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Fig. 1. Adaptive simulation of a bunny shaped drop of water falling into a tank at particle mass ratios of 1:300. The left image shows the overall splashing
effect while the top right image shows the fine visible surface detail. The color mapped image shows a cut away view with volume color coded from purple to
yellow. Our algorithm allows for a smooth adaptive simulation with detailed surface and low interior resolution.

In this paper we introduce a novel method to adaptive incompressible SPH
simulations. Instead of using a scheme with a number of fixed particle sizes
or levels, our approach allows continuous particle sizes. This enables us
to define optimal particle masses with respect to, e.g., the distance to the
fluid’s surface. A required change in mass due to the dynamics of the fluid
is properly and stably handled by our scheme of mass redistribution. This
includes temporally smooth changes in particle masses as well as sudden
mass variations in regions of high flow dynamics. Our approach guarantees
low spatial variations in particle size, which is a core property in order to
achieve large adaptivity ratios for incompressible fluid simulations. Concep-
tually, our approach allows for infinite continuous adaptivity, practically we
achieved adaptivity ratios up to 5 orders of magnitude, while still being mass
preserving and numerically stable, yielding unprecedented vivid surface
detail at comparably low computational cost and moderate particle counts.
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1 INTRODUCTION
Fluid simulation has been a topic of interest for a long time and has
found widespread use in computer animation. While the plausibility
and vividness of simulated fluids strongly depend on the dynamics in
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specific regions, e.g., at the fluid surface including droplets, splashing
and formation of fluid sheets, large parts of the fluid bulk are less
important for the overall visual appearance of the simulation. Using
a high resolution in specific flow regions, like surfaces, and a coarse
resolution in other parts, like the bulk, has a huge potential to
improve efficiency at no or minimal loss of visual quality.
For grid-based fluid simulation there are various methods to

achieve adaptivity, e.g. using octrees [Losasso et al. 2004], non-
uniform [Klingner et al. 2006] or tetrahedral meshes [Ando et al.
2013]. Grid-free, particle-based approaches, such as Smoothed Par-
ticle Hydrodynamics (SPH), have quite some advantages over grid-
based approaches with respect to mass preservation and modelling
of free surfaces. However, only a limited amount of adaptivity has
been achieved for SPH-based simulations of incompressible fluids
so far. All existing methods simulate particles on a pre-defined
set of discrete particle levels, each fixating a pre-defined particle
size [Adams et al. 2007; Horvath and Solenthaler 2013; Orthmann
and Kolb 2012; Solenthaler and Gross 2011]. Depending on the re-
finement requirements at a given spatial location, a specific level,
i.e., particle size, is chosen. If the currently used particle size needs
to be altered, particles can be replaced instantaneously [Adams
et al. 2007] or by applying temporal blending schemes [Orthmann
and Kolb 2012]. Alternatively, higher resolution can be achieved by
simulating separate scales in regions which require higher resolu-
tion which either suffer from mass loss [Horvath and Solenthaler
2013; Solenthaler and Gross 2011] or only allow for very limited
adaptivity [Cornelis et al. 2014].

Indirect coupling between particle levels is either limited to small
particle mass ratios of 1:8 [Cornelis et al. 2014] or is not mass pre-
serving [Horvath and Solenthaler 2013; Solenthaler and Gross 2011].
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Level-based incompressible fluid simulations cannot ensure suf-
ficiently smooth transitions between regions of different particle
resolutions. Thus, direct interaction of particles of different levels
can cause instabilities which so far restrict adaptivity to particle
mass ratios of up to 1:64 [Orthmann and Kolb 2012].
In this paper we introduce the concept of adaptivity using arbi-

trary particle sizes. The main idea is to have a continuously adaptive
mass for each particle, which is driven by the distance to important
flow regions, e.g., the fluid surface. Our approach enforces a smooth
transition between areas of different resolutions by directly exchang-
ing mass between particles. As a consequence, our technique does
neither suffer from mass loss like approaches with indirect coupling
between different resolutions, nor from numerical instabilities due
to the interaction of particles with very different sizes and masses.
Thus, we allow for virtually infinite adaptivity.

Conceptually and technically our approach comprises the follow-
ing features and contributions:

• the concept of continuously adjusted particle masses (and
sizes) with restricted spatial variation, leading to technically
unlimited adaptivity,

• a method to flexibly adjust particle masses not only by
split/merge operations but also by redistributingmass among
particles which guarantees mass preservation and prevents
problems of finding merge partners,

• an efficient implicit temporal blending method which al-
lows for stable incompressible fluid simulation, and

• proper handling of continuously varying particle radii in
the SPH simulation framework.

The rest of paper is structured as follows. First we will discuss
related work in Sec. 2 and recapitulate the foundations of SPH in
Sec. 3. Sec. 4 gives an overview of our approach. Sec. 5 describes how
to calculate a particle’s distance to the surface and its desired optimal
size. Our novel splitting and merging schemes and our smooth and
conservative mass redistribution are described in Sec. 6. In Sec. 7
we discuss our novel concept of implicit temporal blending. Sec. 8
shows how to adjust the simulation to stably work with varying
particle resolution. Sec. 9 presents results before conclusions are
drawn in Sec. 10.

2 RELATED WORK
Since its introduction by Gingold and Monaghan [1977], SPH has
been a very active field of research. First, stiff equations of state
were employed to achieve weakly compressible fluids [Becker and
Teschner 2007; Müller et al. 2003]. Later, prediction-correction-
based [Solenthaler and Pajarola 2009], iterative [Macklin and Müller
2013] and implicit methods were used to enforce incompressibil-
ity [Bender and Koschier 2015; Ihmsen et al. 2014].

Adaptive simulation using splitting and merging of particles was
introduced by Desbrun and Cani [1999]. Adams et al. [2007] adjust
particle positions after splitting to reduce the errors mainly intro-
duced in the pressure term. As direct interactions between particles
of different levels are a common source of instable simulations,
Keiser et al. [2006] use particles that also carry virtual particles
of neighboring resolutions which are then used in the interaction.
However, none of these approaches could be shown to work with
incompressible fluids. A way to work around these instabilities is to

use parallel separate simulation scales in which particles of differ-
ent sizes interact only indirectly through coupling forces [Horvath
and Solenthaler 2013; Solenthaler and Gross 2011]. Although these
methods work well with incompressible fluids, the coupling be-
tween resolution levels is rather unphysical and mass preservation
is not guaranteed, as either the overall volume is not considered
in the creation of particles [Solenthaler and Gross 2011] or the cre-
ation and deletion of high-resolution particles depend on random
values [Horvath and Solenthaler 2013]. Orthmann and Kolb [2012]
introduced a different approach to incompressible adaptive SPH
by tracking the original particles after splitting and merging for
a while and temporally blending the values of both resolutions to
prevent abrupt changes in quantity fields. Although this allowed for
stable simulations, it complicates the evaluation of quantities and
the approach has only been shown to work with iterative pressure
solvers and would require very expensive adjustments if used with
current implicit solvers. Recently, Cornelis et al. [2014] introduced
IISPH-FLIP in which the pressure is solved for low resolution SPH
particles while fluid advection uses smaller FLIP particles. Although
the approach works mass-preservingly, it is restricted to mass ratios
of 1:8 between SPH and FLIP particles.

In adaptive approaches with direct particle interactions, instabili-
ties are mainly due to interactions of particles of very different sizes
which currently limit adaptivity to mass ratios of 1:64 between the
finest and coarsest resolution [Adams et al. 2007; Orthmann and Kolb
2012]. In order to improve the stability, different geometric shapes
for splitting have been proposed. While Desbrun and Cani [1999]
found static 1:7-splitting to be stable, Adams et al. [2007] and Orth-
mann and Kolb [2012] used 1:2-patterns that are either dynamically
optimized or temporally blended. In general, fix geometric refine-
ment patterns can still cause large errors, thus, refinement patterns
have been subject to optimization [Vacondio et al. 2016, 2013].
All prior approaches to adaptive SPH simulations are based on

some notion of particle level, i.e., particles belong to one level of
constant particle size and transitions between levels are achieved
using fixed, optimized and/or blended 1:n refinement (split) and
symmetric n:1 coalescing (merge) operations, preventing smooth ad-
justments of particle sizes. A crucial problem in the merge operation
is the identification of merge partners, as only particles of the same
level can be merged. Practically, particles often can not be merged
due to lacking merge partners, which leads to isolated small parti-
cles in regions of coarse resolution and, thus, to massive numerical
instabilities. Our approach of continuously varying particle masses
and sizes solves all the above mentioned problems with adaptive,
incompressible SPH-based fluid simulations. We guarantee smooth
spatial transitions in particles sizes and, thus, we achieve numerical
stability at unlimited adaptivity ratios.

3 SPH FOUNDATIONS
In SPH, quantities are interpolated from a weighted average of the
surrounding particles’ quantities as [Monaghan 2005]

Ai =
∑
j
Aj

mj

ρ j
Wi j , (1)

where Ai = A(xi ) is the interpolated quantity for particle i at posi-
tion xi and j are the neighboring particles with quantities Aj .mj
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and ρ j denote the mass and density.Wi j =W (xi j ,hi j ) is the kernel
function that weights contributions of the neighboring particles
according to their distance xi j = |xi − xj | and their support radii
hi and hj where the support radius is one of the most important
factors in SPH. The support radius decides which particles interact
how strongly with each other and is typically [Monaghan 2005]
calculated for each particle i as

hi = η

(
mi
ρi

) 1
3
. (2)

If two particles with different support radii interact, the support
of either particle i can be used, i.e. hi j := hi (gather formulation),
the support of particle j , i.e. hi j := hj (scatter formulation) or an
average of both which yields a symmetric formulation hi j :=

hi+hj
2

that is usually preferred. Throughout the text, we will assume a
symmetric formulation.
The gradient of a quantity can be determined using various for-

mulations [Monaghan 2005]. We use

∇Ai =
∑
j

(
Aj −Ai

) mj

ρ j
∇iWi j (3)

as it guarantees a proper first order interpolation, where ∇iWi j is
the gradient of the kernel function with respect to particle i .

4 OVERVIEW
We consider the surface to be the most important fluid region, thus,
we want to reserve the highest simulation resolution to the sur-
face and coarser resolutions to the fluid bulk, i.e., according to the
distance to the surface. Therefore, we first calculate the surface
distance ϕi for each particle i (see Sec. 5.1) and map it to the opti-
mal massmopt

i the particle should have using a sizing function (see
Sec. 5.2). We calculate the optimal mass as a continuous quantity
without restrictions to levels and try to adapt particles to be as close
tomopt

i as possible. Depending on the ratio of a particle’s current
and optimal mass, we classify particles into five categories

• o: particle is close to optimal size
• s or l : particle is slightly too small or large, respectively
• S or L: particle is strongly too small or large, respectively

Particles of class L are strongly too large and thus are split into
smaller particles. As introducing new particles into the simulation
often causes instabilities, we use statically optimized 1:n-patterns
to reduce the initial error (see Sec. 6.1). Particles of class S are
strongly too small and their mass is distributed among neighbors
before they get completely removed from the simulation, yielding
an (n+1):n-merging of particles (see Sec. 6.2). The size of particles
of classes s and l is increased or decreased by exchanging mass
between neighboring particles in order to meetmopt

i (see Sec. 6.3).
In summary, the following operations are performed according to
the particle class

L Split (Sec. 6.1)

S



Redistribute mass and remove particle (Sec. 6.2)
Receive mass from redistribution of S (Sec. 6.2)

l Redistribute mass (Sec. 6.3)
s Receive mass from redistribution of l or S (Secs. 6.2, 6.3)
o Leave unchanged

To reduce errors introduced by splitting or merging particles,
we propose the concept of implicit temporal blending that approx-
imately tracks the motion of the original particles, as if they still
existed, and only slowly blends to the new particle set (see Sec. 7). As
changing a particle’s mass alters its support radius, we derive a sta-
ble SPH formulation to handle variable support radii (see Sec. 8) in
a symmetric SPH formulation. Algorithm 1 shows how our adaptive
method can be incorporated into an existing SPH framework.

5 PARTICLE CLASSIFICATION
As our interest mainly lies on the surface detail, we want to simulate
the surface with the finest particle resolution. Therefore, for each
particle i we first determine the signed distance to the fluid surface
(Sec. 5.1). The surface distance is then mapped to a desired optimal
particle sizemopt

i and classified according to the ratio of its current
mass to the optimal mass (Sec. 5.2). The mapping yields continuous
optimal masses determined by the minimummfine and maximum
mbase particle masses which are user-defined parameters to control
adaptivity.

5.1 Surface Detection
To determine the surface of the fluid, we use the Level-set function
proposed by Zhu and Bridson [2005] which gives an initial estimate
of the distance to the surface ϕ̃i (t ) for particles i close to the surface,
where the values are negative as particles are on the inside of the
fluid. We use the propagation method proposed by Horvath and
Solenthaler [2013] to iteratively propagate distance values ϕi to all
particles in the simulation and clamp the resulting values to the
largest distance possible ϕmax. We adopt the approach with minor
modifications to allow for adaptive particle sizes.
To avoid spurious detection of surface particles using Level-set

functions, we mark particles with more than 45 neighbors as interior
particles. Additionally, we do not limit the change of the surface
distance for particles in the iterative step of the algorithm as this
provides quicker reaction to changes. As we later derive the desired
particle mass from the surface distance, particles need to have rea-
sonably smooth distance values. In order to smooth the distance
values, we apply an SPH interpolation ϕi =

∑
j
mj
ρ j ϕjWi j in the end.

This algorithm efficiently calculates a stable estimate of the sur-
face distance of all particles as shown in Fig. 3.

5.2 Sizing Functions and Particle Classification
Using the previously determined surface distance we now calculate
the desired particle mass mopt

i . At the furthest distance ϕmax we
want to use particles of massmbase and at the surface we want to
use particles of massmfine. Using the adaptivity factor α = mfine

mbase

we determine the optimal particle mass as a linear interpolation of
the mass betweenmfine andmbase

m
opt
i (ϕi ) =m

base
(
min( |ϕi |, |ϕmax |)

|ϕmax |
(1 − α ) + α

)
. (4)
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Fig. 2. This image shows a cross section of the sphere in the sphere drop
scenario where we used an adaptivity ratio of 1:10000. Mass is color coded
from purplembase to yellowmfine.

Particle i is then classified into the categories described in Sec. 4 as

Ci =




S mrel
i < 0.5

s 0.5 ≤ mrel
i ≤ 0.9

o 0.9 < mrel
i < 1.1

l 1.1 ≤ mrel
i ≤ 2

L 2 < mrel
i ,

(5)

wheremrel
i =mi/m

opt
i denotes the relative mass.

o is chosen with a 10% margin aroundmopt
i to prevent particles

that are close to their optimal mass from causing unnecessary com-
putational effort for redistributing comparably small amounts of
mass. UsingCi , our adaptive approach tries to adjust particle masses
according to the surface distance. In regions, however, where only l
or only s particles are present,mi can deviate fromm

opt
i as no mass

redistribution is applied (see Fig. 3). Note,Ci does not relate to fixed
particle sizes as in level-based approaches.

We use the linear scaling of the mass as this creates a very smooth
change in resolution over the simulation domain, whereas linearly
changing the radius would introduce a cubic change of mass. Al-
though both options yield the same surface detail for unchanged
mfine, a cubic change of mass would significantly increase the num-
ber of particles. Certain simulations, especially those of very high
adaptivity ratios, see Fig. 2, could benefit from fine tuned sizing func-
tions that can be interchanged with our linear scaling to improve
surface detail even further. Additionally, we could use different
inputs to the sizing function, e.g. the distance to regions of high
flow vorticity, as long as the distance values are smooth, which
can be achieved by the propagation method of Horvath and Solen-
thaler [2013].

6 ADAPTIVITY USING SPLITTING AND MERGING
In order to adjust particles of classes L and S , we use splitting and
merging operations. Particles have usually been split into a fixed
number of particles. We, however, want to achieve a smooth adap-
tive resolution. Therefore, we use pre-processed 1:n-particle refine-
ment patterns from which we can choose the appropriate pattern
to create particles close to their optimal mass (Sec. 6.1). As particle
merging in fixed n:1-patterns is often impossible due to missing

Fig. 3. Adaptive simulation of a drop of water that drips into a tank with
particle mass ratios of 1:300. Surface distance (top) is color coded from
0 (yellow) to ϕmax (purple). Support radius (middle) is color coded from
yellow to purple. Density (bottom) is color coded from 0.75ρ0(black) to
1.25ρ0 (red). Note, our method generates a smooth distance field even with
adaptive particles and adapts resolutions according to the distance with
respect to the classification. We are able to generate a smooth density over
the simulation even when particles of different resolutions interact. The
apparent banding in the lowest resolution regions is due to a lack of possible
sharing partners as the difference to the ideal mass is too small to cause
splitting.

merge partners [Adams et al. 2007] or causes large errors that have
to be corrected [Orthmann and Kolb 2012], we redistribute the mass
of a single S particle among its n neighbors yielding (n+1):n-merge
processes that overcome these difficulties (Sec. 6.2). Additionally, to
allow for smooth adjustments, particles of class l can redistribute
their excess mass among neighbors classified as s (Sec. 6.3).

6.1 Increasing Resolution Using Particle-Splitting
We split a particle i of class L into n child particles that are close
to m

opt
i by choosing n = ⌈mi/m

opt
i ⌉. To allow for arbitrary 1:n-

splitting we generate patterns using an optimization process. For
each n we initially generate a pattern in which uniform particles
are placed evenly distanced on the surface of a sphere. For patterns
with n > 4, one of the particles is placed in the center. The particle
positions of these initial patterns are then optimized similarly to
Vacondio et al. [2016].
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For the actual splitting process we use the optimized patterns
to generate the positions of the new particles and copy all other
quantities of the original L particle which is the onlyway to conserve
kinetic energy and linear and angular momentum [Vacondio et al.
2016]. The mass of the new particles j is directly set asmj =mi/n
which conserves mass exactly.

6.2 Reducing Resolution using Particle-Merging

Particles i of class S are smaller thanmopt
i /2 and are removed from

the simulation by redistributing their mass to nearby particles clas-
sified as s or S . Although our approach uses continuous particle
masses and principally allows merging of arbitrary particle combi-
nations without being restricted to particle levels, we only merge
particle i with neighboring s and S particles as they also carry too
little mass. We only remove one particle to get an (n+1):n-pattern
that smoothly adjusts masses instead of merging in an n:1-pattern.
In order to find neighboring s and S particles of particle i we

iterate over all neighboring particles and check if a neighboring
particle j is classified as either s or S and if it doesn’t already have a
distribution partner. We limit the distance to be within hi

2 to reduce
long distance merging that tends to be unstable. Additionally, we
check if the combined massmj +

mi
n < m

base results in a valid size,
where n is the number of partners already found plus one. If the
particle is a valid partner, we mark it accordingly. If no partner
is found, the initial particle i is left in its current state. Due to
continuous masses, arbitrary merging combinations and the smooth
transition of resolutions, in practice this is not an issue.
An S particle i with n partners distributes mn =

mi
n to every

partner j . Therefore, we iterate over all partners that have previously
been marked as merge partners of i and calculate their new masses
and other quantities A, i.e. position, velocity and surface distance,
using a mass weighted average as

m∗j =mj +mn

A∗j =
Aimn +Ajmj

m∗j
.

(6)

Once all partners have been updated, the original particle i is
removed from the simulation. By redistributing mass, conservation
of mass is guaranteed in our method and by using mass weighted
average positions and velocities, we also conserve linear and angular
momentum [Vacondio et al. 2013].

6.3 Mass Redistribution
As l particles i have less than 2mopt

i mass, splitting would at least
create two particles with masses less thanmopt

i . Instead of splitting
these particles, we propose to redistribute the excess massmex =

mi −m
opt
i to nearby s particles. This redistribution smoothly adjusts

the resolution and prevents l particles from possibly turning into L
particles that later would have to be split.
We use a similar mass redistribution process like for merging

in Sec. 6.2, however, only the excess massmex is redistributed to
neighboring s particles j as

m∗i =mi −mex

m∗j =mj +
mex
n
.

(7)

As the initial l particle i remains and only part of its mass is re-
distributed, we only update quantities Aj (positions, velocities and
surface distances) of the partner particles j that receive mass as

A∗j =

mex
n Ai +mjAj
mex
n +mj

(8)

in order to conserve momentum. As this process is very similar to
the merging in Sec. 6.2, both processes can be combined in a single
step that finds partners for both l and S particles.

ALGORITHM 1: Algorithm Overview. New steps required for our method
are marked in orange.

RESORT AND NEIGHBORLIST STEP
Sort Particles
Build neighborlists for all particles [Winchenbach et al. 2016]

DENSITY COMPUTATION
Compute ρi =

∑
j mjWi j for all particles

Blend density for blending particles (see Sec. 7)

PARTICLE INTEGRATION
Calculate advection forces (Surface Tension, Viscosity, etc.) F adv

i
Blend velocity for blending particles (see Sec. 7)
Enforce incompressibility using modified IISPH (see Sec. 8)
Update position of all particles

ADAPT RESOLUTION
Detect Surface (see Sec. 5.1)
Apply sizing function to classify particles (see Sec. 5.2)
Create particles using splitting (see Sec. 6.1)
Find partners for merging and redistribution (see Sec. 6.3)
Merge particles and redistribute mass

7 IMPLICIT TEMPORAL BLENDING
Both adding and removing particles through splitting and merging
introduces errors even though positions are updated using weighted
averaging and optimized refinement patterns are applied. Previ-
ously this error has been reduced by temporally blending in new
particles [Orthmann and Kolb 2012] which however involves the
simulation of both particle resolutions and severely changes the
standard SPH interpolation. We thus propose an implicit temporal
blending for S and L particles which passively advects the original
particle set.
Our algorithm stores the position xO of the original particle O

for the new particles, in case of splitting, or for the particles that
receivedmass, in case of merging. These particles usexO to compute
a density ρO for the original particleO that ignores all split particles
with the same parent. In the first time step ρO yields exactly the
density as if the old particle still existed and no particles were added.
We calculate the density by blending the new particle density ρi
with the approximate old density ρO as

ρblendedi = (1 − βi )ρi + βiρO , (9)

where βi denotes the temporal blend weight of particle i . This
blended density is used for all calculations the new particles are

ACM Transactions on Graphics, Vol. 36, No. 4, Article 102. Publication date: July 2017.



102:6 • Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb

involved in. Compared to explicit temporal blending no changes
to SPH formulations are necessary. We blend the density as all
other quantities in an SPH Simulation can be derived from it and
improving the quality of the density improves the overall results.

In order to provide a better estimate for the next step, the velocity
v⃗O of the original particle is calculated as the mean velocity of all
new particles with the same original particle O , or all particles that
received mass from the same original particle O , and xO is updated
according to v⃗O . We blend the velocities similarly to the density as

v⃗blended
i = (1 − βi )v⃗i + βiv⃗O . (10)

For our blending process we initialize the particle blend weight
for particles generated by splitting as βi = 0.5 and for particles
updated by merging processes as βi = 0.2. We chose a smaller
initial blend weight for merged particles as they introduce a smaller
error. As the tracked position xO becomes less accurate over time
and to fully utilize the new resolution we update the blend weight
with a constant rate of ∆βi = −0.1 per timestep until βi = 0. While
βi > 0 the particle does not participate in split, merge or redistribute
interactions as it is still in the process of transitioning resolution.

8 ADAPTING TO VARIABLE SUPPORT RADII
For particles with uniform masses, the support radius is only influ-
enced by the density of a particle (cf. Eq. 2) and this influence can
typically be ignored [Hernquist and Katz 1989]. Changing support
radii due to mass changes in our adaptive simulation, however, can-
not simply be ignored when calculating derivatives without causing
instabilities. Pressure solvers like IISPH [Ihmsen et al. 2014] and
DFSPH [Bender and Koschier 2015] rely on the time rate of change
of density to enforce incompressibility and the accuracy of this
derivative is central to their performance.

For our SPH framework with varying radii support, the time rate
of change of density can be expressed as

dρi
dt
=

1
Ωi

∑
j
mjv⃗i j∇iWi j , (11)

where

Ωi =



1 + hi
3ρimi

∂Wii
∂hii

,Ct−1
i = l

1 + hi
3ρi

∑
jmj

∂Wi j
∂hi j

,else
(12)

is a corrective factor that depends on the classification Ct−1
i of

particle i at the last (discrete) time step t − 1. See App. A.1 for a
comprehensive derivation.

This corrective factor is also applied to the pressure force resulting
in a corrected pressure force term as

FPi =
∑
j

mj

ρ j
*
,

Pi

ρ2i Ωi
+

Pj

ρ2j Ωj
+
-
∇iWi j . (13)

Both Eq. 11 and 13 are necessary to achieve stable incompressible
simulations at resolution interfaces and for varying support radii.
For our simulations we modified the IISPH algorithm by carrying
the Ωi term through the derivation resulting in simple adjustments
to the overall algorithm. The derivation of the pressure term and
the application to IISPH are covered in detail in App. A.2 and A.3 .

Fig. 4. This image shows the sphere drop scenario rendered using a ray
tracer at an adaptivity ratio of 1:250. We used this scenario in various
configurations for performance and quality assessment. The top image is
the inital configuration and the bottom image the resulting initial splash.

9 RESULTS AND DISCUSSION
To compare our adaptive simulation approach with simulations of
fixed resolutions, and to show the capabilities of our method, we set
up different scenarios. We used a sphere drop scenario where we drip
a sphere of liquid into a basin (see Fig. 4) to compare performance
and visual quality, a bunny drop scenario where instead of a sphere
we used a bunny shaped object (see Fig. 1), a dam break scenario as
a common case, and a double dam break scenario (see Fig. 7) to show
higher adaptive ratios. We assess the quality of our approach by
visually comparing adaptive and non-adaptive simulation results.
The performance is assessed by comparing run times of simulations
with similar resolution.

All simulations were run on a single Nvidia Titan X GPU with
12 GiB of VRAM, an Intel i7-5930k and 16 GiB of RAM. We use
the surface tension of Akinci et al. [2013], the artificial viscosity of
Monaghan [2005], boundaries are represented as signed distance
fields [Harada et al. 2007]. Fluid renderings were achieved using
Houdini and mantra with no modifications required to surface ex-
traction or ray-tracing techniques.

Qualitative comparison. To compare the quality of the results we
used the drop scenario, see Fig. 4. This scenario provided challenging
dynamics on the initial impact of the fluid and difficulties of han-
dling the boundary interactions for higher resolutions. Additionally,
the quality of the crowning is a simple way of judging the quality of
the result and indicates possible negative impacts. Fig. 8 shows the
comparison setup we used. When comparing the high resolution
fixed result with the adaptive result, we see little difference in the
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Fig. 5. This image shows the bunny drop scenario rendered using a ray
tracer at an adaptivity ratio of 1:250. The image is at the initial start of the
simulation before the splash. The splashing behaviour can be seen in Fig. 1.

Fig. 6. This image is a traditional dam break scenario rendered using a ray
tracer at an adaptivity ratio of 1:250. The top image shows the initial volume
used in the scenario and the bottom image shows the splashing behaviour.

crowning, whereas the result is significantly better in comparison to
the low resolution result. Overall the behavior was very similar on
comparable surface resolutions but differed slightly due to the de-
pendence of certain parameters, e.g. viscosity, on particle resolution.
Overall, the fluid behavior was very similar.

Quantitative comparison. Figure 9 shows the performance and
particle counts for the sphere drop scene over 30s simulated time
using different adaptivity ratios and fixed resolutions. Comparing
the results for α = 1/256 and m = mbase/8 we see a comparable
number of particles over the course of the simulation. Although our
adaptive simulation was slower than the fixed resolution by a factor
of 0.7x, we achieved far more detailed surface dynamics due to the

Fig. 7. This image shows the initial state of our double dam break scenario
at the top and the behaviour after the collision of the two fluid volumes. An
adaptive ratio of α = 1/500 and we used a ray tracer to render the images.

higher surface resolution. When comparing the results for α = 1/32
andm =mbase/32 which have the same surface resolution, we see
a reduction in the average number of particles from 7.4M to 1.9M
particles and a total speedup of 7.3x.

Scaling. Considering scaling we saw the largest performance
gains for large resolution differences. Due to our sizing function
we can roughly estimate the number of particles for an adaptive
compact fluid volume as nα = nbase

(
1 + log2

1
α

)
, where nbase is

the number of equivalent uniform particles of mass mbase. With
an adaptivity ratio of α = 1/1024 the average memory and com-
putational requirements increased by 11x compared tom =mbase,
like our estimate predicted. Simulatingm =mbase/1024, i.e. using
the finest resolution, would have required approximately 90x more
memory than our adaptive approach which could not not fit into
memory. However the average does not take into account the large
amount of surface particles that can be generated as spray on thin
fluid details and as such the momentary particle counts could be
significantly different.

Stability. For simulations with highly dynamic behaviour like a
double dam break (see Fig. 6) adaptivity factors of α = 1/1024 could
stably be used.
Even for adaptivity factors of α = 1/100000 we found stable be-

haviour considering the algorithm, however, the computational cost
increased significantly past roughly α = 1/2048 due to the uniform
cell grid we currently use to search for neighbors. Additionally res-
olution dependant parameters, e.g. viscosity, made choosing the
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Fig. 8. This image shows our qualitative comparision. For the left image we changed the sizing function to ensure all particles on the left to be of the highest
resolutionmi =mbase/32, and for the right image we changed the sizing function to ensure all particles on the left to be of the lowest resolutionmi =mbase.
Volumes are color coded from purplembase to yellowmbase/32.
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Fig. 9. These graphs show the performance of the sphere drop scenario
with and without adaptivity. The top graph shows the computation time in
ms required per ms simulation time. The bottom graph shows the number
of particles over the course of the scenario for all the different cases. We
used 3 fixed resolutions mbase, mbase/8 and mbase/32 and four adaptive
simulations wherembase was the same as for the non adaptive tests.

right parameters difficult. Disregarding the problems due to the data
structure we found no limit to our adaptivity.

Limitations. Although similar, there always were differences be-
tween adaptive and equivalent fixed high resolution simulations
which mostly depended on viscosity and surface tension parameters.
While we could tune parameters to make the fluids behave more
similar, different fluid behavior is a common problem if different
time steps or particle sizes are used [Peer et al. 2015]. When using

highly adaptive simulations, the use of rigid particles [Akinci et al.
2012] becomes difficult if the rigid is only sampled at one resolu-
tion. Additionally uniform cell grid structures become restrictive at
higher adaptivity ratios.

10 CONCLUSIONS
We have presented a novel method for adaptive incompressible SPH
simulations. Our method uses continuous particle masses that are
smoothly and mass-conservingly adjusted which allows for infin-
itely adaptive simulations. We use the surface distance to calculate
the optimal mass of each particle that we try to achieve. To adjust
particle masses, we allow for splitting of particles, merging and
redistribution of mass among neighbors yielding a fine-grained
control of particle mass. Our novel merging scheme, in which a par-
ticle’s mass is redistributed among its neighbors, alleviates previous
problems of finding merge partners and the smooth redistribution
of mass and the proposed implicit temporal blending are able to
reduce errors in quantity fields. With respect to changing support
radii a simple update to certain equations significantly improved
the stability. We are able to stably simulate highly dynamic fluids
with particle mass ratios of 5 orders of magnitude between the finest
and coarsest resolution, yielding large speedups and reductions in
memory compared to similar uniform simulations.

A CORRECTIVE TERMS

A.1 Time Rate of Change of Density
In order to calculate the time rate of change of density we differ-
entiate the standard SPH estimate for density ρi =

∑
jmjWi j with

respect to time as

dρi
dt
=

∑
j
mj

dWi j

dt
+

∑
j

dmj

dt
Wi j︸         ︷︷         ︸

λi

, (14)

where λi is the term introduced by the time rate of change of mass
of a particle which for adaptive methods is generally non-zero as
merging, splitting, and mass redistribution change the mass of in-
dividual particles although the total mass stays constant due to
mass-conservation. Using the total time derivative of the kernel

dWi j

dt
=
∂Wi j

∂xi j

dxi j

dt
+
∂Wi j

∂hi j

dhi j

dt
, (15)

we re-factor Eq. 14 into terms containing the time rate of change of
mass, terms containing the time rate of change of support radius
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and the remaining terms as

dρi
dt
=

∑
j
mj
∂Wi j

∂xi j

dxi j

dt
+ λi +

∑
j
mj
∂Wi j

∂hi j

dhi j

dt
. (16)

The kernel derivative with respect to the distance xi j can be calcu-
lated as

∂Wi j

∂xi j

dxi j

dt
= v⃗i j∇iWi j , (17)

where v⃗i j = v⃗i − v⃗j is the velocity difference of the interacting
particles and ∇iWi j =

∂Wi j
∂xi

denotes the kernel derivative with
respect to particle i [Monaghan 2005]. Due to the symmetric SPH
formulation, the kernel derivative with respect to the support hi j
can be calculated as

∂Wi j

∂hi j

dhi j

dt
=

1
2

(
dhi
dt
+
dhj

dt

)
∂Wi j

∂hi j
. (18)

This results in an updated Eq. 16 as

dρi
dt
=

∑
j
mjv⃗i j∇iWi j + λi +

1
2

∑
j
mj

(
dhi
dt
+
dhj

dt

)
∂Wi j

∂hi j
. (19)

Here
∑
jmjv⃗i j∇iWi j is the standard formulation of the time rate of

change of density for constant support [Monaghan 2005]. The λi
term is due to the inclusion of time-varying mass and the last term
is due to the varying support radii. Considering the third term we
calculate the support as a function of density, see Eq. 2, and thus

dhi
dt
=
∂h(ρi )

ρi

dρi
dt
= −

hi
3ρi

dρi
dt
. (20)

Using this equation we could evolve the last term of Eq. 19. How-
ever, if we directly use this term, the rate of change of a particle
i would depend on the rates of change of neighboring particles.
Resolving such a dependency would require an iterative process
until a stable result is reached, which is not desirable due to its high
computational effort.
In order to resolve this issue, we make the assumption that, due

to our mass redistribution and smooth resolution changes, neighbor-
ing particles receive similar amounts of mass and change similarly
which is the case for particles that receive mass. However for parti-
cles that distribute mass (case l) the change of the neighbors is of
opposite sign. Let Ct

i denote the classification of particle i at the
(discrete) time t , we thus assume

dhj

dt
≈




−
dhi
dt ,Ct−1

i = l
dhi
dt , else.

(21)

Considering these two cases, we first cover the result for the else
case. Assuming dhi

dt ≈
dhj
dt yields

1
2

∑
j
mj

(
dhi
dt
+
dhi
dt

)
∂Wi j

∂hi j
=
dhi
dt

∑
j
mj
∂Wi j

∂hi j
(22)

for the third term of Eq. 19 that includes the time rate of change of
support radii. Using Eq. 20, Eq. 19 results in

dρi
dt
=

∑
j
mjv⃗i j∇iWi j + λi +

*.
,
−
hi
3ρi

∑
j
mj
∂Wi j

∂hi j

+/
-

dρi
dt
. (23)

Re-factoring all terms containing dρi
dt to the left hand side yields

dρi
dt

*.
,
1 +

hi
3ρi

∑
j
mj
∂Wi j

∂hi j

+/
-︸                       ︷︷                       ︸

Ωi

=
∑
j
mjv⃗i j∇iWi j + λi (24)

and moving the corrective factor Ωi over we get the final equation
for the else case

dρi
dt
=

1
Ωi

*.
,

∑
j
mjv⃗i j∇iWi j + λi

+/
-
. (25)

For the case Ct−1
i = l we refer back to Eq. 19. By splitting the

third term into terms that contain i and terms that don’t, we get
1
2

∑
j,i

mj

(
dhi
dt
+
dhj

dt

)
∂Wi j

∂hi j
+
1
2
mi

(
dhi
dt
+
dhi
dt

)
∂Wii
∂hii

. (26)

Due to our assumption that dhj
dt ≈ −

dhi
dt for j , i , the sum-term

becomes zero and using Eq. 20 we get the full equation for dρi
dt as

dρi
dt
=

∑
j
mjv⃗i j∇iWi j + λi +

(
−
hi
3ρi

mi
∂Wii
∂hii

)
dρi
dt
, (27)

which can be re-factored to the same form of Eq. 25 with a different
corrective factor Ωi = 1 + hi

3ρimi
∂Wii
∂hii

.
So far, we carried λi through all equations to provide the full

derivation. However, we found that including this term did not
provide any measurable improvement to the stability or behaviour
of our SPH framework, thus, in practice we drop the term.

A.2 Corrected Pressure Forces
In order to derive the pressure forces we start with the Lagrangian
for the non-dissipative motion of a fluid in a potential Φ(x ) per unit
mass in SPH form [Monaghan 2005] as

L =
∑
j
mj

( 1
2
v⃗j · v⃗j − uj − Φj

)
, (28)

where uj = u (ρ j ,sj ) is the thermal energy per unit mass and sj is
the entropy. Here, the Euler-Lagrange equation d

dt (
dL
dv⃗i

) − dL
dxi
= 0

is used to derive the equations of motion. The first term of the
Euler-Lagrange equation results in dL

dv⃗i
= miv⃗i . We assume that

the entropy of each element of fluid remains constant, though each
particle can have a different entropy [Monaghan 2005]. From the
first law of thermodynamics it follows that ∂uj

∂ρ j
=

Pj
ρ2
j
which yields

dmi
dt

v⃗i +mi
dv⃗i
dt
= −

∑
j
mj *

,

Pj

ρ2j

∂ρ j

∂xi
−
∂Φj

∂xi
+
-
. (29)

Similar to the time rate of change of density, the term containing
dmi
dt also showed no appreciable difference if it was included, thus,
we drop it. From the standard SPH estimate for density we can
calculate ∂ρ j

∂xi
by applying ∂

∂xi
, which similar to Monaghan [2005]

results in
∂ρ j

∂xi
=

∑
k

mk

(
∇jWji

[
δji − δjk

]
+
∂Wjk

∂hjk

dhjk

dxi

)
, (30)
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where δi j is the Kronecker delta. The second term can be developed
identically to the similar term in the time rate of change of density
resulting in

dρ j

dxi
=

1
Ωj

∑
k

mk∇jWji
[
δji − δjk

]
. (31)

Using these results in Eq. 29 and removing the derivative of the po-
tential similarly to Monaghan [1992] yields a corrected formulation
of the pressure force as

F⃗Pi = −mi
∑
j
mj *

,

Pi

Ωiρ
2
i
+

Pj

Ωjρ
2
j

+
-
∇iWi j . (32)

A.3 IISPH Modifications
Adapting the IISPH method requires only a slight modification. In
the original paper by Ihmsen et al. [2014], Eq. 9 in Sec. 3.1 calculates

∆t2
F⃗Pi
mi
=

*.
,
−∆t2

∑
j

mj

ρ2i
∇iWi j

+/
-︸                     ︷︷                     ︸

dii

Pi +
∑
j
−∆t2

mj

ρ2j
∇iWi j︸            ︷︷            ︸

di j

Pj . (33)

We modify the equation to

∆t2
F⃗Pi
mi
= −∆t2

∑
j
mj *

,

Pi

Ωiρ
2
i
+

Pj

Ωjρ
2
j

+
-
∇iWi j =

*.
,
−∆t2

∑
j

mj

Ωiρ
2
i
∇iWi j

+/
-︸                         ︷︷                         ︸

dii

Pi +
∑
j
−∆t2

mj

Ωjρ
2
j
∇iWi j︸                ︷︷                ︸

di j

Pj
(34)

by including our corrective factors Ω. There are no further changes
required as the pressure force is only computed using the terms dii
and di j that include the corrective factors.
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