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Abstract— In this paper, we introduce a novel variational
approach to estimate the scene flow from RGB-D images. We
regularize the ill-conditioned problem of scene flow estimation
in a unified framework by enforcing piecewise rigid motion
through decomposition into rotational and translational motion
parts. Our model crucially regularizes these components by an
L0 “norm”, thereby facilitating implicit motion segmentation
in a joint energy minimization problem. Yet, we also show
that this energy can be efficiently minimized by a proximal
primal-dual algorithm. By implementing this approximate L0
rigid motion regularization, our scene flow estimation approach
implicitly segments the observed scene of into regions of nearly
constant rigid motion. We evaluate our joint scene flow and
segmentation estimation approach on a variety of test scenarios,
with and without ground truth data, and demonstrate that we
outperform current scene flow techniques.

I. INTRODUCTION

Motion estimation, be it the motion of a camera or of
entire, rigid or deformable objects is of high interest in
numerous fields of research, because of its manifold ap-
plications - especially in robotics. Object tracking, gesture
recognition or any variety of robotic interaction with the
dynamical real world necessitate a thorough knowledge of
these motions. Yet, although approaches to estimate camera
motion and motion of 3D points arise from mutual problems,
they are solved using different approaches that have distinct
advantages and disadvantages.

Estimation of the camera pose from images is referred to
as visual odometry. This is one of the central techniques in
robotics for simultaneous localization and mapping (SLAM)
[9], allowing online 3D scene reconstruction and navigation
of unmanned vehicles in unknown terrains. In the case of
scene dynamics, however, the assumption that the scene is
static leads to faulty pose estimations, which is a prevailing
drawback of state-of-the-art SLAM approaches [33].

In contrast to visual odometry, scene flow describes the
inter-frame three-dimensional motion for each single 3D
point in the input data. The scene flow problem is inher-
ently ill-posed, and it is thus necessary to incorporate prior
knowledge via regularization [32]. Smoothness regularization
is commonly applied, yet as all points are handled equally,
static and dynamic scene-parts become indistinguishable and,
thus, camera motion, i.e. visual odometry, cannot be directly
obtained using these algorithms.
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Alternative approaches exploit the spatial coherence of the
scene flow by segmenting the range and/or color information
and assuming a rigid motion for each of these segments [11],
[14], [21]. Golyanik et al. [11] show that such scene flow
methods outperform classical point-wise algorithms in terms
of accuracy. Furthermore, assuming the largest cluster to be
the static scene background, these methods enable visual
odometry [14]. The major drawback of incorporating explicit
segmentation into scene flow is the dependency between
both, the scene flow and the segmentation. That is, per-image
segmentation is lacking in temporal coherence and, thus clus-
ter correspondences are difficult to establish. Furthermore,
irregular or coarse segmentation results in false scene flow
estimations while too fine a segmentation yields unstable and
thus globally incoherent scene flow estimations.

In this paper we propose a novel scene flow estimation
algorithm that jointly estimates the scene flow and enforces
an implicit motion segmentation. This novel contribution
facilitates two important improvements. Firstly, failure cases
of previous methods, where the segmentation does not match
the underlying scene flow, are eliminated. Segmentation and
scene flow estimation are now considered not as separate
instances, but as directly interdependent. Secondly, scene
flow clustering is incorporated into the model with negligible
cost, since our method computes the clusters implicitly
by L0 regularization of the rigid-motion estimates. The L0
“norm”, defined as the amount of non-zero components of
a given vector, can be understood as a total measure of
sparsity of a vector. The use of this regularization leads
to solutions containing unbiased, piecewise-constant rigid-
motion components. We use a primal dual hybrid gradient
(PDHG) algorithm, Chambolle and Pock [7], and the
Moreau decomposition as discussed in [26] to construct an
efficient implementation that lends itself especially well to
parallelization. This strategy essentially absorbs the unsuper-
vised segmentation capabilities of the real-time Mumford-
Shah approach [26] into a unified scene flow estimation.

We evaluate our approach on the Bonn multi-body
dataset [27], the TUM dataset [28] and the dataset provided
by Jaimez et al. [14], all comprising real-world RGB-D
image sequences. We evaluate photometric and geometric
errors on these realistic datasets. Furthermore, we compare
the endpoint-errors of static scenes directly, using reference
scene flow computed from ground truth camera poses. The
results reveal a significant improvement of scene flow accu-
racy over existing approaches such as [14], [15], [18].
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II. RELATED WORK

The estimation of the three-dimensional motion field,
called scene flow, has its roots in the pioneering work of
Vedula et al. [30]. Their work and ensuing publications
had their focus on multi-view camera systems. However,
this was changed by the emergence of affordable RGB-D
cameras, able to measure both color and depth information
simultaneously. Subsequently we will focus on approaches
that work on color and depth information and refer to the
survey of Yan and Xiang [32] for other input types.

One of the first RGB-D scene flow estimations based on
variational approaches, i.e. formulated as energy minimiza-
tions was proposed by Herbst et al. [12]. Their work shows
how techniques from optical flow estimation such as [5]
can be transferred into the scene flow setting. They build a
variational model consisting of linearized color consistency,
depth consistency and a regularization term that penalizes
the (smoothed) total variation of related points.

Quiroga et al. [19] apply a combined local and global
constraint in their variational scene flow estimation, where
a set of 3D correspondences is used to deal with large
displacements. They likewise use total variation (TV) to
preserve motion discontinuities.

Jaimez et al. [15] apply a variational formulation including
intensity and geometric consistency to RGB-D camera data.
The main idea is to regularize the flow field with respect
to the 3D geometry observed in the depth image instead of
on the image plane using total variation, in order to achieve
geometrically consistent results. Quiroga et al. [18] propose
a scene flow reconstruction using local rigidity by modeling
the 3D motion as a field of twists that consists of the three
Euler rotation angles and a translation. This approach is
difficult to steer, since translational and rotational motion
can hardly be distinguished on a local level.

As scene flow estimation is an ill-posed problem, algo-
rithms using a segmentation of the image plane have been
developed in order to stabilize the estimation and further
regularizing the per-segment flow.

Several approaches apply a single, separate segmentation
step, which is especially helpful for online applications such
as scene reconstruction [33]. Ghuffar et al. [10] estimate the
scene flow in a two-stage process using local scene flow
estimation that integrates range flow and optical flow con-
straints into a global solution. They, furthermore, regularize
the sum of differences of neighboring 3D velocities, which
can be understood as an approximate total variation, and
perform a graph-based motion segmentation in order to group
trajectories based on depth and motion similarity.

Rünz and Agapito [21] propose a method that allows for
the independent reconstruction of multiple rigidly moving
objects. In their scene reconstruction approach, the current
set of models is tracked for each new frame. The motion
segmentation is formulated as a labeling problem using a
fully connected Conditional Random Field, where the image
is initially segmented into simple linear iterative clustering
(SLIC) super-pixels [1], using the geometric iterative closest

point (ICP) cost [3], [8] to assign a pixel to the rigid motion
models as unary potentials.

Instead of separating segmentation and scene flow entirely,
alternative approaches alternate between scene segmentation
and scene flow estimation. Golyanik et al. [11] describe a
multi-frame scene flow approach that models scene flow as
a global non-linear least squares problem using an ICP-
like formulation, whereas Jaimez et al. [14] perform a
segmentation of the scene and classify the resulting motion
clusters as static or moving elements, which allows for the
separate estimation of the camera motion and the individual
motions clusters observed in the scene. Initially, the scene is
segmented using a K-means clustering on the depth channel,
while the following optimization alternates between motion
field estimation and smooth rigid segmentation.

Furthermore, a third class of methods model segmenta-
tion and motion estimation as a joint variational approach.
Sun et al. [29] estimate scene flow on the level of a finite
number of depth layers extracted from the depth measure-
ments. However, this yields a very strong constraint for
the estimation of scene segmentation and flow. The initial
segmentation is given by a K-means clustering of the depth
values and the approach assumes a rigid motion for each
depth layer. Innmann et al. [13] instead propose a method
that reconstructs dynamic geometric shapes and operates on
a fine volumetric grid that defines a piecewise rigid motion
field. In this approach, geometry is implicitly modeled using
truncated signed distance functions (TSDFs). In order to
tackle the highly under-constrained non-rigid motion esti-
mation, an as-rigid-as-possible (ARAP) [24] regularization
prior

EARAP = ∑
x

∑
y∈N(x)

∥∥(xi+1− yi+1)−Ri(xi− yi)
∥∥2

2

is applied on a regular volumetric grid, which is derived from
the TSDF. The indices i and i+ 1 refer to two consecutive
RGB-D image frames, N(x) is the neighborhood of scene
point x and Ri ∈ SO(3) are rotation matrices. Similarly,
Slavcheva et al. [22] address dynamic scenes reconstruc-
tion, using an implicit geometry-driven approach based on
TSDFs. They utilize level set evolution without explicit
correspondence search and estimate a dense, locally nearly
isometric motion field using an approximate killing vector
field (AKVF) [23] as regularization prior

EAKVF = ∑
v

∥∥JΨ(v)+ JΨ(v)T∥∥2
F ,

where JΨ is Jacobian of the required flow field in the voxels
v close to the object’s surface.

In contrast to the existing scene flow estimation ap-
proaches discussed so far, our technique formulates rigid mo-
tion by regularizing the translational part t and the rotational
part α of the rigid motion. The implicit motion segmentation
via the L0 formulation leads to a considerable stabilization
of the flow estimation that cannot be reached by the previous
techniques that considered the direct total variation, i.e. L1
regularization of the scene flow gradient.
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III. PROPOSED METHOD

A. Preliminaries

The input to our method is a sequence of RGB-D frames
consisting of color (or grayscale) images Ii and depth maps
Di. The corresponding color image and depth map are
assumed to be temporally synchronized as well as spatially
registered. Furthermore, we assume temporally dense RGB-
D streams.

We define the projection operator π : R3→ R2:

π((x,y,z)>) =
(

fx
x
z
+ cx, fy

y
z
+ cy

)>
(1)

and the inverse projection operator π−1 : R2×R→ R3:

π
−1((px, py)

>,z) =
(

z
px− cx

fx
,z

py− cy

fy
,z
)>

, (2)

where fx, fy,cx,cy ∈ R are the intrinsic camera parameters.
These operators formalize the conversion between real world
points in 3D space, denoted by (x,y,z)> ∈ R3, and their
projection onto the 2D camera plane, p = (px, py)∈Ω⊂N2.

Given the intrinsic camera parameters, the inverse pro-
jection operator and the depth maps Di, we compute the
corresponding vertex maps Vi(p) = π−1(p>,Di(p)).

Subsequently we will make use of matrix norms
|·|p,q: Rd×Ω→ R+, which are applied for instance to gradi-
ents of the scene flow, ∇s ∈Rd×Ω. For a matrix A ∈Rm×n

the norm ||A||p,q denotes the q norm of the p-norms on the
elements of matrix A, i.e. ||A||p,q=

∥∥(‖A:1‖p, . . . ,‖A:n‖p)
∥∥

q.

B. Scene Flow

The goal of scene flow estimation is to compute the three-
dimensional motions of three-dimensional points. To be more
precise, we want to find the scene flow s(p) that maps the
three-dimensional point Vi(p) to its corresponding point in
the subsequent frame Vi+1(p′), i.e.

Vi(p)+ s(p) = Vi+1
(

p′
)
, p, p′ ∈Ω , (3)

with p′ = π(Vi(p)+s(p)). Pixel p′ is thus the corresponding
location in Vi+1 of pixel p in Vi, which means that the
scene flow needs to be a consistent mapping between the
successive vertex maps Vi and Vi+1. This equivalence is the
central scene flow assumption and can also be understood
as a form of depth constancy as discussed in [12], due to
the fact that the vertex maps are directly computed from the
depth measurements.

C. Rigid Scene Flow

We assume that per-pixel motions in three-dimensional
space can be represented as per-pixel rigid transformations,
i.e. rotations R(p) ∈ SO(3) and translations t(p) ∈ R3. This
transformation field is referred to as rigid scene flow. Similar
to Eq. (3) we can derive

R(p)Vi(p)+ t(p) = Vi+1
(

p′
)

p, p′ ∈Ω , (4)

with p′ = π (R(p)Vi(p)+ t(p)).

The relation between scene flow and rigid scene flow can
be observed by equating the left-hand sides of Eqs. (3) and
(4), which leads to

s(p) = (R(p)− I3×3)Vi(p)+ t(p) , (5)

where I3×3 is the 3×3 identity matrix. We can analyze the
variational regularization of the scene flow by considering the
absolute deviation of two neighboring pixels p, p̄ ∈ Ω with
equal rigid transformations, R(p) = R(p̄) and t(p) = t(p̄):

‖s(p)− s(p̄)‖= ‖(R(p)− I3×3))(Vi(p)−Vi(p̄))‖ . (6)

The left-hand side of Eq. (6) is minimized by s(p) = s(p̄),
which in turn leads to R(p) = I3×3 on the right-hand side.
This examination shows that variational regularization di-
rectly on the scene flow s(p), e.g. ||∇s||2,1, actually favors
solutions with vanishing rotations. We can thus significantly
stabilize the computation by regularizing the parameters of
the rigid scene flow estimates instead.

Due to the dense temporal acquisition of the RGB-D
data stream, we can assume the rigid motions to be small.
Applying the Rodrigues’ rotation formula [20] and the small-
angle approximation allows us to rewrite the rotation as

R≈ I3×3 +[α]× , (7)

with rotation angle θ = ‖α‖, rotation-axis r = α
‖α‖ ∈ so(3),

and the skew-symmetric cross-product matrix [·]×. Using this
approximation for rotations and the anticommutativity of the
cross product, Eq. (5) becomes

s(p) =−[Vi(p)]×α(p)+ t(p) . (8)

Subsequently, we will refer to this linearized version as rigid
scene flow and derive an algorithm that estimates the values
of α(p) and t(p).

D. Energy Formulation

After describing the scene flow in terms of local angle α

and local translation t in Sec. III-C, we can now formulate the
problem of scene flow estimation as an energy minimization,
defining the optimal rigid scene flow as the minimizing
arguments of the energy

Escene flow(α, t) = Edata(α, t)+Ereg(α, t). (9)

The first part of this energy, the data term Edata, penalizes
deviations from the rigid scene flow characterizations in our
input data. The second term Ereg is a regularizer, that penal-
izes globally inconsistent solutions based on prior knowledge
about our desired solutions.

a) Data term: The data term consists of two com-
ponents EV and EI, which describe the depth consistency
related to the vertex maps Vi and the brightness consistency
assumption with respect to the RGB images Ii.

The first premise is the definition of rigid scene flow in
Eq. (4), which can be formulated as

Vi(p)− [Vi(p)]×α(p)+ t(p) =Vi+1
(

p′(α(p), t(p))
)
, (10)
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given the linearization in Eq. (7) and anticommutativity of
the cross product. The corresponding pixel p′ is

p′(α(p), t(p)) = π (Vi(p)− [Vi(p)]×α(p)+ t(p)) . (11)

Rewriting Eq. (10), we finally obtain the energy functional
EV

(12)
EV(α, t) = ∑

p∈Ω

∥∥Vi+1
(

p′(α(p), t(p))
)

− Vi(p) + [Vi(p)]×α(p)− t(p)
∥∥

1 .

This component of the energy functional can be understood
as a form of the depth constancy assumption.

The second premise is that colors do not change between
two consecutive images Ii and Ii+1 for corresponding pixels,
i.e.

Ii(p) = Ii+1
(

p′(α(p), t(p))
)

. (13)

We formulate this so called brightness consistency assump-
tion implicitly through

(14)EI(α, t) = ∑
p∈Ω

∥∥Ii+1
(

p′(α(p), t(p))
)
− Ii(p)

∥∥
1 .

The overall data term is given by

Edata(α, t) = EI(α, t)+λVEV(α, t). (15)

The non-negative parameter λV weights the different com-
ponents of the data term. We will discuss the choice of this
hyper-parameter in the Sec. IV.

b) Regularization term: Solely optimizing for the data
term described above would lead to incoherent and noisy
point-wise solutions. Therefore, regularization terms are in-
dispensable to construct plausible solutions. We formulate
our piecewise rigid motion regularization directly as a pe-
nalization of the rotational and translational variables α and
t, respectively.

Merely minimizing ‖∇α‖2,1 and ‖∇t‖2,1 would, however,
interfere with our primary goal to model piecewise-constant
rigid motion, as it penalizes the magnitude of change in
α and t, and, thus, only approximately favors piecewise-
constant solutions. Therefore, we switch from the convex L1
norm to the non-convex L0 “norm” [6], defined for a vector
x ∈ Rd by ||x||0= #{i ∈ 1, . . . ,d | xi 6= 0} and choose the
regularizing terms

(16)Edα(α) = ∑
p∈Ω

‖∇α(p)‖2,0

and
(17)Edt(t) = ∑

p∈Ω

‖∇t(p)‖2,0

This regularization, sometimes denoted as Pott’s model [25],
is a special case of the piecewise-constant Mumford-Shah
model [2]. It is important to note that this form of L0
regularization, can not be applied to the scene flow s directly,
as it would favor an unrealistic, piecewise-constant scene
flow. In contrast, our regularization of α and t favors the
intended piece-wise rigid scene flow.

E. Energy Minimization

In this section we discuss algorithmic approaches capable
of efficiently minimize the energy functional Escene flow(α, t)
introduced in Sec. III-D. Our first observation is that the
described data terms are nonlinear and non-convex, prohibit-
ing efficient convex optimization algorithms. As such we
consider the well-known strategy of successive linearizations
and warpings [5]. We start by downsampling the RGB-D
images to a small resolution, at which the nonlinear parts of
Edata can be linearly approximated with sufficient precision.
Afterwards, we iteratively upsample the current solution
to a higher resolution and refine the linearization. In the
following, we discuss the linearization process, as well as
the optimization approach for the linearized subproblems.

a) Linearization: In the following discussion, we drop
the argument of the pixel position p to improve readability.
Note that p′ is the mapping function given in Eq. (3).
The data energy functional term linearization M ∈ {I,V} is
developed at an initial rigid scene flow guess (α0, t0) as

(18)

Mi+1
(

p′(α, t)
)
≈Mi+1

(
p′(α0, t0)

)
+ ∇Mi+1

(
p′(α0, t0)

)
· ∇p′(α0, t0)

·
(
(α, t)> − (α0, t0)>

)
.

The corresponding pixel p′ is given by Eq. (11), and its
gradient is

(19)∇p′(α, t) = ∇π(p′(α, t)) · [−Vi|I3×3] .

Applying this linearization to Eqs. (12) and (14), we get

EI(α, t) =
∥∥∥AI(α, t)>−bI

∥∥∥
1,1

(20)

EV(α, t) =
∥∥∥AV(α, t)>−bV

∥∥∥
1,1

(21)

where

AI = ∇I
(

p′(α0, t0)
)
·∇p′(α0, t0) (22)

AV = ∇V
(

p′(α0, t0)
)
·∇p′(α0, t0)+ [Vi|−I3×3] , (23)

and bM =Mi−Mi+1 +AM · (α, t)>.
As we use the L1 norm in the entire data term, we can

rewrite our problem as

Edatalin(α, t) =
∥∥∥∥Adata

(
α

t

)
−bdata

∥∥∥∥
1,1

, (24)

with Adata =
[
A>I
∣∣λVA>V

]> and bdata = (bI,λVbV)
>.

b) Regularizer: Similar to Edatalin we rewrite the reg-
ularization term in matrix notation as

Ereg(α, t) =
∥∥∥∥Areg ·

(
α

t

)∥∥∥∥
2,0

, (25)

with

Areg =

(
λdt∇ 0

0 λdα ∇

)
. (26)
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Fig. 1. Visual comparison of motion segments for VOSF and Our L0 approach. The left example shows the static scene fr1-desk, i.e. a scene with one
single motion cluster. This is well approximated by both, although VOSF is not as robust in the upper right corner. The right example shows a dynamic
scene, where both approaches achieve comparable results.

c) An Efficient Subproblem Solver: To solve the energy
functional consisting of the linearized data term in Eq. (24)
and the regularization terms in Eq. (16) and (17), we make
use of Algorithm 2 of the primal-dual hybrid gradient
(PDHG) approach discussed in [7]. This algorithm minimizes
energy functionals of the following kind

min
u

G(u)+F(Ku) . (27)

The solution to this problem under the primal-dual frame-
work is the iterative procedure, where u0 and û0 are taken
from the upsampled, previous solution and y0 = 0

yk+1 = proxσnF∗ (yk +σnKuk) (28)

ûk+1 = proxτnG

(
ûk− τnK>yk+1

)
(29)

θn =
1√

1+2γτn
, τn+1 = θnτn, σn+1 =

σn

θn
(30)

uk+1 = ûk+1 +θn (ûk+1− ûk) , (31)

with σ0,τ0 > 0, σ0τ0L2 < 1 and L = ‖K‖. As proposed in
[26], see also [17], we need to reformulate this algorithm
to use only primal proximal operators, as the non-convexity
of the L0 “norm” invalidates a direct application of the
algorithm. To do so, we apply Moreau’s decomposition [4]
and rewrite Eq. (28) to

(32)yk+1 = yk + σnKuk − σnprox 1
σn F

(
yk

σn
+ Kuk

)
.

This transforms the primal-dual structure into a primal-
proximal algorithm, whose convergence properties are
closely connected to non-convex ADMM approaches [31].

d) Primal-Dual formulation: For the primal-dual
framework, we define Êd(v) = ‖v−bdata‖1 and Êr(v) = ‖v‖0,
such that Êd(Adatau) = Edatalin(u) and Êr

(
Aregu

)
= Ereg(u).

Given these definitions, we choose G(u) = 0 and set

u =

(
α

t

)
, K =

(
Adata
Areg

)
(33)

F(Ku) = Êd(Adatau)+ Êr
(
Aregu

)
. (34)

The separable sum property of the proximity operator leads
to

prox 1
σn F (q,r) =

(
prox 1

σn Êd
(q)

prox 1
σn Êr

(r)

)
, (35)

which finally leads to

prox 1
σn Êd

(q) = sign(q−bdata)max
(
|q|− 1

σn
,bdata

)
(36)

prox 1
σn Êr

(r) =

{
0 |r| ≤

√
2 1

σn

r else
(37)

proxτnG (u) = u, (38)

which are the soft thresholding function, the hard threshold-
ing function and the identity function, respectively.

This demonstrates the great attractiveness of the primal
dual algorithm. The intricate non-convex energy constructed
in Eq. (9) in Sec. III-D can be rewritten as a series of linear
operators and simple, point-wise nonlinear operations. This
allows for an efficient implementation that lends itself well to
pixel-level parallel executions interlaced with well-developed
linear algebra calls. Inserting these proximity operators in
Eqs. (28)-(31) yields an primal-dual solver for the linearized
subproblems.

IV. EVALUATION

A. Evaluation Setup

a) Implementation: We implemented our approach in
the PROST framework [16], which is a framework designed
for solving large-scale problems with proximal structure.
This general purpose optimization framework however, does
not allow for a real-time implementation. We note that
the complexity of our optimization algorithm is effectively
equivalent to the PDFlow approach of Jaimez et al. [15],
which runs in real-time.

As shown in the previous section, the behavior of our
algorithm can be controlled through a set of parameters.
Throughout all our experiments, we set these parameters to
λV = 2.0,λdt = 2.0,λda = 0.5,τ0 = 0.25,σ0 = 1.5,γ = 140.
We found these parameters to yield a good trade-off between
robustness and accuracy of our approach.

Our approach segments the rigid motions implicitly. How-
ever, we can compute the segmentation from the final rigid
motion parameters α and t by thresholding and point-wise
multiplication of these values. Fig. 1 shows that these implic-
itly computed motions clusters are competitive to explicitly
computed segmentations.

b) Datasets and Competitors: For comparison and
evaluation, we use RGB-D image pairs from three different
real world datasets, the Bonn multi-body benchmark [27],
the TUM benchmark [28], and the supplemented datasets
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Fig. 2. Color-coded projections of the scene flow estimates of SRSF [18], PDFlow [15], VOSF [14] and our L0 approach on dynamic scenes. Note how
our approach combines both, robustness and accuracy. Consider especially the right arm of the left person in tum fr3-wh or the white board eraser in
vosf-cw.

from Jaimez et al. [14]. Tab. I gives an overview over the
used image pairs. Further examples are presented in the
supplementary material.

For evaluation we compare our method (Our L0) to the
SRSF approach [18] (rigid scene flow with L1 regulariza-
tion), the PDFlow [15] (scene flow with L1 regularization)
and VOSF [14] (alternating odometry and rigid scene flow).

ID Full Name Dyn Bench. Frames
bonn-tc Tea can y Bonn 700-701
fr1-desk freiburg1 desk n TUM 200-201
fr1-xyz freiburg1 xyz n TUM 203-204
fr3-wh freiburg3 Walk Halfsphere y TUM 1-2
vosf-rob Robot y [14] 1-2
vosf-cw Cleaning whiteborad y [14] 1-2

TABLE I
RGB-D IMAGE PAIRS USED FOR EVALUATION: ABBREVIATION USED IN

THE PAPER (ID), FULL NAME OF DATASET (FULL NAME), DYNAMIC

SCENE (DYN), BENCHMARK (BENCH.), AND FRAMES USED (FRAMES).

B. Evaluation without reference flows
A visual comparison of the previously mentioned ap-

proaches shown in Fig. 2. We show a color-coded projection
of the three-dimensional scene flow estimations onto the im-
age plane, which demonstrates the accuracy and robustness
of our approach on real-world data. Compared to SRSF
and PDFlow, our flow estimation contains significantly less
noise and the moving objects in the scene are consistently
estimated. Compared to our approach, VOSF produces vi-
sually smoother scene flows. However, incorporating the

photometric and geometric error measures of valid pixels
shown in Table II, yields that the actual accuracy of our
approach is significantly better. Our indirect regularization
of the scene flow via the implicit L0 segmentation of the
rigid motion components avoids over-smoothing in contrast
to the direct regularization of the VOSF approach.

ID metric SRSF PDFlow VOSF Our L0
bonn-tc PE 0.032 0.031 0.033 0.027

GE 0.023 0.029 0.033 0.018
fr3-wh PE 0.187 0.106 0.094 0.069

GE 0.564 0.634 0.496 0.418
vosf-rob PE 0.054 0.067 0.050 0.040

GE 0.130 0.146 0.127 0.093
vosf-cw PE 0.048 0.037 0.041 0.029

GE 0.068 0.068 0.074 0.045

TABLE II
PHOTOMETRIC ERRORS (PE) AND GEOMETRIC ERRORS (GE) FOR THE

DATASETS SHOWN IN FIG. 2.

C. Evaluation with Reference Flows

The static scenes in Fig. 3 allow for an estimation of the
reference scene flow from the given ground truth camera
pose. This allows for a comparison of the endpoint error
(EPE), i.e. the L2 norm of the differences of ground truth
and estimated scene flow. The EPEs of these two scenes are
shown in Table III, while the color-coded projections of the
scene flows are shown in Fig. 3. It turns out that our approach
leads to a lower EPE. This is due to the fact that the static
scene can be described by a single rigid motion, the motion
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Fig. 3. Projection of the scene flow estimates of SRSF [18], PDFlow [15], VOSF [14] and our L0 approach for static scenes with reference scene flow
from the TUM dataset [28]. The reference scene flow was estimated from ground truth camera pose. Note how the smoothing effect of the VOSF approach
is useful in this mostly planar scene.

of the camera. Our L0 approach is well-suited for this kind
of scene flow estimation, as we directly optimize for rigid
motions. This effect is visualized in Fig. 1, where we find
that our approach leads to a single consistent motion cluster.

ID metric SRSF PDFlow VOSF Our L0
fr1-desk PE 0.112 0.082 0.070 0.048

GE 0.087 0.117 0.115 0.065
EPE 5.332 7.132 4.385 4.236

fr1-xyz PE 0.117 0.076 0.083 0.046
GE 0.099 0.112 0.114 0.065

EPE 7.249 5.692 4.110 3.747

TABLE III
PHOTOMETRIC ERRORS (PE), GEOMETRIC ERRORS (GE) AND

END-POINT ERRORS (EPE) FOR THE DATASETS SHOWN IN FIG. 3.

D. Discussion
We formulate a model of piece-wise rigid scene flow via

L0 regularization of the rotational and translational motion
components. This formulation strongly contributes to the im-
provements in terms of accuracy of the scene flow estimation.

Failure cases of our model are RGB-D frames, where
the rigid-motion approximation in (7) is violated by rapid
rotations. Such cases still produce a globally reasonable
scene flow, but the motion of these objects is not recovered.
This can be observed for the dataset vosf-cw in Fig. 2.
Here, the fast moving white board eraser is not precisely
reconstructed by our approach, while the other parts of the
scene and especially the background motion are accurately
estimated. Yet compared to previous methods the error in the
vicinity of the eraser is considerably reduced.

Further failures can occur from strongly non-rigid motions,
such as elasto-plastic deformations. Here, the deformations
will be approximated by piecewise-rigid transformations,
leading to incorrect results.

E. Conclusion
The implicit motion segmentation presented in this work

is capable of stabilizing variational scene flow estimation,
resulting in piecewise-rigid flows. In contrast to other
methods that rely on segmentation, our approach utilizes
the clustering properties of the L0 regularization and thus
performs the clustering of motions implicitly.
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Lausssanne (EPFL), 2010.

[2] L. Bar, T. F. Chan, G. Chung, M. Jung, N. Kiryati, N. Sochen,
and L. A. Vese. Mumford and shah model and its applications to
image segmentation and image restoration. Handbook of mathematical
methods in imaging, pages 1–52, 2014.

[3] P. J. Besl and N. D. McKay. Method for registration of 3-D shapes. In
Robotics-DL tentative, pages 586–606. International Society for Optics
and Photonics, 1992.

[4] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, UK ; New York, 2004.

[5] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy
optical flow estimation based on a theory for warping. In European
conference on computer vision, pages 25–36. Springer, 2004.

[6] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency infor-
mation. IEEE Trans. Inf. Theor., 52(2):489–509, Feb. 2006.

[7] A. Chambolle and T. Pock. A first-order primal-dual algorithm for
convex problems with applications to imaging. Journal of mathemat-
ical imaging and vision, 40(1):120–145, 2011.

[8] Y. Chen and G. Medioni. Object modeling by registration of multiple
range images. Image and Vision Computing, 10(3):145–155, 1992.

[9] H. Durrant-Whyte and T. Bailey. Simultaneous localization and
mapping: part i. IEEE Robotics Automation Magazine, 13(2):99–110,
June 2006.

[10] S. Ghuffar, N. Brosch, N. Pfeifer, and M. Gelautz. Motion estimation
and segmentation in depth and intensity videos. Integrated Computer-
Aided Engineering, 21(3):203–218, 2014.

[11] V. Golyanik, K. Kim, R. Maier, M. Nießner, D. Stricker, and J. Kautz.
Multiframe scene flow with piecewise rigid motion. In Proc. Int. Conf.
3D Vision (3DV), pages 273–281, 2017.

[12] E. Herbst, X. Ren, and D. Fox. RGB-D flow: Dense 3-D motion
estimation using color and depth. In Proc. IEEE Int. Conf. Robotics
and Automation, pages 2276–2282. IEEE, 2013.
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mers. Sublabel-accurate relaxation of nonconvex energies. CoRR,
abs/1512.01383, 2015.
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[33] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nießner, R. Klein,
and A. Kolb. State of the art on 3D reconstruction with RGB-D
cameras. Computer Graphics Forum, 37(2):625–652, 2018.

1765

Authorized licensed use limited to: UB Siegen. Downloaded on October 13,2020 at 14:01:50 UTC from IEEE Xplore.  Restrictions apply. 


