Optimized Refinement for Spatially Adaptive SPH

RENE WINCHENBACH, University of Siegen
ANDREAS KOLB, University of Siegen

Fig. 1. An inlet, emitted with a moderate resolution, collides with a fluid volume that is agitated by a moving boundary wall. Our adaptive method can easily
handle the 1 : 500 adaptive volume ratio shown here, without instabilities, and can readily adapt the resolution of the inlet on the fly without causing the inlet

to be decollimated. Volume color mapped from high (black) to low (white).

In this paper we propose an improved refinement process for the simulation
of incompressible low-viscosity turbulent flows using Smoothed Particle
Hydrodynamics, under adaptive volume ratios of up to 1 : 1,000, 000. We
derive a discretized objective function, which allows us to generate ideal
refinement patterns for any kernel function and any number of particles a
priori without requiring intuitive initial user-input. We also demonstrate
how this objective function can be optimized online to further improve the
refinement process during simulations by utilizing a gradient descent and a
modified evolutionary optimization. Our investigation reveals an inherent
residual refinement error term, which we smooth out using improved and
novel methods. Our improved adaptive method is able to simulate adaptive
volume ratios of 1 : 1,000, 000 and higher, even under highly turbulent flows,
only being limited by memory consumption. In general, we achieve more
than an order of magnitude greater adaptive volume ratios than prior work.

CCS Concepts: + Computing methodologies — Physical simulation;
Massively parallel and high-performance simulations.

Additional Key Words and Phrases: SPH, spatial adaptivity, optimization

ACM Reference Format:

Rene Winchenbach and Andreas Kolb. 2020. Optimized Refinement for
Spatially Adaptive SPH. ACM Trans. Graph. 1, 1, Article 1 (January 2020),
15 pages. https://doi.org/10.1145/3363555

1 INTRODUCTION

Fluid simulations play an important role in modern computer ani-
mations, and there is an ever-increasing demand not just for more

Authors’ addresses: Rene Winchenbach, rene.winchenbach@uni-siegen.de, University
of Siegen, Hoelderlinstrasse 3 , Siegen, NRW, 57076; Andreas Kolb, andreas.kolb@uni-
siegen.de, University of Siegen, Hoelderlinstrasse 3 , Siegen, NRW, 57076.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3363555.

vivid and higher quality free surface fluid simulations, but also larger
overall simulation domains. However, a uniform resolution in all
parts of the simulation is not ideal as this requires high resolutions
in regions of the fluid where the behavior is not interesting, e.g.,at
the bottom of a pool. Therefore, methods are needed that can focus
the computational resources to where it is most beneficial. This can
be achieved using spatially adaptive methods, which have been used
for grid-based simulations for a while, e.g., using octrees [Losasso
et al. 2004], tetrahedral meshes [Klingner et al. 2006], or tetrahedral
meshes combined with an adaptive FLIP simulation [Ando et al.
2013]. For grid-free methods, based commonly on Smoothed Parti-
cle Hydrodynamics (SPH), prior research mainly focused on weakly
compressible simulations [Adams et al. 2007; Feldman and Bonet
2007] and only recent work [Winchenbach et al. 2017] has enabled
incompressible flows with larger refinement ratios.

An adaptive SPH method starts by defining a desired resolution,
often based on surface distance, for each particle using a sizing
function. The resolution is then locally decreased by merging par-
ticles, smoothed using sharing between particles, or increased by
refining a particle into multiple smaller particles. These processes
can introduce errors into the simulation and in order to stabilize
the simulation blending methods have been proposed [Orthmann
and Kolb 2012; Winchenbach et al. 2017]. Most of the introduced
refinement error is due to a reliance on some intuition [Feldman and
Bonet 2007; Vacondio et al. 2013; Winchenbach et al. 2017] instead
of a fundamental analytical model for particle refinement patterns.

In order to improve the refinement process, we first introduce a
continuous objective function describing these processes, in Sec. 5,
which can be applied to symmetric SPH formulations required in
adaptive incompressible flows. Sec. 6 then demonstrates our novel
discretization technique based solely on particles and derives the

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.


https://doi.org/10.1145/3363555
https://doi.org/10.1145/3363555

1:2 « Winchenbach and Kolb

error terms, as well as their derivatives, required for efficient opti-
mization. In Sec. 7 we then utilize our discretization technique to
optimize refinement patterns regarding positions and mass distribu-
tions, both a priori for ideal environments and online using actual
particle neighborhoods, using these discrete error terms. Our results
show an unavoidable inherent residual refinement error, which we
smooth out using improved and novel techniques to ensure stabil-
ity, in Sec. 8. Finally we demonstrate the efficacy of our improved
method and its properties in Sec. 10.1 by comparing it to prior work,
and identifying possible factors that could further improve stability.

2 RELATED WORK

In the past, spatially adaptive SPH methods have been widely used
within the CFD context, e.g.,.by Vacondio et al. [2012], Feldman and
Bonet [2007] and Li et al. [2015], and to some extent within com-
puter animation, e.g.,by Solenthaler and Gross [2011], Orthmann
and Kolb [2012], Horvath and Solenthaler [2013], and more recently
by Winchenbach et al. [2017]. These adaptive methods use different
approaches to resolve underlying stability issues, e.g.,using multiple
separate simulations, temporal blending methods or, as done in most
of these methods, by using a weakly compressible SPH formulation.
Older methods, e.g.,Adams et al. [2007], developed before modern
incompressible pressure solvers existed (starting with PCISPH [So-
lenthaler and Pajarola 2009]), did not have to consider as strict
stability requirements. However, all these adaptive methods need
particle patterns for replacing a particle of lower resolution by par-
ticles of higher resolution. This replacement, however, introduces a
density error that needs to be addressed to avoid instabilities.

Solenthaler and Gross [2011] address the stability issue by utiliz-
ing separate simulations, each using a different global uniform level
of resolution, where particles are directly inserted and those causing
large errors are simply removed. Orthmann and Kolb [2012] apply a
simple 1:2 splitting pattern and a temporal blending scheme, which
significantly limits the temporal rate of resolution change possi-
ble. Vacondio et al. [2016] propose statically optimized patterns to
avoid the density errors but require asymmetric support radii, which
are not stable for incompressible SPH methods. Winchenbach et al.
[2017] combine manually optimized refinement patterns with tem-
poral blending to allow for adaptive incompressible SPH simulations.
However, this approach does not fully solve the instability problem
and strongly depends on manual parameter tuning.

Various approaches have recently been developed for SPH-based
simulations in computer animation, e.g.,implicit incompressible
SPH (IISPH) [Ihmsen et al. 2013], divergence-free SPH (DFSPH) [Ben-
der and Koschier 2015] and position based fluids [Macklin and
Miiller 2013]. These approaches predict and correct fluid compres-
sion through predictions in each time step, but are not designed to
handle sudden fluid compressions, such as those caused by particle
splitting. Therefore, errors due to particle refinement need to be
prevented from occurring in the first place by changing the adaptive
method itself, instead of relying on an external pressure solver.

Furthermore, rigid boundary handling is an existing issue for
adaptive methods [Winchenbach et al. 2017], as commonly used
particle boundaries [Akinci et al. 2012] suffer from sampling prob-
lems. Fujisawa and Miura [2015] address the sampling problem by

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

using an analytical integral formulation of boundaries. Koschier and
Bender [2017] extended this approach using numerical integrals pre-
computed on grids. Recently, Winchenbach et al. [2020] introduced
a signed distance field based boundary integral method that does
not require expensive precomputation steps and ensures consis-
tent behavior across varying particle resolutions. Band et al. [2017]
utilize a moving least squares method to fit planes to particles for
sufficiently flat boundaries. The method is then used to calculate
accurate pressure values for boundary particles instead [Band et al.
2018]. Finally, Gissler et al. [2019] introduced an extended SPH
model to simulate rigid to rigid interactions using SPH. Boundary
integral based methods are a good general choice, as they avoid the
sampling issue, but also introduce non-SPH representations.

Finally, temporally adaptive methods are alternative approaches
to allocate computational resources where they are most beneficial.
Adjusting the time step of an SPH simulation, globally, using the
CFL condition has found wide adoption in SPH, with initial work
by Desbrun and Gascuel [1996] and later by Thmsen et al. [2010].
Assigning different particles, or regions, different time steps has
also been proposed by Desbrun and Gascuel [1996], however, this
approach has not find wide adoption, due to the complexity involved
in synchronizing different time steps. Reinhardt et al. [2017] applied
this concept, through regional-time-stepping, to modern pressure
solvers, but is only applicable to CPU-based SPH variants.

3 FOUNDATIONS OF SPH

SPH is a numerical method to solve continuous integrals by approx-
imating an underlying continuous system using discrete particles,
see [Monaghan 1992] and for further explanations [Koschier et al.
2019]. These particles are then used to approximate continuous
quantities using the basic SPH interpolation operator for a particle
i utilizing all neighboring particles j, which is given by

ms
J
Alxi) = D —LAG) Wy, (1)
7 Pi
where m, p and x; denote the mass, density and position respectively,
and the subscript denotes indices of the particle. W;; = W (|x;jl, hij)
is a radially symmetric kernel function that depends on the distance
between positions |x;;| = |x; — x;| and the support radius of the in-
teraction h;;. This term can be chosen as asymmetric, e.g.,as h;; = h;,

which results in a gather formulation, or as h;j = h;, which results in

: . hi+h;
a scatter formulation, or as the average support radius, h;; = —5-,

which results in a symmetric formulation. For adaptive incompress-
ible SPH only a symmetric formulation is stable [Winchenbach et al.
2017], whereas for adaptive weakly compressible SPH (WCSPH)
a common choice is the scatter formulation as this significantly
simplifies many derivative terms [Vacondio et al. 2013].
Commonly used kernel functions include the cubic spline ker-
nel [Thmsen et al. 2013; Koschier and Bender 2017; Monaghan 2005]
and the Wendland kernel functions [Vacondio et al. 2016]. The exact
choice of kernel function does not influence our method, but still
changes the support radius of a particle. Every kernel function has
an ideal number of neighbors [Dehnen and Aly 2012], i.e., N = 50
for the cubic spline kernel, which yields the support radius for a
particle by solving %ﬂh3 = NyV;, as there should be Np particles




of volume V; contained within a spherical support radius H. The
support radius H is related to the smoothing scale h through a factor
%. Within Computer Animation, % is often defined as 1 [Koschier
et al. 2019] and, thus A is also often referred to as support radius.

We will follow this notion in our paper.

4 METHOD OVERVIEW

Spatial adaptive methods generally begin by determining the de-
sired resolution for a particle using a sizing-function, e.g.,using the
particle’s surface distance, or based on visibility, and classifying
particles accordingly into different categories [Winchenbach et al.
2017] and then adjusts the resolution of each particle to be closer
to its desired resolution. This can, in general, be done using three
distinct processes:

Merging: This process combines multiple high-resolution particles
into lower resolution particle(s) to reduce the local spatial resolution.
This can be done in multiple ways, e.g., merging 2 particles into 1
(2 : 1-merging), distributing one particle onto several other particles
(n : n — 1-merging) or combining many particles into one (n : 1-
merging). This process is fully constrained for n : 1 merging due to
mass and momentum conservation.

Sharing: This process changes a particle that is larger than its ideal
resolution by distributing parts of its mass and quantities to nearby
particles which are smaller than their ideal resolution. This process
is essentially an extension of merging, where the original particle
remains in the simulation. The process for interactions between
two particles is also fully constrained, due to mass and momentum
conservation.

Splitting: This process splits (or refines) a particle that is signifi-
cantly larger than its ideal resolution into multiple smaller particles.
Quantities of the inserted particles are not fully constrained, i.e.,the
mass of each created particle can vary as long as the overall mass
is preserved. Additionally, geometric patterns have been used in
all prior methods to insert new particles into the simulation, but
these often require significant manual tuning to achieve a certain
level of stability. In general, different refinement methods rely on
different splitting steps, e.g., 1 : 2 or 1 : 8. However some methods
allow for arbitrary changes (up to a certain limit) of 1 : n. Some
splitting methods include procedures to reduce the impact of errors
introduced by the refinement process.

The merging and sharing processes are mostly limited by the
search for eligible particle groups, often resulting in 2 : 1 merging
and 1 : 1 sharing being used. These processes are fully-constrained
by mass and momentum conservation, and also do not cause visu-
ally apparent instabilities. The splitting process, however, causes
instabilities, i.e., due to changes to the density field, and can be
optimized [Feldman and Bonet 2007]. Refining a single low resolu-
tion particle o, with mass m, at position x, and velocity v, into n
particles, i.e.,a 1 : n split, has to preserve mass, kinetic energy, as
well as linear and angular momentum, and should not modify the
underlying density field to avoid compression. Mass-conservation
can be enforced by ensuring that the total mass of the refined par-
ticles is equal to m,, whereas momentum and kinetic energy are
conserved if and only if the velocities of the refined particle are equal
to v, [Feldman 2006]. Consequently, the error introduced on the

Optimized Refinement for Spatially Adaptive SPH « 1:3

underlying density field can be controlled by optimizing the mass
distribution and positions for the refined particles. This yields 4n
degrees of freedom, making manual parameter tuning impractical.

The approach, to optimize the refinement, we present is indepen-
dent of the number of high-resolution particles being created and of
the kernel function used, and is applicable to any adaptive method
that relies on particle refinement and any incompressible or weakly
compressible solver. However, we first require an underlying objec-
tive function for a symmetric SPH formulation, as prior optimization
approaches relied on an asymmetric scatter-based SPH formulation.
Our overall refinement process is described in Algorithm 1.

Algorithm 1: An overview of the off-line a priori and the online opti-
mization process to generate the initial refinement pattern and its local
adaptation during simulation, respectively.

// A priori optimization of n patterns
For all refinement patterns
Initialize pattern with random positions and uniform weights
Optimize positions; see Sec. 6.1 and 7.1
Optimize weight distribution; see Sec. 6.2 and 7.1
Optimize positions and weights simultaneously 7.1
Store pattern for refinement

// Online optimization of particle i

Determine ideal particle radius s;; see Sec. 9

If particle radius r; < 2s;: return // no refinement

Determine pattern to be used p = |clamp(ri/si, 2, n) |
Initialize refined particles using a priori pattern for p particles
Optimize positions using gradient descent; see Sec. 6.1 and 7.2
Optimize masses using evolutionary optimization; see Sec. 7.2
Initialize blend process for refined particles; see Sec. 8.1
Insert refined particles and remove old particle

5 CONTINUOUS OBJECTIVE FUNCTIONS

In general, the splitting process works by replacing the original
low resolution particle o with a set of higher resolution particles
S. The problem now is based on the choice of parameters for the
new particles, where for n particles we get d - n positional param-
eters (for d dimensions) and n weights determining the mass dis-
tribution. The distributed mass needs to equal the original mass,
e.g.My = D,sesS Ms, due to mass conservation. However, there is
no way to directly determine the patterns and prior work often
employed fixed refinement patterns, e.g., 1:2 [Orthmann and Kolb
2012], 1:7 [Solenthaler and Gross 2011], or 1:13 [Vacondio et al. 2016]
or for multiple n [Winchenbach et al. 2017], which are based on
using intuitive shapes and often involve manual tuning.

Mass and momentum are directly conserved. The underlying
fields that should be kept constant are the density and velocity
fields [Feldman and Bonet 2007], with a focus on the density field,
as a change to density would introduce significant instabilities. The
change to the density field at any point x can be defined, based on
the density before p(x) and after p* (x) refinement [Feldman 2006]

7(x) = p* (%) - p(x), ()

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:4 « Winchenbach and Kolb

Fig. 2. The result of optimizing the refined particle positions (red) for a
symmetric SPH formulation (left) and a scatter SPH formulation (right),
with the density field error 7(x) color coded from purple to yellow.The error
is visualized from 0 to 6 - 107* for symmetric SPH on and the left from 0
to 1-107* for asymmetric SPH on the right. Note that the errors in the
converse terms, e.g., the right pattern evaluated utilizing the symmetric
error metric, result in orders of magnitude worse behavior, highlighting the
need to chose the appropriate formulation for the optimization process.

which can be evaluated over a continuous domain Q as
&= / 7(x)%dx. 3)
Q

This can be seen as a continuous objective function, where the
ideal refinement process would cause a total error of 0. This can also

be seen as enforcing density invariant refinement, i.e.,% =0 [Ben-
der and Koschier 2015], but instead of a change over time the change
occurs due to particle refinement. Feldman and Bonet [2007] use an
a priori optimization process to minimize &, using an initial refine-
ment pattern found by intuition, i.e.,an icosahedra in 3D configura-
tion. Fixing the relative positions of particles reduces the problem
to determining a single scaling parameter and the mass distribution,
which Feldmann and Bonet solve for a scatter-based formulation of
SPH. However, the approach of Feldman and Bonet [2007] is not di-
rectly applicable to incompressible SPH simulations, as these require
a symmetric SPH formulation to avoid instabilities [Winchenbach
et al. 2017].

For a symmetric SPH formulation, the support radius of an in-
teraction depends on the definition of a support radius h(x) for
every integration point, which could be determined using the ap-
proaches from Monaghan [2002] and Winchenbach et al. [2017] that
base the support-radius on the density at this position, which also
means that particles of equal resolution have varying support-radii,
ie,Vi=V; =5 h; = hj. These approaches, however, introduce a
coupled problem (refer to [Price 2012] for a more thorough exami-
nation), where the evaluation of the density depends on the support
radius which, again depends on the density. This problem can be
stated as

h,‘+hj ,[m-
pi:;mJW(|Xi—Xj|, D) ); hi:’]jp_il5 (4)

where 7 is a parameter used to determine the number of neighbors
for a particle, commonly chosen as 5 & 2.6 for cubic spline ker-
nels [Winchenbach and Kolb 2019]. This term could be evaluated
iteratively until the result converges, but this would require a very
expensive computation for every point of integration. Nonetheless,

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

the symmetric formulation can still be used to optimize the refined
positions x; for all refined particles s € S, even though the process
is significantly slower than for a scatter formulation. The results of
this optimization are shown in Fig. 2, where the generated distribu-
tion of particles is significantly different between the symmetric and
scatter formulation, i.e., two particles are placed close to the position
of the original particle instead of one. The patterns £s and P, are
generated using a symmetric (&) and asymmetric (&,) formulation
of Eqn. 3, respectively. Here, Es(Ps) = 2.4-107%, E4(Ps) = 5.8-1074,
Es(Py) =3.0-1073 and E,(P,) = 3.8 - 107°. However, this does
not mean that one of the generated patterns is superior to the other
as they are optimized for fundamentally different SPH formulations,
i.e., they are not alternative options. As such, the appropriate pat-
tern should be chosen for each formulation and applying patterns
optimized for asymmetric SPH formulations leads to a significantly
worse error (by an order of magnitude).

6 DISCRETIZED OBJECTIVE FUNCTION

Minimizing Eqn. 3 by iteratively solving Eqn. 4, is not practical,
especially in 3D, due to computational costs. Instead, we propose
to only evaluate Eqn. 2 at the current positions of particles, which
significantly reduces the computational complexity as this only
requires N + n evaluations, for n refined particles. We denote the
original particle as o, the set of refined particles of o as S, the set
of neighbors of o, including o, as N, and the discretized error term
E for the surrounding particle positions and newly inserted particle
positions as E and Eg, respectively. For clarity we will drop the
subscript on S and N whenever possible..

Following Vacondio et al. [2013], we can evaluate the error on
neighboring particle positions, by effectively removing the old par-
ticle and inserting the refined particles, as

Ty = Z msWhys — moWhno,Vn € N. (5)
seS

For a refined particle s € S, we can calculate the error term as
the difference between the original particles density p, and the
density evaluated at the current position of s, which resembles the
numerical SPH approximation error. This results in the following
error term 7 for a specific refined particle s:

Ts = Z muWen + Z mE W | = po, Vs € S. 6)
neN keS
The discretized error terms are then the mass weighted sum of
square error terms, per particle, which yields

En = Z mpt2, Eg= Z mst2. (7)

neN seS

The overall minimization problem can then be defined as minimiz-
ing the positions and masses of the inserted particles, under the
constraint ) ¢c g ms = m, due to mass-conservation, as

min E= min (Ex+Eg). (8)

X$ms  X$.ms

The partial derivatives of this minimization problem with respect
to positions xs and masses mg are described in Sections 6.1 and 6.2,
respectively.



J J
[ )
@
[ e
[ o {
® ®
] [

Fig. 3. The result of optimizing the positions of 6 refined particles using our
discretized problem (purple) and the continuous form (red), which results
in a small difference, demonstrating a good approximation through our
proposed discretization.

Note that this problem has a trivial, but useless, solution where
all refined particles are placed at the original particles position and a
single refined particle having the mass of the original particle, i.e.,all
other refined particles have zero weight. We avoid this trivial solu-
tion by iteratively optimizing positions and masses and by imposing
a limit on the optimized masses. Thus, we add the constraint

Fms > 8my, Vi, s € S, 9)

which restricts the largest ratio of masses between refined particles
to be at most 8. These restrictions additionally prevent degenerate
optimization solutions where single particles have zero mass.

This problem can be solved in ideal, isotropic and hexagonal, par-
ticle distributions using initially random positions and mass ratios
for the refined particles a priori. Due to the relatively low compu-
tational cost, it can also be solved online for an actual particle in
a fluid simulation using the results of the a priori optimization as
a starting point. Fig. 3 shows the result of optimizing the particle
distribution for 6 particles using our proposed discretization (pur-
ple) and by using the continuous form (red), where the results are
very similar (ignoring rotation and translation), demonstrating a
close approximation of the underlying problem. The minimization
problem is derived in detail in the supplementary material.

6.1 Spatial derivatives

Even though particle refinements can interfere with each other, lead-
ing to a global optimization problem, we refine particles separately
with respect to their current neighborhood, see [Orthmann and
Kolb 2012]. Thus only derivatives based on refined particles for each
original particle need to be considered, and N can be assumed to
be constant. This also allows for the optimization of all individual
refinement steps in parallel. We thus need to consider the derivative
of E with respect to the position of every inserted particle. In general
a kernel function can be written as [Dehnen and Aly 2012]

C .
Wi =W ([xijl| hij) = — W (9), (10)
ij
where h;; = hi;hj, q= ”Z”” , C is a normalization constant, d is

1

the spatial dimensionality of the simulation and W (q) being the

Optimized Refinement for Spatially Adaptive SPH « 1:5

kernel function, i.e.,W(q) =[1- q]i —4[0.5 — q]i for the cubic
spline kernel, where [-] = max (-, 0). The derivative of the kernel
function W with respect to the position of a particle i can then be
calculated as

Xij C oW(q) _

TN = — %W/’
ViV = Tk ag X -
with W/(r,h) = %%;q) and %X;; = |§—z| Using some linear

algebra, shown in detail in the supplementary material, the spatial
derivatives of the discretized error term for neighboring particle
positions E nr and refined particle positions Eg with respect to the
position of a refined particle i is given as

ViEn = Z My (7i + Tn) ViWin, (12)
neN
with N = N'\ o, and
ViEs = Z ms (7; + 75) ViWis. (13)
seS

6.2 Mass distribution derivatives
For the efficient formulation of our optimization cost function, we
utilize a set of tunable weights

A=A, ... 1], (14)

where Al describes the individual mass ratio for each inserted parti-
cle i, with the constraint ), t = 1,ie.,ms = my/A;. Plugging these
weights into the error terms 7, (Eqn. 5) and 75 (Eqn. 6) yields

1
h = Mo Z A_W”S = moWho,
seS S

1
Ts = Z m;Wsj +mp Z A_VVvsk — Po-
JeN kes 'k

(15)

To calculate the derivative of the overall error terms with respect to
these weights, we first need to consider the derivative of the kernel
function with respect to the support radius, which can be written as
Wi 1] d ,
- = E}_V\/ij"'qwij , (16)

oh; 2
which is a term not commonly found in computer animation; see
the supplementary material for further details. This can be used to
evaluate the derivative of the kernel function with respect to the
mass of a particle, which yields

oW (xij, h) _ oW (xij, h) 0x;;j . oW (xij,h) oh

, 17
om; X om; oh om; (17)

ax,-] aW(Xij,h)

where a_m,: = 0. The term ——;~— can be determined using Eqn. 16,

with h = % Using the definition of the support radius h; =

3/ M
M\ pi

term is given as

[Monaghan 2005] and applying the derivative, the missing

-2 gmi _2 om; . _9pi
oh; 1 (mi) 59%; 1 (mi) 3 om; Pi~ Migm;
pi 37\ pi p?

om; 3

, (18
p (18)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:6 « Winchenbach and Kolb

where is 1. Applying am further to the standard SPH estimate

for den51ty pi =X mjWi; ylelds
api om;j oW
— = —Wij+mj——|, 19
om; Z]: (am,- rm om; (19)
where glm{ = §;j (Kronecker Delta). Putting these equations to-

gether results in
oWi; oW | h; h; ow;
2y _ Ty A VVii—ka_lk . (20)
om; oh |3m; 3p; T om;

Wi

which means that the value for 2 >
of neighboring particles. In theory th1s could be solved iteratively,
similar to the relation of density and support radius, but we opt
to follow the common computer animation notion of all particles
having a support radius solely based on their rest density, i.e., h; =

3m,
n

Th1s means that

depends on itself and values

3m,

instead of h; = 1 and, accordingly, V; = V; = h; = h;.
My _ by oWy e
om; 3m; oh;

Calculating the derivative of the kernel function with respect to a

mass weight additionally requires the derivative of a weight 1; by

another weight A;. If in the optimization the weight of one particle
is increased and all other particles are equally decreased, we can
find a derivative

11
iz LFJ

= A3 22

2l-5k-f @

iz 0, else.

This can be expressed more generally by introducing a matrix M,
describing the distribution of weights, which for Eqn. 22 yields

1 . .
My = {ﬁ’ i (23)
-1, else.

Note that each column of the matrix should sum to zero to ensure
mass conservation during optimization. Additionally, for refined
particles the support radius does change with respect to the change
of mass of a refined particle. For two particles s and j, this results
in the following term

ahsj ohs h
= 1 1 24
=3 (Srse+ Shsw). (24
with 1 being the indicator function defined as
; 1, jeS$
15(j) = { (25)
0, else.

Finally, we can find the derivatives of the discrete error terms for
neighboring positions and refined positions, respectively, are calcu-
lated as (see the supplementary material for a detailed derivation)

JE N M 1 OWns
a_/li = Z_ mp Tnfwns + /1_3 o (tnh +75) |
neN (26)
JdEg Mg 1 3Wsk
=o _ W
ok ];Sms B

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035 0.00040

Fig. 4. Optimized patterns for 3 (top-left), 8 (top-middle), 12 (top-right), 16
(bottom-left), 24 (bottom-middle) and 64 (bottom-right) particles, in 2D for
the cubic spline kernel, showing particles from S (red), N (light blue) and
the removed particle o (white). The coloring indicates 7, demonstrating that
the error focuses mostly in regions that are not occupied by any particle.

where
OWsj 1 o W
7 = _(,/1? (hsAsMisls(S) + hj/leijls(])) ohs; s
W, C oW (q) @
sj 1 ’ 9 q
=—— (dW;; (AW ), W (r,h .
ohs;  h; ( i + s W ) (rh) =35

7 OPTIMIZATION METHODS

The main goal of the introduction of the discretized objective func-
tion and its partial derivatives in Section 6 is to determine optimal
particle positions and masses for the refinement of fluids, irrespec-
tive of specific kernel functions or neighborhood requirements. The
naive solution is to start with a random distribution of positions
with an equal amount of mass per inserted particle. However, opti-
mizing from this starting point is too expensive to be done online
during a simulation. Instead, we propose optimizing the refinement
patterns a priori for ideal conditions, e.g.,in an isotropic hexagonal
particle distribution, and use the resulting patterns as initialization
for an online optimization.

7.1 A priori optimization

In order to generate a generic set of refinement patterns, we assume
that an arbitrary particle o has an isotropic hexagonal neighborhood
of particles N. Therefore, we can simply apply our optimization
to this ideal neighborhood and the inserted refined particles. We
utilize an original particle with the properties

ho =1, V0:4 : r0:3i, (28)

3 Nh N,
as this allows us to easily rescale the generated patterns for a par-
ticle with radius r, by scaling the generated pattern by r. We also
separate the optimization for positions and masses into two distinct
processes for efficiency. Using the analytical partial derivatives,



0. 6P o’.
'O e Pt

?
o9

¥R
®

*

® ‘p‘
Fig. 5. This figure shows the patterns for 4, 8, 12, 16, 32 and 64 particles in

3D for the Wendland 2 kernel (N=100) with the particle color being chosen
for visual distinctiveness only. The transparent object visualizes the convex

hull of the particle positions.

from Sec 6.1 and 6.2, it is fairly straightforward to apply any opti-
mization algorithm, e.g.,L-BFGS-B from SciPy [Jones et al. 2001], to
optimize the positions of splitting patterns by stacking the compo-
nents of the inserted particles’ position [xq,x, X0,y ---» Xn—1,z], which
for n particles results in n - d variables. Figure 4 shows example
patterns generated for 4, 8, 16 and 32 particles, respectively, in a 2D
setting and Figure 5 shows patterns for 3D settings, which were all
initialized with random particle distributions. Figure 4 shows that
the error for the resulting configuration is mainly reduced at the
particle positions, while it is rather high in between particles, where
it has no practical influence.

Different kernel functions yield very similar spatial configura-
tions, however, not all kernel functions converge equally fast, due
to pairing instabilities; see Dehnen and Aly [2012] for a general dis-
cussion on the differences between kernel functions. Particles may
move further from the center, even beyond the hexagonal packing
distance, or move together, i.e.,they pair, during the optimization.
However, in either case, which can be identified easily, we restart
the optimization with a different random initialization to avoid these
local minima.

For the optimization of the mass distribution we utilize the SLSQP
optimization method from SciPy [Jones et al. 2001]. However, other
minimizers can be used as well, as long as the optimizer can han-
dle the required constraint, i.e.,non-negativity of masses and mass
conservation.

7.2 Online optimization

Applying the optimization methods described for the a priori op-
timization to online optimizations would be too expensive due to
computational costs, and as such we aim to use simpler methods.
To optimize the positions we use a simple gradient descent algo-
rithm. As we target GPUs for our optimizations, we use a number of
threads (e.g., 96) per particle that should be refined, where we can
parallelize the evaluation of E g and E /. Here NV denotes the actual
set of neighbors of 0. In addition we use a simple backtracking line

Optimized Refinement for Spatially Adaptive SPH « 1:7

search algorithm in order to determine the gradient step length y, as
we start from an already good initial guess. In our implementation
we use up to 32 gradient steps with 8 backtracking attempts with
an initial step length of y = 0.01 and a backtracking weight § = 0.5.

The mass distribution of the particles, however, relies on a more
complex optimization. The partial derivatives of the discretized ob-
jective function with respect to the mass ratios are significantly
more complex which makes them expensive to evaluate. Further-
more, the memory used to calculate the Hessian, for some non linear
constrained optimization methods, severely limits performance due
to memory restrictions. As such, we chose to adapt an evolutionary
optimization to our problem, which preserves mass conservation,
while not requiring a gradient evaluation.

To avoid explicitly enforcing the constraint } ¢ g i =1, we
define a set of unnormalized values

® = [do,....Pn-11, (29)
from which the set of constrained weights is calculated as
. i
Ali] = o———. (30)
XseS Ps

Note that Eqn. 30 enforces } ¢ }LL = 1 by construction. To determine
S

® we sample a normal distribution X, with mean X and standard
deviation o, for every element as

®[i] = clamp (X ()‘( =10°= 1) , %2) (31)

which we evaluate on every thread associated with a particle, e.g.,giving
us 96 different sets. The values are clamped to avoid negative masses
and very large differences between individual particle weights. We
then evaluate the discretized objective function for all sets and de-
termine the set ®; with the lowest error. Using this set we can then
determine an updated set of weights

o"*1[i] = clamp (X ()‘( =[], 0% = 2—1) , % 2) (32

We repeat this process for 8 iterations as a variance o> ~ 0.004
has no practical influence on the result. We also always consider
® = [1,...,1], as this set of values describes a uniform distribu-
tion of mass. Note that this process is similar to a general random
optimization and evolutionary optimization techniques but with
modifications to enforce a constraint and to be parallelizable. The
overall online optimization process is shown in Algorithm 2.

8 ERROR SMOOTHING

Our minimization process, as will be shown later in the results
in Section 10.1, cannot reduce the refinement error to zero, even
for ideal particle distributions. Thus, we need to utilize further
measures, which can help reduce the instabilities caused by the
refinement error as they are not negligible for incompressible fluid
simulations. In order to achieve this, we will first introduce a non-
constant temporal blending method, followed by an extension of
existing artificial viscosity methods that introduces local viscosity
on newly refined particles.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:8 « Winchenbach and Kolb

Algorithm 2: Our online optimization process applied to every particle
o that is refined into n particles, executed in parallel on 96 threads.

Initialize positions of refined particles X using a priori pattern; Sec. 7.1
Initialize weights of refined particles A to all be n; Eqn. 30
e «— Ex +Eg using X and A; Eqn. 7
// Optimize positions using gradient descent
For g € [1,32]
y < 0.01
Fors € [1,8]
Evaluate V;E with X for i € S; Eqns. 12 and 13
X9[i] « X[i] +yViE
e — En+ Es
Ifed <e
Update X « X9 and stop s iteration
yev-B
// Optimize weights using evolutionary optimization
Initialize ®[i] = 1,Vie S
Apli] < 1/n
e — En +Eg using Ap and X
For !l € [1,8]
For every thread ¢
Sample <I>£ using Eqn. 32
AL[] = @L[i]/Lges OLLs]
eg «— Ex +Eg using Alt and X
Find thread with lowest error ¢ = inf; ef
If eg <ep

Updated)<—d>l,Ab <—Al,eb — ei

8.1 Non-constant temporal blending

The basic idea of a temporal blending method [Orthmann and Kolb
2012] is that quantities are the result of a linear blending operation
between the actual quantities As of refined particles s € S, and an
estimated quantity for the original particle A, as

Alsolended = (1 - Ps)As +ﬁsAo,\-/s € Sy, (33)

where f describes a linear interpolation weight. In order to estimate
the quantity for the original particle Winchenbach et al. [2017] track
the position where the original particle would be at a new time point
t + At as x, using the average velocity of all particles refined from
0as .

ALy Vil 0!, (34)

o o n s;ﬂ s

where n is the number of refined particles from o. Using this esti-
mated position and the standard SPH estimate from Eqn. 1, we can
determine an estimated quantity A, by ignoring all particles refined
from o and adding the interaction of o with itself

Aj .
{mjp—;woj, JEN\S,

(35)
0, j€So

. Ao
Ao =mp EWOO + ;
Winchenbach et al. [2017] additionally apply a clamping oper-
ation to estimated density values p,. The blending weight as de-
scribed by Orthmann and Kolb [2012] and Winchenbach et al. [2017]
is given as

=gl Ap =1, (36)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

where a constant change in blend weight per time step ¢ is utilized.
The initial blend weight is 1, with a fixed change of blend weight per
time step of Af = — é. Here © is usually chosen to be 10 and denotes
the number of time steps over which blending occurs. Instead we
propose to utilize the following blend weight f for any particle i as

At° t 1
i =cl —_ [1— : ],0,— 37
bi Camp(zm oA’ 2 37)

which bases the blend weight f; on a value describing the lifetime
of a particle t;, the current time step At, the time step at the time
of refinement At°, as well as the number of blend steps ©. For a
fixed time step this results in a linearly decreasing weight, per time
step, as prior methods, but instead of starting with an initial blend
weight of 1 we start with a blend weight of % However, if the time

step changes during the blending process, i.e., aa—Att # 0, the blend

weight gets adjusted as well. For increasing time steps, ‘%t > 0 the
blend weight decreases more slowly. For example with At® = 0.1
and © = 10, changing the time step to At = 0.2 halfway through

the blend process causes the blend weight to change from f = %

tof = %. For decreasing time steps aa—Att < 0 the blend weight

instead reverts to f = % This is motivated by the fact that aa—Att >0

indicates a stabilizing overall simulation, whereas 9L () indicates

ot
a destabilizing simulation.

8.2 Local viscosity

In general, the refinement error alters the local density in an in-
compressible fluid, causing visually noticeable instabilities. This
divergence can be smoothed by introducing a higher artificial vis-
cosity. However, increasing the artificial viscosity on a global level
for all particles prevents the simulation of an overall relatively in-
viscid liquid. To avoid this problem, we only introduce additional
artificial viscosity locally, which only affects particles that are in the
process of being blended, e.g., those with f; > 0. XSPH [Monaghan
2002] uses artificial viscosity to modify the velocity of a particle i,
which is given as

mi
oY =0+ ) 0 Wy, (38)
= pj
where c is the viscosity factor. We propose a modified ¢V given by
1, ieSoAjeS,
MV =¢ B, , 39
(140584, e )

which can similarly be applied to a traditional artificial viscosity
formulation [Monaghan 2005] by changing the corresponding vis-
cosity factor v. This term still results in the same global viscosity
applied to all particle interactions ¢, but introduces an additional

(ﬁi+ﬂj)

local viscosity ¢~~~ that only affects interactions of particles
with newly refined particles, as § is 0 for any non-blending parti-
cle, and excludes interactions between refined particles belonging
to the same original particle. This additional term has a maximal
magnitude of 0.5c, i.e.,it increases viscosity locally by at most 50%.
Applying this artificial viscosity in our experiments reduces any
instabilities that remain after our optimized refinement process,
without noticeably changing the global behavior.



9 SIZING-FUNCTIONS

In adaptive SPH a sizing function determines the ideal particle vol-
ume V(x) at a location x and is commonly defined using a distance
function d(x) from the region of interest, e.g.,the fluid surface. Usu-
ally, the sizing function specifies a smooth gradient from a base
volume Wuee at @ maximum distance dpax to the finest volume
Voine = éVbase at the fluid surface with a desired adaptive volume
ratio . Winchenbach et al. [2017] proposed a linear sizing function
that scales the volume directly with the distance, i.e.,V « d, as

l + @ (1 - l)] Woase- (40)
o

Vix) =
(x) @ ¥ dooe

Unless otherwise noted we use this formulation for all of our results
as the linear sizing of volume yields high surface-resolutions at
moderate overall particle counts. However, other sizing functions
might also be used. A practical problem that arises for Eqn. 40 is
that very high adaptive volume ratios, e.g.,1 : 4,000, can result
in a very thin sheets of high-resolution particles at the surface,
which does not provide the expected improvement in quality. This
effect, however, can be avoided by either using deep fluid volumes
to increase the thickness of the highest-resolution sheet, additional
factors in the sizing, e.g.,camera visibility or closeness to an object of
interest (see the torus scene), or by using a different sizing function.
A straight forward replacement for the sizing function in Eqn. 40 is
to scale the particle radius linearly, resulting in a cubic scaling of
particle volume based on surface distance. This sizing function can
be defined as

4 1 d(x) 1 3

V(x) = gf[ (% + dmax (1 %)) r‘base:| . (41)
However, this sizing function generates significantly more particles
for the same adaptive volume ratio, when compared to Eqn. 40,
resulting in a reduction of achieved adaptive volume ratios by a
factor 100. For example, for a scene with an achievable adaptive
volume ratio of 1 : 1,000, 000 using Eqn. 40, using Eqn. 41 would
result in an achievable adaptive volume ratio of 1 : 10, 000, due to
computational resource limitations.

10 RESULTS AND DISCUSSION

All simulations were run on a single Nvidia GeForce RTX 2080ti
GPU with 11 GiB of VRAM, a 32 core AMD Ryzen 3970x with 64
GiB of RAM. Pressure solving was done using DFSPH [Bender and
Koschier 2015] with XSPH [Monaghan 2005] for artificial viscosity,
with fluid air phase interactions based on Gissler et al. [2017], surface
tension effects model from Akinci et al. [2013], with the vorticity
refinement method of Bender et al. [2017], dynamically adjusted
time steps based on the CFL condition [IThmsen et al. 2013] and
the data handling model from Winchenbach and Kolb [2019]. In all
examples we set DFSPH to a density error of 0.01% and a divergence
error of 0.1%. Renderings were done using a custom ray tracing
program, with surface extraction based on the work of Yu and
Turk [2013]. Surface distance calculations were based on a modified
approach of Horvath and Solenthaler [2013]. We use the overall
adaptive method of Winchenbach et al. [2017] in our evaluations,
although our approach is not restricted to this adaptivity approach.
We implemented our approach in the open source SPH framework

Optimized Refinement for Spatially Adaptive SPH « 1:9

Fig. 6. The corner dam break scene with an extracted fluid surfaced based
on [Yu and Turk 2013] for an adaptive volume ratio of 1 : 100.

openMaelstrom [Winchenbach 2019] using the boundary handling
approach of Winchenbach et al. [2020]. For the a priori optimizations
we use SciPy [Jones et al. 2001]

10.1 Test Scenes

We evaluated our approach in seven scenes. The inlet scene involves
a fluid inlet, surrounded by a box, emitting fluid into a basin, which
is agitated by a moving wall on the opposing side of the inlet stream;
see Fig. 1. The corner dam break scene involves an initial fluid
volume located in one corner of the simulation domain colliding with
a regular obstacle in the opposing corner of the domain; see Fig. 6.
The double dam break scene involves two fluid volumes, initially
located in opposing corners of the simulation domain, colliding
with a simple cubical rigid object placed in the center; see Fig. 11.
The simple dam break scene involves a fluid volume in a simple
box shaped domain with no additional obstacles; see Fig. 12. The
stream scene involves a fluid inlet in a simulation with no gravity;
see Fig. 14. The hemisphere dam break scene involves a fluid
volume colliding with a hemisphere on the floor; see Fig. 15. The
moving sphere scene involves a solid sphere slowly being moved
through a resting fluid volume; see Fig. 17. Finally, the torus scene
involves a torus rotating about its vertical axis in a resting basin of
liquid; see Fig. 16. We chose a basic particle radius of r = 0.5m in
all of our scenes, however our method would also work at different
basic particle resolutions.

10.2 A priori position optimization

To evaluate our a priori optimization process, we optimized refine-
ment patterns for 2 to 32 particles using the cubic-spline, quintic-
spline, Wendland 2 and Wendland 4 kernels, using an L-BFGS-B
optimizer [Byrd et al. 1995]; see Fig. 7. The total error shows similar
behavior for different kernel functions, i.e..the refinement pattern
for two particles has high error, with patterns around five to ten
particles having lower errors, and increasing error ratios on higher
particle counts. In our evaluation the cubic-spline function shows
the largest error, an order of magnitude higher than the quintic-
spline function, and the Wendland 4 Kernel to have similar behav-
ior to the quintic-spline function. Additionally, the error on the
neighboring particles is the main component of the overall error,
i.e.,the error on the refined particles is two orders of magnitude

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:10 « Winchenbach and Kolb

2,00E-04 ~

1.00E-04
8.00E-05

6.00E-05
4.00E-05 ~_

2.00E-05

100805
8.00E-06

6.00E-06

4.00E-06

5 10 15 20 2 “n

Fig. 7. The logarithmic error terms E (solid), Ex (dashed) and Eg (dotted)
for a 1: n split using a cubic-spline (blue), quintic-spline (red), Wendland
2 (green) and Wendland 4 (purple) kernel functions in 3D after optimizing
positions only.

smaller. Interestingly, the 1:13 splits results in icosahedron-shaped
refinement patterns for all kernel functions, with one particle at
the center, which is the configuration manually defined by Vacon-
dio et al. [2016].

10.3 A priori mass optimization

To evaluate the mass optimization process we use the patterns
optimized a priori for positions only, see Sec. 10.2, and used a con-
strained trust-region optimizer [Byrd et al. 1987] to optimize the
masses, without changing positions; see Fig. 8. The results are al-
most identical to the position optimization alone and do not show
significant overall improvement for the kernels evaluated here.

10.4 A priori simultaneous optimization

After the a priori optimization of both positions and masses, we
further optimized the refinement patterns, using a constrained trust-
region and SLSQP optimizer [Kraft 1988], by simultaneously opti-
mizing positions and masses; see Fig. 9. The results show an overall
reduction of the error by up to a factor of 2, mostly reducing the
error on the neighboring particles and not on the refined particles
themselves. The overall refinement patterns stay in very similar
overall spatial configurations and get only slightly modified during
the combined optimization.

We tried two different initialization schemes for the combined
optimization, i.e., starting from pre-optimized spatial layouts and
random initialization. While the pre-optimized initialization results
in stable, but potentially local minima, the combined optimization
did not robustly converge when initialized with random positions
and masses, regardless of the optimization algorithm used. Further-
more, comparing our results against the prior refinement patterns
of Winchenbach et al. [2017] (see Fig. 10), we can observe a signifi-
cant reduction in the error terms. Overall, our refinement patterns
provide an improvement of about two orders of magnitude, regard-
ing both the error on refined and neighboring particles, and yield
comparable errors across all refinement ratios.

10.5 Online optimization

Starting with the a priori optimized refinement patterns we used
the double dam break scene to evaluate the errors during an SPH

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

2,00E-04 ~

1.00E-04
8.00E-05

6.00E-05

4.00E-05 ~_

2.00E-05

100E:05
8.00E-06
6.00E-06

4.00E-06

5 10 15 20 2 “n

Fig. 8. The logarithmic error terms E (solid), Ex (dashed) and Eg (dotted)
for a 1: n split using a cubic-spline (blue), quintic-spline (red), Wendland
2 (green) and Wendland 4 (purple) kernel functions in 3D after optimizing
masses (with pre-optimized positions).

E 2\

1.00E-04
8.00E-05

6.00E-05

4.00E-05

2.00E-05

1.00E:05 =\
8.00E:06 -,
6.00E-06

4.00E-06

5 10 15 20 25 30 n

Fig. 9. The logarithmic error terms E (solid), Ex (dashed) and Eg (dotted)
for a 1: n split using a cubic-spline (blue), quintic-spline (red), Wendland 2
(green) and Wendland 4 (purple) kernel function in 3D after simultaneous
optimization (with pre-optimized positions and masses).

1.00E-02

1.00E-05 S T -

2 4 6 8 10 12 14 L37)

Fig. 10. The logarithmic error terms E (solid), En (dashed) and Eg (dotted)
for a 1 : n split for a cubic-spline kernel using our approach (blue) and
manually tuned refinement patterns [Winchenbach et al. 2017].

simulation, using the cubic-spline kernel and refinement patterns
for 2 to 16 particles. In general, using the a priori refinement patterns
worked reasonably well in most cases. We, however, frequently ob-
served instabilities, particularly in the fluid interior that resulted
in local compression, which can destabilize the entire simulation.
Applying our proposed online optimization avoids virtually all of
these interior instabilities, however, instabilities caused by boundary
interactions and by fully constrained particle merging remain (see
also Sec. 4). Overall, applying the online optimization to practical
particle configurations during a simulation results in slightly higher
error values (in average an additional error of E ~ 0.01) compared
to the a priori optimization under ideal particle configurations. This



Optimized Refinement for Spatially Adaptive SPH «  1:11

Fig. 11. The double dam break scene we used to evaluate performance and online optimization, particle velocity color coded from purple (0 m/s) to yellow
(30 m/s). Top left shows a low resolution simulation (» = 0.5m), bottom left an adaptive resolution simulation (rp,se = 0.5m, 128:1 adaptive), top right a uniform
simulation with the same particle count as the adaptive simulation (r = 0.218m) and bottom right a high-resolution simulation (r = 0.1m).

additional error is not reduced when using the same optimization
methods as a priori. Furthermore, outside of removing instabilities,
the online optimization provides significant visual benefits on the
fluid surface as using the exact same pattern on the surface leads
to visibly repeating particle patterns on the surface, which are also
visible in some surface extraction approaches. In the gravity-free
stream scene, our method is capable of producing a smooth fluid
surface in a difficult scenario and provides a smooth resolution gra-
dient from low to high resolution, whereas prior methods were not
able to stably simulate this scene, when enforcing incompressibility;
see Fig. 14. Additionally, this improved behavior on the surface of
an inlet flow allows us to emit particles at a fixed low resolution, as
done in the inlet scene, and only refining the particles once they

become visible. Moreover, evaluating the overall energy of the sim-
ple dam break scene, see Fig. 13, shows a significantly reduced
loss of energy when using all aspects of our method, compared to
prior work. Whilst using the online optimization alone, without
local viscosity, does not provide significant benefits in this regard,
i.e., the blue and green lines are fairly close, using our online opti-
mization allows for the utilization of our local viscosity scheme that
provides a significant reduction in dampening. Using the blending
process, and refinement patterns from Winchenbach et al. [2017]
results in a mostly stable simulation, but causes some instabilities.
For example, at 12 seconds (see Fig. 13) a momentary increase of
the total energy can be observed, which was caused by an instabil-
ity induced by a particle refinement. Reducing the impact of these
momentary increases in energy can be achieved by increasing the

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:12 « Winchenbach and Kolb

Fig. 12. The simple dam break scene we used to evaluate the impact of our proposed blending, local viscosity and online optimization approaches, particle
velocity color coded from purple (0 m/s) to yellow (30 m/s). Top left uses our blending, local viscosity and online optimization, top right uses our blending and
online optimization, bottom left uses our blending and bottom right uses the approach of [Winchenbach et al. 2017]. Velocity color coded.

_
10%

1010 L \/
>
E‘ A
2 X / 55 1260 1265 12.70
w H X 7
109

0 5 10 fime 15 20 25 30

Fig. 13. The overall energy for the simple dam break scene over 30 simu-
lated seconds. The dashed line indicates potential energy, the dotted line
kinetic energy and the solid line indicates total energy. The graph compares
the prior approach from [Winchenbach et al. 2017] (black) against our ap-
proach with our blending, local viscosity and online optimization (red), with
our blending and online optimization (blue) and with only our blending
(green). The top right section shows the orange region closer up.

artificial viscosity, however, this causes an overall significant loss
of detail and a noticeably viscous fluid behavior; see Fig. 12 bottom
right and top right. Note that increasing the artificial viscosity only
reduces the impact of these instabilities but does not prevent them
completely; see Fig. 15 top row. Furthermore, the moving sphere
scene (see close-up Fig. 17) highlights the smooth transition of par-
ticles between resolutions, even as they are close to a boundary
object, using our method.

10.6 Influence of local viscosity and blending

In order to evaluate the influence of our blending scheme and the
local viscosity approach we use the simple dam break scene. We
visually compare the overall flow behavior of using our blending

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fig. 14. The gravity-free stream scene, particle volume color coded from
black to yellow. The prior approach [Winchenbach et al. 2017] (top) is not
able to stably simulate this scenario, whilst our improved method (bottom)
only produces some slight irregular particle distributions.

with local viscosity and online optimization, our blending and online
optimization, our blending and the blending approach of Winchen-
bach et al. [2017] (using their refinement patterns). Comparing our
blending against the prior approach, we only observe a small dif-
ference (Fig. 12 bottom left and bottom right). Adding the online
optimization allows us to lower the overall viscosity of the sim-
ulation, as it becomes more stable, resulting in more flow details.
However, adding the local viscosity allows us to reduce the global
artificial viscosity by a factor of 2, resulting in a significant increase
of more surface details. In the hemisphere dam break scene the



Optimized Refinement for Spatially Adaptive SPH « 1:13

Fig. 15. The hemisphere dam break scene, particle volume color coded from black to white. The top row uses the prior approach, while the bottom row
uses our approach, with the left column using a 1 : 32 adaptive volume ratio and the right column using a 1 : 1000 adaptive volume ratio. Without an online
optimization process (top row), instabilities appear at the boundary that get more pronounced as the adaptive volume ratio increases and would require
significant added viscosity to reduce. Using our approach (bottom row), with its online optimization, yields a stable simulation for both adaptive volume ratios.

A

Fig. 16. The torus scene, particle volume color coded black to white, with
the bottom right showing the overall simulation domain. Our method can
simulate an adaptive volume ratio of up to 1 : 1,000, 000, allowing for fine
details close to the torus but limiting overall computational resources.

induced instabilities from the refinement process using prior ap-
proaches are too high to be compensated by an increased artificial
viscosity and, thus, fully destabilize the simulation at higher adap-
tive volume ratios; see Fig. 15 top right. In contrast to this, our
online optimization process ensures a low refinement error and,
accordingly, enables much higher adaptive volume ratios in difficult
scenarios.

10.7 Performance

To evaluate the performance and efficiency of our method we first
use the double dam break scene; see Fig. 11. In this scene, we
compare the adaptive simulation with a volume ratio of 128:1, a
fixed resolution simulation with the same number of particles as the
adaptive simulation, on average, and a high-resolution simulation

Fig. 17. The moving sphere scene, particle volume color coded from high
(purple) to low (yellow). Here a sphere slowly moves through a pool of liquid
with an adaptive volume ratio of 1 : 20, 000.

Variant | nguiq | radius | ratio | At | Frame | Adaptive
‘ /m /ms /s /ms
Low 168K 0.5 1:1 8.0 0.15
Average | 1.9M | 0.218 1:1 5.8 1.55
High 21M 0.1 1:1 2.0 45.0
Adaptive | 1.9M 0.5 1:128 | 3.8 1.77 325

Table 1. Quantitative comparison for the double dam break scene; see
Fig. 11. All performance numbers are average values with respect to 30
seconds simulation time and timings refer 1/60s of simulation time.

at approximately the finest resolution of the adaptive simulation.
The simulated time is 30 sec; see Table 1 for the quantitative re-
sults. Overall, our method provides comparable performance to a
simulation of equal particle count, with some overhead due to the
usage of an adaptive method. Note that the time per frame of our

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:14 « Winchenbach and Kolb

method minus the time spent on adaptivity related methods is less
than the time per frame of the average resolution simulation due
to a lower time step requiring fewer pressure solver iterations per
frame. Compared to the high-resolution variant, our method with
moderate adaptive volume ratios provides a significant speed-up
of approximately 25 times. Accordingly, the speed-up will become
significantly higher, at higher adaptive volume ratios. However, due
to computational resource limitations, we were not able to provide a
similar comparison against higher uniform resolution. Overall, the
surface appearance of our method is similar to the high-resolution
one, i.e.,considering the tearing of thin fluid sheets, but at orders of
magnitude lower computational costs, even at moderate adaptive
volume ratios. Furthermore, in the torus scene, our method can
focus computational resources in small areas of interest, allowing
for much greater detail without requiring hundreds of millions of
particles in areas that are not of interest. However, scenes of very
high adaptive volume ratios are difficult to render as the adaptivity
induces a highly uneven particle distribution that causes raytrac-
ing acceleration structures, e.g., kd-trees, to be very unbalanced
and, thus, inefficient. Accordingly, even when rendering particles
as spheres, the computational requirements increase linearly with
higher adaptive volume ratios, i.e., O (@), and make rendering very
high ratios computationally difficult. For example, with our com-
putational resources, the hemisphere dam break scene required
4 hours to render a sequence of 30 seconds at an adaptive volume
ratio of 1 : 1,000, the moving sphere scene took 2.5 days to ren-
der at a ratio of 1 : 20,000 for a 20 second sequence, whereas the
torus scene required multiple hours for a single frame at a ratio of
1:1,000, 000.

Finally, at very high adaptive volume ratios, the neighborhood
search becomes computationally increasingly expensive. For exam-
ple, at a ratio of 1 : 1,000, a cell contains approximately 12,000
particles, compared to 12 particles per cell in homogenous resolu-
tions. The data-structure approach of Winchenbach and Kolb [2019]
resolves these problems in most situations; however, due to symmet-
ric interactions of particles, required to ensure stability, the number
of particles queried to find the actual neighbors of a particle can
still be significantly higher than for homogenous resolutions. This
problem can reduced by ensuring a large enough distance between
low and high-resolution particles, e.g.,by setting dmax sufficiently
high in Eqn. 40. Furthermore, limiting the number of neighbors
per particle, see [Winchenbach et al. 2016] and [Winchenbach and
Kolb 2019], can further reduce the problem for actual SPH evalua-
tions, however the neighborhood search is still a computationally
expensive operation.

10.8 Clamping mass distributions

When using an adaptive method, the user specifies a desired volume
ratio between the volume of the smallest Vg, to the volume of the
largest V,5c particles. However, this desired ratio is almost never
exactly achieved. For example, a particle with V = ﬁVbase and
a desired ratio of 1 : 1000 might be split into 3 particles, which
results in particles of volume ﬁVbase, exceeding the desired ra-
tio. Optimizing the mass distribution exacerbates this effect as the
optimization process creates particles of very different volumes. In

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Sec. 7.2, we proposed to clamp the weights ¢ between 0.5 and 2,
which limits the variation in particle sizes. In the simulation shown
in Fig. 6 the clamped optimization process results in an effective
ratio of 1 : 1250 instead of the desired 1 : 512 ratio. Not clamping
the weights resulted in an effective ratio of 1 : 7500. Consequently,
this substantial difference in smallest particle volume requires a
significantly smaller time step, due to the CFL condition.

10.9 Limitations

The adaptive method of Winchenbach et al. [2017], which we base
our contributions on, already demonstrated scaling problems of
certain parameters, e.g., the surface tension parameters used by
Akinci et al. [2013] and parameters used for surface extraction by Yu
and Turk [2013]. That is, these parameters are heavily dependent on
particle sizes, causing visual discontinuities in the surface extraction.
Additionally, Winchenbach et al. [2017] described a problem with
boundary handling methods based on particle representations, due
to size differences, which can be avoided by using non-particle-
based methods, i.e., [Koschier and Bender 2017]. Moreover, particle
merging can lead to instabilities, especially close to boundaries, if
applied with SPH solvers commonly used in computer animation.
Furthermore, if the sizing function is based on the surface distance
of a particle, i.e., using the surface-distance method of Horvath and
Solenthaler [2013], the stability of these methods plays an important
role in the stability of the overall method. Accordingly, some artifacts
may arise due to a non-stable sizing function, i.e., particles sitting on
the surface of a boundary might not be properly detected as surface
particles. Investigating this is beyond the scope of this paper.
Additionally, rendering a simulated fluid surface is an important
aspect in computer animation. However, existing surface extraction
methods are not designed for varying particle resolutions. They
often involve parameters that significantly depend on the particle
resolution and lead to visual artifacts such as missing details in high-
resolution areas, lumpy surfaces in low resolution areas or visible
changes in areas of varying resolution. Because of this, and since
we explicitly need to investigate the varying particle resolution, we
opt for displaying particle-based renderings and only provide an
example of a surface extraction for parameters chosen for the high-
resolution surface; see Fig. 6. For very high adaptive volume ratios
even particle-based renderings become impractical; see Fig. 16.
Please note that in the images we use linearly color coded quan-
tities. Thus, a change from the highest particle volume to a particle
with half the volume, i.e., a 1:2 refinement, results in a visual discon-
tinuity. Nonlinear color mapping could resolve this discontinuity to
some degree, but makes the results more difficult to interpret.

11 CONCLUSIONS

We presented an optimization approach for particle refinement pat-
terns, based on a novel discretized objective function that describes
the error introduced by the particle refinement for symmetric SPH
formulations. This allows us to significantly improve stability and
removes the need for user intuition and parameter tuning, and is ap-
plicable to arbitrary refinement ratios using any kernel function. Our
optimization approach works both a priori, to generate refinement
patterns for ideal particle distributions, and online, to optimize the



refinement pattern during a simulation with respect to the specific
particle neighborhood. We also presented an improved non-linear
blending process that, together with a novel local artificial viscos-
ity formulation, that removes the impact of residual refinement
errors. Our improved process allows for the simulation of highly
adaptive incompressible SPH flows, even in highly turbulent and
low-viscosity situations. Currently, our approach is mostly limited
by other methods it relies upon, i.e., surface extraction methods.

REFERENCES

Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J Guibas. 2007. Adaptively
sampled particle fluids. In ACM Transactions on Graphics (TOG), Vol. 26. Acm, 48.

Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013. Versatile surface tension
and adhesion for SPH fluids. ACM Transactions on Graphics (TOG) 32, 6 (2013), 182.

Nadir Akinci, Markus Thmsen, Gizem Akinci, Barbara Solenthaler, and Matthias
Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans-
actions on Graphics (TOG) 31, 4 (2012), 62.

Ryoichi Ando, Nils Thiirey, and Chris Wojtan. 2013. Highly adaptive liquid simulations
on tetrahedral meshes. ACM Transactions on Graphics (TOG) 32, 4 (2013), 103.

Stefan Band, Christoph Gissler, Andreas Peer, and Matthias Teschner. 2018. MLS
pressure boundaries for divergence-free and viscous SPH fluids. Computers &
Graphics 76 (2018), 37-46.

Stefan Band, Christoph Gissler, and Matthias Teschner. 2017. Moving least squares
boundaries for SPH fluids. In Proceedings of the 13th Workshop on Virtual Reality
Interactions and Physical Simulations. Eurographics Association, 21-28.

Jan Bender and Dan Koschier. 2015. Divergence-free smoothed particle hydrodynamics.
In Proceedings of the 14th ACM SIGGRAPH/Eurographics symposium on computer
animation. ACM, 147-155.

Jan Bender, Dan Koschier, Tassilo Kugelstadt, and Marcel Weiler. 2017. A microp-
olar material model for turbulent SPH fluids. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 1-8.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. A limited memory
algorithm for bound constrained optimization. SIAM Journal on scientific computing
16, 5 (1995), 1190-1208.

Richard H Byrd, Robert B Schnabel, and Gerald A Shultz. 1987. A trust region algorithm
for nonlinearly constrained optimization. SIAM J. Numer. Anal. 24, 5 (1987), 1152—
1170.

Walter Dehnen and Hossam Aly. 2012. Improving convergence in smoothed particle
hydrodynamics simulations without pairing instability. Monthly Notices of the Royal
Astronomical Society 425, 2 (2012), 1068-1082.

Mathieu Desbrun and Marie-Paule Gascuel. 1996. Smoothed particles: A new paradigm
for animating highly deformable bodies. In Computer Animation and Simulation’96.
Springer, 61-76.

Jonathan Feldman. 2006. Dynamic refinement and boundary contact forces in smoothed
particle hydrodynamics with applications in fluid flow problems.

Jonathan A. Feldman and Javier Bonet. 2007. Dynamic refinement and boundary contact
forces in SPH with applications in fluid flow problems. Internat. J. Numer. Methods
Engrg. 72, 3 (2007), 295-324.

Makoto Fujisawa and Kenjiro T Miura. 2015. An efficient boundary handling with a
modified density calculation for SPH. In Computer Graphics Forum, Vol. 34. Wiley
Online Library, 155-162.

Christoph Gissler, Stefan Band, Andreas Peer, Markus Thmsen, and Matthias Teschner.
2017. Generalized drag force for particle-based simulations. Computers & Graphics
69 (2017), 1-11.

Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender, and Matthias Teschner. 2019.
Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling. ACM Transactions
on Graphics (TOG) 38, 1 (2019), 5.

Christopher Jon Horvath and Barbara Solenthaler. 2013. Mass Preserving Multi-Scale
SPH. Technical Report. Emeryville, CA.

Markus Ihmsen, Nadir Akinci, Marc Gissler, and Matthias Teschner. 2010. Boundary
Handling and Adaptive Time-stepping for PCISPH. In Workshop in Virtual Reality
Interactions and Physical Simulation "VRIPHYS" (2010), Kenny Erleben, Jan Bender,
and Matthias Teschner (Eds.). The Eurographics Association. https://doi.org/10.
2312/PE/vriphys/vriphys10/079-088

Markus Thmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias
Teschner. 2013. Implicit incompressible SPH. IEEE transactions on visualization and
computer graphics 20, 3 (2013), 426-435.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001. SciPy: Open source scientific
tools for Python. http://www.scipy.org/ [Online; accessed 2019-04-05].

Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien.
2006. Fluid Animation with Dynamic Meshes. In Proceedings of ACM SIGGRAPH
2006. 820-825. http://graphics.cs.berkeley.edu/papers/Klingner-FAD-2006-08/

Optimized Refinement for Spatially Adaptive SPH « 1:15

Dan Koschier and Jan Bender. 2017. Density maps for improved SPH boundary han-
dling. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. ACM, 1.

Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2019. Smoothed
Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and
Solids. In Eurographics 2019 - Tutorials, Wenzel Jakob and Enrico Puppo (Eds.). The
Eurographics Association, 1-41. https://doi.org/10.2312/egt.20191035

Dieter Kraft. 1988. A software package for sequential quadratic programming.
Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt
(1988).

Chen Li, ChangBo Wang, and Hong Qin. 2015. Novel adaptive SPH with geometric
subdivision for brittle fracture animation of anisotropic materials. The Visual
Computer 31, 6-8 (2015), 937-946.

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and smoke
with an octree data structure. In ACM transactions on graphics (TOG), Vol. 23. ACM,
457-462.

Miles Macklin and Matthias Miiller. 2013. Position based fluids. ACM Transactions on
Graphics (TOG) 32, 4 (2013), 104.

Joseph ] Monaghan. 1992. Smoothed particle hydrodynamics. Annual review of astron-
omy and astrophysics 30, 1 (1992), 543-574.

Joseph ] Monaghan. 2002. SPH compressible turbulence. Monthly Notices of the Royal
Astronomical Society 335, 3 (2002), 843-852.

Joseph J Monaghan. 2005. Smoothed particle hydrodynamics. Reports on progress in
physics 68, 8 (2005), 1703.

Jens Orthmann and Andreas Kolb. 2012. Temporal blending for adaptive SPH. In
Computer Graphics Forum, Vol. 31. Wiley Online Library, 2436-2449.

Daniel J Price. 2012. Smoothed particle hydrodynamics and magnetohydrodynamics. 7.
Comput. Phys. 231, 3 (2012), 759-794.

Stefan Reinhardt, Markus Huber, Bernhard Eberhardt, and Daniel Weiskopf. 2017. Fully
asynchronous SPH simulation. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. 1-10.

Barbara Solenthaler and Markus Gross. 2011. Two-scale particle simulation. In ACM
Transactions on Graphics (TOG), Vol. 30. ACM, 81.

Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible
SPH. In ACM transactions on graphics (TOG), Vol. 28. ACM, 40.

Renato Vacondio, Benedict Rogers, and Peter K. Stansby. 2012. Accurate particle split-
ting for smoothed particle hydrodynamics in shallow water with shock capturing.
International Journal for Numerical Methods in Fluids 69, 8 (2012), 1377-1410.

Renato Vacondio, Benedict Rogers, Peter K. Stansby, and Paolo Mignosa. 2016. Variable
resolution for SPH in three dimensions: Towards optimal splitting and coalescing
for dynamic adaptivity. Computer Methods in Applied Mechanics and Engineering
300 (2016), 442-460.

Renato Vacondio, Benedict Rogers, Peter K. Stansby, Paolo Mignosa, and Jonathan A.
Feldman. 2013. Variable resolution for SPH: a dynamic particle coalescing and
splitting scheme. Computer Methods in Applied Mechanics and Engineering 256
(2013), 132-148.

Rene Winchenbach. 2019. openMaelstrom. http://www.cg.informatik.uni-siegen.de/
openMaelstrom Accessed: 2020-08-04.

Rene Winchenbach, Rustam Akhunov, and Andreas Kolb. 2020. Semi-Analytic Bound-
ary Handling Below Particle Resolution for Smoothed Particle Hydrodynamics. In
Proceedings of ACM SIGGRAPH Asia 2020. 173:1-173:17. https://doi.org/10.1145/
3414685.3417829

Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. 2016. Constrained
Neighbor Lists for SPH-Based Fluid Simulations. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Zurich, Switzerland) (SCA
’16). Eurographics Association, 49-56.

Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. 2017. Infinite Continuous
Adaptivity for Incompressible SPH. ACM Transactions on Graphics (TOG) 36, 4
(2017), 102:1-102:10.

Rene Winchenbach and Andreas Kolb. 2019. Multi-Level-Memory Structures for Adap-
tive SPH Simulations. In Vision, Modeling and Visualization. The Eurographics
Association. https://doi.org/10.2312/vmv.20191323

Jihun Yu and Greg Turk. 2013. Reconstructing surfaces of particle-based fluids using
anisotropic kernels. ACM Transactions on Graphics (TOG) 32, 1 (2013), 5.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.


https://doi.org/10.2312/PE/vriphys/vriphys10/079-088
https://doi.org/10.2312/PE/vriphys/vriphys10/079-088
http://www.scipy.org/
http://graphics.cs.berkeley.edu/papers/Klingner-FAD-2006-08/
https://doi.org/10.2312/egt.20191035
http://www.cg.informatik.uni-siegen.de/openMaelstrom
http://www.cg.informatik.uni-siegen.de/openMaelstrom
https://doi.org/10.1145/3414685.3417829
https://doi.org/10.1145/3414685.3417829
https://doi.org/10.2312/vmv.20191323

	Abstract
	1 Introduction
	2 Related work
	3 Foundations of SPH
	4 Method Overview
	5 Continuous Objective Functions
	6 Discretized Objective Function
	6.1 Spatial derivatives
	6.2 Mass distribution derivatives

	7 optimization methods
	7.1 A priori optimization
	7.2 Online optimization

	8 Error Smoothing
	8.1 Non-constant temporal blending
	8.2 Local viscosity

	9 Sizing-functions
	10 Results and Discussion
	10.1 Test Scenes
	10.2 A priori position optimization
	10.3 A priori mass optimization
	10.4 A priori simultaneous optimization
	10.5 Online optimization
	10.6 Influence of local viscosity and blending
	10.7 Performance
	10.8 Clamping mass distributions
	10.9 Limitations

	11 Conclusions
	References

