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Abstract. We propose a novel single-image super-resolution approach
based on the geostatistical method of kriging. Kriging is a zero-bias
minimum-variance estimator that performs spatial interpolation based
on a weighted average of known observations. Rather than solving for
the kriging weights via the traditional method of inverting covariance
matrices, we propose a supervised form in which we learn a deep network
to generate said weights. We combine the kriging weight generation and
kriging process into a joint network that can be learned end-to-end. Our
network achieves competitive super-resolution results as other state-of-
the-art methods. In addition, since the super-resolution process follows a
known statistical framework, we are able to estimate bias and variance,
something which is rarely possible for other deep networks.

1 Introduction

Super-resolution aims to transform low resolution (LR) images into images
with high resolution (HR). In computer vision, super-resolution is relevant for
applications where high-frequency information and detailing is desirable yet not
always captured, e.g. medical imaging, satellite imaging, surveillance, etc. Our
interest is in single image super-resolution (SISR), a special case where only
one LR image is available. SISR is an ill-posed inverse problem with multiple
solutions, i.e. multiple HR images could lead to the same LR image after applying
a low-resolution filter.

SISR been solved with many different approaches. Early approaches relied
on spatial relationships present in the image and include nearest neighbours [4],
bi-cubic interpolation [13]. Other techniques build upon the assumption that the
underlying signal is sparse, e.g. compressive sensing [8] and dictionary learning [30].
These early approaches tend to yield HR images which are blurry and or noisy,
due mainly to the fact that these methods are crafted heuristically. As a result,
they cannot sufficiently recover enough information to yield sharp photo-realistic
images.

Deep learning, and more specifically, convolutional neural networks (CNNs)
[16], has afforded significant performance gains in SISR. The newest frameworks
[14,15,17,25,24] learn feature representations for super-resolution in a supervised
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end-to-end manner and are achieving ever-improving performance both in terms
of speed and quantitative evaluation. However, despite their impressive results,
most deep networks are being used as black boxes to make point estimates. The
regressed outputs represent only a mean value and give no indication of model
uncertainty. In the case of SISR, this means that we make (possibly very accurate)
guesses for the unknown pixels, but we have no idea how good these guesses are.
This can be highly problematic for applications such as microscopy or medical
imaging, where model confidence is just as important as the actual output.

We would like to leverage the strong learning capabilities of deep networks
and embed them within a known statistical framework for which we can derive
model uncertainty. As such, we propose deep kriging to solve SISR. Kriging [20,5]
is a geostatistics method used for spatial interpolation of attributes such as
topography and natural resources. It has close relations to Gaussian process (GP)
regression, although some sources oversimplify and describe the two as being
equivalent. The main difference is that kriging makes stationary and ergodic
assumptions on the random field representing the data, while GP regression
considers it as a Gaussian process.’

Kriging interpolates unknown values by taking a weighted average of known
values and results in an unbiased estimator with minimum variance. One can
solve for the weights by inverting a covariance matrix computed on the known
instances. Kriging makes for a natural extension to the application of SISR, where
HR images are interpolated from pixels observed in the LR version of the image.
The computational cost of the kriging is cubic with respect to the number of
known instances; hence it is preferable to work locally. However, interpolated
results are often overly smooth and depend on the choice of the covariance
function.

Our contributions can be summarized as follows:

— We propose a novel deep learning-based statistical estimator with SISR results
competitive with state-of-the-art.

— We propose a deep kriging approach that solves for kriging weights and
performs the kriging in a single network; this allows us to perform a supervised
form of spatial interpolation which can be applied not only to SISR, but
other geostatistical computations such as field reconstructions.

— Our proposed deep kriging is a hybrid deep learning and statistical framework
for which we can derive statistical bias and variance; such measures of model
performance and uncertainty are not commonly available for other deep
networks, making us the first to model and compute pixel uncertainty in
deep SISR approaches.

2 Related work

Prior to the use of deep learning, SISR approaches applied variants of dictionary
learning [9,8,30,22,7]. Patches were extracted from the low-resolution images and

3 We refer the reader to our supplementary materials for a more detailed comparison
of the two.
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mapped to their corresponding high-resolution version which are then stitched
together to increase the image resolution. Other learning-based approaches to
increase image resolution include [33,32,1].

State-of-the-art SISR methods are deep-learning-based [17,14,15,24,25]. The
VDSR [14] and DRCN [15] approaches showed the benefits of working with image
residuals for super-resolution. The DRRN approach [25] generalizes VDSR and
concludes that the deeper the network, the better the super-resolved image. We
also use a residual network in our approach, but unlike all the other deep SISR
methods, we are solving for a set of filter weights to perform the super-resolution
with our network rather than directly estimating the HR image itself.

Several unsupervised techniques have also been developed for SISR [29,18],
though their performance is usually poorer than supervised approaches. One work
of note [10], uses GP regression to perform super-resolution and resembles ours
in spirit in that we both model pixel intensities as a random process regressed
from neighbouring pixels. However, [10] is unsupervised while our approach learn
the weights from supervise examples.

Our proposed approach can be thought of as a form of local filtering [3],
and is most similar in spirit to works which combine deep learning and GP
regression [28,6]. However, we differ from these techniques since we do not apply
GP regression but a modified version of local kriging. These techniques are similar
to us in that they also consider the data to follow a random process. However,
we do not explicitly learn the covariance matrix, which offers us more flexibility
in the relationships we wish to express. Furthermore, we treat each image as
following a random process; the set of training images is then a set of random
processes, while the aforementioned works consider all the training data to follow
the same process.

3 Deep Kriging

We begin with a short overview on classical kriging in Section 3.1 before we
introduce our proposed method of supervised kriging in Section 3.2 and elaborate
on its statistical properties in Section 3.3. Finally, we show how the proposed
form of deep kriging can be implemented in a deep network in Section 3.4.

3.1 Classical kriging

Consider an image f as a realization of a random field F'. This random field
is a collection of random variables, i.e. F = {F;} where each F; is a random
variable and 7 is a position index. Unknown values on f at position x*, f*4, can
be interpolated linearly from n known realizations f;, with normalized weights
Wy, 1.€.

fo = Zwi(x*)fi, with Zwi(x*) =1. (1)
i=1 i=1

4 For concise notation, we use f. to denote f(z*), f; to denote f(z;) and w} = w;(z*).
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In classical kriging, all known realizations are used in the interpolation and n is
the number of pixels in the image, though local variants have been proposed and
studied in [23,21].

The weights {w;} are found by minimizing the true risk:

R(w)=E {(F* - F*)Q} = var (F* - F*) . (2)

We can equate the E[] with the var(:) term in Eq. 2 because the constraint that
the weights must sum up to 1 implies that E[f. — f*]:O. However, since we do
not have access to different realizations of the random field, this variance cannot
be solved directly.

To infer the variance from a single event, the theory of geostatistics replaces the
classical statistics assumption of having independent and identically distributed
(iid) random variables with assumptions of stationarity and ergodicity on the
random field. The random field is assumed to be first and second order stationary.
This means that Ez: (f(x)) does not depend on x and that Ep: (f*(z) x fi(z+7))
depends only on 7. In addition, the field is assumed to be second order ergodic,
So a covariance or mean estimate in the probability domain is equivalent inthe
spatial domain. This second assumption implies that an empirical covariance
can be estimated and depends only on a distance 7 between two realizations,
i.e. T = ||z — x;||. However, it is difficult to work directly with the empirical
covariance, since it can be noisy and also is not guaranteed to form a positive
semi-definite matrix. As such, in kriging, we use the true covariance by fitting a
parametric model. While different models can be used, the most common one
is Gaussian, with covariance Cj; between points z; and x; defined as Cj; =
Coexp (—Zz||@; — x]|?), where Cy and o are parameters of the model.

A Lagrange multiplier (with constant \) can be used to minimize the risk
function with the constraints on the weights w;, leading to the following cost
function:

L(w) = var (F - F) +2) (i wi(z*) — 1) , (3)
i=1

and the associated solution expressed in matrix form as:

Cu e C1n 1 ’UJ1(1’*) Cl*

. AR . . = . . (4)
Cin ...Chn 1 wn (x*) Chrs

1 ... 10 —A 1

The process of kriging then is reduced to solving for the weights w;. This involves
inverting the covariance matrix on the left. Since the matrix is of dimension
(n+ 1), where n is the number of observed pixels in the image (patch), it can be
very computationally expensive. Even though one can limit n with local kriging,
n needs to be sufficiently large in order to accurately capture and represent the
spatial relationships. We aim to bypass the matrix inversion and still maintain
sufficient generalization power by using a deep network to directly learn the
weights instead.
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3.2 Supervised kriging

Consider F, a subset of the discrete space Z?2, as a representation of the support
space of a 2D image. We denote an image as f € R and f; as its value at
pixel z; € E. This assumes we work with greyscale images, which is a standard
assumption made in most SISR algorithms [15,14,25].

We assume that we are given a set of n; training image pairs {(fi, f)Y,ie
[1,n1], where f? is an up-sampled low resolution version of f? with the same
size. Our objective is to super-resolve the low-resolution images of the test
set Miest = { f’};ﬁl We further assume that f* is a realization of a first and
second moment stationary random process F'. For convenience we denote F the
distribution of the random process. In addition f is a realization of a random
field F. We denote the training set as {f%, f'}I%, ~ M, where M is a joint
meta-distribution where each training pair (ff, f') ~ Fi x F' follows its own
random process.

In classical kriging, the estimated f (z) is expressed as a linear combination
of all the observed samples i.e. pixels of f. In the case of super-resolution, the
observations come from the low-resolution image f (x). Furthermore, we estimate
f (z) as a linear combination of only local observations of some window radius I,
leading to the estimator:

fi= Z wi(z*)fi  with Z w(x™) = 1. (5)
ke{l|lzr—z* |1 <K} ke{||zr—z*||1 <K}

When no confusion is possible we denote F = > omi—1 wi(x*)F}, with n =
(2K +1)2. We found that a window of 7 x 7 provided the best results. To find w,
we want to minimize the true risk as given in Eq. 2, leading to:

R(w) = ZEFF (==Y (6)

This risk is a compromise between the geostatistical model and the deep learning
model, where the covariance of each field is learned through supervised learning.
Furthermore, if we replace the true expectation with the empirical one and the
random field with its realization, we arrive at

R = 3" (fzzw*)f,z) | )
k=1

i=1 j=1

N;

where IV; is the number of pixels in image f°.

Now, rather than solving for the weights w by inverting the covariance matrix
in Eq. 4, we propose learning this set of weights directly with a CNN. This
allow us to capture and model more complex spatial relationships between the
data than the classical model with covariances. As such, the estimator becomes
f(x, f,g,0), where w = g(f,0), with g and 0 representing the CNN network
function and its parameters respectively.
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3.3 Statistical properties

We can derive statistical properties for our proposed estimator F. Given

{w1,...,wyn}, the bias can be expressed as
bias(z) = Bz, o [F(m) - F(m)]
= EF|W17.<.7WTL [F(ZL')] - ]Ele,m,wn I:F(il])]
= IEF-'|u11 ..... Wn |:F(.’12) - Z Wk (mj)Eﬁ\wl ,,,,, Wn, [F(i)]
ki=1

Since Y ) _; wg, () = 1 and the random field is first-order stationary, we are left
with zero bias according to the weights of the neural network, i.e. bias(xz) = 0.
In other words, our network does not add bias to the field F. As such, from F to
F, if the two fields have the same first moment, then no bias added to F°. This
point is critical since in classical statistics a good estimator should have zero bias
and minimal variance.

By definition, the variance of our estimator Fis

Vele) = Bg [F@)?] - (BplE (@) ®)

Again, we estimate the covariance given {w,...,w,}. Since we assume that F
is second-order stationary, the covariance of F' depends only on the distance
between two points, i.e.

B [F(on) Flaw)| = Cllan = oull2) - #2, (9)
By setting p = Ez[F(z)], we arrive at:

Vearwn @ = Y wr(@ow @)C(|lzr =z 2) (10)

(k,k")e1,(2xK+1)3]?

where the covariance C (+) is estimated from the low resolution image f. The
variance depends on the position z. Note, however, since we directly estimate
the weights w(z*) without making assumptions on the covariance function, we
cannot compute the variance and an approximation is needed to estimate the
covariance empirically from f . Eq. 10 however is particularly interesting since it
shows that the estimator variance at z is directly proportional to the variance
of f and the different values of w near x. The bigger these values are, the more
uncertain the estimator is.

3.4 Network Implementation and Training

5 Of course, we cannot account for the low resolution process that produced F
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Fig. 1. Overview of the network structure. The input image goes through two branches.
The first one calculates the weights w; the second copies the input image for an efficient
application of the weights via point-wise multiplication.

So far, the theory which we have presented on supervised kriging is generic
and does not indicate how one should minimize the risk in Eq. 7 to solve for the
kriging weights. We solve for the weights with a CNN network which we show
in Fig. 1. The weight estimation branch is composed of a residual network of 9
residual units; the residual unit itself has 2 convolutional layers, each preceded
by a batch normalization [12] and a ReLU.

This branch follows a similar architecture as [25,14], with the difference that
they apply this architecture to directly estimate the HR image, while we use
it to estimate our kriging weights, i.e. as a local dynamic filter [3]. In addition,
contrary to [25] our network is not recurrent.

The network learns a total of 20 convolution layers to determine the kriging
weights. The first 19 are of depth 128, the last prediction layer has depth (2 x K +
1)? and outputs the kriging weight vector w(z) = [wi(x),...,wexKk+1)2(x)]. The
weights are applied to the repeated input image via a point-wise multiplication
and summation along the depth dimension to yield the HR output. Overall, the
network with IC = 3 is very lightweight, inference on a 320 x 480 sized image
takes only 0.10 seconds with a titan X.

Note our network is actually learning how to estimate the kriging weights w,
i.e. as a local dynamic filter. To derive this dynamic filter end-to-end, we adapt
the following formulation of the Eq. 5 in convolution terms:

fitay = 3 wila”) (ﬂ-*hk) (zx)  with S owe) =1 (1)

ke{llze—o [ <K} kel —o 1<K}

with hy(z) = d(z — xx) or the Dirac function. The hy filter is denoted by “repeat
input” in Fig. 1, since applying the Dirac functions in each position z* is a way
to extract the pixel neighbourhood at position z*. After having determined the
weights, we normalize them so that they sum up to 1, as given by the constraint
in Eq. 11. We point-wise multiply the normalized weights to the output of the
repeat filter; to arrive at the super-resolved image, we simply sum along the
depth.

We implement our network in Tensorflow, minimizing the loss in Eq. 7 with
the Adam optimizer, a batch size of 8 and a learning rate of 10~*. We apply
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gradient clipping and dropout between the last ReLLU and the convolution layer
that predicts w, with a dropout rate of 0.3. The effective depth of our network is
d=2+2x U, with U the number of times the residual units are applied. In our
case, we use U = 9.

4 Experiments

4.1 Datasets, Pre-processing and Evaluation

For training, we follow [25,14] and use the 291 images combined from [31] and the
Berkeley Segmentation datasets [19] . We further augment the data by rotating
(90°, 180° and 270°) and scaling the data (x2, x3, x4). We limit to these fixed
grades of rotation and scaling to follow the same protocol as [25]. Like [25,14],
we work with patches of size 31 x 31, sampled from the augmented dataset with
a stride of 21. Testing is then performed on the four commonly used benchmarks:
Set 5 [2], Set 14 [15], B100 [19] and Urban 100 [11]. To be consistent with [25,14],
we convert the RGB images to YCbCr and only resolved the Y component. This
is then combined with an upsampled Cb and Cr component and converted back
into RGB. Up-sampling is done via bi-cubic interpolation.

We evaluate the resulting super-resolved images quantitatively with the

peak signal-to-noise ratio (PSNR): PSNR(f, fref) = logyo ( ¥ (f(j_s)izf f(x.))2) ,

where frot and f are the ground truth and the super-resolved images respectively
and N refers to the number of pixels in the (high-resolution) image. A higher
PSNR corresponds to better results. We also evaluate using Structural Similarity
(SSIM) [27], which measures the similarity between two images. The closer the
SSIM value is to 1, the more similar the super-resolved image to the ground truth
high resolution image.

4.2 Comparison to state-of-the-art

We compare our PSNR and SSIM measures for the different scales against state-
of-the-art in Table 1. The first two methods, bi-cubic and local kriging are
unsupervised, while all others are supervised approaches. We use the Matlab
implementation of bicubic interpolation.

For the local kriging, we use a neighbourhood of 90 x 90 and a stride of 81. At
this sparse setting, unsupervised kriging does very well in comparison to bicubic
interpolation. However, it is already extremely slow, since for each patch, we
need to compute the empirical covariance, true covariance, and then invert the
covariance matrix. In total, it takes approximately 1 minute for an image of size
320 x 480. In comparison, our proposed deep kriging, on the same image, applied
densely is one magnitude faster, and takes only 0.25 seconds with a titan x.

Looking at our approach (reported in the second last column in Table 1)
with respect to the supervised methods, our performance is comparable to the
DRRN [25] B1U9 setting, DRCN [15] and VSDR, [14]; all three have networks with
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depth similar to ours. The best results are reported by the DRRN B1U25 [25],
which has 50 convolution layers and is more than twice as deep as our network.

Given the trend of the community to work on deep learning-based approaches
for super-resolution, as well as the fact that no labelled data is required for
training, one can work with (infintely) large datasets [26,17]. For fair comparison
with state-of-the-art, however, we omit from this table the techniques which do
not use the fixed 291 image training set as per the training protocol set by [25,14].

4.3 Model uncertainty

One of the key strengths of our technique is the fact that we can estimate
model uncertainty. We show in Figure 2 the estimated variance for each pixel
based on Equation 10. To evaluate this equation, we need to apply covariance
models for f and f. We do this by first estimating the empirical covariance
c(r) =, f(x;) f(x; + 7) — p and then solving for Cy and o of the Gaussian
model in section 3.1 that is the closest to the empirical covariance.

The main advantage of our model of uncertainty is that we can have informa-
tion on the black box CNN. It gives us feedback about the reliability of results
provided by an unknown image. One can see in Figure 2 our uncertainty estimate.
The estimated variance has a higher value than the real PSNR this is due to the
fact that we have a noisy estimation of the PSNR from a low resolution image.
Holistically, however, the are similar, in that areas with high variance corresponds
to high PSNR. Quantitatively, we find for Set 5 that 91.9% of the super-resolved
pixel values fall within 3 standard deviations based on the estimated variance.
In addition, we evaluate the similarity between the images resulting from the
PSNR and the one resulting from the variance in set 5. We use the correlation to
measure the similarity and find that these images have high correlation up to 0.8.

5 Conclusions

In this paper, we have proposed a joint deep learning and statistical framework
for single image super-resolution based on a form of supervised kriging. We solve
for the kriging weights in the manner of a local dynamic filter and apply it
directly to the low resolution image, all within a single network that can be
learned end-to-end. Since we work within the known statistical framework of
kriging, we can estimate model uncertainty, something typically not possible for
deep networks. More specifically, we show through derivations that the statistical
estimator generated by our network is unbiased and we calculate its variance.
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