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ABSTRACT

This contribution investigates the application of established
pansharpening algorithms for the fusion of hyperspectral im-
ages from Raman microspectroscopy and panchromatic im-
ages from conventional brightfield microscopy. Seven differ-
ent methods based on multiresolution analysis and component
substitution were applied and evaluated through visual assess-
ment and quantitative quality measures at full and reduced
resolution. The results indicate that, among the considered
concepts, multiresolution methods are the more promising ap-
proaches for a physically and chemically meaningful fusion
of the considered modalities. Here, pansharpening based on
high-pass filtering led to the best results.

Index Terms— Hyperspectral image, pansharpening, im-
age fusion, Raman microscopy, brightfield microscopy,

1. INTRODUCTION

As an imaging system, a Raman microscope technically en-
ables the application of conventional brightfield microscopy
(BFM) and Raman microspectroscopy (RMS). RMS is ap-
plied to determine the molecular structure of a sample. Spa-
tially resolved spectral information is generated by a point-
by-point mapping procedure, providing unique chemical fin-
gerprints as a set of high-dimensional pixel vectors, which
can be considered a hyperspectral image (HSI). For conven-
tional BFM, the use of highly-corrected objectives and mod-
ern sensors with high pixel resolution ensures images of high
spatial resolution. In RMS, the achieved spatial resolution de-
pends significantly on the actual system performance and on
the characteristics of the sample [1]. The focused laser spot
can be considered as the point-spread function (PSF) of the
image generation process, which is often disturbed by prac-
tical issues such as the complex beam guidance of the laser
beam and its actual gaussian shape, leading to an effective
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numerical aperture that is smaller than specified [2]. Further
resolution constraints are caused by the narrow-band excita-
tion wavelengths of the laser as well as by the sampling pa-
rameters defined by the mapping [1]. In addition, the num-
ber of sampling points is kept relatively small to avoid dis-
proportionately long measuring times. Consequently, images
formed by RMS often have a lower spatial resolution and a
significantly lower pixel resolution compared to images de-
rived from BFM. Nevertheless, they provide a higher spectral
resolution and thus, contain more information for physically
discriminating the sample components.
Since a Raman microscope provides images that contain com-
plementary content in terms of high spatial and high spectral
information, a combined processing might be beneficial, pro-
vided that the data sets are co-registered and compatible to
a certain extent. Accordingly, this contribution addresses the
problem of image fusion, aiming to form HSIs that contain
both, high spectral discrimination information derived from a
RMS image and high spatial resolution provided by a BFM
image.
The fusion of images with corresponding properties is a well-
known problem in the field of remote sensing, denoted as
pansharpening [3]. Even though the imaging process in mi-
croscopy differs from that in remote sensing, the basic re-
quirement of a correlation between the images is met since
both images are acquired with sensors of similar spectral sen-
sitivity. Thus, the application of established pansharpening
methods for the fusion of images derived from RMS and BFM
appears as a suitable starting point for developing a tailored
solution.
The application of pansharpening algorithms for the fusion of
BFM and RMS images has not yet been investigated and pub-
lications concerning other microscopy modalities are rare. In
[4] J. Tarolli et al. investigated the application of a pansharp-
ening algorithm for a fusion of secondary ion mass spectrom-
etry (SIMS) and scanning electron microscopy (SEM). In [5]
F. Vollnhals et al. compared fusion results of two different
pansharpening approaches using the same modalities. In [6]



G. Franchi et al. compared the results of several established
pansharpening algorithms and a new approach that was ex-
plicitly tailored to the considered microscopic images in the
context of multimodal SEM fusion.
We consider this paper as a starting point to introduce the con-
cept of pansharpening to the field of vibrational microspec-
troscopy and organized the remainder of this paper as fol-
lows. In Section 2, two families of pansharpening methods
used within the scope of this paper are introduced and the ap-
plied algorithms are listed. Experimental results, containing
information about image data generation, as well as quantita-
tive and visual assessment of the fused images on reduced and
full resolution scale are presented in Section 3. The results
motivate the following discussion and conclusion in Sections
4 and 5.

2. PANSHARPENING ALGORITHMS

2.1. Component Substitution (CS) Methods

The concept of CS methods aims to separate spatial and spec-
tral information in an upscaled HSI by transforming it into
another space and to replace the component that contains the
main spatial information with the panchromatic image [3]. In
general, a high correlation between the replaced components
is ensured by a histogram matching. By applying the inverse
transformation, the data is back-projected to its original space
and the fusion is completed. As shown in [7] by Tu et al., an
alternative but general mathematical formulation of CS meth-
ods considering an injection scheme is given by

ĤSk = H̃Sk + gk(P − I), k = 1, ..., N (1)

where ĤSk and H̃Sk respectively denote the pansharped
image and the upscaled and interpolated original HSI of the
k-th spectral band, the vector g = [g1, ..., gk, ...gN ] contains
the injection gains, P is the panchromatic image and the syn-
thetic intensity component I is defined as

I =

N∑
i=1

wiH̃Sk (2)

where the elements of vector w = [w1, ..., wN ] measures
the spectral overlap among the bands and the panchromatic
image. Considering equations (1) and (2), the difference
between the approaches that are included in the CS family
mainly originate from the different procedures with which
the vectors w and g are computed. Within the scope of this
contribution, we compare four CS approaches: pansharpen-
ing based on general intensity-hue-saturation transformation
(GIHS) [7], principal component analysis (PCA) [8], adap-
tive Gram-Schmidt orthogonalization (GSA) [9], as well
as pansharpening by the Brovey transform (BT) [10]. For
detailed mathematical descriptions, we refer to [3] and the
publications referencing the mentioned approaches.

2.2. Multiresolution Analysis (MRA) Methods

MRA is a well-known concept from the field of image pro-
cessing. Its purpose is to decompose an image iteratively into
a set of images, each providing a progressively reduced res-
olution. Accordingly, the MRA concept in pansharpening is
based on fusing the HSI with a difference image computed
from the panchromatic image and its low-pass filtered ver-
sion on different levels of decomposition [3]. The pansharped
image can therefore by defined by the ARSIS paradigm [3] as

ĤSk = H̃Sk + gk(P − PL), k = 1, ..., N (3)

where PL is the low-pass filtered panchromatic image. Con-
sidering equation (3), approaches that are included in the
MRA family differ according to the methods that are used to
generate PL and the injection gains g. The generation of PL

can therefore be computed by various methods, ranging from
low-pass filtering approaches to complex wavelet decompo-
sitions [3]. The following methods have been applied within
this study: pansharpening based on high-pass filtering (HPF)
[11], smoothing filter-based intensity modulation (SFIM)
[12] and pansharpening based on a MTF-generalized low-
pass filter (MTF-GLP) [13]. For a detailed description of the
applied approaches, we refer to the work of Vivone et al. [3]
and the publications referencing the mentioned approaches.

3. EXPERIMENTAL RESULTS

3.1. Image Data Set

The data set needed to evaluate the fusion of RMS and BFM
modalities by pansharpening algorithms were generated us-
ing the Raman microscope Senterra developed by the Bruker
Corporation. A microscopic sample was used, containing
different polymers such as polymethylmethacrylate (PMMA)
and styrene-acrylonitrile (SAN) as well as a black colorant.
BFM and RMS images were generated using a 20×/0.4 ob-
jective.

(a) BFM−1 (b) RMS

Fig. 1: (a) Panchromatic inverted BFM image and (b) up-
scaled RMS abundance map image providing different spatial
resolutions. Regions of interest are shown in Fig. 4.



While the BFM image was acquired by a 1600 × 1200 pixel
CMOS sensor, the RMS image was formed by applying a 70
× 70 raster scan using a laser of 785 nm excitation wave-
length. A CCD sensor was used to collect spectral informa-
tion in terms of Raman shifts with a spectral resolution of
0.5 cm−1 over a wavenumber range from 410 to 1790 cm−1.
State-of-the-art preprocessing was applied to the raw data,
considering outlier removal, normalization, baseline correc-
tion and spectral smoothing. The data was sub-sampled and
cropped in the spectral dimension to a wavenumber range
from 410 cm−1 to 1490 cm−1 to remove redundant informa-
tion. To meet the requirements of the applied pansharpening
algorithm and to ensure a sufficient co-registration, the RMS
image was slightly upscaled to match the aspect ratio of the
BFM image. Thus, a HSI of dimension 78 × 91 × 542 was
used. The BFM image has been cropped to the corresponding
scanning area of the RMS image. To reduce the discrepancy
in terms of pixel resolution between the images, the BFM im-
age was downscaled to a size of 390 x 455 pixel.
To ensure a physically comparable interpretation of the im-
ages, the BFM image was converted into an absorption-based
representation. For the visualization of the RMS and the pan-
sharped images, abundance maps of the three sample com-
ponents were calculated by integrating over narrow bands of
material specific peaks and assigning each to a channel of a
conventional RGB image, as presented in Fig. 1(b).

3.2. Reduced Resolution Assessment

Reduced resolution assessment was used as the evaluation
procedure for the pansharpening algorithms [3]. The origi-
nal RMS data was downscaled by a factor of 2 and filtered
according to a system modulation transfer function (MTF)
approximation. The CS and MRA pansharpening algorithms
listed in Table 1 were applied to the synthetic generated low
resolution HSI and the panchromatic image that was down-
scaled to the size of the original RMS data.

Table 1: Quantitative assessment of RMS and BFM image
fusion results at reduced resolution by SAM, CC, Q, Q2n and
ERGAS indices. Bold-type numbers denote the 3 best-ranked
results for the corresponding index.

Method SAM(◦) CC Q Q2n ERGAS
Brovey 4.651 0.633 0.427 0.254 21.034
MTF-GLP 5.981 0.664 0.648 0.441 12.354
GSA 5.784 0.716 0.673 0.456 11.410
HPF 5.233 0.722 0.657 0.477 11.370
GIHS 8.452 0.717 0.310 0.474 33.896
PCA 17.408 0.532 0.498 0.286 22.732
SFIM 11.386 0.011 0.624 0.275 527.473

(a) Input (b) RMS (c) BT

(d) MTF-GLP (e) GSA (f) HPF

(g) GIHS (h) PCA (i) SFIM

Fig. 2: Comparison of upscaled RMS abundance map im-
ages computed by narrow-band integration of material spe-
cific peaks for visual reduced resolution assessment. (a) Syn-
thetic low resolution input, (b) RMS ground truth and (c)-(i)
fused images, where MTF-GLP (d), GSA (e) and HPF (f) led,
in accordance to the results given in Table 1, to the most con-
vincing results.

An additional low-pass filtering that is generally applied was
not conducted since, due to the high downscaling factor and
the associated anti-aliasing low-pass filtering, the achieved
degradation of spatial resolution was assumed to be sufficient.
Accordingly, the original RMS image was used as ground
truth reference image in the evaluation procedure. For a vi-
sual inspection, the abundance map images shown in Fig. 2
were used. Besides a visual assessment, the fusion product
was evaluated quantitatively in terms of spatial and spectral
changes using associated quality measures. The quantifica-
tion of spectral distortions was determined by the spectral an-
gle mapper (SAM), which gives the global averaged angle
between pixel vectors from the pansharped and the reference
HSI. The geometric distortions was evaluated using the cross
correlation (CC), which was determined for single-band im-
ages and listed as an averaged value. A further spatial as-
sessment that takes radiometric distortions into account was
performed using the averaged Q-Index. The Q2n-Index, as
its general vector extension, and the Erreur Relative Glob-
ale Adimensionnelle de Synthèse (ERGAS) are global indices
that consider the spatial and the spectral dimension in com-
mon. All quantitative results are summarized in Table 1.



Table 2: Quantitative assessment of RMS and BFM image
fusion results at full resolution without reference by Dλ, DS
and QNR. Bold-type numbers denote the 4 best-ranked results
for the QNR index.

Method DS Dλ QNR
Brovey 0.064 0.055 0.884
MTF-GLP 0.032 0.066 0.904
GSA 0.030 0.066 0.906
HPF 0.022 0.031 0.948
GIHS 0.038 0.135 0.832
PCA 0.069 0.052 0.883
SFIM 0.029 0.038 0.935

3.3. Full Resolution Assessment

For a full resolution assessment, CS and MRA pansharpening
approaches were applied using RMS and BFM images at their
original scale. No-reference quality assessment of the fusion
product has been performed using the quality w/ no reference
measure (QNR) index [3] for global evaluation. The QNR is
defined as

QNR = (1−Dλ)
α(1−DS)

β (4)

where Dλ quantifies the spectral and DS the spatial distor-
tions while α and β are used as weighting coefficients. The
QNR index and the spectral and spatial distortions measures
were determined for the results of the aforementioned algo-
rithms and are presented in Table 2. For a visual assessment,
the corresponding abundance map images shown in Fig. 3
have been considered. Due to the high visual correlation that
could be observed in comparison to the abundance map im-
ages shown in Fig. 2, only the results for the algorithms that
provided the 4 best-ranked QNR indices are presented.

4. DISCUSSION

The abundance map images in Fig. 2 show that some applied
pansharpening algorithms did not lead to satisfying results.
PCA pansharpening shows spectral distortions artefacts that
are characteristic of CS methods [14]. We assume that, in our
specific case, the spatial information of the HSI is not fully
included in the first principal component, which is thereby
poorly correlated with the panchromatic image. The visual
appearance of high spectral distortions is quantitatively con-
firmed by the SAM index. SFIM pansharpening shows a high
spatial distortions caused by the dominance of high frequency
injections while, for GIHS, the injection of spatial informa-
tion was insufficient. In both cases, the spectral characteris-
tic of the HSI was generally preserved. In comparison, BT
pansharpening shows low spatial distortions, but suffers from
local contrast inversion artefacts. Better results have been ob-
tained for GSA pansharpening, where the presence of contrast

(a) MTF-GLP (b) GSA

(c) HPF (d) SFIM

Fig. 3: Comparison of upscaled RMS abundance map im-
ages computed by narrow-band integration of material spe-
cific peaks for visual full resolution assessment of the fused
images. Region of interest is shown in Fig.4.

inversion and spectral distortions are further reduced. From
a visual point of view, MTF-GLP and HPF pansharpening
showed the most convincing results for the fusion of RMS
and BFM images, since both provide low spatial and spec-
tral distortions. The good visual appearance of Fig. 2 (d),
(e) and (f) is confirmed by the quantitative results presented
in Table 1 as well as by the full resolution assessment, visu-
ally and quantitatively as shown in Table 2 and Fig. 3. To
emphasize the good visual appearance, the regions of inter-
est from Fig. 1 and Fig. 3 are enlarged in Fig. 4. There, it
becomes evident that MTF-GLP and HPF pansharpening are
spatially enhanced without causing major spectral distortions.
Only slight artefacts with respect to the local contrast can be
observed at edges of the sample components. They are cor-
related with contrast conditions in the BFM image. However,
even from a chemical point of view, it can be concluded that
these pansharpening algorithms complement spectral and spa-
tial information of the sample in a meaningful way. In gen-
eral, the absence of a reference image is the main drawback
in the evaluation concept of pansharpening results. In a re-
duced resolution assessment, the choice of spatial filters is
crucial while a full resolution assessment can be considered
as a blind approach, where results are biased by the definition
of the indices [3]. Consequently, visual assessments are still
necessary. Nevertheless, using a real reference image is the
most conclusive concept in image quality assessment. Thus,
to enable a full reference evaluation, we propose the genera-
tion of RMS images of higher spatial resolution by using ob-
jectives of higher numerical aperture in a finer mapping grid.



(a) BFM−1 (b) RMS

(c) MTF-GLP (d) HPF

Fig. 4: Region of interest from Fig. 3 (a) and (c), as well as
from Fig. 1 (a) and (b) for (a) BFM image, (b) RMS image,
(c) MTF-GLP and (d) HPF fused images at full resolution.

5. CONCLUSION

This contribution investigated the application of established
CS and MRA pansharpening algorithms for the fusion of
BFM and RMS images with the intention of introducing
the concept of pansharpening to the field of vibrational mi-
crospectroscopy. Using visual and quantitative assessment
of the pansharped images at full and reduced resolution,
we found that approaches based on the MRA concept re-
sulted in hyperspectral images of higher quality compared
to those based on CS. However, the obtained results have to
be confirmed by further investigations and a full reference
assessment before the problem of a tailored image fusion
can be addressed. Nevertheless, we assume that MRA-based
algorithms are more suitable for a physical plausible fusion
of RMS and BFM images and, thus, might be a better choice
when developing a tailored fusion solution.
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