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Abstract

Simulation methods in the past have been used for a variety of purposes, from the simu-
lation of engineering problems over biological systems to the simulation of galaxies. Many
of these require signi�cant computational power which makes them ideal candidates for
massively parallel computing using GPUs. The ever increasing usage of these simulations,
combined with the increasing demand for physically realistic simulations, even in computer
graphics, places a large burden on researchers as they not only have to be on the bleeding
edge of science but also keep up with the technological advances.

In computer graphics many di�erent standard frameworks exist for applications which
range from video game engines like Unreal Engine to procedural rendering and animation
programs like Houdini. Using such a framework for research however is impractical as these
systems place restrictions on what can be done and limit the freedom of the user. Similarly
many frameworks used for simulation, speci�cally of SPH e�ects, exist, e.g. DualSPHysics.
But these often are either created in a very ad-hoc fashion resulting in bloated and di�cult
to use code, or optimized to a point where they are not practical in research applications.

The goal of this thesis is to develop a new and versatile framework which allows for the
easy development of new SPH simulation methods by providing powerful abstractions to
the user that signi�cantly reduce the complexity of the code that has to be written. In order
to achieve this, many challenges have to be addressed, e.g. how memory is managed or how
mathematical operations are implemented. All of these features should be implemented in
a way that still allows the user to, if desired, write any arbitrary code without having to
consider the framework the code is being written in.

Additional requirements include the ability of the framework to run on both Windows
and Linux machines, as well as providing both CPU and GPU execution. Whilst the
performance of GPUs in simulations is signi�cantly higher than that of CPUs, CPUs still
provide a valuable tool for research, especially when it comes to debugging and veri�cation
of implementations, as CPU based implementations have signi�cantly less parallel e�ects
to deal with.

In order to support physical plausibility the framework should also provide a way to
check if the code being written is physically consistent based on the SI-units of the involved
operands. This checking should be done at compile time to force the user to write proper
code and not ad-hoc a problem away.

Finally the framework should be open source to make these tools available to a wider
audience.
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Chapter 1

Introduction

In the past simulation methods were mostly used for numerical simulations, but recently
these methods have found signi�cant usage in computer graphics due to the ability of
GPU based simulations to simulate complex systems, without compromises to physical
plausibility, in a reasonable time. However, the ever increasing demands of performance
and capability of simulations requires signi�cant research and developmental e�ort. Many
industry standard frameworks, e.g. Unreal Engine or Houdini, are often restrictive in what
a developer can directly express as they are created for a speci�c purpose. Similarly, other
SPH simulation frameworks, e.g. DualSPHysics, apply di�erent restrictions, or abstrac-
tions, to the code which can make it very di�cult to quickly implement an algorithm or
argue about its correctness which puts a signi�cant burden on the researchers.

The aim of this thesis is to introduce a versatile, multi-platform and open source simu-
lation framework focused on Smoothed Particle Hydrodynamics (SPH). To this extent the
framework described here should provide the following set of features:

� Safe and reliable mathematic functions which respect physical units to help develop
physically plausible methods.

� Quick and easy prototyping of new methods without limiting what can be expressed
manually.

� Run virtually the same code on both GPUs and CPUs without restricting the user
in how they have to implement functions.

� Create functions, parameters and arrays using a straightforward meta modeling sys-
tem.

� Modularize individual functions to easily encapsulate functionality and analyze de-
pendencies between functions.

� Windows and Linux support, with a low number of special libraries.

Framework zur e�ektiven Umsetzung von Fluidsimulationen auf GPUs 1



CHAPTER 1. INTRODUCTION

Even though these features aim to provide a generic framework, they are applied in an
exclusively SPH context to provide a more practical approach to these problems. These
features might introduce some overhead in the implementation of certain functionality, but
as this overhead is the same for all methods the relative gains of individual methods should
remain the same allowing for a representative evaluation.

Overall, this thesis is split into 4 parts:

In the �rst part the fundamental building blocks of the framework are introduced.
Chapter 2 introduces the underlying fundamentals of SPH and how this method can be
derived from continuous equations to obtain some practical operators, which are easily
implemented in this framework. Chapter 3 covers a set of basic modern C++ constructs
to create a solid foundation of C++ terminology so the explanations in later chapters using
these constructs are more approachable. These two chapters only cover the fundamentals to
provide some motivation and insight into the problems faced here. Following this chapter 4
summarizes the goals of this framework into more concrete criteria, which are used to
develop the framework throughout this thesis.

The second part covers the mathematical aspects of the framework and how these are
implemented here. In chapter 5 the systems for mathematical functions and operators for
low dimensional math using the built-in CUDA types are introduced with some insight into
how these are implemented using generic programming. Chapter 6 extends these functions
and operators to support strict enforcement of SI-units within the program at compile time
where the details are mostly left vague as the way they are represented is more important
for their understanding.

The third part covers the more general purpose aspects of the framework. These include,
in chapter 7, a meta-modeling approach which uses JSON strings to represent parameters,
arrays, and modules used within the framework to allow for an easy and central manage-
ment of these aspects. Chapter 8 covers how the framework manages arrays and module
calling to provide an insight into how memory is intended to be used here to expand upon
the previous meta descriptions. Finally, in this part chapter 9 covers how functions in this
framework are launched both in a GPU as well as CPU context and how the corresponding
framework aspects should be used in practice.

The last part covers the more practical aspects of the framework. First, in chapter 10
the overall results from this framework to the prior one are compared, with some examples
of basic SPH constructs and how they are implemented, as well as an example which shows
how the unit enforcing system identi�es problems in practice. Next chapter 11 investigates
the generated assembly code of the mathematical operators to evaluate, whether or not the
implementation has any theoretical drawbacks compared to manually implemented func-
tions. Chapter 12 then covers some miscellaneous aspects of the framework, e.g. rendering,
and gives an overview of the general structure of the code base.

In chapter 13 some �nal conclusions are drawn about the framework and possible draw-
backs.
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Chapter 2

Foundations of Smoothed Particle

Hydrodynamics

Smoothed Particle Hydrodynamics as it has been introduced by Gingold and Monaghan
[1977] has been around for a long time, but has recently found signi�cant improvements.
These improvements allow for real time simulations of complex systems, or very large, and
highly detailed, simulations for computer graphics, which makes SPH a very attractive
method. There exist other simulation methods for �uids, e.g. Eulerian grid based meth-
ods [Ando et al. [2013]] or more closely related methods like FLIP [Cornelis et al. [2014]],
but the choice of simulation method is not topic of this thesis and SPH serves as an example
of how this framework can be applied.

This section in general covers the theoretical foundations of SPH to give a reader
that is not as familiar with the method some intuition, and appreciation, for the way the
method tries to replicate real phenomena. This will only include the basic formulations,
e.g. for gradients, and no complex algorithms, like incompressible pressure solvers or
implementation speci�c data structures, which are often used in practice.

2.1 Governing equations

The underlying basis of SPH are the Navier-Stokes equations. In this derivation the
compressible version was chosen due it's relative simplicity and guaranteeing incompressib-
ility is beyond the scope of this section. These equations in general are stated as [Monaghan
[1992]]:

Dρ

Dt
= −ρ∇ · v

Dv

Dt
=

1

ρ
∇σ + fe

Dx

Dt
= v

(2.1)

Framework zur e�ektiven Umsetzung von Fluidsimulationen auf GPUs 3



CHAPTER 2. FOUNDATIONS OF SMOOTHED PARTICLE HYDRODYNAMICS

In these equations D/Dt denotes the material derivative, ρ denotes the density, x de-
notes positions and v denotes velocities, which are continuous �eld expressions. fe denotes
the body force per unit mass and σ denotes the stress tensor calculated as:

σ = −PI + η

[
−2

3
(∇ · v)I + (∇v +∇vT)

]
(2.2)

I being the identity tensor and η denoting dynamic viscosity. The pressure P , in a
basic SPH formulation, is calculated using an equation of state, where a common choice is
the Tait equation [Müller et al. [2003]]:

P =
ρ0c

2
0

γ

[(
ρ

ρ0

)γ
− 1

]
(2.3)

The Tait equation uses the rest density ρ0, which describes the density of the �uid
under no compression, a compression constant γ and the speed of sound. In practice the
real density of water ρ0 ≈ 1000 kg

m3 and a factor of γ = 7 is often used. The speed of sound
is chosen signi�cantly lower than the real speed of sound in water, e.g. c0 = 10 − 30m

s
,

as the speed of sound directly in�uences the stability of the simulation. This method is
still used as an example, even though the physical accuracy is limited by the low speed
of sound, whereas in practice more complex schemes are often employed [Ihmsen et al.
[2014a], Bender and Koschier [2015] ].

2.2 Discretization

The continuous Navier-Stokes equations cannot be directly implemented and need to be
discretized. The SPH method is derived by �rst considering the integral identity of a
function f , here in a 3 dimensional real space R3, written as:

f(x) =

∫
R3

f(x′)δ(x− x′)dx′ (2.4)

This is based on the Dirac delta function [Price [2010]]:∫
R3

δ(x) =

{
∞, x = 0

0, x 6= 0
(2.5)

In order to actually use this identity the Dirac delta function is replaced with a so
called smoothing kernel function over a �nite closed space Ω resulting in the following
equation, with 〈f(x)〉 denoting an estimated quantity:

〈f(x)〉 =

∫
Ω

f(x′)W(x− x′,h)dx′ (2.6)

The smoothing kernel function, or often times referred to as just a kernel, uses a �nite
smoothing length h which determines the contribution of the kernel based on the distance
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CHAPTER 2. FOUNDATIONS OF SMOOTHED PARTICLE HYDRODYNAMICS

between the integral center x and the integrated point x′. This equation can now be
discretized by using Lagrange points, more commonly called particles, where two particles
i and j are located at positions xi and xj, with Wij being short hand notation for W (xi −
xj,h) which, using a numerical quadrature, results in:

〈f(xi)〉 ≈
∑

j

Vjf(xj)Wij (2.7)

Which is a Riemann summation over all particles j within a spatial region Ω, where
particles with Wij > 0 denote so called neighboring particles. The apparent volume for
the numerical quadrature is de�ned as:

Vj =
mj

ρ(xj)
(2.8)

With mj denoting the mass represented by a particle and ρj being the density of the
�uid sampled at position xj. As all SPH estimates based on context are assumed to be
estimates 〈f(xi)〉 is often replaced with just fi. For an estimate of the density ρi = 〈ρ(xi)〉
this results in:

ρi =
∑
j

mj

ρ(xj)
ρ(xj)Wij =

∑
j

mjWij (2.9)

If an even kernel function is used, namely one with the following property:

∇x′W (x− x′,h) = −∇xW(x− x′,h) (2.10)

Then the Gaussian theorem can be applied to approximate the gradient of a scalar
function as:

〈∇f(xi)〉 =

∫
Ω

∇x′f(x′)W(x− x′,h)dx′

=

∫
δΩ

f(x′)W(x− x′,h)ndS−
∫

Ω

f(x′)∇x′W(x− x′,h)dx′

=

∫
Ω

f(x′)∇xW(x− x′,h)dx′

(2.11)

And the divergence of a vector function as:

〈∇ · f(xi)〉 =

∫
Ω

[∇x′ · f(x′)]W(x− x′,h)dx′

=

∫
δΩ

f(x′)W(x− x′,h)ndS−
∫

Ω

f(x′) · ∇x′W(x− x′,h)dx′

=

∫
Ω

f(x′) · ∇xW(x− x′,h)dx′

(2.12)
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CHAPTER 2. FOUNDATIONS OF SMOOTHED PARTICLE HYDRODYNAMICS

Which can be discretized using discrete position xi and xj as before, with ∇i denoting
the di�erentiation carried out with respect to particle i's position [Monaghan [2005]]:

〈∇f(xi)〉 ≈
∑

j

Vjf(xj)∇iWij (2.13)

〈∇ · f(xi)〉 ≈
∑

j

Vjf(xj) · ∇iWij (2.14)

2.3 Discrete governing equations

Using the prior approximations and discretization the Navier-Stokes equations can be re-
written as:

Dρi
Dt

= −ρi∇ · vi

Dvi

Dt
=

1

ρi
∇(−Pi) + fe

Dxi

Dt
= vi

(2.15)

With a discretized Tait equation:

Pi =
ρ0c

2
0

γ

[
(
ρi
ρ0

)γ − 1

]
(2.16)

2.4 Smoothing kernel functions

In general a suitable kernel should have a set of properties [Monaghan [1992]]:

lim
h→0

W (x− x′,h) = δ(x− x′), (2.17)

∫
Ω

W (x− x′,h)dx′ = 1, (2.18)

∫
Ω

(x− x′,h)W(x− x′,h)dx′ = 0. (2.19)

Additionally to satisfy the requirements for gradient operators the kernel needs to have
a compact support and be an even symmetric function:

W (x− x′,h) = 0; ||x− x′|| > κh (2.20)

W (x− x′,h) = W(x′ − x,h) (2.21)
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CHAPTER 2. FOUNDATIONS OF SMOOTHED PARTICLE HYDRODYNAMICS

∇x′W (x− x′,h) = −∇xW(x− x′,h) (2.22)

The kernel should also be positive, monotonically decreasing and su�ciently smooth.
A kernel in general is often written as:

W (x− x′,h) =
αd

hd
Ŵ(q) (2.23)

With a scaling factor αd to satisfy
∫

Ω
W (x−x′,h)dx′ = 1, d being the spatial dimension

and q being a dimensionless number representing a unit length as:

q =
||x− x′||

h
. (2.24)

Using this notation the derivative of a kernel function can be written as:

∇W (x− x′,h) =
αd

hd+1
∇Ŵ(q) =

αd

hd+1

dŴ(q)

dq
∇q =

αd

hd+1

dŴ(q)

dq

x− x′

||x− x′||
. (2.25)

Common choices for these functions include gaussian and B-spline functions or Wend-
landt kernel functions [Dehnen and Aly [2012]], where the choice has implications on ac-
curacy and computational cost. For computer graphics the cubic spline kernel has found
wide adoption [Ihmsen et al. [2014b]] and has been used throughout this framework and is
often de�ned as:

W (x− x′,h) =
αd

hd
Ŵ(q);Ŵ(q) =


1− 3

2
q2 + 3

4
q3, 0 ≤ q ≤ 1

1
4
(2− q)3, 1 ≤ q ≤ 2

0, else

(2.26)

With the normalization constant αd = 1
π
for 3 spatial dimensions. The gradient of

the cubic spline kernel can be calculated as:

∇W (x− x′,h) =
αd

hd+1

dŴ(q)

dq

x− x′

||x− x′||
;
dŴ(q)

dq
=


9
4
q2 − 3x, 0 ≤ q ≤ 1

−3
4
(2− q)2, 1 ≤ q ≤ 2

0, else.

(2.27)

The smoothing length h of a particle can be calculated as [Monaghan [1992]]:

hi = η

(
mi

ρi

) 1
3

(2.28)

With η being a parameter to tune the smoothing length chosen around 1.3. In practice
more complex schemes are often employed but the concept remains the same.
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CHAPTER 2. FOUNDATIONS OF SMOOTHED PARTICLE HYDRODYNAMICS

2.5 Improved spatial gradients

Although the previous approximate gradients are su�cient in some cases, a more robust
formulation can be derived [Price [2010]] by considering the following alternative problem:

∇f(x · 1) = 1∇f(x) + f(x) · ∇1⇒ ∇f(x) = ∇f(x)− f(x)∇1 (2.29)

Where an intuitive consideration would be ∇1 = 0. However, for SPH ∇1 is non zero.
Thus using the previous de�nition of the gradient an alternative gradient formulation can
be found which vanishes for constant functions:

∇f(x) =
∑

j

Vj [f(xj)− f(xi)]∇Wij (2.30)

Alternatively the vector calculus identity can be employed:

∇f(xρn) = nρn−1f(x)∇ρ+ ρn∇f(x) (2.31)

Which leads to the following gradient:

∇f(x) =
1

ρn

[
∇(f(xρn)− nρn−1f(x)∇ρ

]
(2.32)

Which for n = 1 and n = −1 respectively leads to:

∇f(xi) =
1

ρ(xi)

∑
j

mj(f(xi)− f(xj))∇Wij (2.33)

∇f(xi) = ρ(xi)
∑

j

mj

(
f(xi)

ρ(xi)2
+

f(xj)

ρ(xj)2

)
∇Wij (2.34)

Where the �rst formulation is not anti-symmetric but exact for constant functions, and
the second formulation being pairwise symmetric but not exact for constant functions.
Similar derivations can be made for the divergence of a vector �eld as:

∇ · (ρnf(xi)) = ρn · ∇f(xi) + nρn−1f(xi)∇ρ (2.35)

Which for the n = 1 and n = −1 cases respectively yields:

∇ · f(xi) =
1

ρ(xi)

∑
j

mj(f(xj)− f(xi)) · ∇Wij (2.36)

∇ · f(xi) = ρ(xi)
∑

j

mj

(
f(xi)

ρ(xi)2
+

f(xj)

ρ(xj)2

)
· ∇Wij (2.37)

These basic building blocks will be used as examples of functions later on to show how
SPH equations could possibly be implemented and serve as a strong foundation for the
development of SPH methods in general.
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Chapter 3

Foundations of Modern C++

Many code bases are created over a long period of time, with many developers working
collectively on them, with all of them trying to reach an optimized program that solves
a task as quickly as possible. In numerical applications, like simulations, this often leads
to very bloated code, or code relying on older constructs which are deemed to be working
very well and touching the foundations of the system again is often avoided at all cost. In
case of the prior framework that is being replaced here the code became almost impossible
to use in any reasonable manner, which in turn hurt research e�orts signi�cantly.

The goal here is to present approaches in modern C++ that could help solve problems
in numerical code to allow for a framework in which it is very easy to express complex
statements by relying upon the underlying compiler. Whilst this approach might not lead
to the most optimal code, it will lead to a very concise and easy to argue about code where
it should be simple to draw parallels from equations to code and back.

In order to achieve this certain features of C++ are needed which might not be familiar
to some readers as some of them are part of the newest C++ standard which is just
getting supported by compiler vendors. This chapter will o�er a brief overview of some
basic constructs and approaches to solving problems which are applied throughout the
framework.

3.1 GPGPU Programming

C++ itself is only a programming language for code that is to be executed on a CPU and the
C++ standard only provides multi threading constructs [ISO C++ [2017] [thread]] which
are not directly intended for numerical code but for a more general task parallelization. In
practice many other standards have been created for CPU parallelization, e.g. OpenMP
[2015] and OpenACC [2017], which are more oriented towards numerical applications.
OpenACC on the one hand allows for easy parallelization, even for GPU targets, but limits
the expressiveness of what can easily be done using OpenACC constructs. OpenMP on the
other hand is a much more generic system which has been used for a long time and allows
for easy parallelization of code for CPUs, however the accelerator support is not straight
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forward and again limits what can be done freely.

The two main candidates for GPU programming that were thus considered for this
framework are CUDA [2018] and OpenCL [2018]. Whilst OpenCL is an open standard
created by a conglomerate of vendors and would allow for a hardware agnostic imple-
mentation that works on multiple GPU vendors devices, CUDA o�ers a signi�cantly more
powerful programming interface where code itself can be written as mostly ISO C++ [2014]
compliant code. This makes CUDA signi�cantly more attractive as the bene�t of being
able to write standard code outweighs the support of other GPU vendors devices in an
academic background where no external customer base exists.

3.2 CUDA

The standard execution model of CUDA, ignoring memory allocation, is the following

__global__ void add_fn(float* A, float* B, float* C, int32_t N){

int32_t i = threadIdx.x + blockDim.x * blockIdx.x;

if(i > N) return;

C[i] = A[i] + B[i];

}

//...

add_fn<<<blocks,threadsPerBlock>>>(d_A, d_B, d_C, N);

whereas a sequential CPU version could look like this:

for(int32_t i = 0; i < N; ++i)

C[i] = A[i] + B[i];

The basic idea of CUDA is to write a kernel function (not to be confused with the SPH
meaning of the word kernel) that is executed once for each element of "a loop". The
call is con�gured into blocks of thread-groups, where every thread-group contains a certain
number of threads per block. Each of these blocks is executed in parallel as sets of 32
threads (warps) and they share resources on a processing core (SMM ) and have the option
to use shared memory on a block level.

The details of CUDA are not the topic of this thesis but will be covered where necessary.
Note, however, that writing perfectly optimized code can include signi�cant usage of either
inline assembly or complex intrinsic functions which can o�er increased performance at the
cost of creating a less readable code basis. For most problems within a framework similar,
basic, approaches can be used which might not be the best solution for every method but
provide a very solid, and more importantly comparable, basis for all methods. Additionally
SPH, and other similar methods like FLIP, are data-parallel simulations with very few, if
any, dependencies allowing for easy parallelization. For concrete GPU speci�cs to SPH
see, for example, Green [2010] which o�ers a basic overview.
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3.3 Types of variables

The following code segment is a very simple example which calculates some value based
on the input of two other values:

double fn(double a, double b){

return a * b * b * a;

}

int main(){

float f = fn(1.0, 2.0);

}

The important part here is that even though the function returns a double value, the result
is stored within a �oat value causing a possibly unwanted conversion which causes a loss of
arithmetic precision. In this example the type of f could simply be changed to the correct
one, or an explicit cast added to signal that the conversion is intended. However, consider
the following example:

#ifdef SINGLE_PRECISION

float unitCircumference(){

return 2.f * 3.141592f;

}

#else

double unitCircumference(){

return 2.0 * 3.14159265359;

}

#endif

int main(){

float f = unitCircumference();

}

In this case there still is a mismatch of types as the function returns a double which again
is stored as a �oat value. Changing the type of f to match now would create a problem
as the return type of the function depends on a macro. Carrying this dependence through
the code would make the code signi�cantly less readable and more di�cult to maintain.
ISO C++ [2011] introduced the following construct to address this problem:

declspec(expression)

Which represents the type and not the value of the expression. In the previous example
the mismatch could then be resolved by changing the call to the following:

declspec(unitCircumference()) f = unitCircumference();

However, repeating the call on both sides is very verbose and instead auto is used:
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auto f = unitCircumference();

This auto construct uses the type of the return value of the function which allows relying
on the strong type system of C++ without having to check, or remember, the exact return
types of functions and consider di�cult cases like above. An additional bene�t of auto
lies with more complex types, e.g. those created from iterator functions, or those created
within deeply nested namespaces which are di�cult to write out correctly by hand, whereas
the compiler will known on it's own what the correct type is.

3.4 Function return types

An additional place where auto can be used is as a function return type. Consider the
following, somewhat construed example, where ISO C++ [2011] introduced the following
way to write it:

auto fn(double a, float b) -> declspec(a+b){

return a + b;

}

Which is called a trailing return type. This trailing return type stems from templated
functions where often times the return type depends on the types of the arguments and
how they interact and replicating that behavior without such a construct in the type system
can be very di�cult and error prone. ISO C++ [2014] allows for functions to, in general,
have an auto return type without a trailing return type:

auto fn(double a, float b){

return a + b;

}

Which works as long as all return paths return the exact same type. This can make some
template code signi�cantly easier to write as it does not require large constructs to recreate
what the compiler knows anyways.

3.5 Structured bindings

C++17 [ISO C++ [2017] [dcl.struct.bind]] introduced a further usage of auto for so called
structured bindings. Whilst CUDA [2018] does not yet support these constructs in
device code, they are still worth mentioning as they �nd wide usage in the GUI code of the
framework to simplify some complex statements. A simple example of structured bindings
is the following:
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float2 getPos(){/*...*/ }

std::tuple<int32_t, float, std::string> getPerson(){/*...*/ }

//...

auto pos = getPos();

auto x = pos.x;

auto y = pos.y;

auto person = getPerson();

auto id = std::get<0>(person);

auto income = std::get<1>(person);

auto name = std::get<2>(person);

Where structured bindings simplify the code into the following:

float2 getPos(){/*...*/ }

std::tuple<int32_t, float, std::string> getPerson(){/*...*/ }

// ...

auto[x, y] = getPos();

auto[id, income, name] = getPerson();

These structured bindings can bind to tuples as well as any Plain Old Data-type (POD-
type). These work great for functions with multiple return values, where manually oper-
ating on tuples with std::get becomes cumbersome. Additionally these types can also be
bound to references, similar to normal auto variables.

3.6 Templates

Templates [ISO C++ [2017] [temp]] have been around in C++ for a long time, and they
allow for very generic and �exible code, but they can also easily be abused. In this section
we will �rst look at a very basic example of both function and class templates to set a solid
foundation of what templates are.

template<typename T, typename U>

auto add(T&& lhs, U&& rhs){

return lhs + rhs;

}

//...

auto result = add(1.0,2.f);

In this simple example a few di�erent concepts are coming together. When a function
template is called without specifying the template parameters the compiler will execute
a template argument deduction [ISO C++ [2017] [temp.deduct.call]]. During this
deduction the compiler will try and �gure out what kinds of template parameters would
best �t the description, which for example in the following:
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template<typename T>

auto len(const std::vector<T>& vec){ return vec.size();}

//...

len(std::vector<float>{1,2,3,4,5});

Would deduce T to be �oat. In the previous example however this is not as straight
forward due to the usage of &&. In normal contexts C++ distinguishes between left
and right references [ISO C++ [2017] [dcl.ref]] where a left reference represents a left
side of an assignment, so a named variable, and a right (or value) reference represents
a right side of an assignment, so a value. A value reference behaves just like a value,
however in contrast to a left reference certain optimizations can be used, e.g. moving
which means to pull resources out of the value without having to copy them. In the
context of template argument deduction denoting a type directly with && turns it into a
forwarding reference [ISO C++ [2017] [temp.deduct.call]] which can turn into either a
left or right reference. In this example T would be deduced as double&& and U as �oat&&
giving:

auto add(double&&&& lhs, float&&&& rhs){...}

If either one had been a left reference the compiler would have deduced �oat& for example.
This results in literally �oat&&& which collapses to �oat&. Similarly in the given example
the numbers are already value references thus giving �oat&&&& which collapses to �oat&&
[ISO C++ [2017] [dcl.ref]].

Consider, however, the following example:

template<typename T, typename U>

struct fn{

static auto add(T lhs, U rhs){return lhs + rhs;}

};

//...

auto val = fn<double,float>::add(1.0,1.f);

Here a template struct is used where no template argument deduction can take place
(ignoring template deduction guidelines added in C++17). This means that the template
parameter needs to be manually speci�ed or wrapped inside of a helper function:

template<typename T, typename U>

auto fn_tad(T&& lhs, U&& rhs){

return fn<T,U>::add(std::forward<T>(lhs),std::forward<U>(rhs));

}

//...

auto val = fn_tad(1.0,1.f);

Where the call to fn_tad can use template argument deduction, where the deduced types
are used to instantiate fn itself. In order to pass along forwarding references exactly as
they are std::forward<T>(val) is used.
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Templates can also be overloaded, or more precisely specialized, where certain versions
of a template have more speci�c implementations. The exact rules of this are complex but
the general principle "the match that uses less conversions wins" usually holds true.

3.7 Template parameter packs

Consider the following problem: A function should be written which takes another func-
tion and the arguments to call that function with and prints some statement to the console
before and after the call. In order to solve this problem C++ has so called template para-
meter packs [ISO C++ [2017] [temp.param]], or sometimes called variadic templates,
which allow for packs of parameters to be bound to a single identi�er. The following is a
possible solution to the prior problem using these packs:

template<typename Func, typename... Ts>

auto callFn(Func fn, Ts&&... args){

std::cout << "before" << std::endl;

auto retval = fn(std::forward<Ts>(args)...);

std::cout << "after" << std::endl;

return retval;

}

Here typename... Ts denotes a template parameter pack. This pack consists of a list, which
can be empty, of types. The individual elements of a pack cannot be accessed directly and
instead the pack can only be used by expanding it using an ellipsis .... These parameter
packs are often used to iterate over a list of arguments in a recursive manner where a base
case of the function is one with no template argument, for example:

void tprintf(const char* format){

std::cout << format;

}

template<typename T, typename... Ts>

void tprintf(const char* format, T value, Ts... args){

for ( ; *format != '\0'; format++ ) {

if ( *format == '%' ) {

std::cout << value;

tprintf(format+1, args...); // recursive call

return;

}

std::cout << *format;

}

}

Which implements a printf function using variadic templates from C++ instead of variadic
functions from C. These variadic templates can often signi�cantly increase compile time,
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but as they are widely supported by all compilers and o�er signi�cant abstractions which
makes the tradeo� usually worth it. However implementing every function as a variadic
template is not necessarily ideal, similar to templates in general.

3.8 Lambda functions

Consider the following example:

template<typename T, typename Func>

auto apply(std::vector<T>& vec, Func fn){

for(auto& elem : vec)

elem = fn(elem);

}

Which applies a unary function to each element in a vector. These apply operations
often use a very speci�c function that is only used locally and creating a global function
and taking a pointer to this function to pass it, or creating a functor, is a signi�cant
programmatic overhead. Instead C++ contains lambda functions which are speci�ed as
follows [ISO C++ [2017] [expr.prim.lambda]]:

[ capture ] ( params ) -> ret { body }

Where capture describes a list of variables which are either explicitly captured by ref-
erence & or value = or implicitly using a default capture mode [ISO C++ [2017]
[expr.prim.lambda.closure]]. Params are the same as normal function parameters, ret is
the return value, which usually is implicitly used as auto, and body is the body of the
function being created where the parameters and all captured variables are accessible. For
example a lambda to negate all elements using the apply function and one to increment
every element by the vector length could be:

std::vector<float> vec{...};

apply(vec, [](float val){ return -val;});

auto lambda = [&](float val){ return val + vec.size();};

apply(vec, lambda);

In the �rst example no captures are required. In the second example the stack is captured
by reference (to avoid copying vec) and the lambda is stored in a variable of type auto. The
type of a lambda function is is a unique, unnamed nonunion class type called the closure
type [ISO C++ [2017] [expr.prim.lambda]].

In addition to these aspects, lambda functions can also use arguments of type auto.
These lambdas are then called generalized (or polymorphic) lambdas, where for example
a lambda function can be passed to a function without requiring knowledge of the exact
types being used. A common example for this would be:

std::sort(vec.begin(), vec.end(), [](const auto& lhs, const auto& rhs){

return lhs > rhs;

});
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3.9 Template control

Often times when writing generic tasks a problem that arises is that the specialized version
for some kind of template parameters is not just di�erent in types but relies on di�erent
members or functions. This means that the function, if it was instantiated with di�erent
types, would create an ill-formed program for some types. However, due to using a tem-
plate, simply overloading the function or providing an alternative template does not work
directly, and instead a concept called SFINAE needs to be used.

Substitution Failure Is Not An Error describes a mechanism where if the com-
piler during type substitution, for a candidate template, detects a failure the candidate is
discarded and no error is emitted. Only if all candidates are discarded will an error be
emitted. These failures are often caused by std::enable_if<c> which is a construct that
if the boolean condition c is false forms an ill-formed statement. For example:

template <typename T, typename std::enable_if_t<std::is_integral_v<T>>

void do_stuff(T& t) {/*...*/ }

template <typename T, typename std::enable_if_t<std::is_class_v<T>>

void do_stuff(T& t) {/*...*/ }

Compared to a more simple version using static_assert:

template <typename T>

void do_stuff(T& t) {static_assert(std::is_integral_v<T>);/*...*/ }

template <typename T>

void do_stuff(T& t) {static_assert(std::is_class_v<T>);/*...*/ }

Where the failure happens inside of the actual function body and not during type substitu-
tion. A failure here is an actual error as the substitution has already �nished. In general the
basic rule is that anything that is part of the signature, e.g. return type, parameters and
template arguments, is part of the substitution process which allows for SFINAE behavior
and the actual de�nition of the function or struct is not part of the substitution process.

There are many di�erent variants of how SFINAE can be used, especially on functions,
however many of them are unreliable with CUDA and the various compilers being used
with CUDA. As such the following pattern is used throughout the framework as it is the
most widely supported version for function SFINAE:

template<typename T, std::enable_if_t<C1>* = nullptr>

auto fn(T&& arg){/*...*/ }

template<typename T, std::enable_if_t<!C1>* = nullptr,

std::enable_if_t<C2>* = nullptr>

auto fn(T&& arg){/*...*/ }

Which is relatively verbose by requiring repeated arguments. The mechanism used here
is using template variables instead of types which in this case are unnamed parameters
of type void* due to enable_if_t being void if the condition is valid. These variables are
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assigned a default parameter, meaning they do not need to be speci�ed manually, but in
order to satisfy some CUDA compiler versions an increasing number of arguments needs
to be used.

3.10 constexpr

A much derided short coming of C++ for some people is the following example:

int32_t some_fn(){/*...*/ }

//...

const int32_t N = some_fn();

double data[N];

In this example a �xed size array of size N should be created, however this syntax only
allows for compile time �xed size arrays. This �xed size does not refer to a run-time
const size but a compile-time constexpr value. This distinction was added in ISO
C++ [2011] [expr.const] and allows parts of the code to be executed at compile time and
not at runtime. The above example could then be written as:

constexpr int32_t some_fn(){/*...*/ }

//...

constexpr int32_t N = some_fn();

double data[N];

Which is now valid code. This code creates an array with a size that is calculated and set
at compile-time and thus ful�lls the requirements of a �xed size array. These constexpr
expressions and functions can for example be used within templates, where a common use-
case are global constexpr variables where a given trait, e.g. std::is_integral<T>, is
turned into a global boolean variable:

template<typename T>

constexpr bool is_integral_v = std::is_integral<T>::value;

Where is_integral_v<T> can be used within template parameters directly. ISO C++
[2017] [stmt.if] introduced an extension to if branches which allows them to be picked at
compile time which, similar to SFINAE, allows writing di�erent code for di�erent types,
e.g.

template<typename T>

auto fn(){

if constexpr(std::is_integral_v<T>){/*...*/ }

else { /*...*/ }

}

However, this feature is not yet supported in CUDA but is still useful for host side code.
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3.11 Member detection idiom

A problem often faced in code is to detect whether or not a certain type contains a member
of a certain name. This problem for example is faced in certain math code to detect whether
or not a type has an x member. C++ Library TS2 introduced the following mechanism

template< class Default, template<class...> class Op, class... Args >

using detected_or = /* ... */ ;

template< class Default, template<class...> class Op, class... Args >

using detected_or_t = typename detected_or<Default, Op, Args...>::type;

Where detected_or is an alias template to an unnamed type which contains a value_t
and type entry. If the Op<Args> denotes a valid type then value_t is an alias for
std::true_type and type is an alias for Op<Args>. If Op<Args> does not denote a valid
type then value_t is an alias for std::false_type and type is an alias for Default. In order
to utilize this the following macro (ignoring the line splice operators) can be constructed:

#define HAS_MEMBER(ty)

template <class T>
using ty##_t = decltype(std::declval<T>().ty);

template <class Ptr>
using ty##_type_template = detected_or_t<std::ptrdiff_t, ty##_t, Ptr>;

template <typename T>

constexpr bool has_##ty =

!std::is_same<ty##_type_template<T>, std::ptrdiff_t>::value;

Where �rst a template alias is constructed that checks for the member ty in T by trying
to declare a value of type T and accessing the member ty which is only stored as a type.
This type is thus only valid if ty exists within T. Next the detector_or_t is constructed
with the default type of std::ptrdi�_t, although any �xed type could be used. If the type
of the detector_or_t is the default value ty does not exist within T and if this is not the
case ty exists within T which is wrapped inside the template constexpr variable has_ty.

Do note however that these functions are not yet part of the standard, however im-
plementing them is fairly straight forward as the Library speci�cation provides possible
implementations which are valid current C++ code as they do not require new language
features. Up until recently this idiom was not possible in CUDA and a much more di�cult
idiom had to be used.
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Goals of the framework

The goal of the framework presented here is to implement a simulation based on SPH,
which conceptually was shown in chapter 2, using the foundations built in chapter 3.
However, before this can be done a few guiding principles have to be set so in the end a
valid conclusion can be drawn as to whether or not the framework works as planned and if
all problems have been adequately addressed. Many of these aspects are similar to those
presented in chapter 1 but are now concretized into actual criteria.

In the introduction the main goal that was outlined was usability. This goal, whilst
di�cult to measure, builds the foundation of this framework and is the reason many of
these features have been designed in the way they are. Here the question in general is one
of back-end vs front-end complexity.

A direct solution to creating a framework might be to not provide any back-end features
and require the user to manage everything manually. This is fairly simple to construct but
requires signi�cant e�ort on the users part, but it also allows for the most �exibility. On
the complete opposite site is a framework with a very complex and large back-end which
aims to provide the most powerful abstractions possible to the user making it possible to
very easily express complex statements. The second solution in general seems trivially
superior but in practice due to so called impedance mismatches, meaning a di�erence
in what the framework creator wants and what the user needs, these systems can become
very di�cult to use. An example of such a mismatch would be using Unreal Engine
for simulation research where the backend of the engine provides large amounts of very
powerful abstractions but those are a complete mismatch for generic simulations. The goal
thus is to create a very powerful back-end which is tailored to the task at hand but is
essentially optional to not restrict the user.

This balance of back to front-end was one of the most fundamental problems of the
previously employed framework where not only an impedance mismatch, due to using a
scene graph for the simulation, existed, but no real powerful back-end functionality existed
which ampli�ed the problem. To avoid such a problem the framework introduced here
should require as little as possible from the user to actually follow and not force a concept,
e.g. of a scene-graph, onto the simulation. This should still be combined with a powerful
back-end which can be used for powerful abstractions.

Framework zur e�ektiven Umsetzung von Fluidsimulationen auf GPUs 20



CHAPTER 4. GOALS OF THE FRAMEWORK

Another problem often faced is that it is very easy in practice to accidentally write bugs
in a system due to misusing units. In normal frameworks this is fairly di�cult to catch as
physical units are usually not part of the calculations and doing this in a way that does
not impact performance would be a great addition. This goes together with providing not
just a unit system but also a math system for common operations which creates fast
and e�cient code without requiring the user to be aware of the underlying complexity.

Additionally, often times systems are created once for a speci�c purpose and then are
extended ad-hoc to add functions over time, or even just simple modules, which can bloat
the code up as the framework was not constructed with a concept of modules with
dependencies in mind, which should easily be extended. As such the goal here is to
facilitate a system where it is easy to not just add a module of functions to the framework,
but also to easily �gure out where the components come from, what the requirements are
and if the module can safely be removed.

A fourth problem often faced is the di�culty of debugging GPU based code. In
theory tools like gdb exist, but these often slow the overall execution down to such an
extent that the simulation not just takes a very long time to cause an error but might not
cause any error at all due to di�erent parallelization e�ects under debugging. Similarly
just adding debug messages to parallel GPU code can easily timeout kernels causing a
crash in a program when just a check was intended. As such the framework should provide
the option to run parts, or all, of the simulation on the CPU and provide the option to
step back in "time" to a previous point to then switch to a CPU version to investigate
problems more closely.

A �nal problem is obviously performance. A large set of back-end functionality and
abstractions is nice to have, but if these features cause the simulation to be unacceptably
slow then there is no real bene�t in these abstractions. In general C++ nowadays has a
concept of Zero-Cost-Abstractions where complex expressions still generate ideal code
and this should also be the goal for this framework.

Overall the goals for this framework can be summarized as creating a powerful back-end
within the framework which allows for abstractions that allow for very easy to maintain
and understand code, whilst providing strong features, like unit checking and modular-
ization, at no measurable overhead over a direct solution whilst allowing for a user, if
desired, to write any arbitrary code that is standard compliant as to not force the user to
adhere to the system if there is an impedance mismatch.

Whilst most of these goals are di�cult to measure, i.e. how can an impedance mismatch
be measured, some of them are more simple to quantify. The most powerful metric with
these goals in mind are Lines Of Code (LOC) which should be signi�cantly reduced
compared to the previous framework, especially with regard to user code. Additionally
there should be no negative performance impact compared to the previous framework and
the abstractions should be investigated as to whether or not they produce bad assembly
code, as compared to a down to the metal implementation.

Framework zur e�ektiven Umsetzung von Fluidsimulationen auf GPUs 21



Chapter 5

Implementing low dimensional math in

CUDA

CUDA provides many built-in types for common computer graphics operations, namely 1D,
2D, 3D and 4D vectors for a multitude of types. However, CUDA directly does not include
any operations on these types, neither simple operators like additions nor more complex
functions like dot products. These built-in types however are available everywhere and are
well understood by the compiler so including proper math functions for these types is a
good idea. Additionally providing a solid basic mathematical foundation o�ers valuable
back-end functionality if it is done in a generic and unobtrusive way.

5.1 Alignment

In order to guarantee more e�cient memory accesses many types, or programs, include
hints on the alignment of types. This is no di�erent for the CUDA types where, for
example, for �oat4 the de�nition of this type is as follows [CUDA [2018]]:

struct __device_builtin__ __builtin_align__(16) float4

{

float x, y, z, w;

};

typedef __device_builtin__ struct float4 float4;

Where __builtin_align__ is a macro that de�nes the memory alignment of the type
in bytes. Using a custom vector type would require using something similar so that the
CUDA compiler can perform the same optimizations. However, using these CUDA internal
macros and speci�ers might lead to unde�ned behavior, and whilst CUDA does provide an
align macro for user code, the performance is not always the same due to compiler speci�c
issues. Additionally using alignment speci�ers in general in C++, for custom types, quickly
becomes challenging as every compiler vendor uses a slightly di�erent syntax.

The problem thus becomes using these built-in types as the underlying data types
for everything and adding functionality for them on top. This could easily be done by
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manually covering all the possible cases, e.g. �oat4 + �oat4, �oat4 + �oat, �oat + �oat4
for addition, but this becomes di�cult to maintain or read and is an ideal candidate
for templates. Additionally certain comfort features like accessing the n-th value might be
useful but this is not directly possible with the built-in de�nition except by doing something
like

float4 vec{1,2,3,4};

float y = ((float*)&vec)[1];

Which is not safe and might not be properly optimized.

5.2 Type-traits

The �rst question that needs to be asked for a generic template is:
What de�nes a vector?
This question might seem obvious but it requires certain �xed rules and assumptions

about the underlying types and how they are created. The most basic assumptions we can
make is that, for example, a 2D vector contains a member called x, a member called y but
no member called z. We could create further restrictions, e.g. the types of the members
are all the same, but these additional constraints make the detection more di�cult and do
not increase the hit rate of these traits.

The problem with this assumption however is that this creates operators which are
valid for all types that follow these rules. This might interfere with external libraries,
like glm, which de�ne template operators on their built-in types. As those operators and
these created here would be equally correct an ambiguous overload would exist and as
such a preprocessor de�ne NO_OPERATORS can be used to block the operators of being
visible at global scope where they are required for the CUDA built-in types. Normal math
functions are all contained within a separate math namespace.

Actually detecting the vectors then becomes straight forward using the member de-
tection idiom to create traits for the individual members x, y, z and w. These need to
be combined into more generic terms by simply creating logical conjunctions:

template<typename T>

constexpr bool has_x = has_mem_x<T>;

template<typename T>

constexpr bool has_xy = has_mem_x<T> && has_mem_y<T>;

//...

For the 4 cases (x, xy, xyz, xyzw). Using these traits a helper function can be constructed
which calculates the dimension of a vector where 0 is returned for integral and �oating
point types, e.g. double and int32_t, and 0xDEADBEEF is returned as a constant for non
vector types. It would be possible to �lter these out by creating no SFINAE case where
they are valid, but this leads to more complex calling code. This function is de�ned as:
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template <typename T>

static constexpr uint32_t dimension_fn() {

using Ty = std::decay_t<T>;

if (std::is_integral<Ty>::value

|| std::is_floating_point<Ty>::value)

return 0;

else if (has_x<Ty> && !has_xy<Ty>)

return 1;

else if (has_xy<Ty> && !has_xyz<Ty>)

return 2;

else if (has_xyz<Ty> && !has_xyzw<Ty>)

return 3;

else if (has_xyzw<Ty>)

return 4;

else

return 0xDEADBEEF;

}

template<typename T>

constexpr uint32_t dimension_v = dimension_fn<T>();

Note that even though the conditions within the if branches are compile time constant
expressions that if constexpr cannot be used due to lacking support in CUDA, but the
expressions within the if branches always compile to correct code so this is not an issue
here.

5.3 Accessing elements

A problem described before is accessing the n-th element of a vector as they are de�ned
within CUDA. This can e�ectively be implemented using the following code

template <uint32_t idx, typename T,

std::enable_if_t<idx == 3 && !(dimension_v<T> < 3)>* = nullptr>

hostDeviceInline auto&& get(T &&a) {

return a.z;

}

Which starts the index at 1 to be the same as the dimension number. This function returns
an l-value reference for l-value references and an rvalue otherwise. The function itself takes
a forwarding reference and returns a forwarding auto value which can become either an l
or r value reference here. The function is only enabled via SFINAE if the requested idx is
3, to provide for di�erent versions for 1, 2, 3 and 4 as the index, and if the dimension of the
argument is not less than the dimension requested. This reverted test is needed as checking
if the dimension is larger to enable it would con�ict with using a large value to de�ne non
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dimensioned values. Without using auto this function would become signi�cantly more
complex.

Often times however, it is bene�cial to return 0 instead of causing a compile time error,
e.g. to allow for easier function creation where the 0 can be used to �lter out the non
existent dimensions. This can easily be realized by copying the de�nition of get but adding
a SFINAE case for dimension < idx. In code this addition could be written as:

template<uint32_t idx, typename T,

std::enable_if_t<(dimension_v<T> != 0)

&& (dimension_v<T> < idx)

&& (dimension_v<T> != 0xDEADBEEF)>* = nullptr>

hostDeviceInline auto weak_get(T a) {

return static_cast<decltype(std::decay_t<T>::x)>(0);

}

In order to avoid type conversions issues the zero is manually cast to the decayed element
type. In these functions in general a simple value instead of a forwarding reference is used
to avoid potential divergent behavior in functions which could modify, possibly accidentally,
the input values for some dimensions but not for other dimensions and so returning a value
regardless of input works well in practice. For scalar values weak_get always returns the
value itself.

Using the weak_get function a relatively simple cast function can be de�ned to cast
between arbitrary vector types:

template <typename T, typename U,

typename std::enable_if<(dimension<T>::value == 2)>

hostDeviceInline T to(U &&a) {

using Ty = decltype(weak_get<1>(std::declval<T>()));

return T{static_cast<Ty>(weak_get<1>(a)),

static_cast<Ty>(weak_get<2>(a))};

}

Which is repeated once for all dimensions. This allows conversions between any arbitrary
type including scalar values. For scalar values the cast results in every element of the
casted vector having the value of the scalar, for non scalars the dimensions that were not
present in the input vector are set to 0.

5.4 Functions on vectors

In general there are two kinds of functions on vectors to consider. The �rst kind of function
takes a single vector as input and applies a unary function to all elements of the vector
and the other kind being a function which takes two vectors as input and applies a binary
function to the corresponding elements of the vectors. Functions that modify the elements
of a vector could be implemented in theory, however they can easily be emulated using
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the �rst kind. For unary functions all inputs are valid, however for binary functions the
following relationship with input and output exists, with one vector having n dimensions
and the other m The output would be n-dimensional if n == m∨m == 1, m-dimensional
if n == 1, and unde�ned else.

Based on these functions a trait can be written which checks if for two input types T
and U their output would be d-dimensional:

template<typename T, typename U, uint32_t d>

constexpr bool dimension_compatible = /* ... */ ;

Using this a function to apply a binary function to two inputs can be de�ned, using a
helper template to determine the return type,:

template <typename T, typename U, typename C,

std::enable_if_t<dimension_compatible<T, U, 2>>* = nullptr>

hostDeviceInline auto fn(T&& lhs, U&& rhs, C fn) {

return return_type<T, U>{fn(weak_get<1>(lhs), weak_get<1>(rhs)),

fn(weak_get<2>(lhs), weak_get<2>(rhs))};

}

And analogous for unary functions. Using these two functions and lambda functions many
of the traditional mathematic functions can very easily be implemented, e.g. a function to
round values up to the nearest value:

template <typename T> hostDeviceInline auto ceilf(T lhs) {

return fn(lhs, [](auto a) { return ::ceilf(a); });

}

5.5 Operators

Normal operators [+,-,*,/,%] can easily be implemented using the get functions:

template <typename T, typename U,

std::enable_if_t<dimension_compatible<T, U, 2>>* = nullptr>

hostDeviceInline auto operator +=(T&a, U&& b){

math::get<1>(a) += math::get<1>(b);

math::get<2>(a) += math::get<2>(b);

return a;

}

For non assignment operators the return_type helper is used again and they are imple-
mented the same as normal binary functions. These operators, due to their similarity, are
de�ned based on a macro in the actual framework.

Comparison operators are not implemented for built-in vector types as no de�nitive
interpretation of the comparison of two vectors can be created. The value aware math
introduced later however implements these using lexicographical ordering.
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Chapter 6

Implementing SI-Units in C++

Many problems nowadays are at least in parts based on real physical systems. In physics
usually one of the most important steps to writing or developing a method or calculation is
making sure the units are respected. In computer graphics however it is fairly common
for solutions to problems being created ad-hoc by employing "scaling" factors that make
the system not physically sound. Even ignoring these problems accidentally writing bugs is
easy, but some kinds of bugs also cause a di�erence in units, e.g. in the following example:

auto l = 10.0m;

auto v = 5.0m_s;

auto s = 0.1s;

l += l * s;

// should be l += v * s;

Where the wrong variable leads to incompatible units. The goal in this chapter is to
provide the basic overview of the way these units can be enforced in C++ and CUDA.
Providing this functionality again helps to build a solid back-end foundation in the frame-
work and allows for very powerful abstractions which, due to the compile time nature of
them, come at a zero run time cost.

6.1 Tagged types

In the SI unit system only a small number of basic units exist where every other unit
is based on a combination of base units and coe�cients. The basic units can simply be
represented using a strongly typed enumeration with the coe�cients being represented by
a ratio type:

enum struct Base { m, kg, s, A, K, mol, cd };

template <Base _unit, typename T = ratio<1, 1>> struct SI_Unit {

constexpr static Base unit = _unit;

using ratio = T;

};
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Where ratio is a struct that stores its template arguments as values:

template <std::intmax_t n, std::intmax_t d> struct ratio {

static constexpr int num = n;

static constexpr int den = d;

};

which implements a ratio Q based on a nominator and denominator. Using template alias
de�nitions and constexpr functions basic math functions can be implemented on these
types within the type system. For example:

template<typename R1, typename R2>

using ratio_add = ratio_reduce<

ratio<R1::num * R2::den + R2::num * R1::den, R1::den * R2::den>>;

inline constexpr auto gcd(int a, int b) {/*...*/ }

However, this only represents a single unit and not a combination of units. A natural choice
within C++ to combine these units together is std::tuple [ISO C++ [2017] [tuple]]. These
tuples can, in addition to storing values of di�erent types, be seen as a way to list di�erent
types and pass them around together. Additionally certain basic operations, like tuple_cat
already exist for them.

Using these a value_unit can be de�ned as a tagged type, which represents an actual
value with a normal type combined together with its unit as:

template <typename Value, typename Unit> struct value_unit {

Value val;

using unit = Unit;

using type = Value;

constexpr hostDevice value_unit() { val = vec<Value>::zero(); };

template <typename... Ts>

constexpr explicit hostDevice value_unit(Ts... args) : val{args...} {}

template <typename T, typename U>

constexpr hostDevice value_unit<Value, Unit>(

const value_unit<T, U> &rhs,

std::enable_if_t<SI::is_same_unit<Unit, U>::value, int *> = 0) {

val = rhs.val;

}

constexpr explicit hostDevice operator Value() const { return val; }

};

Instances of this class template need certain constraints with regards to their construct-
ors to avoid accidentally creating objects of these classes based on wrong physical units.
Sometimes accessing the value directly is still useful so the variable is made accessible to
the outside as it is a public member. In the actual implementation a separate value_unit
is used to handle units with Unit = void.
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6.2 Operations on units

For the basic units a simple template alias can be used to turn the enumeration into
SI_Unit entries:

using m = SI_Unit<Base::m>;

And for derived units a variadic template alias derived_unit<Ts...> can be used. In
order to help with these derived units a set of helper aliases exists, e.g. for reciprocal
units:

template <typename T> using recip = multiply_ratio<T, ratio<-1, 1>>;

template <typename T> using recip_2 = multiply_ratio<T, ratio<-2, 1>>;

template <typename T> using recip_3 = multiply_ratio<T, ratio<-3, 1>>;

template <typename T> using id = multiply_ratio<T, ratio<1, 1>>;

template <typename T> using square = multiply_ratio<T, ratio<2, 1>>;

template <typename T> using cubic = multiply_ratio<T, ratio<3, 1>>;

Which can be used to de�ne a set of common derived units, e.g. N = kg·m
s2

as:

using N = derived_unit<kg, m, recip_2<s>>;

Such a derived unit, even with just a single unit, is a tuple of units. In order to use these
units however a set of functions needs to be created to allow for certain basic functionality.
As an example of these utility functions �lter_unit's implementation is shown below
which is used to remove certain basic units from a tuple:

template <Base B, typename Tuple> struct filter_unit;

template <Base B>

struct filter_unit<B, std::tuple<>> { using type = std::tuple<>; };

template <Base B, Base C, typename U, typename... Ts>

struct filter_unit<B, std::tuple<SI_Unit<C, U>, Ts...>> {

using type = decltype(

std::tuple_cat(std::declval<std::tuple<SI_Unit<C, U>>>(),

std::declval<typename filter_unit<B, std::tuple<Ts...>>::type>()));

};

template <Base B, typename U, typename... Ts>

struct filter_unit<B, std::tuple<SI_Unit<B, U>, Ts...>> {

using type = typename filter_unit<B, std::tuple<Ts...>>::type;

};

This implementation looks intimidating at �rst, however when breaking it down into separ-
ate blocks it becomes fairly straight forward. �lter_unit is a template struct which requires
a base unit B and a tuple it works on. The �rst version de�nes a basic struct which can
be used for specialization and the second version de�nes the variadic template recursion
anchor. The third version concatenates a tuple based on the current SI_Unit with the
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value returned by a recursive call. The fourth version is only allowed if the �rst SI_Unit
has the same basic unit as the SI_Unit that should be �ltered out, in which case the type
is set to just be the result of the recursive call without tuple_cat.

There are other basic functions like has_unit which is of true_type if the given derived
unit contains a certain base unit.

A more interesting utility is equivalent_types. This set of templates, which is too
long to show here, compares two types and checks if they are equal. Conceptually this is
implemented as a recursion on one template checking for the value of the same basic unit
in the other template. The types are only equivalent if every basic unit of a is equal to the
same basic unit in b ignoring ordering. Additionally is compatible_unit returns true if
they are equivalent or one, or both, are void. This is useful to allow operations that scale
a unit type by a standard �oat, e.g.

auto l = 0.5f * 1._m;

6.3 Utility things

The value_unit de�ned before works �ne, however often times it is too verbose to use.
Instead a simple alias template can be de�ned for the most commonly used types e.g.:

template<typename... Ts>

using float_u = value_unit<float, SI::derived_unit<Ts...>>;

Similarly to directly create scalars with a unit attached to them user de�ned literals [ISO
C++ [2017] [lex.ext]] can be de�ned. These UDLs work similar to f for �oating point
numbers, however to be conforming to the standard they need to start with an underscore.
They can be implemented using a macro for all basic, and analogous for derived units:

#define UNIT_UDL(u) \

constexpr value_unit<float, SI::u> operator "" _##u(long double wgt) \

{return value_unit<float, SI::u>{static_cast<float>(wgt)};}

UNIT_UDL(m);

6.4 Functions

Functions on types with units can be de�ned as they would be on normal math functions,
e.g. the ceilf function from before can be implemented as

template<typename T, typename U>

hostDeviceInline auto ceilf(value_unit<T, U> arg) {

return value_unit<T, U>{math::ceilf(arg.val)};

}
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Which takes the actual value of the unit and passes it to the standard function. Of note
here is that no forwarding reference can be used on these derived types. In this case there
is no in�uence on the SI-Unit associated with the variable so this is all that is needed.
Similarly get functions can be de�ned that work the same as the unit-less versions, however
the element has to be casted to a unit based type. This has the consequence that get on
value_unit's does not return a reference but a value.

To still assign values to individual elements a separate unit_assign function is de�ned.
Which implements assigning a scalar to a 1D vector value. This obviously leads to many
di�erent specializations of this function which makes it very long in code but conceptually
relatively straight forward.

Some functions have no correspondence with unit systems, e.g. sinus functions, as there
is no way to modify a type to be for example sin(SI::m). Similarly the power function is
restricted to compile time �xed powers as the unit checking needs to run at compile time.
Thus the power function for units is de�ned as:

template<typename Ratio, typename T, typename U >

hostDeviceInline constexpr auto power(value_unit<T, U> a) {

constexpr float n = static_cast<float>(Ratio::num);

constexpr float d = static_cast<float>(Ratio::den);

constexpr float r = n / d;

using ret_t = value_unit<T, typename SI::multiply_ratio<U, Ratio>>;

return ret_t{ math::pow(a.val, r) };

}

Where the return type is calculated based on the ratio that is provided as the �rst template
argument. Operators can also be de�ned on these types, however due to the complexity
of unit compatibility and how they interact they become relatively complex. An example
of this would be division where dividing a number by a number with an associated unit
creates a result with the reciprocal unit of the second argument, however dividing a number
associated with a unit by a normal number changes nothing. These rules follow ordinary
unit rules most people are familiar with so providing them here in code would serve no
greater purpose.

6.5 SPH kernel functions

In the section dealing with the SPH fundamentals kernel functions were described which
are used here as an example of more complex mathematical functions.

As a basis for kernels a base class, which provides a set of functions to interact with
the kernel, is used which a speci�c kernel inherits. An individual kernel then provides the
following interface:

� neighbor_number, a constant value representing the ideal number of neighbors
for this kernel, de�ned per kernel
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� kernel_size() returnes κ for a given kernel, de�ned per kernel

� gradient(a,b) returns ∇Wab

� derivative(a,b) returns dŴ (q)
dq

� norm_derivative(a,b) returns dŴ (q)
dq

1
||xa−xb||

� value(a,b) returns Wab, de�ned per kernel

� derivative_impl(q) returns dŴ (q)
dq

, de�ned per kernel

The actual implementations of the kernel functions are almost agnostic to whether or not
unit based types are used to call them. The only exception to this is an optimization
that can easily be done to SPH simulations where positions are stored as 4D values, for
alignment reasons, where the fourth component stores the smoothing length of the particle.
To access the fourth component with unit types unit_get has to be used and for non unit
types just get. This is wrapped in a separate helper function calculate_support which
uses SFINAE to pick the right version. The cubic spline kernel function itself can then be
implemented as:

template <typename T, typename U> hostDeviceInline

auto spline4_kernel(T a, U b) {

auto difference = a - b;

auto r = math::length3(difference);

auto half = calculate_support(a, b);

auto H = half * kernel_size();

auto q = r / H;

auto C = 16.f / CUDART_PI_F;

auto kernel_scaling = C / (H * H * H);

auto kernel_value = 0.f;

if (q <= 0.5f) {

auto q1 = 1.f - q;

auto q2 = 0.5f - q;

kernel_value = (q1 * q1 * q1) - 4.f * (q2 * q2 * q2);

} else if ((q <= 1.0f) && (q > 0.5f)) {

auto q1 = 1.f - q;

kernel_value = q1 * q1 * q1;

}

return kernel_value * kernel_scaling;

}

In order to make the code more readable certain helper macros are de�ned using common
kernel calls to allow for more concise code, e.g. W_ij for spline4_kernel(pos[i], pos[j]).
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Meta-Modeling for simulations

A general problem, and what motivated this development e�ort, was managing depend-
encies. In most systems, and especially simulations, there are often di�erent ways to solve
a problem, e.g. di�erent pressure solvers. These methods interact in certain ways where
often times the output of one module is used as the input of another, where certain mod-
ules are used to process certain data etc. This often leads to practical problems as de�ning
what something depends on, or even making all information available in a single place, is
often di�cult with a spread out implementation.

The goal here is to create a system in which modules can be de�ned in a centralized
manner and this information can be used to createmeta information about the program,
memory and parameters in a central location where looking up properties and dependencies
is easily possible. These central �les are written in a mostly human readable format instead
of actual C++ source code which signi�cantly helps understanding.

This central information is stored within JSON (Java Script Object Notation) �les as
this format strikes a reasonable balanced between human readability and expressiveness.

7.1 Using JSON to describe data

The following is an excerpt from the JSON �le used to create con�guration parameters
from the framework and should serve as an example of the structure of JSON itself:

{

"modules": {

"resorting": {

"identifier": "sorting",

"description": "Used to select the underlying sorting algorithm.",

"type": "std::string",

"default": "hashed_cell"

}

}

}
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Which describes the resorting parameter which in itself is an entry within modules. This
parameter has a certain identi�er, a helpful description, a default value and a C++ type.
In order to translate this into actual C++ source code a program is required that can
execute a source code transformation, or as a more general problem, compiles JSON
to C++. This obviously is no generic programming language but a limited domain
speci�c language.

To read a JSON �le within C++ an external library is helpful as recreating the logic of
parsing a JSON �le into some abstract tree representation is not the topic of this thesis. In
order to load the JSON �le boost is used due to its ubiquitous nature. In order to actually
load a JSON �le in boost the �le �rst is read into a standard string and then transformed
into a property tree:

std::string json = "...";

boost::property_tree::ptree pt;

boost::property_tree::read_json(json, pt);

Once this tree has been created a node class is used which represents a property tree node
combined with its value as a string. This node can then be used to de�ne a transformation
from the corresponding JSON node to C++ code artifacts. The actual implementation
of this logic is not important as it could be done in a variety of ways and the general
concept is more important. Actually using this node class however is more relevant as this
might be something a user of the framework would consider modifying to �t some new
requirement.

The most simple transformation possible is a transformation that simply recursively
parses the JSON tree, which is stored in a std::function object with a default lambda
closure assigned to it:

std::function<void(transformation&, transformation*, node_t&)> transfer_fn =

[](auto& node, auto, node_t& tree) {

for (auto& t_fn : node.children)

for (auto& children : tree.second)

t_fn->transform(children);

};

Once this recursive step has been done on the highest level additional transformations can
be created for the individual nodes which in the JSON sample data above would be the
actual resorting parameter node. The output of these transformations in general is based
on some pattern where placeholders are replaced to insert the speci�c information for
this parameter or array. These patterns, once �lled out, are pushed into string streams
representing the actual source code to iteratively build the actual �les.

In addition to these string based operations certain steps require lists to be created,
e.g. a list containing all parameters called uniforms_list, which are created by pushing
back elements into a global map which maps list identi�ers to list entries in string form:
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std::map<std::string, std::vector<std::string>> global_map;

global_map["uniforms_list"].push_back(

node.second.template get("identifier", std::string(parent->node->first))

);

These are transformed into code after all nodes have been processed and are thus placed
at the bottom of the �le. In the following subsections the basic patterns for parameters,
arrays and modules are shown to demonstrate how these can be used in practice and what
kinds of inputs are expected.

7.2 Array creation using JSON

Creating arrays has certain requirements that have to be met for this system to be useful.
An array in general, besides a type, has various interesting properties which, based on
their JSON attribute name, are the following:

� the name of the node is used as the name of an array, or the variable name more
commonly

� type, contains the underlying C++ type

� unit, contains the SI unit of the array, based on the unit node containing an SI unit,
e.g. SI::m or SI::derived_unit<SI::area, SI::recip_2<SI::s�

� kind, within our SPH framework there are 4 kinds of allocation types that are
allowed. These are:

particleData, one element allocated for every particle in the simulation

singleData, a single element allocated

cellData, one element allocated per grid cell

customData, no default allocation

� size, contains the number of elements allocated per element, e.g. a size of 2 using
particleData allocates 2 array entries per particle

� swap, contains a boolean attribute that describes if the array has a front and rear
bu�er used for updating values or resorting

� resort, indicates whether or not the array, only if it contains particleData, should
be resorted in every timestep

� depends_any, indicates possible dependencies on con�guration parameters. These
dependencies are arrays of parameter : value pairs

� depends_all, same as depends any but requires all conditions in the array to be
true. Exclusive with depends_any

Framework zur e�ektiven Umsetzung von Fluidsimulationen auf GPUs 35



CHAPTER 7. META-MODELING FOR SIMULATIONS

An example JSON entry would be the following:

{

"basicArrays": {

"position": {

"description": "...",

"type": "float4",

"kind": "particleData",

"unit": "SI::m",

"size": 1,

"swap": true,

"resort": true

}

}

}

This entry describes the position array which contains particleData and thus one element
per particle in the simulation. The unit of this arrays data is SI::m. The array also contains
a back bu�er used for updating values and is resorted every timestep. If the entry also
contained

{

"depends_any": [

{ "pressure": "IISPH" },

{ "pressure": "IISPH17" }

]

}

Then the array would only be allocated if the parameter pressure had either the value
IISPH or IISPH17 within a con�guration.

There are some additional details that are not directly obvious in these descriptions.
The swap attribute not only creates a back bu�er but also makes the data ephemeral,
which means that the memory associated with the array is never fully reclaimed so the
data is kept intact between timesteps. On simulation startup only arrays marked as swap
and single data are allocated, where the following might be a relatively common solution
to allocating custom data �elds on startup which are kept throughout the simulation:

{

"kind": "singleData",

"size": "get<parameters::mlm_schemes>() * get<parameters::hash_entries>()"

}

Note that size can contain arbitrary C++ expressions as long as they evaluate to a num-
ber. Another important distinction has to be made on the unit attribute. This attribute
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allows for a special case where the unit of the array is declared none. If an array is de-
clared none then there will be no associated value_unit pointer with the array and instead
the only way to refer to the data is using the type directly. This is di�erent to the array
being declared void which creates a value_unit<T,void> which might not be desirable for
certain kinds of arrays, e.g. particle indices or hash maps.

The general replacement form for an array creates an individual type per identi�er in
a header �le:

struct $identifier{

using type = $type;

using unit_type = $unit;

static constexpr const array_enum identifier =

array_enum::$identifier;

static constexpr const auto variableName = "$identifier";

static $type* ptr;

static size_t alloc_size;

static constexpr const auto description = "$description";

$swap_h

static constexpr const memory_kind kind = memory_kind::$kind;

$default_alloc_h

static void allocate(size_t size);

static void free();

operator type*();

type& operator[](size_t idx);

static bool valid();

template<class T> static inline auto& get_member(T& var) {

return var.$identifier;

}

};

7.3 Parameter creation using JSON and con�gurations

Parameter descriptions face a similar problem to arrays, but the bene�ts of centralizing
their de�nitions is even more valuable. There are not many reasons to �nd out what
arrays exist in the simulation except to write code, whereas �nding out what con�guration
parameters exist and what they mean has bene�ts even to users of the simulation. As such
automatically generating a user interface in the simulation and making this information
available to users without having to scour source �les is bene�cial.

The general principle of parameters is equal to that of the arrays, however there are
additional attributes for parameters. The attributes of parameters are:

� identi�er, is used as the name of the C++ struct
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� the name of the node, is combined with the name of the node one level up to create
the JSON name of the parameter

� unit, same as arrays

� type, same as arrays, however std::vector<Type> is also allowed

� visible, a boolean parameter that makes this parameter invisible to the GUI if set
to false

� const, boolean parameter which makes the value unmodi�able at runtime through
the GUI

� default, a C++ expression used to initialize the parameter, initialization works as
type vdefault

� range, a sub JSON node which contains a min, max and step entry to de�ne slider
ranges for the GUI, if desired

� depends_any, depends_all, same as arrays

There are certain special behaviors of parameters that are worth pointing out. First of
all the simulation creates a JSON identi�er from the parent node name and the name of the
node which are used to automatically load a value from a con�guration as a string value.
This parsing is created automatically and works for a variety of types. These include: bool,
integral types, �oating point types, CUDA vectors, std::vector and std::string.

CUDA vectors are parsed as comma separated values, e.g. "default": "1.f,0.f,0.f,0.f" for
a 4D �oat value of [1, 0, 0, 0]. For std::vector the following would be an example entry in
the parameter �le where the individual vector entries are sub nodes in a JSON object:

{

"inlet_volumes": {

"volume$": {

"identifier": "inlet_volumes",

"type": "std::vector<std::string>"

}

}

}

With an example con�guration �le entry of:

{

"inlet_volumes":{

"volume1":"...",

"volume2":"..."

}

}
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Where the number is indicated by a $ symbol in the identi�er. Additionally parameters can
de�ne complex types which are implemented as PODs with complex_entry members.
These are parsed for each of the entries, for example in the prior example the actual type
is std::vector<inlet_volume> which is de�ned as:

{

"complex_type": {

"name": "inlet_volume",

"description": {

"file": {

"identifier": "fileName",

"type": "std::string",

"default": ""

}

}

}

}

Where an entry in the con�guration would be

{

"volume1": {

"file": "Volumes/Inlet1.vdb"

}

}

These complex types are also de�ned within the header that contains all parameters and is
accessible across the simulation. However for actual CUDA code they should manually be
transformed into arguments as passing along these complex types automatically to GPU
code would be di�cult and restrict their usefulness.

The con�guration parsing in general works fully automated and allows for easy
creation of new parameters. Because of this automation, and the con�guration being a
JSON �le itself, JSON attributes can be provided on the command line, e.g. calling

sim -j=modules.resorting="hashed",simulation_settings.max_numptcls=1024

Would set these parameters and overwrite any value within the simulation allowing for
easy creation of test cases. To further this the con�guration can also contain options which
contain a set of con�guration parameters. These options can be accessed when starting
the simulation using

sim -o \$num

An example of an option would be the following:
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{

"options":[

{

"modules":{

"resorting": "linear_cell"

}

}

]

}

The general replacement form for a parameter creates an individual type per identi�er
in a header �le:

struct $identifier{

using type = $type;

using unit_type = $unit;

static constexpr const uniforms identifier = uniforms::$identifier;

$identifier(const type& val){*ptr = val;}

$identifier() = default;

operator type() const{return * ptr;}

static constexpr const auto variableName = "$identifier";

static $type* ptr;

static $unit* unit_ptr;

static constexpr const auto jsonName = "$json";

static constexpr const bool modifiable = $constant;

static constexpr const bool visible = $visible;

template<class T> static inline auto& get_member(T& var) {

return var.$identifier;

}$range_statement

};)";

7.4 Module creation using JSON

Functions, or more generally here modules, are signi�cantly di�erent to parameters and
arrays, but they follow the same structure. A module in this framework consists of a
namespace, with the name of the module, a function to check if the module is valid, a struc-
ture describing the arrays and parameters used by the module and the actual functions.
All of these components are automatically generated in a generated header �le per module
which the implementations of the functions can simply include. The functions themselves
take a single parameter, which is the memory de�ned within the modules namespace, which
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is �lled out by the framework with all necessary pointers and parameters. To get a better
understanding of this structure consider the general replacement form:

#pragma once

#include <utility/identifier.h>

/*

$description

*/

namespace SPH{

namespace $name{

struct Memory{

// basic information$basic_info

// parameters$parameter

// temporary resources (mapped as read/write)$temporary

// input resources (mapped as read only)$input

// output resources (mapped as read/write)$output

// swap resources (mapped as read/write)$swap

// cell resources (mapped as read only)$cell_info

// neighborhood resources (mapped as read only)$neighbor_info

// virtual resources (mapped as read only)$virtual_info

// volume boundary resources (mapped as read only)$boundaryInfo

$using

$properties

};

//valid checking function

inline bool valid(Memory){

$valid_str

return condition;

}

$functions

} // namspace $name

}// namespace SPH

Some basic values are fairly uninteresting as they are the same as those from parameters
and arrays, namely depends_any and depends_all, as well as a description attribute and
a name. In addition to the name a module also contains a folder attribute which names
the subfolder in which the module will be generated. The functions attribute describes the
name of all functions as an array that the module provides. The remaining parameters
describe the input and output of the module:

� parameters, JSON array with the name of all parameters required by the module

� input, JSON array with the name of all arrays required by the module, read only
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� output, JSON array with the name of all arrays that are intended outputs of the
module, read/write

� temporary, JSON array with the name of all arrays that are used only internally,
read/write

� swap, JSON array with the name of all arrays that should be bound as a pair of
front/rear bu�er, read/write

� x-info like attributes describe sets of arrays and parameters that can be included
implicitly, e.g. all arrays required for a neighborhood iteration

� units is a boolean that de�nes whether or not arrays and parameters should be bound
as types with associated units

� target can either be cuda or cpu to decide whether a .cpp or .cu �le should be
generated

An example would be the module description for IISPH:

{

"iisph17": {

"description": "...",

"folder": "pressure",

"name": "IISPH17",

"target": "cuda",

"units": true,

"cell_info": false,

"virtual_info": true,

"boundaryInfo": true,

"neighbor_info": true,

"functions": [ "pressure_solve" ],

"depends_any": [ { "pressure": "IISPH17" } ],

"parameters": [ "eta", "iterations", "density_error"],

"input": [ "position", "density", "volume" ],

"temporary": [ "iisphVolume", "iisphSource", "..." ],

"output": [ "acceleration", "velocity" ],

"swap": [ "pressure" ]

}

}

In addition to the arrays being bound into variables that have the same name as the array
the module memory structure also contains additional meta information. This mostly
includes lists of all parameters bound and all arrays bound as input, output, temporary etc.
This information is used to �ll out an instance of the memory object automatically before
the function is called so the function itself doesn't have to worry about these problems.
This process will be discussed more in-depth in the next section.
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Module and memory management

So far only descriptions of parameters, arrays and modules have been created and the
challenge now is to bring these descriptions, with all of their meta information, together in
a system that automates many of the traditionally busy work involving steps. These steps
are done fully automated as to not require user in�uence at any point of the actual function
calling, but the user still has to addmodule calls in the right spot. Additionally, whilst it
is not important to the average user, it is still important to understand how the memory
manager conceptually works, and how in more general terms memory is allocated.

8.1 Adding modules

Within this framework a central simulation object exists which carries a list of module
pointers in the order in which they are called in each simulation step. This object is setup
within the setup_simulation function where an empty simulation "loop" is created and
modules are added using a then function. Internally this uses a tuple, as the modules
all are of di�erent types to avoid performance penalties from using inheritance, to which
modules are appended. The syntax of this .then call in general is:

template <typename T> simulation<Ts..., array_clear<T>>

then(array_clear<T> arr);

template <typename T> simulation<Ts..., function_call<T>>

then(void(*func)(T), std::string name, Color col, bool graph) ;

Where the �rst overload is used to clear an array as a simulation step, e.g. setting all ac-
celerations to zero would be .then(array_clear<arrays::acceleration>()). Adding an actual
module call is done using the second version of .then which takes a function pointer to the
actual module function being called, and some helpful information, which is used to create
a timer, and possibly error messages within the GUI. An example call to the function es-
timate_density of the Density module would be .then(&SPH::Density::estimate_density,
"Density estimate", Color::orange4).
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Overall the current version of the simulation framework contains 28 individual then
calls. One thing to note about this approach of building the simulation loop is that using
a tuple in this way tends to be relatively slow to compile and the simulation struct can
cause certain syntax highlighting systems to not highlight any code if the header of the
simulation struct is included. This however is a fairly minor problem and not serious
enough to warrant using a less versatile approach as this header is only included in a single
�le whose sole purpose is compiling this header.

8.2 Preparing a module call

When a module is called using the simulation construct the framework has to step in and
do a few things. The �rst and most obvious step is checking if the module call is even valid.
This could be relatively tricky as only the function pointer to the actual function and not
the call to the valid function is given. However, there is a C++ feature which allows us to
do the following

template<typename T>

void adl(void(*func)(T)){

T val;

if(!valid(val)) throw std::exception(/*...*/ );

//...

}

Due to the function pointer to a module containing the type of the memory for this module
an instance of this memory class can be created. Using this instance and Argument
Dependent Lookup [ISO C++ [2017] [basic.lookup.argdep]] it is possible to call functions
within the namespace of parameters implicitly. Due to the valid functions being de�ned
in an automatic way, which guarantees them being in the same namespace as the memory
struct, it is possible to do this reliably for all modules.

If this valid check fails the function simply returns, however if the valid check succeeds
the memory object needs to be �lled out with the appropriate values for parameters and
pointers for arrays. In general it would be possible to leave the memory for all arrays to be
allocated at all times, making this trivial to implement, but this would increase memory
consumption signi�cantly which in a GPU based simulation is not acceptable if it can be
avoided.

In order to assign the array pointers a memory manager is used which keeps track
of allocated arrays in a pool of allocations. Before the function is called prepareMemory
is used to �ll out the memory object and after the call clearMemory is used to return
no longer needed memory to the pool. At the end of each simulation step an additional
method called reclaimMemory is called. All three of these functions will be discussed in
the following sections.
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8.3 The memory manager

Due to the meta generation of arrays only a limited number of di�erent �avors of arrays
exist. These arrays are di�erent in their intended purposes and sizes, with some of them
being allocated outside the sphere of control of this manager. Most arrays are allocations
which are taken from an internal pool of allocations by the memory manager which are
represented using the following struct:

struct Allocation {

size_t allocation_size = 0;

void *ptr = nullptr;

bool inUse = false;

std::string last_allocation = "";

};

Where new allocations made by the manager are added to a vector of all allocations. The
di�erent kinds of arrays, as seen before in the meta-modeling sections, are handled here as
follows:

� customData are the most straight forward kind of memory as they are based on
some user de�ned allocations, which are outside the control of the memory manager,
so no management needs to be done for these.

� singleData are treated as memory allocations which are allocated at simulation
startup and never returned to the memory manager as their sizes are either too small
to re-use (if they are truly single element arrays) or they have lengths which do not
make their allocations something that can be reused except for anything but the
speci�c array itself.

� cellData are always of the same basic size and do not contain any persistent data.
As such it might make sense to allocate these arrays when they are �rst accessed
using the pool.

� particleData are more complex. If an array is marked as swap the array is con-
sidered to contain persistent data so there is no need to allocate the memory in a
pool, for the front array, as it will never be available for other uses. However, if an
array is not marked as swap the memory is allocated using the pool as this data is
not persistent.

Memory that is not managed can just be assigned to the entries in the object used to call
a module and does not present a challenge. Memory that is allocated using a pool can
have a few di�erent states based on the intention for the speci�c module and whether or
not the array has memory assigned to it (meaning the pointer in the array structure is not
null). If the member of the structure is null the following things have to happen:

� output: A free allocation is searched for in the pool, and if no �tting memory is found
a new pool entry is allocated. After the function call the memory is not returned to
the pool.

Framework zur e�ektiven Umsetzung von Fluidsimulationen auf GPUs 45



CHAPTER 8. MODULE AND MEMORY MANAGEMENT

� temporary: Are treated the same as output but the memory is returned to the pool.
� swap: The rear pointer of the array is treated as a temporary.
� input: An exception is raised as there is no memory to be used as an input in a
reasonable way.

If the member of the structure is not null the following things happen:

� output: The pointer is assigned to the memory instance.
� temporary: Same as output but the allocation is returned to the pool.
� swap: The rear pointer of the array is treated as a temporary.
� input: Same as output.

The important thing to note is that if something is used as a temporary by a function, even
though it is the output of something before and the input of something later the memory is
still returned to the pool. This makes memory management signi�cantly easier and forces
the user to not just throw everything into something as a temporary.

8.4 Preparing memory

The prepareMemory function is fairly trivial considering the previous section, however there
are still some noteworthy points. The prepareMemory function also assigns all parameter
values to the structure, as they were at the time of the module call. Additionally if a module
is marked as a resorting module all rear pointers of all valid swap arrays are allocated. And
�nally if an array is not valid (based on the arrays valid function) a warning is generated
but no exception is raised as sometimes it might be easier to allow for optional inputs for
testing as making arrays depend on modules that might not be used.

8.5 Clearing memory

The clearMemory function is similarly trivial considering the conditions described in the
memory manager with the same additional behavior that all rear pointers of all valid swap
arrays are returned to the pool in a resorting function. An additional important note is
that whilst the values at the call of the module of parameters are set in the memory object,
changes to these parameters are not re�ected back onto the global parameter value to avoid
unintentional side e�ects. Additionally two arrays are never cleared. These two are the
density array, as this is used as a fallback array for visualizing something, and the array
used for visualization is also not cleared as the value needs to stay around even if the array
is just temporary.

8.6 Reclaiming memory

Using the memory manager described before memory is allocated on the �y using the pool
for non persistent data. This data, due to the nature of it not being persistent, is no longer
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needed after a timestep �nishes and as such all pool allocations are returned to the memory
manager in the reclaim memory step. However, the same restriction to the density array
and the array being visualized as with clearing memory apply.

8.7 Uni�ed memory

All of the previous discussion of the memory manager makes no distinction whether or not
a module is marked as CUDA or CPU code. This distinction is not necessary for CUDA
as memory can easily be allocated that is valid on both host and device as:

T* ptr = nullptr;

cudaError_t err = cudaMallocManaged(&ptr, sizeof(T) * N);

Which allocates a block of uni�ed memory. This memory automatically is transferred
between host and GPU contexts when needed which signi�cantly simpli�es writing code.
This is one of the biggest bene�ts of using CUDA over for example OpenCL where this
transition has to be done manually. An example of where this would be useful would be in
debugging where in between CUDA kernel calls (and adding a cudaDeviceSynchronize) the
results can be checked for errors or for correctness using a CPU loop which is much more
easily debugged and created without worrying about parallelism and GPU execution. Even
though the transfer is automatic, the transfer is not free. This cost associated with the
transfer however only occurs when the context is switched mid simulation which usually is
not the case except for debugging or veri�cation where the added overhead is acceptable.

8.8 Shared memory

Shared memory for CUDA is often a point where a lot of optimization can be found, and
this is no di�erent for SPH code. Whilst certain advanced optimizations are sometimes
possible one optimization that is always possible, even for non SPH functions, is using
the shared memory as an additional level of cache. This method is similar to a tiling
algorithm where a section of data is loaded into shared memory, where in this framework
one element per thread is loaded into shared memory.

For example when using shared memory to cache the position array for threads n to
n+m a shared memory allocation of m ∗ sizeof(�oat4) is required. In this shared memory
array the entry i contains the global entry n+ i with 0 ≤ i < m. Using two caches, and a
dynamic shared memory array, the second cache would require an o�set equal to the
size of the �rst cache. Using this logic the following implementation could be written:

extern __shared__ float sm_cache[];

__global__ void some_fn(float* A, float* B, float * C, int32_t N){

int32_t i = threadIdx.x + blockDim.x * blockIdx.x;

if(i >= N) return;

float* cacheA = sm_cache;
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float* cacheB = sm_cache + sizeof(float) * blockDim.x;

cacheA[threadIdx.x] = A[i];

cacheB[threadIdx.x] = B[i];

__syncthreads();

int32_t j = /* some other index */ ;

int32_t block_offset = blockDim.x * blockIdx.x;

float a_j = ( j > block_offset) && ( j < block_offset + blockdim.x)

? cacheA[j - block_offset] : A[j];

float b_j = ( j > block_offset) && ( j < block_offset + blockdim.x)

? cacheB[j - block_offset] : B[j];

C[i] = a_j + b_j;

}

Which can be signi�cantly simpli�ed by using the cache class which results in, ignoring
the function signature and thread calculation:

auto cacheA = cache_array(A);

auto cacheB = cache_array(B, cacheA.offset);

int32_t j = /* some other index */ ;

C[i] = cacheA[j] + cacheB[j];

Where all of the complexity has been abstracted away. The cache internally still uses the
dynamic shared memory but has hidden this away where everything except calculating the
o�set is done automatically. The cache class also realizes a CPU compatible access function
where the same cache class is used but with the di�erence that no caching is actually done.
One thing to note about this access is that the internal decision whether or not to use the
shared memory leads to divergence which cannot be avoided.

This can be further improved upon by using a, very complex to implement, macro called
cache_arrays, which simpli�es the previous example into the following, as long as the
memory object is called arrays, where the macro checkedThreadIdx(i) is a simple macro
which calculates the thread index and checks if this is less than the threads parameter.

struct memory{float *A, *B, *C; int32_t threads;}

__global__ void some_fn(memory arrays){

checkedThreadIdx(i);

cache_arrays((cachedA, A),(cachedB, B));

int32_t j = /* some other index */ ;

C[i] = cacheA[j] + cacheB[j];

}

A similar macro alias_arrays also exists, which simply creates short hand pointers to help
with the readability in certain complex functions. The implementation of these macros uses
recursion solely using pre processor expressions, which require di�erent implementations
for Windows and Linux due to di�erent interpretations of the C standard, with respect to
variadic macros. The boost library could be used to reduce this complexity, however boost
explicitly blocks out the preprocessor macros when it detects a CUDA compiler.
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Function calling

In a generic program calling a function is fairly straight forward, however in a complex
simulation this can become di�cult due to various versions of each function with di�erent
underlying algorithms, data structures etc. Managing assigning pointers from arrays has
already been covered, so this section will cover how di�erent versions of actual functions
are chosen and kernels in general can be created and called. This builds an essential part
of the back-end functionality of the framework as it allows CPU and GPU execution as
well as easy management of variability and certain classes of methods.

9.1 Occupancy

An often faced problem in CUDA code is �guring out what thread con�guration to
use for a function. A traditional solution to this problem would be to either go with a
value assumed to be good or use the occupancy calculator, which is an excel spreadsheet
provided by NVIDIA. However, CUDA provides a built-in function to �gure out the ideal
(regarding occupancy) threads per block size:

// defined in cuda_runtime.h

template <class UnaryFunction, class T>
__host__ cudaError_t cudaOccupancyMaxPotentialBlockSizeVariableSMem

( int* minGridSize, int* blockSize, T func,

UnaryFunction blockSizeToDynamicSMemSize, int blockSizeLimit = 0 )

Which calculates the block size to achievemaximum occupancy for functions where dynamic
shared memory is used. The �rst and second argument are the actual outputs of the
function as pointers. The third argument is a function pointer to the kernel function,
the last parameter gives an upper user de�ned limit on the block size. The interesting
argument is the unary function. This parameter is a template argument that expects
a function which takes the number of threads per block as an argument and returns the
shared memory usage based on this number of threads.

For example in a function that was using two �oating point entries per thread in a
block the unary function would be:
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auto fn = [](int32_t blockSize){return blockSize * (sizeof(float) * 2);};

De�ning these functions manually however is not ideal as changing something about the
calculation would now require changing every call. Instead a caches template is added
to the framework which simpli�es the prior example into:

auto fn = caches<float,float>{}

Where caches represents a functor where the function call operator simply multiplies the
argument by the added size of the template arguments. This is implemented in the usual
fashion of a recursive variadic template and not very interesting here. Calculating the
occupancy thus can be encapsulated into an easy to interface function with a signi�cantly
shorter name.

9.2 Picking a template to call

In a simulation framework often times multiple algorithms exist to solve some underlying
problems and SPH is no di�erent. For example multiple neighborhood iterations exist and
switching with if statements in the kernel function itself might not be the right choice as
this increases the code complexity and size signi�cantly. Instead of this approach partial
template specializations can be used which represent an interface that can provide
e�cient implementations for various algorithms without creating unnecessary code. An
example of this would be:

template<neighborhood neigh>

__global__ void fn(Memory arrays){

//...

interpolate<neigh>([&](int32_t j){/*...*/ });

//...

}

This however creates a problem as the kernel function no longer is a simple function but
a template, and C++ does not allow passing around un-instantiated template functions,
only un-instantiated template classes. As such the kernel could be wrapped within a
functor:

template<neighborhood neighbor_list, typename... Vs>

struct functor{

template<typename... Ts>

static void launch(int32_t threads, Ts... args){

// get configuration

fn<neigh, Vs...><<<blocks,tpbs>>>(args...);

}

}
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Which just passes along the call and calculates the proper con�guration for this tem-
plate. The actual implementation of this functor is signi�cantly more complex and this
here just represents a conceptual model. Do note however that this template requires two
separate template parameter packs. The outer template parameter pack (Ts) represents
the types of the actual arguments to the function and the inner template parameter pack
(Vs) is passed along to the function which might require explicit template parameters.

Using this functor a function can be created to launch these functors which also chooses
the correct template instantiation to call:

template < template <neighbor_list, typename...> class T,
class... Vs, class... Ts>

void launch(int32_t threads, Ts... args) {

if (parameters::neighborhood_kind{} == /* ... */ )

// ...

else

/ ...

}

//...

launch<functor>(threads, ...);

The template template argument here allows passing along non specialized class templates
where the function itself can create the actual instantiation. The template that needs to
be speci�ed here is just the basic template name without any template parameters applied
to it. These launch functions exist for various di�erent kinds of choices, e.g. neighborhood
iterations or cell structures, and are wrapped up in a set of launch functions and macros.
The above example within the framework for example would be:

neighborFunctionType fn(Memory arrays){

//...

interpolate<neigh>([&](int32_t j){/*...*/ });

//...

}

//...

neighFunction(functor, fn, "Example function", caches<float, float>{});)

//...

launch<functor>(threads, arrays);

Where the neighborFunctionType = "template<neighborhood neigh> __global__ void"
and neighFunction wraps up the functor inside of a macro. This macro takes the name
of the functor to be created as the �rst argument, the function name as the second, and
the caches discussed before as the third entry. The functor can then simply be called
using a launch function which takes the number of threads as the �rst argument and the
arguments to pass along to the function itself as a parameter pack.
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9.3 Picking a context to launch in

So far only GPU side execution was considered, however to make this framework more
useful executing functions on CPU side as well. However CUDA does not allow this in
a straight forward manner. For example the following kernel (that was shown before as
well):

__global__ void some_fn(memory arrays){

checkedThreadIdx(i);

cache_arrays((cachedA, A),(cachedB, B));

int32_t j = /* some other index */ ;

C[i] = cacheA[j] + cacheB[j];

}

Even if checkedThreadIdx could be made to work on CPU side, and the caching forms
valid code as well, the function would still be impossible to call. This is due to the function
being a textbf__global__ function which can only be called as a con�gured kernel launch
which always executes on the GPU. Instead using a __host__ __device__ function
would make the function executable in a CPU context but would not allow us to execute
the function in a GPU context as a function pointer generated for a __device__ function
in CPU code cannot be passed to a GPU context. There is however an exception to this.
The exception is that lambda functions can be declared as __host__ __device__ and
passed along to kernel functions (if -expt-extended-lambda is used for compilation). Thus
the following can be constructed:

__device__ __host__ void some_fn(Memory arrays){/*...*/ }

template<typename Func, typename... Ts>

__global__ void kernelDispatcher(Func fn, Ts... args){

fn(args...);

}

some_launch_fn([]__host__ __device__(Memory arrays){some_fn(arrays);});

Where the some_launch_fn function can either call the lambda in a host context or use
the kernelDispatcher kernel function to launch the lambda on the device. The actual
implementations, as usual, are more complicated due to having to handle more generic
problems, where the biggest challenge is generating the functors which are done in the
macros from the previous section. The overhead of this on the GPU is negligible and the
actual function some_fn can still be a templated function as before to allow for variability.

So far functions can be called on the GPU, however to make them useful in a CPU
context an additional step is required as the index calculation is not straight forward.
A simple solution would be adding an additional parameter to some_fn which simply
contains the current index, however this is not ideal as it adds unnecessary complexity and
would only work for standard indexing. In order to solve this problem the following global
variables can be de�ned in CPU code:
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thread_local int3 h_threadIdx;

thread_local int3 h_blockDim;

thread_local int3 h_blockIdx;

Where the checkedThreadIdx macro can be de�ned di�erently in a GPU and CPU context.
The names are not exactly the same as the built-in GPU variables to avoid linkage issues.
The new macros then are:

#ifdef __CUDA_ARCH__

#define getThreadIdx() \

blockIdx.x * blockDim.x + threadIdx.x

#define checkedThreadIdx(x) \

int32_t x = getThreadIdx(); if(x >= threads) return;

#define checkedParticleIdx(x) \

int32_t x = getThreadIdx(); if(x >= arrays.num_ptcls) return;

#else

#define getThreadIdx() \

h_threadIdx.x

#define checkedThreadIdx(x) \

int32_t x = getThreadIdx();(void)(threads);

#define checkedParticleIdx(x) \

int32_t x = getThreadIdx();

#endif

Which works in general as long as proper values are assigned to h_threadIdx. In this
framework Intel's TBB library was chosen for parallelization as it o�ers very powerful
C++ constructs for parallelism and, as it is required by OpenVDB, is easily available
whereas OpenMP traditionally is not well supported in Windows. As these values are
declared as thread_local variables the following construct can be used to launch a function
in parallel in a CPU context:

tbb::parallel_for(tbb::blocked_range<int32_t>(0, elements),

[&](const tbb::blocked_range<int32_t> &range) {

for (int32_t i = range.begin(); i < range.end(); ++i) {

h_threadIdx.x = i;

m_kernel(args...);

}

}

which implements a basic blocked parallelization. The performance of the CPU version is
not the fastest as the code itself is not hand optimized using vector operations and a loop
de�ned this way is not trivial to optimize automatically for the compiler using recent SIMD
instruction sets like AVX2. The CPU version still provides a very valuable debugging and
evaluation platform making development signi�cantly easier.
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The actual implementations of many of these constructs are signi�cantly more complex,
especially the actual launch function due to having to handle multiple di�erent types of
con�gurations (templates and contexts) which need to be handled using relatively intric-
ate template specializations and lookups. However, the backend complexity (which has no
measurable performance impact) is worth it as it provides a very simple frontend. Launch-
ing code on a CPU this way can be achieved by simply replacing launch with launchHost.
Or by setting modules.context=host in the con�guration.

9.4 Implementing variability

So far as an example for variability interpolate<neigh>([&](int32_t j)/*...*/); was used.
Whilst this is a valid approach to doing a neighborhood interpolation, the syntax is not
ideal and capturing the full stack by reference can create suboptimal code in CUDA. Instead
it would be desirable to use range based for loops, where in order to achieve this the
following template is specialized for each algorithm:

template <neighbor_list neighbor> struct neighbor_span;

These structures need to ful�ll the requirements of ISO C++ [2017] [stmt.ranged], namely
providing an iterator returned by a begin() and end() function. This allows for the following
code:

for (const auto& var : neighbor_span<neighborhood>(i, arrays)){/*...*/ }

// or as a short hand macro

iterateNeighbors(var){/*...*/ }

Implementing this for a constrained neighbor list requires about 50 lines of code and
implementing this for a cell based neighbor list requires about 60 lines of code and neither
of these two show any measurable negative performance impact compared to manually
implementing them as the actual iterators are very simple.

The problem with these iterators however is with cell based iterators. For some meth-
ods, especially neighborhood searches, searching over all possible neighbors is required,
which in turn requires iterating over a 3D grid. In a for loop, or lambda based version, this
simply requires stacking three for loops, whereas for an iterator based version these three
way loops have to be wrapped into a linear iterator. For cell based iterators the imple-
mentation is around 120 to 140 lines of code and even though the performance impact, if
any, is very small, the implementation of new methods is made more di�cult. However, as
this overhead is only required once and allows for very short and abstract code throughout
the simulation the tradeo� is justi�able. Additionally for testing any code can be used and
only once it should be made available everywhere is the iterator based version required.
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The actual implementation of more complex algorithms, e.g. IISPH is relatively interesting
but just showing the code is not all that helpful in understanding how this framework is
used. However, a table of the lines of code used for the module de�nition (parameters,
arrays, functions) and implementation length of some common building blocks are given in
the following table with the total lines of code required in the previously used framework:

Module name
Array
JSON

Parameter
JSON

Module
JSON

LOC
New

LOC
Old

Ratio

IISPH
Ihmsen et al. [2014a]

50 36 17 120 2154 1:18

Density
Solenthaler and Pajarola [2008]

5 0 15 22 1170 1:53

Constrained Neighbors
Winchenbach et al. [2016]

21 17 13 278 1864 1: 7

Resorting
Green [2010]

40 5 13 97 6231 1:64

Adaptivity
Winchenbach et al. [2017]

100 59 17 605 3107 1: 5

Integration
Vacondio et al. [2012]

5 6 14 165 2747 1:17

Surface Tension
Akinci et al. [2013]

5 17 13 52 2957 1:57

Viscosity
Monaghan [2002]

0 17 11 36 2919 1:81

Total framework 733 1057 330 17418 395921 1:16

The high number of lines of code for the JSON descriptions is mostly due to the
semi-verbose nature of JSON and, as seen before, in some cases most of theses lines are
simple "name":"value" pairs and not complex statements. Similarly the lines of code
for the functions could be reduced by removing unnecessary false statements for packs
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of values. Additionally the implementation lines of code for the new framework include
documentation, whereas the old framework was mostly undocumented and unformatted.
Similarly the new framework, especially in the neighborhood list and adaptive sections,
contains a signi�cant number of improvements for faster execution as well as alternative
versions for CPU execution. However, the old framework contains large portions of code
which are not used or probably not used. Due to the challenge of �guring out what is, and
what is not used and what is referred to where, it is not feasible to dissect these modules.
Additionally the previous framework already includes some ideas from the new framework
to signi�cantly simplify memory management.

Overall, the lines of codes are just reduced by a factor of 23, however individual modules
are reduced by factors up to 80. These di�erences are in line with what was expected as
much of the new framework is backend functionality to allow for shorter module code.
The new framework also includes a signi�cant number of advanced features, e.g. the unit
enforcement, which are not present in the old framework. Similarly some of the features of
the old framework are not present in the new one as some of them were artifacts remaining
from trying out things or half-baked ideas which never went anywhere. The di�erence
still is staggering. In the new framework a basic module could be created in 10 lines of
JSON plus a basic SPH estimate of 15 lines of C++. The old framework provided a basic
example, to allow copy-pasting parts of it, which alone was 868 lines of C++ code (ratio
of 1:58). Additionally the new framework consists of about 200 �les, whereas the old
framework consisted of 1494 �les.

In the following subsections some example implementations of basic SPH estimates, as
they were shown in chapter 2, are demonstrated. Additionally an example is shown which
demonstrates a practical example of what kind of errors the unit based system can catch.
An additional important observation are the lines of code for the individual parts of the
framework and not just the relative lines of code compared to the previous framework.

10.1 SPH estimates

The �rst, and most basic SPH estimate is a density estimate

δi =
∑
j

VjWij (10.1)

where δ denotes the number density and Vj =
mj

ρ0j
[Solenthaler and Pajarola [2008]]. This

can be implemented using the following code, which utilizes the macros seen before, as:

neighborFunctionType densityEstimate(Memory arrays){

checkedParticleIdx(i);

cache_arrays((pos,positions),(vol,volumes));

auto delta_i = 0.f;

iterateNeighbors(j)

delta_i += vol[j] * W_ij;
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arrays.deltas[i] = delta_i;

}

A more general form where an array A is interpolated and stored in fA

fAi =
∑
j

Vj
δj
AjWij (10.2)

Can be implemented as the following code, leaving out the index calculation and function
signature for simplicity:

auto fA_i = 0.f;

iterateNeighbors(j)

fA_i += vol[j] / arrays.deltas[j] * arrays.As[j] * W_ij;

arrays.fA[i] = fA_i;

As a representative of the gradient functions the following, which is commonly used for
velocity gradients, is calculated:

∇ · f(xi) =
1

ρ(xi)

∑
j

mj(f(xi)− f(xj)) · ∇Wij (10.3)

The results are stored in gradF and values are loaded from F.

auto gradF_i = 0.f;

iterateNeighbors(j)

gradF_i += arrays.masses[j] * math::dot3(arrays.F[i] - arrays.F[j], GW_ij);

arrays.gradF[i] = gradF_i / (arrays.deltas[i] * arrays.rest_density);

10.2 Density estimates in the actual framework

In the prior subsection the density estimate was shown as a basic example which just showed
the actual kernel. This subsection will show the remaining code required to implement
this in the presented framework. The �rst �le to consider is the actual implementation in
density.cu:

#include <SPH/density/density.cuh>

#include <utility/include_all.h>

// Kernel goes here with argument SPH::Density::Memory arrays

neighFunction(estimateDensity, estimate_density,

"Estimate Density", caches<float4, float>{});

void SPH::Density::estimate_density(Memory mem) {

launch<estimateDensity>(mem.num_ptcls, mem);

}
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Which is all of the code required to run the density estimate. The array entry for density
is:

{

"density": {

"description": "...",

"type": "float",

"unit": "void",

"kind": "particleData"

}

}

And the module description is:

{

"density": {

"description": "...",

"folder": "density",

"name": "Density",

"units": true,

"neighbor_info": true,

"functions": [ "estimate_density" ],

"input": [ "position", "volume" ],

"output": [ "density" ]

}

}

This is all that is required to create a module with functionality except for adding the
correct .then entry at the correct location in the simulation loop which was demonstrated
in chapter 8

10.3 Where units become important

A well known paper in literature implements a surface tension e�ect and in order to do
this the algorithm �rst calculates the �uid normal which is implemented as:

neighFunctionType tensionFirst(SPH::TensionModule::Memory arrays) {

checkedParticleIdx(i);

cache_arrays((pos, position), (vol, volume), (dens, density));

float4_u<SI::recip<SI::m>> kernelSum;

iterateNeighbors(j) kernelSum += vol[j] / dens[j] * GW_ij;

arrays.particleNormal[i] = (kernelSum * support_H(pos[i])).val;

}
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Using this surface normal and a modi�ed kernel (called cohesion) the surface tension is
then calculated as:

neighFunctionType tensionSecond(SPH::TensionModule::Memory arrays) {

checkedParticleIdx(i);

cache_arrays((pos, position), (normal, particleNormal),

(vol, volume), (dens, density));

float4_u<SI::N> cohesionForce, curvatureForce;

iterateNeighbors(j) {

auto kernel = Kernel<cohesion>::value<kernel_kind::spline4>(pos[i], pos[j]);

if (kernel == 0.f)

return;

auto scaling = 2.f * arrays.rest_density /

(dens[i] * arrays.rest_density + dens[j] * arrays.rest_density + 1e-6f);

auto cohesion = -arrays.tension_strength *

vol[i] * arrays.rest_density * vol[j] * arrays.rest_density * kernel;

auto curvature = -arrays.tension_strength *

vol[i] * arrays.rest_density * (normal[i] - normal[j]);

curvatureForce += scaling * curvature;

cohesionForce += scaling * cohesion;

}

arrays.acceleration[i] += (curvatureForce + cohesionForce) /

(vol[i] * arrays.rest_density);

}

However trying to compile this code, which exactly follows the paper, will not compile. It
will fail with an error on the statement cohesionForce += scaling * cohesion;.

The cohesionForce and curvatureForce should naturally have the units of N where
the acceleration then is N

m
which would be the correct unit. Inside of the loop the scaling

factor has no unit, and the cohesion (ignoring the tension strength) has the unit kg2

m3 whereas
curvature has the unit kg and both of them are multiplied by the same tension strength
parameter and the unitless scaling factor. To ful�ll this equation the tension strength has
to be of unit m4

kg·s2 or
m
s2
. This obviously leads to a problem where resolving it would involve

changing the underlying mistake in the algorithm. Alternatively one can set the tension
strength to be of unit m

s2
and change the assignment of the cohesionForce to

cohesionForce += (scaling * cohesion).val;

These kinds of problems can be "annoying" to deal with but ultimately lead to a more
physically sound method with less ad-hoc parameters and equations that cannot be physic-
ally correct. However the disadvantage is actually �guring out the exact units of arrays and
parameters. Doing this however often helps with understanding and verifying an algorithm
regardless so this drawback is not that signi�cant.
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10.4 Lines of Code and back-end balance

One of the main goals of the framework was to provide a solid back-end of the framework
with an easy to use front-end. The front-end complexity has been shown in the previous
few sections and is very simple compared to the previous framework and even simple in
a general sense due to the abstractions. This simpli�cation is only possible due to the
backend provided by the framework.

In general the new framework consists of about 17 thousand Lines of Code (LoC)
in manually written C++ which is a signi�cant reduction from the previous almost 400
thousand LoC. However this does not tell the full story as there is a signi�cant amount
of generated code in the new framework which amounts to a total of almost 12 thousand
LoC of generated C++ code, where the number is not very important due to the verbose
nature of generated code. This generated code is concentrated (with over 7 thousand LoC)
in the generated code for arrays and parameters.

Additionally, the framework now consists of just over 2 thousand LoC of JSON,
which again is relatively verbose, which on it's own might look like a lot but even com-
pared to just the respective generated C++ code is a reduction of a factor of over 4 whilst
providing a signi�cantly more abstract domain speci�c way to handle data within a sim-
ulation. The framework also uses a single CMake �le with about 400 LoC where much of
the complexity deals with setting up various reusable macros.

The presented mathematical functions from chapter 5 require about 1 thousand LoC
and the unit based system from chapter 6 requires about 1200 LoC. The launcher, memory
handling and general CUDA functionality, including caches, requires a total of about 2
thousand LoC.

The overall utility back-end of the framework contains a total of 6900 LoC of written
C++ whereas the actual SPH simulation code, meaning the module implementation, re-
quires about 3800 LoC. The IO functionality requires 1200 LoC and the user interface,
with all rendering functions, an additional 3500 LoC. The JSON parsers require a total of
about 1400 LoC.

Overall the balance of front-end, meaning actual module code, to back-end code, includ-
ing meta descriptions, is 3800 LoC to 15700 or about 1:4 which seems to be a reasonable
ratio considering the complexity and number of SPH methods implemented in this frame-
work.

Considering the old framework all parts required just to implement resort-
ing require signi�cantly more LoC than all of the SPH functionality in the
new framework combined and comes close to the size of the complete back-end of the
new framework. Additionally the new framework is purpose built to be expandable to
keep the complexity of the whole system manageable as the individual modules can be
separated and investigated as individual components instead of requiring a deeper and in
depth understanding of the underlying framework due to the back-end hiding much of the
complexity, which in turn makes the front-end more concise and powerful.
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Evaluating performance of

mathematical operators

Considering the mathematical operations introduced in Section 3 (without units) one might
question how fast these operands are compared to a direct "down to the metal" implement-
ation and an important goal of this framework was to provide zero cost abstractions where
this aspect plays an important role. This section aims to provide some insight into the
actual generated assembly for the GPU code to see what the potential overheads are, and
whether or not these are acceptable.

11.1 A basic example

The most basic example that could be of interest would be a simple vector addition which
stores the result back into one of the operands. This implements an operation a += b
which in a manually implemented kernel function would look as follows:

All of the ptx assembly was generated using CUDA v9.2 by utilizing a tool called
Compiler Explorer which automatically adds syntax highlighting to the kernel and code
to refernce the ptx back to the CUDA code. These results were all veri�ed manually in
CUDA 10.0 and 9.2 as well. The ptx of the previous kernel then looks as follows:
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The �rst section of the ptx contains the function signature and entry code. The �rst
few lines describe the function .entry which is what is called by CUDA when a kernel is
launched. This .entry contains the three parameters of the function stored as unsigned
integers which are loaded into the function stack using ld.param. The second section
executed the thread index calculation:

In these lines of ptx the thread indices are calculated from built-in variables ntid, ctaid
and tid using a mad (multiply add) instruction. This thread index is compared to the
number of threads using setp.ge.s32 which jumps to p1 which is a pointer for BB2_2
which causes the execution to jump to the end of the generated function and thus causing
it to return immediately.
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The actual computation step is split into two distinction section where the �rst section
is:

Which �rst converts the parameters into global memory pointers using a conversion
instruction called cvta.to.global.u64. Next the thread index is multiplied by 16 to ac-
count for the size of 16 byte per �oat4 using mul.wide.s32 which stores the result as a 64
bit integer. Next the actual addresses to load from are calculated using simple add.s64
instructions which are used as input for ld.global.v4.f32 which loads 4 32 bit �oating
point values from a speci�ed global address. The actual computation then is simply
executing four �oating point additions with add.f32 and storing the result back using
st.global.v4.f32:

An interesting note here is that the order of additions is reversed from the source code
which should have no impact on the performance. Due to the simplicity of this case this
generated ptx can be assumed to be as close to ideal as possible.

11.2 Using our math functions

Using the mathematical functions from chapter 5 we can instead create the following kernel:

Where the question is how closely this resembles the ptx of the manually generated
example. Note that the ptx is equal regardless of using a += b or a = a + b. The .entry
section as well as the thread index calculation are exactly equal and are thus not shown
here. The ptx however di�ers for the actual computaation part which now is assembled as:
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Whilst the actual computation is the same, loading the values from global memory
is not exactly the same. The actual loads are still identical calls to ld.global.v4.f32,
however instead of �rst converting both parameters to pointers and then calculating the
o�set pointer for both parameters, the function instead calculates one after the other. In
practice this has no measurable impact as the conversion and addition operations are, on
most architectures, single cycle operations, but the di�erence still is noteworthy.

One could argue that this change is due to the overhead caused by our methods, however
if one was to write a simple direct operator:

float4 operator+(float4 lhs, float4 rhs){

return float4{

lhs.x + rhs.x,

lhs.y + rhs.y,

lhs.z + rhs.z,

lhs.w + rhs.w

};

}

The same changed order would be generated and as such is probably an e�ect of using a
function to execute the addition which has to evaluate all function arguments in sequence
before doing any operations.

11.3 FMAD vector operations

A common goal of code is to use so called fused-multiply-add instructions which combine
an addition with a multiplication, d = a + b *c into a single instruction and as these
instructions are executed with the same speed as the individual operations doubles the
throughput, in an ideal case. As such it would be important for a mathematical library
to still allow for fmad operations even though complex functions are used underneath. To
test this the following two evaluation kernels were used:
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These functions generate equivalent entry and thread calculation ptx and as such those
ptx sections are left out. However, the actual computations for these kernels are assembled
as:

Whereas the manual implementation results in the following ptx:

Both versions use fma.rn.f32 instructions and properly load the data using the calls
to ld.global.v4.f32. The same changed order of address calculations as before can be
observed. This di�erence again can be seen as negligible and the desired fmad instructions
were still generated.
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11.4 Double additions

Using a seemingly more simple example of c = a + b + c the following evaluation kernels
are used:

Which, again, produce equivalent entry and thread index calculation, but this time they
produce signi�cantly di�erent ptx for the computational part of the kernel. The manual
version generates the following ptx:

The combined cvta can still be observed but only for two out of three loads packed
together. These load the entries from vectors a and b, but not c. After the load a single
addition is executed and then the third address is calculated and loaded. After this addition
the remaining 7 additions are executed. Comparing this to the alternative ptx:
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The same split can be seen where only two vectors (a and b) are loaded together.
Interestingly the address calculations are now more closely resembling the manual versions
instead of being one after the other. However, in the manual version after adding the �rst
elements (a.x and b.x) together the third vector had to be immediately loaded to allow for
the third addition (of c.x). In this assembly however the addition of a and b together is
done as a block to calculate the result of their addition and only once this is completed the
entry of the third vector is loaded. This di�erence is due to the evaluation being restated
as a chain of operations of vectors and not as a chain of element operations.

In the presented approach the third load is executed after the �rst four additions,
whereas in the manual approach only a single addition exists in between the load instruc-
tions. Measuring this in�uence in practice is within the error margin of the measurement
as the generally advertised concept of latency hiding would allow for other warps to ex-
ecute a chain of four additions whilst another warp is waiting for data to load instead of
only a single instruction. However, as the di�erence of loading times compared to four
additions or one addition is still in the same order of magnitude no bene�t could be gen-
erated from this in this example. As such no de�nitive conclusion can be drawn as to
which implementation is superior to the other and as such both can be considered as valid
implementations.

11.5 Universal references

An often stated optimization in C++ is to use constant reference where possible as these
require no copying of values. As such the multiplication operator of two 4D vectors might
have been implemented as follows:
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OPERATORS

With the same kernel as used for the FMAD evaluation which generates the following
ptx for the actual computational step of the function:

This code still generates the desired fmad instructions with the same structure of cvta
instructions, but there is a signi�cant problem. Instead of using ld.global.v4.f32 to load
a and b the function loads these elements using single 4 byte reads from global memory
using ld.global.f32 with 4 byte o�sets and interleaved for both values. This requires eight
accesses to global memory instead of 2 and whilst the values should be cached in this
simple example in a more complex example the later load instructions might be un-cached
again, at least in L1 cache, causing an obvious performance degradation.

In the simulation framework as a whole using the implementation with const T& for all
mathematical functions instead of forwarding references T&& for non unit math or simple
values for unit math (due to limitations of forwarding references) the overall simulation is
10% faster for the non const T& version, which is signi�cant for such a minor detail.

The question however is: Why does this happen? This behavior can be reproduced in
situations when a temporary, e.g. the result of an operation like a * b is immediately used
as an argument to another function expecting a const& argument. This happens in nvcc
9.x and 10.0 but does not happen in other compilers, e.g. GCC 8.2 or clang 7.0. Except
for having access to the compiler to exactly investigate what is causing this there is no real
way to address this behavior and should just be kept in mind for GPU code for now.
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Other parts of the framework

Besides the main computational part of the framework in the individual function modules
there is a large selection of back-end features provided by the framework which serve a
more utilitarian purpose, e.g. IO functions, which are still important to build a functional
and useful program but are not part of the core framework itself. These features will brie�y
be described here to give an overview of some of the less general purpose features.

12.1 OpenVDB & Alembic

A common question faced by programs is how data is input into the simulation. The
goal would be to provide an easy to use interface to quickly create new simulations and
to this extent using relatively standard data formats is important as these formats
are supported by a variety of standard computer graphics tools, e.g. Houdini. In this
framework �uid volumes are initially represented as OpenVDB volumes which are loaded
and inserted in the simulation at their world space coordinates and then sampled via a
hexagonal grid of particles. These volumes in the con�gurations are described as:

{

"particle_volumes": {

"volume1": {

"file": "Volumes/vol.vdb"

}

}

}

These volumes, as they are created at their original position, can simply be exported via
Houdini. Similarly �uid inlets are also described as OpenVDB volumes:

{

"inlet_volumes": {

"volume1": {

"file": "Volumes/Inlet1.vdb",
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"dur": 900,

"delay": 0.0,

"vel": "0 -30 0 0"

}

}

}

With attributes denoting how long these emit for (in simulated seconds) and the velocity
of the emitted liquid. Complex boundary objects in the simulation are also created based
on OpenVDB volumes that are loaded and transformed into 3D CUDA textures which are
used as distance and normal �elds. These are described as:

{

"boundary_volumes": {

"volume1": {

"file": "Volumes/Dragon.vdb"

}

}

}

Which again can simply be created within Houdini. The overall simulation domain often
times is simply represented as �oor and walls at some plane in the simulation. These are
created using an AABB around an obj �le which is treated as the simulation bounds

{

"simulation_settings": {

"boundaryObject": "Objects/domain.obj",

"domainWalls": "x+-y+-z+-"

}

}

Where the domainWalls parameter controls in what axis direction the simulation should
be bounded. The obj �le can, similar to the OpenVDB �les, be exported from Houdini.

Exporting data from the simulation could be done in many ways. However, the most
simple way in practice is to use some standard format used to represent particles. In the
case of this framework this is done via Alembic. Alembic is an OpenSource and relatively
standard format which for the framework is con�gured via

{

"modules":{

"alembic":true

},

"alembic":{

"fps":24,

"folder":"export/alembic/"
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}

}

These exported particles can then be loaded back into Houdini. This usage of standard
formats allows us to change some aspect in Houdini and save those changes into OpenVDB
�les, run the simulation on the updated volume data, write the particle data back out,
and then render the data after reimporting it into Houdini. The only step that has to be
done manually is adjusting the .json con�guration �le that describes all of the simulation
parameters. Compared to the previous framework this is a signi�cant improvement as
creating a new simulation setting, or even adjusting something, could take hours or even
days of time with no way of using proprietary rendering software.

12.2 Snapshots

When running the simulation often times certain instabilities can cause errors or undesir-
able behavior in the simulation. To investigate these, or even to just test the in�uence of
tweaking a parameter like surface tension, the framework has a snapshot feature. While
the simulation is running a snapshot can be taken of the full simulation state and later
reloaded. Implementing these snapshots (ignoring some of the complexity) is relatively
simple using all of the meta information provided by the framework. These snapshots are
taken by hitting the x key and loaded using z. In the future it would be nice to have the
option of storing these snapshots on disk and reloading them when needed but so far this
has not been required.

Snapshots reset all parameters, which includes those used for visualization, time in-
formation etc. and reset all arrays regardless of their content. The only thing that does
not get reset is the camera position in the GUI as this position tracks independent of the
camera position in the parameters.

12.3 Structure of the Simulation code

The root folder of the simulation contains a number of sub folders:

� cmake: Contains a number of CMAKE modules used to �nd various dependencies
that are not found by the standard CMAKE distribution, e.g. OpenVDB.

� consoleParticles: Contains the source code of a simple command line program to
run simulations. Mostly used for benchmarking and testing features as the overhead
of displaying a GUI is relatively small but measurable.

� gui: Contains the source code of the GUI, including the main �le of a Qt based
interface to the simulation. This GUI is the preferred way of using the simulation.

� IO: Contains the parsing functionality for con�gurations and library functions to
deal with Alembic and OpenVDB �les.
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� LUTCode: Contains a program used to generate certain lookup tables for some
more complex simulation features.

� metaCode: Contains, in sub folders, the programs used to transform the JSON �les
to actual C++ code.

� openGLRenderer: Contains all code required to render the simulation within the
GUI. This will brie�y be covered in a later section.

� simulation: Contains the main simulation loop �le where new modules have to be
added using then.

� SPH: Contains all modules of the simulation created using the JSON descriptions.

� utility: Contains many library features that are used throughout the simulation
including math and function launching.

Out of these the utility folder is the most interesting as it contains a number of headers
which are useful to know about when implementing a module ( they are included by default
for a module):

� algorithm.h is used to include a number of algorithms like reduction, scan and sort.
These are implemented based on NVIDIAs Thrust library and can be executed either
in CPU or GPU context. An example call would be:

struct is_valid {

hostDeviceInline bool operator()(const int x) {

return x != INT_MAX;

}

};

int32_t compacted_elems = (int32_t) algorithm::copy_if

(particleIndex, particleIndexCompact, num_ptcls, is_valid());

//...

algorithm::stable_sort_by_key

(num_ptcls, resortIndex, particleparticleIndex);

� atomic.h is used to provide an atomic class that can be used on CPU and GPU code.
The GPU implementation relies on the built-in atomic functionality of CUDA and
the CPU version is implemented in an OS dependent way for Linux and Windows
using their speci�c intrinsic functions. Using the standard C++ atomics in CPU
code would be preferable, but this is not possible due to the C++ atomics not being
able to bind to arbitrary addresses. An example of their usage would be:

cuda_atomic<int32_t> res_atomic(res + j);

int32_t snapped_mlm, old = res_atomic.val();

do {
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snapped_mlm = old;

if (snapped_mlm <= r_i)

break;

old = res_atomic.CAS(snapped_mlm, r_i);

} while (old != snapped_mlm);

� cuda.h is used to provide some basic utilities like error checking and calls to syn-
chronize the device.

� helpers.h includes logging and timing functionality as well as a lookup table for
color values. The logging class provides 5 levels of logging which are displayed in
the GUI and �ltered there or printed on the console. The timer provides host only
timers using std::chrono, device only timers using CUDA events and hybrid timers
which time the default compute context. An example would be:

logger(log_level::debug) << "Debug message" << std::endl;

LOG_DEBUG << "Debug, LOG macros add line and file info" << std::endl;

LOG_ERROR << "Error" << std::endl;

LOG_VERBOSE << "Verbose, filtered by default" << std::endl;

auto timer = TimerManager::createTimer

("Test Timer", Color::rosemadder, false);

timer->start();

//... code

timer->stop();

TIME_CODE("Another Timer", Color::grey10, X) // X is a C++ expression

� identi�er.h is used to include the generated array and parameter information.

� include_all.h is used to include every utility header for convenience.

� iterator.h provides the iterators for neighborhood and data structure iterations.

� launcher.h provides the launcher functionality, see chapter 9.

� macro.h is used to include some of the more complex macros e.g. cached_arrays.

� math.h is used to provide the math functionality discussed in chapter 5.

� MemoryManager.h is used to provide the memory manager from chapter 8.

� SPH.h is used to include some boundary functions as well as indexing functions used
for resorting. Kernels however are provided via the math header.

� unit_math.h provides the unit aware math from chapter 6.

The overall simulation only contains a single CMake �le which is located in the root
directory. The root directory also contains the JSON �les used for code generation called
arrays.json, functions.json and parameters.json.
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12.4 OpenGL

Rendering often is an important consideration for �uid simulations which can be split into
two separate categories:

Production renders, or anything used to reproduce the �uid faithfully in a fully lit
environment with complex rendering e�ects like caustics and re�ections. These are not
handled within the framework as the goal of the framework is to simulate, not to render.
For these kinds of renderings the �uid data can be exported from the simulation, using
alembic �les, which can be rendered in Houdini or from Houdini processed into di�erent
formats for other renderers. This removes the additional complexity that integrating a
production quality renderer into this framework would cause. Including a renderer like
that however would still be possible if desired, e.g. for developing not just simulation
methods but also rendering methods.

Visualization renders, or anything used to display the �uid quickly in a way that
represents information and doesn't focus on visual quality. These kinds of renderings are
much more useful for a simulation framework to observe how the simulation is running and
for investigating possible causes of instabilities. Additionally these visualizations can be
done within the simulation and serve as a quick and easy way to create videos or screenshots
used to show some result or simulation to someone else whilst portraying some underlying
e�ect in the simulation, e.g. velocity or density.

To keep the simulation modules free of rendering code the rendering functionality needs
to be cleanly separated. In some frameworks, especially the prior one that is being replaced
with this one, the concept of rendering and scene graphs has been woven into the simulation
causing signi�cant problems. Some renderers or frameworks, e.g. Unreal Engine, require
using their own way of thinking about rendering which can be great for production systems
but not for research where �exibility often is the key.

Visualization itself is implemented using a corresponding module within the simulation
which usually is the last sub-step of a simulation step. This function simply maps some
array to a value range of 0 to 1, e.g. using vector magnitude or other measures. These
metrics can either use a reduction to get the minimum and maximum value for auto scaling
or can use manual scaling between a minimum and maximum value.

The actual rendering is done in a very user friendly manner. The OpenGLRenderer it-
self contains a main render loop which integrates standard openGL code into a Qt openGL
widget. Renderers execute in the order they were added to the rendering loop and are writ-
ten as sub classes of a BaseRenderer. These rendering classes can use any standard openGL
construct, or if necessary could also execute ray tracing via CUDA. The only di�erence
between the rendering code and standard openGL code is that the renderer needs to call
initializeOpenGLFunctions() as well as compile OpenGL shaders via QOpenGLShaderPro-
gram. These restrictions however are fairly minor as compiling shaders would need to be
done using some wrapping functionality anyways. Usually the renderer, and it's associ-
ated VAOs etc, are initialized in the renderers constructor and during a rendering step the
render function is called which for the visualization renderer looks like this:
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void ParticleRenderer::render() {

glBindVertexArray(vao);

m_program->bind();

glDrawElementsInstanced(GL_TRIANGLES, 6,

GL_UNSIGNED_INT, (void *)0, get<parameters::num_ptcls>());

m_program->release();

glBindVertexArray(0);

}

One challenge though is binding parameters and arrays to OpenGL from the simulation.
CUDA has the bene�t of having interoperability with OpenGL which allows us to create
VBO objects that represent an array and uniforms that represent the parameters. An
iteration over all parameters and arrays can be executed which tries to bind these to
uniforms, or attributes, with their respective names, which if this succeeds indicates wether
or not a speci�c shader uses a speci�c parameter or array. Using this logic the following
section of a shader can be written:

in vec4 posAttr;

in vec2 uvAttr;

in vec4 position;

in float renderIntensity;

in float volume;

uniform mat4 perspective_matrix;

uniform mat4 view_matrix;

Where position, volume and renderIntensity are automatically bound using the previously
described iteration. The view and perspective matrices use another mechanism which
allows the creation of custom parameter bindings for user de�ned values, which here are
the camera matrices de�ned by some camera instance, as:

m_uniformMappings["view_matrix"] = new gl_uniform_custom<QMatrix4x4>(

&Camera::instance().matrices.view, "view_matrix");

m_uniformMappings["perspective_matrix"] = new gl_uniform_custom<QMatrix4x4>(

&Camera::instance().matrices.perspective, "perspective_matrix");

The rendering loop takes care of binding the current parameters for everything which
means that this complexity can be completely ignored when implementing a renderer.
The visualization renderer additionally uses a color map, which is bound to programs by
manually registering with the color map handler:

colorMap::instance().bind(m_program, 0, "colorRamp");

An example con�guration of this renderer could be the following, where the map name is
used to �nd a png colormap in the simulations resource folder.

Framework zur e�ektiven Umsetzung von Fluidsimulationen auf GPUs 75



CHAPTER 12. OTHER PARTS OF THE FRAMEWORK

{

"color_map": {

"auto": false,

"buffer": "velocity",

"min": 50,

"max": 0,

"map": "Blues"

}

}

12.5 GUI Interactivity

The same methodology used to create the automatic con�guration parsing can be used
to create a list of all parameters within the simulation in the GUI. In the GUI this is
represented as an individual Qt docker widget which contains a tree of widgets based on
their JSON identi�ers. This tree contains all parameters, even if the module they are
in�uencing is not loaded as there is no depends attribute for parameters. The actual
implementation of this, especially to enable sliders and text editing, is very complex and
requires a large number of templates with if constexpr conditions. Additionally this requires
a very complex method that allows us to iterate over all members of a struct to generate
these displays for arbitrary complex types. In practice however, none of the implementation
detail matter as the system works very reliably on Windows and Linux. The only drawback
is that if a variable is not de�ned as not const, it cannot be edited and forgetting to set this
attribute can often be done on accident, however this is no short coming of the framework.

A simple example of adding a custom object to this widget would be (in gui/qt/prop-
ertyviewer.cpp):

struct test {

float4 a;

int b;

};

test reflect{ {1, 2}, 2 };

//...

addToTree(&reflect, "reflection test", m_parameterTree);
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Conclusions

The framework outlined in this thesis readily achieved all the goals set out in chapter 4,
and even exceeded some of them. The code complexity has been reduced to a point where
simple methods can be displayed on a single printed page making it very easy not just to
implement but also to argue about whether or not the function does what it is supposed to
do. The separation of front-end and back-end to the degree shown here allows for signi�cant
abstractions at negligible overhead which not just makes the front-end code more concise
but also easier to explain. In the previous framework creating and executing a simulation
was a task that took days but now, with support of industry standard formats, can be
done in minutes where changes to �uid volumes can be applied in seconds instead of hours.
Creating new arrays and parameters is done in a single place, creating not just the actual
data but also creating GUI elements and function parsing, simplifying this task, yet again,
from hours to seconds. Modules in this framework encapsulate their functionality fully,
where the actual use code does not require any system to be followed but could be written
in any way the user wants to write it. The introduction of the mathematical operators for
built-in types not just simpli�es code in a generic and simple way but also produces ideal
assembly code which can be extended easily to support unit enforcement.

The only signi�cant limitation to this framework is a lacking support of Multi-GPU
systems, which could be added into the back-end in the future.

Thus, in conclusion, the new framework presented here provides a relatively simple, ab-
stract, way to implement SPH simulations on GPUs using modern programming techniques
and domain speci�c languages in an open source fashion that, due to the low number of
external libraries, could easily be used by independent researchers, where new algorithms
could easily be shared and added to the framework by simply providing the small amounts
of JSON and C++ required for the front-end of a module.
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