will be shown. A Camera-component (e.g. a color camera) acquires an
image, which is filtered in the MeanFilter-component. Subsequently, the image is
shown in the Viewer-component. It starts with the definition of the necessary classes
and interfaces in Listing 26.

Until now, the three main component classes and the corresponding image proces-
sor and image provider interfaces are defined. The classes implement their required
interfaces as shown in Sec. 11.3.2. Furthermore, they implement the required com-
ponent process-method by calling the responsible activity diagrams (not part of this
example; have a look at Chapter 10). Listing 27 shows the usage of the classes as
basis for components. The components themselves define all valid ports (CameraIm-
ageProviderPort, MeanImageProcessorPort, MeanImageProviderPort, ViewerImageProces-
sorPort) and connections (CameraToFilter, FilterToViewer) describing the final software
architecture. As stated in Sec. 11.3, this means that it is defined which components
are connectable. In this example, the connection between a Camera and a processing
MeanFilter and also the connection between a MeanFilter and a Viewer is valid.

11.5. A COMPONENT-BASED MODELING EXAMPLE 145

1 ClassDiagram ComponentClassDefinitions
2 {
3 public interface provider IImageProvider
4 { // see also the corresponding processImage signature
5 public void provideImage(ref Image image);
6 }
7
8 public interface processor IImageProcessor
9 { // see also the corresponding provideImage signature
10 public void processImage(ref Image image);
11 }
12
13 public source Camera implements IImageProvider
14 {
15 public int width;
16 public int height;
17
18 public bool process(ConstIObjectParametersPtr parameters)
19 { // Call the activity -diagram responsible for
20 // image acquisition
21 call behavior AdAcquireImage;
22 return true;
23 }
24 }
25
26 public filter MeanFilter implements IImageProvider , IImageProcessor
27 {
28 public bool process(ConstIObjectParametersPtr parameters)
29 { // Call the mean filter activity -diagram
30 call behavior AdFilterMean;
31 return true;
32 }
33 }
34
35 public filter Viewer implements IImageProcessor
36 {
37 public bool process(ConstIObjectParametersPtr parameters)
38 { // Call the activity -diagram to show a new image
39 call behavior AdShowImage;
40 return true;
41 }
42 }
43 }

Listing 26 Component class example diagram.

1 ComponentDiagram ComponentExampleDiagram
2 {
3 source ComponentClassDefinitions.Camera
4 { // Define the output port
5 port CameraImageProviderPort (provider CameraImageProviderPort :
6 ComponentClassDefinitions.IImageProvider);
7 // Define the port
8 [CameraToFilter source CameraImageProviderPort.CameraImageProviderPort ==>
9 target MeanImageProcessorPort.FilterImageProcessorPort]
10 }
11
12 filter ComponentClassDefinitions.MeanFilter
13 { // Define the input and output ports
14 port MeanImageProcessorPort (processor FilterImageProcessorPort :
15 ComponentClassDefinitions.IImageProcessor);
16 port MeanImageProviderPort (provider FilterImageProviderPort :
17 ComponentClassDefinitions.IImageProvider);
18
19 // Define the port
20 [FilterToViewer source MeanImageProviderPort.FilterImageProviderPort ==>
21 target ViewerImageProcessorPort.ViewerImageProcessorPort]
22 }
23
24 sink ComponentClassDefinitions.Viewer
25 { // Define the input port
26 port ViewerImageProcessorPort (processor ViewerImageProcessorPort :
27 ComponentClassDefinitions.IImageProcessor);
28 }
29 }

Listing 27 Component example diagram.

As can be seen, the basic architecture definition is quite simple. While List-
ing 27 shows the required component definitions and thus the developed architec-

146
CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING

ARCHITECTURES

tural definition, Listing 28 instantiates the final system using a component-instance-
diagram (ComponentInstanceExampleDiagram). It creates two Camera instances (Cam-
era1, Camera2), a MeanFilter (MeanFilter1) and also a Viewer (Viewer1). Property values
are also assigned during creation. Furthermore, all required port instances (Cam-
era1ProviderPort, Camera2ProviderPort, MeanProcessorPort, MeanProviderPort, Viewer-
ProcessorPort) are created. Finally, the ports are connected defining the connection
between a source and target port. As already mentioned, the instantiation of ports and
also the connections are restricted to the fixed definitions in Listing 27.

1
2 ComponentInstanceDiagram ComponentInstanceExampleDiagram
3 {
4 // Instantiate new component of type ComponentClassDefinitions.Camera
5 Camera1 instantiates ComponentClassDefinitions.Camera
6 // Assign property values
7 (width = 640, height = 480)
8 {
9 // Create a port instance
10 Camera1ProviderPort : CameraImageProviderPort (
11 provider CameraImageProviderPort = IImageProvider());
12
13 // Connect the ports
14 [source Camera1ProviderPort.CameraImageProviderPort ==> target
15 MeanFilter1.MeanProcessorPort.MeanImageProcessorPort]
16 }
17
18 // Instantiate new component of type ComponentClassDefinitions.Camera
19 Camera2 instantiates ComponentClassDefinitions.Camera ()
20 {
21 // Create a port instance
22 Camera2ProviderPort : CameraImageProviderPort (
23 provider CameraImageProviderPort = IImageProvider());
24
25 // Connect the ports
26 [source Camera2ProviderPort.CameraImageProviderPort ==> target
27 MeanFilter1.MeanProcessorPort.MeanImageProcessorPort]
28 }
29
30 // Instantiate new component of type ComponentClassDefinitions.MeanFilter
31 MeanFilter1 instantiates ComponentClassDefinitions.MeanFilter ()
32 {
33 // Create the port instances
34 MeanProcessorPort : MeanImageProcessorPort (
35 provider MeanImageProcessorPort = IImageProcessor());
36
37 MeanProviderPort : MeanImageProviderPort (
38 provider MeanImageProviderPort = IImageProcessor());
39
40 // Connect the ports
41 [source MeanProviderPort.MeanImageProviderPort ==> target
42 Viewer1.ViewerProcessorPort.ViewerImageProcessorPort]
43 }
44
45 // Instantiate new component of type ComponentClassDefinitions.Viewer
46 Viewer1 instantiates ComponentClassDefinitions.Viewer ()
47 {
48 ViewerProcessorPort : ViewerImageProcessorPort (
49 provider ViewerImageProcessorPort = IImageProvider());
50 }
51 }

Listing 28 Component instance example diagram.

As stated in Sec. 11.3.6, besides the textual DSL, also graphical editors are proposed
with this approach. It rounds off the new CBSE system approach as can be seen
in Fig. 11.7. The textual class-, component- and component-instance-diagrams are
shown in their graphical version. While the textual form grows in size relatively fast,
the graphical representations are more compressed and much simpler to understand,
which can simplify design.

11.6. SUMMARY 147

The listings and figures in this section show a small, representative example of the
proposed GU-DSL CBSE features. Starting with the class- and interface-definitions
(Listing 26), continuing with the component design (Listing 27) and finishing with
the component instance definitions (Listing 28), the example creates a small image
processing pipeline (two cameras -> mean-filter -> viewer) in a textual and graphical
form. Using the proposed CBSE C++ infrastructure, the example can be compiled
and run in the underlying RCP.

Figure 11.7: The graphical CBSE example. Top: the class diagram. Middle: the
component-diagram. Bottom: the component-instance-diagram. [HKK16]

11.6 Summary

In this chapter the component-based extension of GU-DSL was presented. The novel
features fully integrate into GU-DSL’s design principles as classes and interfaces, but

148
CHAPTER 11. COMPONENT-BASED DATA AND IMAGE PROCESSING

ARCHITECTURES

in general, the component-based extensions can also be used as a standalone lan-
guage. All the novel features and concepts (provider and processor interfaces, com-
ponents, ports, component-instances and also component- and component-instance-
diagrams), that allow architecture definition and instantiation, have been discussed.
Furthermore, their usage has been demonstrated in an image processing example. Be-
sides the novel language features, a novel, exemplary design and implementation of a
CBSE system architecture has been introduced, embedded into a rich client platform
that can simply be extended using plugins.

A big advantage of the proposed work, compared to other concepts (such as UML),
is the combination between graphical and textual modeling and the supported round-
trip engineering. This means that both kinds of modeling are always synchronized
in both directions. Starting with textual modeling does not prevent developers from
switching over to graphical modeling and also back. So it is up to the modeler’s
and programmer’s preferences which kind of technique is used. Experienced pro-
grammers can decide for textual programming, enjoying the full feature set necessary
for component-based engineering with the advantage of much better guidance and
support than generic programming languages provide.

The proposed language and CBSE framework is already used in several indus-
trial projects. The first professional feedback has already been integrated into the
language and infrastructure design. Even though the language and the editors are
already suitable for productive development, especially the graphical editors have to
be improved and simplified.

CHAPTER 12. MODEL DRIVEN ENGINEERING SUMMARY 149

12
Model Driven
Engineering

Summary

The previous chapters of this part have shown how data can be processed using a
more abstract way of algorithm development than shown in the first part. Introduc-
ing and using the novel domain specific language GU-DSL developed in this thesis,
two improvements in model driven engineering have been presented. This chapter
summarizes these results and the contributions of this thesis.

As a first contribution, the novel GU-DSL GPGPU language extension has been
introduced in combination with graphical editors (see Chapter 10). It allows devel-
opers and modelers to design fully runnable GPGPU applications in a model driven
way. The presented modeling toolchain is based on Eclipse-xText to design the novel
DSL and its text editors. Eclipse-GMF is used to develop the corresponding graphical
designers. In combination with the code generator and the high-level abstraction
Heterogeneous Computing OpenCL framework, it is possible to easily develop fast
image processing filters, e.g. a Bilateral Filter or even more complex processing meth-
ods (e.g. the findIndex-reduction). The proposed language and the HC framework
are already used in several industrial projects. Feedback has already been integrated
into the language and infrastructure design. An import result is that too fine- or
coarse-granular modeling of algorithms minimizes the advantages (e.g. clarity and
maintainability) of using the proposed toolchain. A good mixture between expression
grouping in a node and nodes that represent single operations has to be found. If a
developer keeps this in mind, then this toolchain can significantly improve the de-
velopment of complex image and data processing GPGPU systems. It structures the
code that has to be written and can assist the developer in avoiding common mistakes.

The second main contribution in this part is a component-based extension of
GU-DSL (see Chapter 11). The novel features fully integrate into GU-DSL’s design
principles such as classes and interfaces, but in general, the component-based exten-
sions can also be used as a standalone language. All the novel features and concepts
(provider and processor interfaces, components, ports, component-instances and

150 CHAPTER 12. MODEL DRIVEN ENGINEERING SUMMARY

also component- and component-instance-diagrams) have been discussed allowing
the architecture definition and instantiation. Furthermore, their usage has been
demonstrated in an image processing example. Besides the novel language features,
a novel, exemplary design and implementation of a CBSE system architecture has
been introduced, embedded into a rich client platform that can simply be extended
using plugins. The big advantage of the proposed work, compared to other concepts
(such as UML), is the combination between graphical and textual modeling and
the supported round-trip engineering. This means that both kinds of modeling
are always synchronized in both directions. Starting with textual modeling doesn’t
prevent developers from switching over to graphical modeling and also back. So
it is up to the modeler’s and programmer’s preferences which kind of technique is
used. Experienced programmers can decide for textual programming, enjoying the
full feature set necessary for component-based engineering with the advantage of
much better guidance and support than generic programming languages provide.

Taken together, the presented approaches and concepts provide a solid basis for
future model driven development, also in the domain of data and image processing.
It has been shown that it is also possible to use modern software concepts like Domain
Specific Languages in a domain where real-time data processing is desired or even
indispensable. Furthermore it is shown that using this kind of development opens a
new wide area of opportunities (e.g. automated algorithm testing or documentation,
etc.) and scientific challenges.

CHAPTER 13. SUMMARY AND CONCLUSION 151

13 Summary And
Conclusion

The growing demand towards industrial automation and autonomous systems
requires more flexible technologies in different but interdependent domains of engi-
neering. This thesis introduces and discusses two important areas: ToF camera data
improvement (algorithm related) and related model driven engineering techniques
(software related). The next paragraphs summarize the main constituents.

Range sensing techniques have been improved by the introduction of ToF range
cameras like the PMD camera during the last years. Using this kind of sensor, 2.5D
cameras like the PMD CamCube could be realized, allowing to acquire depth distance
data for a whole scene in real-time. However, artifacts arise during range capturing.
Depth data denoising has always been an important discipline in image processing.
Methods for outlier removal and outlier correction have been developed to improve
acquisition quality of such noisy data. But still many challenges remain. Compared
to other industrial suited range sensing systems like laser-scanners, ToF cameras pro-
vide fully lateral 3D information at high frame rates, additional grayscale/intensity
information and full eye safety. Furthermore, due to underlying Complementary
Metal-Oxide-Semiconductor (CMOS) chip design, cheap industrial cameras, that can
handle difficult environment conditions, can be developed.

Part I discusses the special challenges of data quality improvement on a very
deep layer of ToF cameras. It deals with different challenges related to the working
principle of this kind of sensor. A new method for a fast motion artifact compensation
for ToF cameras has been presented. It is shown that the algorithm gives good results
for simulated data (linear and non linear motion) as well as real data while providing
real-time performance. Beside the motion artifact compensation, the second pro-
posed algorithm deals with the automatic integration time estimation of ToF cameras.
An online integration time adaption algorithm that works on a per-pixel basis and
uses knowledge gained from an extensive analysis of the underlying inherent sensor
behavior has been introduced and evaluated. Finally, an industrial real-time 3D
car reconstruction example has been presented. It shows how the data of three
PMD cameras has to be preprocessed, using an extensive depth data processing and
filtering pipeline, to be able to combine this data.

152 CHAPTER 13. SUMMARY AND CONCLUSION

Beside the range sensing techniques, model driven development techniques have
passed great improvements in the past years. Several techniques have been estab-
lished in software engineering but have been rarely used for image processing. The
two most important approaches are graphical modeling and DSLs. Graphical mod-
eling gives modelers the possibility to create simple, high-level, iterative graphical
architecture designs, where all relevant parties (programmers and non-programmers
as e.g. project leaders) can have an abstract graphical view on the system during
development. DSLs are the second important approach. They have become more
and more important in the past years for improving software development due to
tools simplifying the language development.

Part II addresses these challenges of data related model driven software engi-
neering. It introduces and contributes the new domain specific language GU-DSL
and two data and image processing related extensions: GPGPU-programming and
Component-Based Software Engineering principles in this domain. The presented
GU-DSL GPGPU extension contributes a convenient combination and mixture of
textual and graphical model- and dataflow-driven design. It proposes special new
structures as conditional-, loop- and calculation-nodes, in combination with an
expression language in activity-diagrams. This is necessary to fulfill the require-
ments for GPGPU-programming. Using a code generator, the GU-DSL code can be
transformed into C++, compiled and be executed. All the GPU related features are
encapsulated into a C++ Heterogeneous Computing framework (currently OpenCL
support only). This simplifies code generation and allows to be independent either
from OpenCL or CUDA in the future. The performance, the lines of code of GU-DSL
and the generated code are compared against manually written OpenCL and C++
code. As a result, GU-DSL and the underlying code generator can compete against
the manually written code. Additionally the more abstract GPU code can help
to reduce common mistakes. The GU-DSL CBSE system introduces a concept for
component based software engineering in the domain of data and image-processing.
It proposes several new concepts for component- and component-instance-diagrams
in combination with class- and activity-diagrams. Using a newly developed Rich
Client Platform supporting a plugin based extension system, it shows how the
GU-DSL CBSE concept can be realized and used in practice using C++. Exemplary
a simple processing pipeline using cameras, filters and sinks has been implemented
using class-, component- and component-instance-diagrams to demonstrate the new
concepts.

Summarizing the main aspects of this thesis, the presented topics show the do-
main of depth-, image- and data-processing from two points of view. The first one is
really low-level and deals with data improvement while the second one deals with
high-level abstraction of algorithm and system development. It has been shown in

153

the previous chapters of this thesis that both points of view are really important for
current and future development. Furthermore, both sides are strongly linked and
have to coexist. Especially the system and framework design should not be neglected
by algorithm developers, because they profit from standardized and tested default
frameworks. On the other side, framework and language designers have to closely
work together with algorithm developers. They have to adopt the algorithms’ special
requirements such as low-level programming and performance.

Finally, the presented methods suggest new algorithms using prior ToF camera
knowledge to achieve better and less noisy results. Furthermore this thesis shows
how generic algorithm and system development using a Domain Specific Language
can help to improve the design of data- and image-processing systems in the fu-
ture. The results of both topics can help to advance the domain of data and image
processing.

154 CHAPTER 13. SUMMARY AND CONCLUSION

BIBLIOGRAPHY 155

Bibliography

[AG97] Robert Allen and David Garlan. A formal basis for architectural connec-
tion. ACM Transactions on Software Engineering and Methodology, TOSEM,
6(3):213–249, July 1997.

[AG16] Otto Christ AG. Roll-over wash units. http://www.christ-ag.com, October
2016.

[AMD16] AMD. OpenCL development. http://developer.amd.com, October 2016.

[Bes88] Paul J. Besl. Geometric modeling and computer vision. Proceedings of the
IEEE, 76(8):936–958, October 1988.

[BETG08] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-
up robust features (surf). Computer Vision and Image Understanding,
110(3):346–359, June 2008.

[BM92] Paul J. Besl and Neil D. McKay. A method for registration of 3-d shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–
256, February 1992.

[Boo16] Boost. Boost. http://www.boost.org/, October 2016.

[Bro92] Lisa Gottesfeld Brown. A survey of image registration techniques. ACM
Computing Surveys, CSUR, 24(4):325–376, December 1992.

[BSGL96] Robert Bergevin, Marc Soucy, Hervé Gagnon, and Denis Laurendeau.
Towards a general multi-view registration technique. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(5):540–547, May 1996.

[CK05] Sen-Ching S. Cheung and Chandrika Kamath. Robust background sub-
traction with foreground validation for urban traffic video. Journal on
Applied Signal Processing, EURASIP, 2005(1):2330–2340, January 2005.

[CL96] Brian Curless and Marc Levoy. A volumetric method for building com-
plex models from range images. In Proceedings of the 23rd annual confer-
ence on Computer graphics and interactive techniques, pages 303–312, August
1996.

156 BIBLIOGRAPHY

[CLSF10] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua.
Brief: binary robust independent elementary features. In Proceedings
of the 11th European conference on Computer vision: Part IV, ECCV, pages
778–792. Springer-Verlag, September 2010.

[CM92] Yang Chen and Gérard Medioni. Object modelling by registration of
multiple range images. Image and Vision Computing, 10(3):145–155, April
1992.

[CSC+10] Yan Cui, Sebastian Schuon, Derek Chan, Sebastian Thrun, and Christian
Theobalt. 3d shape scanning with a time-of-flight camera. In Proceed-
ings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR, pages 1173–1180, June 2010.

[EC16] Eclipse-Community. Eclipse. http://www.eclipse.org, October 2016.

[EEK+12] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian Zarnekow,
Robert von Massow, Wilhelm Hasselbring, and Michael Hanus. Xbase:
Implementing domain-specific languages for java. In Proceedings of the
11th International Conference on Generative Programming and Component
Engineering, GPCE, pages 112–121, March 2012.

[EEK+16] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian
Zarnekow, and Contributors. Xtext 2.5 documentation.
http://www.eclipse.org/Xtext/documentation/2.5.0/XtextOctober 2016.

[EHK14] Torsten Edeler, Stephan Hussmann, and Florian Knoll. Uncertainty anal-
ysis for optical time-of-flight sensors based on four-phase-shift range
calculation. In Proceedings of IEEE Sensors Applications Symposium, SAS,
pages 382–387, February 2014.

[EOHM10] Torsten Edeler, Kevin Ohliger, Stephan Hussmann, and Alfred Mertins.
Time-of-flight depth image denoising using prior noise information. In
Proceedings of IEEE 10th International Conference on Signal Processing, ICSP,
pages 119–122, October 2010.

[EvdB10] Luc Engelen and Mark van den Brand. Integrating textual and graphical
modelling languages. Electronic Notes in Theoretical Computer Science,
ENTCS, 253(7):105–120, September 2010.

[FAT11] Sergi Foix, Guillem Alenya, and Carme Torras. Lock-in time-of-flight
(tof) cameras: A survey. Sensors Journal, IEEE, 11(9):1917–1926, October
2011.

[FB07] Dragos Falie and Vasile Buzuloiu. Noise characteristics of 3d time-of-
flight cameras. In Proceedings of the International Symposium on Signals,
Circuits and Systems, ISSCS, volume 1, pages 1–4, July 2007.

BIBLIOGRAPHY 157

[FLVC05] Peter H. Feiler, Bruce Lewis, Steve Vestal, and Ed Colbert. An Overview of
the SAE Architecture Analysis & Design Language (AADL) Standard: A Basis
for Model-Based Architecture-Driven Embedded Systems Engineering, pages
3–15. Springer US, 2005.

[Fow10] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional,
1st edition, 2010.

[Fra16] Messe Frankfurt. Automechanika. http://www.automechanika.messe
frankfurt.com, October 2016.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., 1995.

[GPT10] Pablo Gil, Jorge Pomares, and Fernando Torres. Analysis and adaptation
of integration time in pmd camera for visual servoing. In Proceedings of the
20th International Conference on Pattern Recognition, ICPR, pages 311–315,
October 2010.

[HA11] Tianyi David Han and Tarek S. Abdelrahman. hicuda: High-level gpgpu
programming. IEEE Transactions on Parallel and Distributed Systems,
22(1):78–90, October 2011.

[HBK15] Thomas Hoegg, Christian Baiz, and Andreas Kolb. Online improvement
of time-of-flight camera accuracy by automatic integration time adaption.
In Proceedings of IEEE International Symposium on Signal Processing and
Information Technology, ISSPIT, pages 613–618, December 2015.

[HFKK15] Thomas Hoegg, Guenther Fiedler, Christian Koehler, and Andreas Kolb.
Gu-dsl – a generic domain-specific language for data- and image pro-
cessing. Technical Report 1, University of Siegen, 2015. "".

[HFKK16] Thomas Hoegg, Guenther Fiedler, Christian Koehler, and Andreas Kolb.
Flow driven gpgpu programming combining textual and graphical pro-
gramming. In Proceedings of the 7th International Workshop on Programming
Models and Applications for Multicores and Manycores, PMAM, pages 88–97.
ACM, March 2016.

[HHE11] Stephan Hussmann, Alexander Hermanski, and Torsten Edeler. Real-
time motion artifact suppression in tof camera systems. IEEE Transactions
on Instrumentation and Measurement, 60(5):1682–1690, October 2011.

[HKK15] Thomas Hoegg, Christian Koehler, and Andreas Kolb. Component based
data and image processing systems: A conceptual and practical ap-
proach. In Proceedings of the 6th IEEE International Conference on Software
Engineering and Service Science, ICSESS, pages 66–69, September 2015.

158 BIBLIOGRAPHY

[HKK16] Thomas Hoegg, Christian Koehler, and Andreas Kolb. Abstracting data
and image processing systems using a component-based domain specific
language. In Proceedings of the 4th International Conference on Model-Driven
Engineering and Software Development, MODELSWARD, pages 292–300,
February 2016.

[HLK13a] Thomas Hoegg, Damien Lefloch, and Andreas Kolb. Real-Time Motion
Artifact Compensation for PMD-ToF Images, pages 273–288. Springer Berlin
Heidelberg, 2013.

[HLK13b] Thomas Hoegg, Damien Lefloch, and Andreas Kolb. Time-of-flight cam-
era based 3d point cloud reconstruction of a car. Computers in Industry
(3D Imaging), 64(9):1099–1144, December 2013.

[HS81] Berthold K.P. Horn and Brian G. Schunck. Determining optical flow.
Artificial Intelligence, 17(1):185–203, August 1981.

[HS88] Chris Harris and Mike Stephens. A combined corner and edge detector.
In Proceedings of the 4th Alvey Vision Conference, pages 147–151, August
1988.

[IFM16] IFM. O3d201 - ifm electronic gmbh. http://www.ifm.com, October 2016.

[IKH+11] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard
Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Free-
man, Andrew Davison, and Andrew Fitzgibbon. Kinectfusion: Real-time
3d reconstruction and interaction using a moving depth camera. In Pro-
ceedings of the 24th Annual ACM Symposium on User Interface Software and
Technology, pages 559–568. ACM, October 2011.

[Ins16] National Instruments. Ni labview. http://www.ni.com/labview/, October
2016.

[JPP07] Ljubomir Jovanov, Aleksandra Pizurica, and Wilfried Philips. Wavelet
based joint denoising of depth and luminance images. In Proceedings of
the 3DTV Conference, pages 1–5, May 2007.

[JSHWY14] Kim Joong-Sik, Jo Hoon, and Kim Whoi-Yul. Adaptive noise reduction
method using noise modeling for tof sensor. In Proceedings of the 4th
IEEE International Conference on Network Infrastructure and Digital Content,
IC-NIDC, pages 99–102, September 2014.

[KBKR12] Timo Kehrer, Stefan Berlik, Udo Kelter, and Michael Ritter. Modell-
basierte entwicklung gpu-unterstützter applikationen. In Proceedings of
Modellierung, volume 201, pages 139–154, March 2012.

BIBLIOGRAPHY 159

[Khr16] Khronos. The khronos group - connecting software to silicon.
https://www.khronos.org/, October 2016.

[KK09] Maik Keller and Andreas Kolb. Real-time simulation of time-of-flight
sensors. Simulation Modelling Practice and Theory, 17(5):967–978, May
2009.

[LF96] Quan-Tuan Luong and Olivier D. Faugeras. The fundamental matrix:
Theory, algorithms, and stability analysis. International Journal of Com-
puter Vision, Volume 17, Issue 1, 171(1):43–75, January 1996.

[LHK13] Damien Lefloch, Thomas Hoegg, and Andreas Kolb. Real-time motion
artifacts compensation of tof sensors data on gpu. In Proceedings of SPIE
- Three-Dimensional Imaging, Visualization, and Display,, pages 87380U–
87380U–7. Proc. SPIE 8738, May 2013.

[LHL12] Benjamin Langmann, Klaus Hartmann, and Otmar Loffeld. Depth cam-
era technology comparison and performance evaluation. In Proceedings
of the 1st International Conference on Pattern Recognition Applications and
Methods, ICPRAM, pages 438–444, April 2012.

[LK81] Bruce D. Lucas and Takeo Kanade. An iterative image registration tech-
nique with an application to stereo vision. In Proceedings of the 7th in-
ternational joint conference on Artificial intelligence, IJCAI, pages 674–679,
August 1981.

[LK09] Marvin Lindner and Andreas Kolb. Compensation of Motion Artifacts for
Time-of-Flight Cameras, pages 16–27. Springer Berlin Heidelberg, 2009.

[LKKK12] Seungkyu Lee, Byongmin Kang, James D.K. Kim, and Chang Yeong Kim.
Motion blur-free time-of-flight range sensor. In Proceedings of SPIE - The
International Society for Optical Engineering, volume 8298, pages 82980U–
82980U–6, February 2012.

[LKS+13] Frank Lenzen, Kwang In Kim, Henrik Schäfer, Rahul Nair, Stephan Meis-
ter, Florian Becker, Christoph S. Garbe, and Christian Theobalt. De-
noising strategies for time-of-flight data. In Proceedings of Time-of-Flight
Imaging: Algorithms, Sensors and Applications, volume 8200, pages 24–45.
Springer, November 2013. 1.

[LLK08] Marvin Lindner, Martin Lambers, and Andreas Kolb. Sub-pixel data fu-
sion and edge-enhanced distance refinement for 2d/3d images. Interna-
tional Journal of Intelligent Systems Technologies and Applications, 5(3/4):344–
354, November 2008.

160 BIBLIOGRAPHY

[LNL+13] Damien Lefloch, Rahul Nair, Frank Lenzen, Henrik Schäfer, Lee Streeter,
Michael J. Cree, Reinhard Koch, and Andreas Kolb. Time-of-Flight and
Depth Imaging. Sensors, Algorithms, and Applications, volume 8200, chap-
ter Technical Foundation and Calibration Methods for Time-of-Flight
Cameras, pages 3–24. Springer Berlin Heidelberg, October 2013.

[Low04a] Kok-Lim Low. Linear least-squares optimization for point-to-plane icp
surface registration, technical report, tr04-004. Technical Report 1, De-
partment of Computer Science, University of North Carolina at Chapel
Hill., 2004. "".

[Low04b] David G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2):91–110, November
2004.

[LSKK10] Marvin Lindner, Ingo Schiller, Andreas Kolb, and Reinhard Koch. Time-
of-flight sensor calibration for accurate range sensing. Computer Vision
and Image Understanding, 114(12):1318–1328, December 2010.

[McI00] Alan M. McIvor. Background subtraction techniques. In Proceedings of
the Image and Vision Computing Conference, pages 1–6, November 2000.

[MDK92] Jeff Magee, Naranker Dulay, and Jeff Kramer. Structuring parallel and
distributed programs. In Proceedings of the International Workshop on Con-
figurable Distributed Systems, pages 102–117, May 1992.

[Mic16a] Microsoft. C++ amp : Language and programming model.
http://www.microsoft.com, October 2016.

[Mic16b] Microsoft. Component object model (com). https://msdn.microsoft.com,
October 2016.

[Mic16c] Microsoft. Kinect camera. www.microsoft.com, 2016.

[MIPG16] University of Kiel Multimedia Information Processing Group. Mip
multi-camera calibration. http://www.mip.informatik.uni-kiel.de/tiki-
index.php?page=Calibration, October 2016.

[MN16] Andreas Mülder and Alexander Nyßen. Tmf meets gmf, 2016.

[MRH+16] Richard Membarth, Oliver Reichle, Frank Hannig, Jürgen Teich, Mario
Korner, and Wieland Eckert. Hipacc: A domain-specific language and
compiler for image processing. IEEE Transactions on Parallel and Dis-
tributed Systems, 27(991):210–224, January 2016.

BIBLIOGRAPHY 161

[MWSP06] Stefan May, Björn Werner, Hartmut Surmann, and Kai Pervölz. 3d time-
of-flight cameras for mobile robotics. In Proceedings of the International
Conference on Intelligent Robots and Systems, pages 790–795, October 2006.

[NIH+11] Richard Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux,
David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve
Hodges, and Andrew Fitzgibbon. Kinectfusion: Real-time dense surface
mapping and tracking. In Proceedings of the 10th IEEE International Sym-
posium on Mixed and Augmented Reality, ISMAR, pages 127–136, October
2011.

[NVI16] NVIDIA. www.nvidia.com. www.nvidia.com, October 2016.

[OMG16a] OMG. Corba. http://www.corba.org/, October 2016.

[OMG16b] OMG. Corba component model. http://www.omg.org/spec/CCM, Octo-
ber 2016.

[OMG16c] OMG. Metaobject facility (mof). http://www.omg.org/mof/, October 2016.

[OMG16d] OMG. Ocl. http://www.omg.org/spec/OCL/, October 2016.

[OMG16e] OMG. Uml. http://www.uml.org/, October 2016.

[Ope16] OpenCV. Opencv. http://opencv.org/, October 2016.

[PCL16] PCL. Pcl - point cloud library. http://pointclouds.org/http://opencv.org/,
October 2016.

[PM90] Pietro Perona and Jitendra Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(7):629–639, July 1990.

[PMD16] PMD. Pmdtechnologies ag. www.pmdtec.com, October 2016.

[QT16] QT. Qt project. http://qt-project.org, October 2016.

[Rap07] Holger Rapp. Experimental and theoretical investigation of correlating
tof-camera systems. Master’s thesis, University of Heidelberg, Germany,
2007.

[RHG15] Mahesh Ravishankar, Justin Holewinski, and Vinod Grover. Forma: A
dsl for image processing applications to target gpus and multi-core cpus.
In Proceedings of the 8th Workshop on General Purpose Processing Using
GPUs, pages 109–120, February 2015.

162 BIBLIOGRAPHY

[RHHL02] Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy. Real-time 3d
model acquisition. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 438–446, July 2002.

[RKN00] Rolf-Jürgen Recknagel, Richard Kowarschik, and Gunther Notni. High-
resolution defect detection and noise reduction using wavelet methods
for surface measurement. Journal of Optics A: Pure and Applied Optics,
2(6):538–545, November 2000.

[RL01] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp
algorithm. In Proceedings of the Third International Conference on 3-D Digital
Imaging and Modeling, pages 145–152. IEEE, May 2001.

[SBK08] Ingo Schiller, Christian Beder, and Reinhard Koch. Calibration of a pmd-
camera using a planar calibration pattern together with a multi-camera
setup. In Proceedings of the XXI International Society for Photogrammetry
and Remote Sensing Congress, ISPRS, pages 297–302, March 2008.

[Sch08] Markus Scheidgen. Textual Modelling Embedded into Graphical Modelling,
pages 153–168. Springer Berlin Heidelberg, 2008.

[Sch11] Mirko Schmidt. Analysis, Modeling and Dynamic Optimization of 3D Time-
of-Flight Imaging Systems. PhD thesis, IWR, Fakultät für Physik und
Astronomie, Univ. Heidelberg, 2011.

[SHGR11] Frank Schumacher, Markus Holzer, Thomas Greiner, and Wolfgang
Rosenstiel. Modeling and code generation of recursive algorithms
with extended uml activity diagrams. In Proceedings of the 21st Inter-
national Conference Radioelektronika, RADIOELEKTRONIKA, pages 1–4,
April 2011.

[SHLS09] Christian Schlegel, Thomas Hassler, Alex Lotz, and Andreas Steck.
Robotic software systems: From code-driven to model-driven designs.
In Proceedings of the International Conference on Advanced Robotics, ICAR,
pages 1–8, June 2009.

[Sim96] David Simon. Fast and Accurate Shape-Based Registration. PhD thesis,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, October
1996.

[SK10] Alexander Sabov and Jörg Krüger. Identification and correction of flying
pixels in range camera data. In Proceedings of the 24th Spring Conference
on Computer Graphics, pages 135–142, April 2010.

BIBLIOGRAPHY 163

[SLB+11] Arvind K. Sujeeth, Hyoukjoong Lee, Kevin J. Brown, Hassan Chafi,
Michael Wu, Anand R. Atreya, Kunle Olukotun, Tiark Rompf, and Mar-
tin Odersky. Optiml: an implicitly parallel domainspecific language for
machine learning. In Proceedings of the 28th International Conference on
Machine Learning, ICML, pages 609–616, June 2011.

[SP09] Selo Sulistyo and Andreas Prinz. Recursive modeling for completed code
generation. In Proceedings of the 1st Workshop on Behaviour Modelling in
Model-Driven Architecture, pages 6:1–6:7, June 2009.

[ST94] Jianbo Shi and Carlo Tomasi. Good features to track. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages
593–600, June 1994.

[SW99a] Christian Schlegel and Robert Wörz. Der Softwarerahmen SMARTSOFT
zur Implementierung sensomotorischer Systeme, pages 208–217. Springer
Berlin Heidelberg, November 1999.

[SW99b] Christian Schlegel and Robert Wörz. Interfacing different layers of a mul-
tilayer architecture for sensorimotor systems using the object-oriented
framework smartsoft. In Proceedings of the Third European Workshop on
Advanced Mobile Robots, Eurobot, pages 195–202, September 1999.

[TM98] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color
images. In Proceedings of the Sixth International Conference on Computer
Vision, ICCV, pages 839–846, January 1998.

[USC16] USC. The ”lena” test image. http://sipi.usc.edu/database/database.php,
October 2016.

[WTP+09] Manuel Werlberger, Werner Trobin, Thomas Pock, Andreas Wedel,
Daniel Cremers, and Horst Bischof. Anisotropic huber-l1 optical flow. In
Proceedings of the British Machine Vision Conference (BMVC), London, UK,
September 2009. to appear.

[ZF03] Barbara Zitova and Jan Flusser. Image registration methods: a survey.
Image and Vision Computing, 21(11):977–1000, October 2003.

[Zha94] Zhengyou Zhang. Iterative point matching for registration of free-form
curves and surfaces. International Journal of Computer Vision, 13(2):119–
152, October 1994.

164 BIBLIOGRAPHY

LIST OF FIGURES 165

List of Figures

2.1 Error distance measurement of a PMD camera 11
2.2 Distance-dependent intensity function 12
2.3 Distance-dependent intensity function corrected 12
2.4 Intensity-related distance error . 13
2.5 An exemplary partial sequence of checkerboard images 15
2.6 Reprojection results after applying the estimated transformation 15
2.7 ICP Point-to-plane metric . 16

4.1 Schematic view of the acquisition process of a PMD frame 27
4.2 Demodulation of the car’s phase image sequence 28
4.3 The motion detection and processing pipeline 28
4.4 A moving hand from with extracted motion artifacts 30
4.5 The motion coordinate system and an example offset 31
4.6 An example flow field . 31
4.7 Motion vectors . 33
4.8 Two different data sets for motion correction 34
4.9 Results of the three evaluated motion compensation methods 35
4.10 Visual evaluation of the hand scene . 39
4.11 Visual evaluation of the car scene . 40

5.1 PMD intensity image and height map 43
5.2 Intensity in relation to integration time 44
5.3 Amplitude in relation to integration time 44
5.4 Distance error in relation to amplitude 45
5.5 Intensity in relation to amplitude . 46
5.6 Measured intensity in relation to correct (linearized) intensity 47
5.7 Two different measurements of the same office scene 48
5.8 Principle schema of the integration time estimation algorithm 48
5.9 Comparison to the approach of May et al.: static 52
5.10 Comparison to the approach of May et al.: dynamic 53

6.1 Hardware setup of the car reconstruction prototype 56
6.2 A Data processing pipeline . 58
6.3 Single camera and multi camera acquisitions: intensity image 62
6.4 Single camera and multi camera acquisitions: distance image 62

166 LIST OF FIGURES

6.5 Four phase images with marked movements of the car 63
6.6 Motion artifacts of the moving car and corrected 64
6.7 Car image no median and median filtered 66
6.8 Box with outliers and filtered . 67
6.9 Unfiltered and gaussian filtered car depth data images 68
6.10 Schematic view of the standard background subtraction 69
6.11 Segmented background image . 70
6.12 A PMD intensity image and its corresponding normal image 71
6.13 Segmented intensity and the volumetric representation 73
6.14 Left and right view of the car point cloud 74
6.15 Sketch of a camera setup . 75
6.16 Reference coordinate system related to the top mounted RGB camera . 75
6.17 Wheel distance of a Peugeot 206 . 78
6.18 Wheel distance of a BMW E46 . 78
6.19 Wheel distance of a Skoda Octavia II . 79
6.20 SURF extraction of moving car . 79
6.21 Extracted car contours . 81

9.1 The two sections of an activity-diagram 95
9.2 Adding and modifying class methods in-place 98
9.3 The principle schema of graphical nodes 99
9.4 Action-node and xText-editor . 100

10.1 The proposed GPU modeling system . 103
10.2 2D GPU work-grid . 106
10.3 Code generation flow starting from the model as entry point 110
10.4 The multi-layer schema of the proposed HC Framework 110
10.5 Kernel container and kernel call inheritance diagram 111
10.6 The memory container inheritance diagram of the HC framework . . . 111
10.7 Important parts of the graphical Mean Filter activity-diagram 119
10.8 GU-DSL performance and LOC evaluation 120

11.1 Principle schema of the component-based GU-DSL framework 128
11.2 The CBSE schema . 136
11.3 The basic component class . 137
11.4 An exemplary port realization . 138
11.5 Three different kinds of communication 140
11.6 Component-instance-diagram realization 143
11.7 A graphical CBSE example . 147

B.1 GU-DSL Main diagram in Eclipse . 191
B.2 GU-DSL Bilateral GPGPU Filter diagram in Eclipse 192

LIST OF TABLES 167

List of Tables

2.1 Intrinsic calibration results . 14
2.2 Reprojection error . 16

4.1 The deviation of the ground-truth depth data 35
4.2 The statistic evaluation of the buddha scene 37
4.3 The statistical evaluation of the dragon scene 38

5.1 Estimated sensor and correction parameters 51

6.1 Transformation matrix between PMD and RGB camera 76
6.2 Car reconstruction execution timing . 77

168 LIST OF TABLES

Abbreviations 169

Abbreviations

ADL Architecture Definition Language 5, 126, 127, 129, 133, Glossary: Architecture
Definition Language

CASE Computer Aided Software Engineering 114, 118, Glossary: Computer Aided
Software Engineering

CBSE Component-Based Software Engineering 5, 125–129, 134–139, 141, 142, 144,
146–148, 150, 152, Glossary: Component-Based Software Engineering

CMOS Complementary Metal-Oxide-Semiconductor 151, Glossary: Complementary
Metal-Oxide-Semiconductor

CUDA Compute Unified Device Architecture 1, 2, 4, 25, 57, 72, 101, 103, 104, 108,
123, 152, Glossary: Compute Unified Device Architecture

DSL Domain Specific Language 2–4, 6, 7, 17–20, 87, 88, 91, 92, 97, 99, 103–105, 108,
109, 114, 122, 123, 125–127, 146, 149, 150, 152, 153, 176, Glossary: Domain Specific
Language

EBNF Extended Backus Naur Form 104, Glossary: Extended Backus Naur Form

EMF Eclipse Modeling Framework 176, Glossary: Eclipse Modeling Framework

FOV Field Of View 9, 14, 74, Glossary: Field Of View

FPGA Field Programmable Gate Array 4, 5, 24–26, 32, 40, 175, Glossary: Field Pro-
grammable Gate Array

FPN Fixed Pattern Noise 64, Glossary: Fixed Pattern Noise

GMF Graphical Modeling Framework 2, 18, 88, 91, 92, 98, 104, 122, 149, Glossary:
Graphical Modeling Framework

GPGPU General Purpose Computation on Graphics Processing Unit 4–6, 88, 89, 101–
106, 109, 111, 122, 123, 149, 152, 192, Glossary: General Purpose Computation on
Graphics Processing Unit

170 Abbreviations

GPU Graphic Processing Unit 1, 4, 5, 24, 25, 57, 72, 73, 77, 80, 84, 88, 101–112, 114–116,
118, 173–175, Glossary: Graphic Processing Unit

HC Heterogeneous Computing 101, 109, 110, 112, 121, 122, 128, 149, 152, Glossary:
Heterogeneous Computing

ICP Iterative Closest Point 16, 59, 70–75, 77, 80, 84, Glossary: Iterative Closest Point

ISO International Organization for Standardization 2, 17, 87, 101, Glossary: Interna-
tional Organization for Standardization

NIR Near Infrared 64, Glossary: Near Infrared

OCL Object Contstraint Language 101, 134, 135, Glossary: Object Contstraint Lan-
guage

OMG Object Management Group 2, 17, 87, 127, 129, 175, 176, Glossary: Object Man-
agement Group

OpenCL Open Computing Language 1, 2, 18, 87, 101, 102, 104, 108, 109, 111, 112,
114–116, 118–122, 128, 136, 144, 149, 152, Glossary: Open Computing Language

OpenGL Open Graphics Library 18, 87, 109, 128, 136, 144, Glossary: Open Graphics
Library

PLC Programmable Logic Controller 60, 80, 81, Glossary: Programmable Logic Con-
troller

PMD Photonic Mixer Device 1, 3, 4, 7–16, 23–25, 27, 29, 39, 41, 42, 46, 56–58, 63, 64,
67–69, 71–77, 80, 83, 84, 151, 176, Glossary: Photonic Mixer Device

RCP Rich Client Platform 126, 144, 147, 152, Glossary: Rich Client Platform

ROI Region Of Interest 102, 105, Glossary: Region Of Interest

SBI Suppression of Background Illumination 8, Glossary: Suppression of Background
Illumination

SDK Software Development Kit 8–10, Glossary: Software Development Kit

SNR Signal-to-Noise Ratio 2, 7, 23, 42, 64, Glossary: Signal-to-Noise Ratio

SQL Structured Query Language 18, 87, Glossary: Structured Query Language

ToF Time-of-Flight 1–5, 7–9, 13, 23–25, 27, 39, 41, 42, 45, 47, 54–57, 60, 61, 65, 73, 76,
80, 83, 84, 151, 153, 175, Glossary: Time-of-Flight

Abbreviations 171

UML Unified Modeling Language 2, 17, 87, 88, 91, 94–96, 98, 104, 126, 128, 133, 148,
150, 175, 177, Glossary: Unified Modeling Language

172 Abbreviations

Glossary 173

Glossary

A

Architecture Definition Language An ADL is a language to design and model (soft-
ware) system architectures. 5, 126, 129, 169

C

Complementary Metal-Oxide-Semiconductor It is a technology for constructing in-
tegrated circuits as microprocessors or other digital circuits. 151, 169

Component-Based Software Engineering CBSE is a method in the domain of soft-
ware engineering to separate problem descriptions and functionality into
reusable components. 5, 125, 126, 136, 152, 169

Compute Unified Device Architecture CUDA is a parallel computing platform
(API) developed by NVIDIA enabling developers to use GPUs for computing.
1, 169

Computer Aided Software Engineering CASE is the usage of software tools to au-
tomatically create new software based on specialized descriptions. 114, 169

D

Domain Specific Language DSLs are computer languages designed for special do-
mains. 2, 4, 7, 17–19, 88, 91, 150, 153, 169, 176

E

Eclipse Eclipse is an Open-Source software development environment originally
developed for Java programming. 88, 91, 92, 99, 104, 122, 144, 149, 173, 174, 191,
192

Eclipse Modeling Framework EMF is an Eclipse Java framework for structured sys-
tem modeling. 104, 169, 176

Extended Backus Naur Form The EBNF is a standardized extension of the Backus-
Naur-Form (BNF) to visualize the syntax of programming languages. 104, 169

174 Glossary

F

Field Of View The FOV is the observable world that can be seen at a moment. 9, 169

Field Programmable Gate Array A FPGA is an integrated circuit that can be pro-
grammed. Using a special hardware description language, designers are able
to develop customized, high performance solutions in hardware. 4, 169

Fixed Pattern Noise FPN is a location based noise occurring due to underlying (hard-
ware) structure that can mostly be corrected by an offset and gain for each pixel.
64, 169

G

General Purpose Computation on Graphics Processing Unit It is the usage of a
Graphic Processing Unit for general purpose processing comparable to CPU
processing. 4, 169

Graphic Processing Unit It is a processor specialized for graphic processing. 1, 170,
174

Graphical Modeling Framework GMF is a graphical modeling framework within
the toolchain of Eclipse. 2, 169

H

Heterogeneous Computing Heterogeneous Computing covers systems using and
supporting several different kind of processors as e.g. CPUs and GPUs at the
same time. 101, 109, 110, 112, 122, 128, 149, 152, 170

I

International Organization for Standardization The ISO is an organization respon-
sible for the development of international standards in all domains. 2, 170

Iterative Closest Point The ICP is an algorithm developed to find the error-
minimized transformation between two point-clouds. 16, 170

N

Near Infrared NIR is an invisible radiant energy with longer wavelength compared
to visible light. It lies is in a range between about 750nm and 1400nm. 64, 170

O

Glossary 175

Object Contstraint Language The OCL is a language standardized by the OMG and
part of UML. Using OCL it is possible to define conditions and restrictions
during model design. 101, 134, 170

Object Management Group The OMG is an international technology standards con-
sortium. 2, 170

Open Computing Language OpenCL is a parallel computing interface originally de-
veloped by Apple enabling developers the heterogeneous computing across
platforms (CPU, GPU, FPGA. OpenCL is maintained by the Khronos Group. 1,
170

Open Graphics Library OpenGL is a cross platform API for rendering 2D and 3D
vector graphics e.g. on a GPU. 18, 170

P

Photonic Mixer Device It is an optical sensor working on the Time-of-Flight princi-
ple. 1, 170, 176

Programmable Logic Controller A PLC is computer commonly used in industrial
automation. Using Input/Output and controlling interface components a PLC
can control assembly lines or robots. 60, 170

R

Region Of Interest A Region Of Interest is the range of interesting data points within
a data set identified for a specific purpose. In the domain of image processing,
a region of interest can e.g. be an area around a single pixel. 102, 170

Rich Client Platform A RCP is a platform that can be used as basic runnable software
allowing to simply integrate new components. 126, 152, 170

S

Signal-to-Noise Ratio The SNR is a measure to compare the signal and the back-
ground noise. Ratios higher than 1:1 indicate that a signal is available. 2, 7, 42,
64, 170

Software Development Kit A SDK is a collection of tools that allows the develop-
ment of applications based on it. 8, 170

Structured Query Language SQL is a language to query and manage data in relation
databases. 18, 170

176 Glossary

Suppression of Background Illumination The Suppression of Background Illumi-
nation of a Photonic Mixer Device is a mechanism to enlarge the ratio between
the distance carrying signal and the uncorrelated extraneous light. It reduces
unnecessary charge carriers within the individual pixel channels A and B (e.g.
the steady component). 8, 170

T

Time-of-Flight It is a method to measure the distance between a light source and and
a reflecting object. 1, 83, 170, 175

U

Unified Modeling Language UML is a graphical modeling language to design and
visualize systems. It is standardized by the OMG. 2, 171

X

Xbase Xbase is a reusable javalike expression language implemented using xText. 94,
104

Xtend Xtend is a javalike programming language implemented using xText. 109, 136

xText xText is an Open-Source-Framework for the development of Domain Specific
Languages and part of the Eclipse Modeling Framework (EMF) project. 2, 18,
87, 88, 91, 98–100, 104, 122, 125, 149, 176

APPENDIX A. GU-DSL IMPORTANT SYNTAX CONSTRUCTS 177

A GU-DSL Important
Syntax Constructs

Using associations well-known from the graphical UML modeling allows the devel-
oper to define relations between objects. This is simply done by defining fields in
classes, as can be seen here:

1 // Image contains 0 .. to n sub images
2 self aggregation [0 .. *] subImages : Image;
3
4 // At least one or more pixel belong to an image
5 self composition [1 .. *] pixel : Pixel;
6
7 // Bidirectional association: Image contains
8 // 0 to n pixel. One pixel belongs to one image
9 self [1] contains : Pixel [0 .. *];
10
11 // A uni-directional association: A pixel
12 // has a parent, but the parent does not know it
13 self parentImage : Image;

The GU-DSL expression grammar allows three types of variables declarations:

1. Mutable variables, defining variables that can be changed:
1 var int i = 0;
2 var Image image;
3

2. Constant variables, defining variables that cannot be changed:
1 const int j = 0;
2

3. Reference variables, as known from C/C++ as pointers, allowing direct access
to memory addresses:

1 var ref int k = 0;
2 var ref Image image;
3

178 APPENDIX A. GU-DSL IMPORTANT SYNTAX CONSTRUCTS

Reference variables are treated in a special way, different from the C/C++ derefer-
encing mechanism. Depending on the assigned value type, the kind of assignment is
automatically chosen (see Listing 29).

1 var int i = 0; // Declare variable i
2 const int j = 0; // Declare constant j
3 var ref int k = ref i; // Assigning i as
4 // reference to k
5 k = 100; // Assigns 100 to k,
6 // and respectively to i
7 k = j; // Assigning the content
8 // of j == 0 to k
9 k = ref j; // Assigning the j as
10 // new reference to j

Listing 29 Reference assignment and automatic dereferencing.

Using this mechanism simplifies the language usage and improves maintainability.
Additionally, through the support of references, it is possible to develop fast code,
which is the most important requirement in image processing algorithm development.

Loop Expressions Loops are a central part of programming languages, allowing
simple repetition of statements. Three kinds of control structures are supported:

1. Head-controlled loops:

1 loop(i < 100) { i = i +1; };
2

2. Tail-controlled loops:
1 do { i = i + 1; } loop(i <= 100);
2

3. Conditionally head-controlled loops:
1 for(i = 0 : 1 : i < 100) { };
2

Conditional Expressions Besides loops, two kinds of conditional expressions are
supported:

1. If-Else-expressions:

1 if(i < 100) { k = 0; }
2 else{ k = 1; };
3

179

2. Switch-Case-expressions:

1 switch i:
2 {
3 case 0: {}
4 default: {}
5 };
6

180 APPENDIX A. GU-DSL IMPORTANT SYNTAX CONSTRUCTS

APPENDIX B. GU-DSL EXAMPLES 181

B GU-DSL Examples

1 ActivityDiagram Main()
2 {
3 // ... Variable declarations
4
5 swimlane P1
6 {
7 start S1
8 {
9 => initViewer;
10 }
11
12 action initViewer
13 {
14 viewer = new Viewer2D();
15 => loadImage(imageFilename);
16 }
17
18 action loadImage(string asd)
19 {
20 image.load(asd);
21 image = image.convertToFormat(QImageFormat::Format_ARGB32);
22
23 => initGPUBuffer;
24 }
25
26 action initGPUBuffer()
27 {
28 imageContainer = new ImageContainer <unsigned byte>("bilateralImageIn", HCImageChannelOrder.RGBA);
29 imageContainer.create(image.width(), image.height());
30
31 outImageContainerBilateral = new ImageContainer <unsigned byte>("bilateralImageOutBilateral",

HCImageChannelOrder.RGBA);
32 outImageContainerBilateral.create(image.width(), image.height());
33
34 outImageContainerMean = new ImageContainer <unsigned byte>("bilateralImageOutMean", HCImageChannelOrder.

RGBA);
35 outImageContainerMean.create(image.width(), image.height());
36
37 buffer = new unsigned byte[(image.width() * image.height()) * 4];
38
39 var int iy;
40 for(iy = 0 : 1 : iy < image.height())
41 {
42 var ref unsigned byte scanline = image.scanLine(iy);
43 var ref unsigned byte lineAdr = buffer + iy * (4 * image.width());
44
45 CPPMethods::memcpy(lineAdr, scanline , (4 * image.width()));
46 };
47
48
49
50 => initRandomReduceBuffer;
51 }

Listing 30 The full textual Main activity diagram of all examples. Part 1

182 APPENDIX B. GU-DSL EXAMPLES

1 action initRandomReduceBuffer()
2 {
3 bufferAllElements = new unsigned int[max_elements];
4
5 inFindMinElements = new BufferContainer <unsigned int>("inFindMinElements");
6 inFindMinElements.create(max_elements , 1);
7
8 outFindMinElements = new BufferContainer <int>("outFindMinElements");
9 outFindMinElements.create(max_elements , 1);
10
11 outFindLastElement = new BufferContainer <int>("outFindLastElement");
12 outFindLastElement.create(1, 1);
13
14 CPPMethods::srand(CPPMethods::time(0));
15
16 var int i;
17 for(i = 0 : 1 : i < max_elements)
18 {
19 bufferAllElements[i] = i;
20 };
21
22 for(i = 0 : 1 : i < max_elements)
23 {
24 var int index1 = CPPMethods::rand() % max_elements;
25 var int index2 = CPPMethods::rand() % max_elements;
26
27 var unsigned int tmpValue = bufferAllElements[index1];
28 bufferAllElements[index1] = bufferAllElements[index2];
29 bufferAllElements[index2] = tmpValue;
30 };
31
32 => syncToGPU;
33 }
34
35 action syncToGPU()
36 {
37 imageContainer.fill(buffer);
38 imageContainer.syncToGPU();
39
40 inFindMinElements.fill(bufferAllElements);
41 inFindMinElements.syncToGPU();
42
43 => addViewerImages;
44 }
45
46 loop addViewerImages(var int i = 0; i < 4; i = i + 1)
47 {
48 var int newImageIndex = viewer.addImageObject(0, 200, 200);
49 viewer.setImage(image, newImageIndex , false);
50
51 => showViewer(1000, 600);
52 }
53
54 action showViewer(int sizeX, int sizeY)
55 {
56 viewer.show();
57 viewer.resize(sizeX, sizeY);
58
59 => processImages;
60 }
61
62 action processImages()
63 {
64 imageIndex = imageIndex + 1;
65
66 [imageIndex == 1] => filterBilateralCL(image.width(), image.height(), 0, imageIndex);
67 [imageIndex == 2] => filterMean(image.width(), image.height(), 0, imageIndex);
68 [imageIndex == 3] => startReduction();
69 []=> f;
70 }
71
72 calc filterBilateralCL(int imageIndex)
73 {
74 call BilateralFilter::filterBilateral(imageContainer , outImageContainerBilateral , 5.0f, 10.0f, 50.0f);
75
76 => showFilteredImage(outImageContainerBilateral);
77 }
78
79 calc filterMean(int imageIndex)
80 {
81 call MeanFilter::filterMean(imageContainer , outImageContainerMean , 10);
82
83 => showFilteredImage(outImageContainerMean);
84 }

Listing 31 The full textual Main activity diagram of all examples. Part 2

183

1 action showFilteredImage(ref ImageContainer <unsigned byte> container)
2 {
3 container.syncToCPU();
4 viewer.setImage(container.hostPointer() as ref void, container.numberOfElements() * 4, 1, image.width(),

image.height(), 5121, imageIndex , false, 3);
5
6 => processImages;
7 }
8
9 action startReduction
10 {
11 => estimateMinPow2ForInputSize(max_elements , nbWorkItemsNeeded);
12 }
13
14 action estimateMinPow2ForInputSize(int inputSize , out int value)
15 {
16 value = -1;
17 var int maxInt = 2147483647;
18
19 var int i;
20 for(i = 1 : i = (i * 2) : i < (maxInt / 2))
21 {
22 if(i >= inputSize)
23 {
24 value = i;
25 return;
26 }
27 }
28
29 return;
30
31 => estimateWorkSizes(inFindMinElements.device(), max_elements);
32 }
33
34 action estimateWorkSizes(HCDevicePtr device,
35 int problemSize)
36 {
37
38 var int maxLocalWorkingSize = device.getMaxDeviceWorkGroupSize();
39
40 var int maxNumberOfWorkgroups = maxLocalWorkingSize;
41 var int localWorkingSize = maxLocalWorkingSize;
42
43 // Calculated the work-groups needed
44 nbWorkgroups = nbWorkItemsNeeded/localWorkingSize;
45
46 // Limit the number of work-groups if necessary
47 if(nbWorkgroups > maxNumberOfWorkgroups)
48 nbWorkgroups = maxNumberOfWorkgroups;
49
50 // Calculate the number of elements , each work-group has to process
51 var int nbElementsPerWorkgroup = nbWorkItemsNeeded / nbWorkgroups;
52
53 // Calculate the number of elements , each work-item has to process.
54 numberOfElementsToProcessPerWorkItem = nbElementsPerWorkgroup / localWorkingSize;
55
56 localRangeLarge = localWorkingSize;
57 globalRangeLarge = nbWorkgroups*localWorkingSize;
58
59 localRangeSmall = nbWorkgroups;
60 globalRangeSmall = nbWorkgroups;
61
62 => findIndexFirstStage(globalRangeLarge , 1, localRangeLarge , 1);
63 }
64
65 calcRange findIndexFirstStage()
66 {
67 call FindIndex::findMinimumIndexFirstStage(inFindMinElements ,
68 outFindMinElements ,
69 max_elements ,
70 localRangeLarge * 4,
71 localRangeLarge ,
72 bufferAllElements[valueIndexToFind],
73 numberOfElementsToProcessPerWorkItem);
74
75 => findIndexSecondStage(globalRangeSmall , 1, localRangeSmall , 1);
76 }
77
78 calcRange findIndexSecondStage()
79 {
80 call FindIndex::findMinimumIndexSecondStage(inFindMinElements ,
81 outFindMinElements ,
82 outFindLastElement ,
83 nbWorkgroups ,
84 nbWorkgroups * 4,
85 nbWorkgroups ,
86 bufferAllElements[valueIndexToFind]);
87
88 => findIndexThirdStage;
89 }

Listing 32 The full textual Main activity diagram of all examples. Part 3

184 APPENDIX B. GU-DSL EXAMPLES

1 action findIndexThirdStage()
2 {
3 outFindLastElement.syncToCPU();
4 var ref int indexPtr = outFindLastElement.hostPointer();
5 var int index = indexPtr;
6
7 Console::writeValue("Searched index: ");
8 Console::writeValue(valueIndexToFind);
9 Console::writeEOL();
10
11 Console::writeValue("Found index: ");
12 Console::writeValue(index);
13 Console::writeEOL();
14
15 => processImages;
16 }
17
18 final f
19 }
20 }

Listing 33 The full textual Main activity diagram of all examples. Part 4

185

1 ClassDiagram Reduction
2 {
3 import OpenCL.GPU.*;
4
5 public class FindIndex implements OpenCL
6 {
7 public global void findMinimumIndexFirstStage(global ref unsigned int data,
8 global ref int idxReduced ,
9 const int nbElements ,
10 shared ref unsigned int bufferLocal ,
11 const int bufferSizeLocal ,
12 const unsigned int searchElement ,
13 const int nbElementsToPreprocessPerWorkItem)
14 {
15 call behavior FindMinimumIndexFirstStage(data, idxReduced , nbElements , bufferLocal , bufferSizeLocal ,

searchElement , nbElementsToPreprocessPerWorkItem);
16
17 }
18
19 public global void findMinimumIndexSecondStage(global ref unsigned int data,
20 global ref int idxReduced ,
21 global ref int idxReducedSingleElement ,
22 const int nbElements ,
23 shared ref unsigned int bufferLocal ,
24 const int bufferSizeLocal ,
25 const int searchElement)
26 {
27 call behavior FindMinimumIndexSecondStage(data, idxReduced , idxReducedSingleElement , nbElements ,

bufferLocal , bufferSizeLocal , searchElement);
28 }
29
30 private int bindBetterValueAndReturnNumber(const unsigned int a, const unsigned int b, const unsigned int

searchElement)
31 {
32 call behavior BindBetterValueAndReturnNumber(a, b, searchElement);
33 }
34
35 private int findBetterValueIdx(global ref unsigned int data, int idxA, int idxB, unsigned int searchElement

)
36 {
37 call behavior FindBetterValueIdx(data, idxA, idxB, searchElement);
38 }
39
40 private void reduceFindFirstGreaterOrEqualIdx(global ref unsigned int data,
41 shared ref unsigned int bufferLocal ,
42 int bufferSizeLocal ,
43 int idxLocal ,
44 const int searchElement)
45 {
46 call behavior reduceFindFirstGreaterOrEqualIdx(data, bufferLocal , bufferSizeLocal , idxLocal,

searchElement);
47 }
48
49 }
50
51 }

Listing 34 The class diagram of the Reduction activity diagram example from
the GPGPU programming chapter.

186 APPENDIX B. GU-DSL EXAMPLES

1 ActivityDiagram BindBetterValueAndReturnNumber(const unsigned int a, const unsigned int b, const unsigned int
searchElement)

2 {
3 public int returnValue = -1;
4
5 swimlane Swimlane1 , owner Reduction.FindIndex
6 {
7 start S1
8 {
9 => checkElements;
10 }
11
12 action checkElements
13 {
14 [a >= searchElement && b >= searchElement] => handleBothValuesToLarge;
15 [a >= searchElement && b < searchElement] => handleAToLarge;
16 [b >= searchElement && a < searchElement] => handleBToLarge;
17 =>f;
18 }
19
20 action handleBothValuesToLarge
21 {
22 if(a <= b)
23 {
24 returnValue = 0;
25 }
26 else
27 {
28 returnValue = 1;
29 };
30
31 => f;
32 }
33
34 action handleAToLarge
35 {
36 returnValue = 0;
37 => f;
38 }
39
40 action handleBToLarge
41 {
42 returnValue = 1;
43 => f;
44 }
45
46 final f return returnValue
47
48 }
49 }

Listing 35 Reduction activity diagram example: Comparison of two indices.

187

1 ActivityDiagram reduceFindFirstGreaterOrEqualIdx(global ref unsigned int data,
2 shared ref unsigned int bufferLocal ,
3 int bufferSizeLocal ,
4 int idxLocal ,
5 const int searchElement)
6 {
7
8 import OpenCL.GPU.*;
9
10 swimlane Swimlane1 , owner Reduction.FindIndex
11 {
12 start S1
13 {
14 => block_threads;
15 }
16
17 action block_threads
18 {
19 barrier(barrier_flags.CLK_LOCAL_MEM_FENCE);
20
21 => loopBuffer;
22 }
23
24 loop loopBuffer(var int i = bufferSizeLocal/2; i > 0; i = i / 2)
25 {
26 if (idxLocal < i)
27 {
28 var int idxA = bufferLocal[idxLocal];
29 var int idxB = bufferLocal[idxLocal + i];
30
31 var int retval = findBetterValueIdx(data, idxA, idxB, searchElement);
32
33 bufferLocal[idxLocal] = retval;
34
35 };
36 barrier(barrier_flags.CLK_LOCAL_MEM_FENCE);
37
38 => f;
39 }
40
41 final f
42 }
43
44 }

Listing 36 Reduction activity diagram example: Try to find a good starting
index

188 APPENDIX B. GU-DSL EXAMPLES

1 ActivityDiagram FindBetterValueIdx(int g, global ref unsigned int data, int idxA, int idxB, unsigned int
searchElement)

2 {
3 public int returnValue = -1;
4
5 swimlane Swimlane1 , owner Reduction.FindIndex
6 {
7 start S1
8 {
9 => evaluateIndex;
10 }
11
12 action evaluateIndex
13 {
14 [idxA != -1 && idxB != -1] => handleBothIndicesValid;
15 [idxA != -1 && idxB == -1] => handleIndexAValid;
16 [idxB != -1 && idxA == -1] => handleIndexBValid;
17 =>f;
18 }
19
20 action handleBothIndicesValid
21 {
22 var unsigned int valA = data[idxA];
23 var unsigned int valB = data[idxB];
24
25 var int test = bindBetterValueAndReturnNumber(valA, valB, searchElement);
26
27
28 switch (test):
29 {
30 case 0:
31 returnValue = idxA
32 case 1:
33 returnValue = idxB
34 };
35
36 => f;
37 }
38
39 action handleIndexAValid
40 {
41 var int valA = data[idxA];
42
43 if(valA >= searchElement)
44 {
45 returnValue = idxA;
46 };
47
48 => f;
49 }
50
51 action handleIndexBValid
52 {
53 var int valB = data[idxB];
54
55 if(valB >= searchElement)
56 {
57 returnValue = idxB;
58 };
59
60 => f;
61 }
62
63 final f return returnValue
64 }
65 }

Listing 37 Reduction activity diagram example: Best value search.

189

1 ActivityDiagram FindMinimumIndexFirstStage(global ref unsigned int data,
2 global ref int idxReduced ,
3 const int nbElements ,
4 shared ref int bufferLocal ,
5 const int bufferSizeLocal ,
6 const unsigned int searchElement ,
7 const int nbElementsToPreprocessPerWorkItem)
8 {
9
10 public int idxGlobal;
11 public int idxGroup;
12 public int idxLocal;
13 public int globalSize;
14 public unsigned int idxA;
15
16 swimlane Swimlane1 , owner Reduction.FindIndex
17 {
18 start S1
19 {
20 => init;
21 }
22
23 action init
24 {
25 idxGlobal = get_global_id(1) * get_global_size(0) + get_global_id(0);
26
27 // If the global work-item-index exceeds the problem size, return.
28 if(idxGlobal >= nbElements)
29 return;
30
31 // Calculate the local work-item-index
32 idxGroup = get_group_id(1) * get_num_groups(0) + get_group_id(0);
33
34 // Calculate the local work-item-index
35 idxLocal = get_local_id(1) * get_local_size(0) + get_local_id(0);
36 globalSize = get_global_size(0);
37
38 idxA = idxGlobal;
39
40 [nbElementsToPreprocessPerWorkItem > 1] => handleWorkItemElements;
41 => reduceFirstElements;
42
43 }
44
45 loop handleWorkItemElements(var int i = 0; i < nbElementsToPreprocessPerWorkItem; i = i + 1)
46 {
47 var int idxB = idxGlobal + i*get_global_size(0);
48
49 if(idxB< nbElements)
50 {
51 idxA = findBetterValueIdx(data, idxA, idxB, searchElement);
52 };
53
54 => reduceFirstElements;
55 }
56
57
58 action reduceFirstElements
59 {
60 bufferLocal[idxLocal] = idxA;
61 reduceFindFirstGreaterOrEqualIdx(data, bufferLocal , bufferSizeLocal , idxLocal, searchElement);
62
63 [idxLocal == 0] => reduceLastGroup;
64 => f;
65 }
66
67 action reduceLastGroup
68 {
69 idxReduced[idxGroup] = bufferLocal[0];
70 => f;
71 }
72
73 final f
74
75
76 }
77 }

Listing 38 Reduction activity diagram example: Index search, first stage.

190 APPENDIX B. GU-DSL EXAMPLES

1 ActivityDiagram FindMinimumIndexSecondStage(global ref unsigned int data,
2 global ref int idxReduced ,
3 global ref int idxReducedSingleElement ,
4 const int nbElements ,
5 shared ref int bufferLocal ,
6 const int bufferSizeLocal ,
7 const int searchElement)
8 {
9 public int idxGlobal;
10 public int idxGroup;
11 public int idxLocal;
12 public int globalSize;
13 public unsigned int idxA;
14
15 swimlane Swimlane1 , owner Reduction.FindIndex
16 {
17 start S1
18 {
19 => init;
20 }
21
22 action init
23 {
24 idxGlobal = get_global_id(1) * get_global_size(0) + get_global_id(0);
25
26 // If the global work-item-index exceeds the problem size, return.
27 if(idxGlobal >= nbElements)
28 return;
29
30 // Calculate the local work-item-index
31 idxGroup = get_group_id(1) * get_num_groups(0) + get_group_id(0);
32
33 // Calculate the local work-item-index
34 idxLocal = get_local_id(1) * get_local_size(0) + get_local_id(0);
35
36 => loadDataFromGlobal;
37 }
38
39 action loadDataFromGlobal
40 {
41 // Load data from global to local memory
42 bufferLocal[idxLocal] = idxReduced[idxGlobal];
43
44 => reduceFirstElements;
45 }
46
47 action reduceFirstElements
48 {
49 reduceFindFirstGreaterOrEqualIdx(data, bufferLocal , bufferSizeLocal , idxLocal, searchElement);
50
51 [idxLocal == 0] => reduceLastGroup;
52 => f;
53 }
54
55 action reduceLastGroup
56 {
57 idxReducedSingleElement[0] = bufferLocal[0];
58 => f;
59 }
60
61 final f
62
63 }
64 }

Listing 39 Reduction activity diagram example: Index search, second stage.

191

Figure B.1: The Eclipse IDE showing the designed Main diagram and the correspond-
ing classes.

192 APPENDIX B. GU-DSL EXAMPLES

Figure B.2: The Eclipse IDE showing the designed Bilateral GPGPU Filter diagram
and the corresponding classes

	Abstract
	Kurzfassung
	Contents
	1 Introduction
	2 Fundamentals
	2.1 Time-of-Flight Cameras
	2.1.1 Time-of-Flight Principle
	2.1.2 Time-of-Flight Calibration

	2.2 Time-Of-Flight Camera Error-Analysis and Parameter Estimation
	2.2.1 Systematic Error Correction
	2.2.2 Intrinsic Calibration
	2.2.3 Extrinsic Calibration

	2.3 Iterative Closest Point Algorithm
	2.3.1 Point-to-Point Error Metric
	2.3.2 Point-to-Plane Error Metric

	2.4 Domain Specific Languages
	2.4.1 DSL - Advantages
	2.4.2 DSL - Disadvantages
	2.4.3 Development

	I Time-of-Flight Algorithms
	3 Introduction
	4 Compensation of Motion Artifacts
	4.1 Related Work
	4.2 A Method for Fast Linear Motion Compensation
	4.2.1 Problem Analysis
	4.2.2 The Motion Compensation Approach
	4.2.3 Search Space Reduction
	4.2.4 Flow Field Optimization
	4.2.5 Raw Phase Value Correction

	4.3 Results
	4.3.1 Quantitative Results
	4.3.2 Qualitative Results

	4.4 Summary

	5 Automatic Integration Time Estimation
	5.1 Related Work
	5.2 PMD Sensor Analysis
	5.2.1 Spatial Intensity Distribution
	5.2.2 Intensity and Amplitude Behavior
	5.2.3 Amplitude-Error Correlation
	5.2.4 Amplitude-Intensity Mapping
	5.2.5 Intensity Correction

	5.3 The Proposed Method
	5.3.1 Algorithm

	5.4 Algorithm Evaluation
	5.4.1 Evaluation Method
	5.4.2 Static Metal Plate Scene Evaluation
	5.4.3 Dynamic Scene Evaluation

	5.5 Summary

	6 3D Car Reconstruction –An Industrial Application
	6.1 System Overview
	6.2 Contribution
	6.3 Related Work
	6.4 System Challenges
	6.5 Data Processing Concept
	6.5.1 Preprocessing Stages
	6.5.2 Segmentation
	6.5.3 Registration
	6.5.4 Model Integration and Accumulation

	6.6 Hardware Setup and Calibration
	6.7 Results
	6.7.1 Feature Based Image Registration
	6.7.2 Result Summary

	6.8 Summary

	7 Depth Data Processing Summary

	II Model Driven Software Engineering Paradigms
	8 Introduction of Model Driven Engineering
	9 GU-DSL – A Generic Domain Specific Language
	9.1 Language Features and Concepts
	9.1.1 Structural Modeling using Class-Diagrams
	9.1.2 Definition of Behavior Modeling
	9.1.3 Behavior Modeling using Expressions
	9.1.4 Behavior Modeling using Activity-Diagrams

	9.2 The Combination of Graphical And Textual Modeling
	9.2.1 Class-Diagrams
	9.2.2 Activity-Diagrams

	10 Model Driven GPGPU Programming
	10.1 Related Work
	10.2 A Generic Data- and Image-Processing-Language for GPGPU-programming
	10.2.1 GPGPU Behavior Modeling using Expressions and Activity-Diagrams

	10.3 Heterogeneous Computing and Code Generation
	10.3.1 Heterogeneous Computing
	10.3.2 The Code Generator

	10.4 Evaluation
	10.4.1 Mean Filter
	10.4.2 Bilateral Filter
	10.4.3 Reduction
	10.4.4 Implementation Details
	10.4.5 Results
	10.4.6 Evaluation Summary

	10.5 Summary

	11 Component-Based Data And Image Processing Architectures
	11.1 Related Work
	11.2 System Concept and Overview
	11.3 GU-DSL – Component-Based Engineering
	11.3.1 Interface Definitions
	11.3.2 Component Definitions
	11.3.3 Port Definitions and Connections
	11.3.4 Component Instance Definitions
	11.3.5 Component Initialization and Execution
	11.3.6 Graphical Design Assistance
	11.3.7 Summary

	11.4 A CBSE System as an Exemplary Implementation of GU-DSL
	11.4.1 Component Realization
	11.4.2 Port Realization
	11.4.3 Component and Port Interaction
	11.4.4 Prototype-Factory Pattern - A Way for Dynamic Object Creation and Registration
	11.4.5 Component Diagram Realization
	11.4.6 The Rich Client Platform

	11.5 A Component-Based Modeling Example
	11.6 Summary

	12 Model Driven Engineering Summary

	13 Summary And Conclusion
	Bibliography
	List of Figures
	List of Tables
	Abbreviations
	Glossary
	A GU-DSL Important Syntax Constructs
	B GU-DSL Examples

