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Abstract—Recently deep generative models have achieved impressive progress in modeling the distribution of training data. In this work,
we present for the first time a generative model for 4D light field patches using variational autoencoders to capture the data distribution of
light field patches. We develop a generative model conditioned on the central view of the light field and incorporate this as a prior in an
energy minimization framework to address diverse light field reconstruction tasks. While pure learning-based approaches do achieve
excellent results on each instance of such a problem, their applicability is limited to the specific observation model they have been trained
on. On the contrary, our trained light field generative model can be incorporated as a prior into any model-based optimization approach
and therefore extend to diverse reconstruction tasks including light field view synthesis, spatial-angular super resolution and
reconstruction from coded projections. Our proposed method demonstrates good reconstruction, with performance approaching
end-to-end trained networks, while outperforming traditional model-based approaches on both synthetic and real scenes. Furthermore,
we show that our approach enables reliable light field recovery despite distortions in the input.

F

1 INTRODUCTION

H IGH quality light field (LF) images are vital for a
wide range of applications such as the precise free

viewpoint rendering of a 3D scene or the estimation of
geometries or materials of objects in a scene. Mathematically,
light fields are represented using the plenoptic function that
models the radiance of the scene in spatial and angular
dimensions. Unfortunately, the acquisition of high quality
light field data is commonly restricted by specific constraints
imposed by the underlying camera hardware. Light field
images can be acquired using exhaustive and expensive
hardware setups comprising dozens of cameras in a camera-
rig, or by using plenoptic cameras that utilize microlens arrays
placed in front of the imager of a standard 2D camera [1].
While camera-rigs allow for larger baselines with rather
sparse angular resolution, plenoptic cameras allow recording
dense light fields with a rather small baseline. Plenoptic
cameras have the advantage that they capture a full light
field with a single exposure, but there is a trade-off between
the spatial resolution of each sub-aperture image and the
angular resolution of the light field.

To address the trade-off between spatial and angular
resolution optimally, researchers have proposed to linearly
compress the angular or spatial dimension (or both), giving
rise to the important problem of recovering a light field l
from linear observations i related via

i = Φl + n, (1)

for a (problem dependent) linear operator Φ and additive
noise n.

A classical approach to solve the ill-posed inverse prob-
lem (1) is by energy minimization methods. One designs a

• The authors are with with the Department of Computer Science, University
of Siegen, Siegen 57076. ∗ indicates equal contribution

cost function H depending on the light field in such a way
that low values of H(l) correspond to light fields l with
desirable properties. Subsequently, the solution is determined
by finding the argument that minimizes the energy H , for
example [2]. An alternate traditional approach is to estimate
parameters such as depth map or disparity map which are
subsequently used to synthesize light field [3].

Recent approaches have instead simulated large numbers
of pairs (i, l) and learned a mapping from i to l by a
deep neural network, see [4], [5], [6], [7], [8]. While such
approaches often improve the reconstruction quality in a
specific application significantly, they lack the flexibility of
classical methods and have to be retrained as soon as the
observation model (1) changes.

To exploit the expressive power of neural networks
without loosing the flexibility of energy minimization meth-
ods several hybrid methods have been proposed, e.g. by
using neural networks as proximal operators (often also
referred to as plug-and-play priors, see e.g. [9], [10]), using
the parameterization of convolutional neural networks as
a regularizer [11], or optimizing over the latent space of a
generative model trained on representing the desired type of
solutions, see e.g. [12], [13]. Interestingly, such approaches
have not yet been exploited for LF reconstruction problems
arising from (1), most likely due to the high complexity of
light field data.

In this paper, we introduce for the first time, a generative
model for light field data for generic reconstruction. The key
idea is to model the distribution of light fields using a class of
generative autoencoders [14]. Once the training is complete,
we use our generative model as a prior in different light
field reconstruction problems in an energy minimization
framework. Due to the high complexity and variability of
the light field data, generating light fields in a consistent
fashion is highly challenging. In this paper, we consider only
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Fig. 1. (a) A full 5× 5 LF, with central view marked in red. (b) Central view (CV) extracted from (a), with a small patch of this central view marked in
blue. (c) This patch passes through a convolutional feature extractor to output central view features (CVF). (d) The encoder E1 of the CVAE maps an
LF patch to a latent variable z, while generator G1 of the CVAE maps z back to the LF patch using CVF as an additional input.

small baseline light fields and we address this challenge by
training generative model for light field patches instead of
entire light fields. The advantage of our approach is that the
model learned on patches can readily generalize to a variety
of scene classes, while being small enough to be amenable
for training.

We propose to learn the representation of light field
patches with a variational autoencoder conditioned on the
central view (CVAE). Fig. 1(d) shows the schematic of the
CVAE. The CVAE, consists of an encoder E1 that takes an LF
patch as input and returns a low-dimensional latent code z.
The generator G1 maps this latent code back to the LF patch.
A convolutional feature extractor Fig. 1(c) provides features
of the central view of the light field patch as an additional
input to both the encoder and generator of the CVAE.
Consequently, both the encoder and the generator utilize
the information from the central patch. In the reconstruction
of the light field patch shown in Fig. 1 (d), we observe that
the generator can map the encoded latent variable along
with the features of the central view to a light field patch
which looks similar to the input patch. This indicates that the
encoder has learned to encode properties such as disparity
and occlusion in the latent space, such that the generator can
reconstruct the LF patch just from this latent code and the
central view features.

We solve different LF reconstruction problems using our
generative model namely, view synthesis, spatial angular
super resolution and coded aperture to demonstrate the
flexibility of our approach. We illustrate the efficacy of the
CVAE in different LF reconstruction tasks when the central
view is given. Even when the central view is unavailable, we
can exploit the CVAE to aid LF reconstruction. Experimental
results indicate that our approach performs close to end-to-

end trained networks trained for a specific LF reconstruction
tasks, while retaining the flexibility to address different
reconstruction tasks. Moreover, our approach can effectively
handle different distortions and noise in inputs while
learning-based approaches cannot handle such variations
without retraining.

2 RELATED WORK

Light field reconstruction
Light field reconstruction has been performed from different
observation models, i.e., different instances of (1), such as
coded aperture [15], [16], [17], compressed sensing [2], [18],
novel view synthesis and angular super-resolution [3], [19],
[20], [21], [60], spatial angular super-resolution aided by
high resolution central view [22] and also light-field image
in-painting and focal stack reconstruction in [23]. Since
virtually all such observation models make the solution of
(1) an ill-posed problem, a natural strategy is to consider
regularized energy minimization methods, for example [2],
[21]. Alternately, one could estimate depth maps [24], [25]
or disparity maps which could be subsequently used to
synthesize light fields, see [3], [26] for examples. Recently
learning-based approaches have also been applied in LF
recovery for coded aperture in [6], [8], compressed sensing
in [5], view synthesis and angular super-resolution in [4],
[7], [27], [28], [29], [30], spatial and angular super-resolution
in [31], [32] as well as view extrapolation for wide baseline
light fields in [33], [34].

While neural network-based reconstruction schemes
[4], [5], [6], [7], [8], [30], [32], [35] outperform traditional
approaches to LF reconstruction by a large margin, they are
applicable to specific observation models only, i.e., they are

Authorized licensed use limited to: UB Siegen. Downloaded on November 25,2020 at 08:10:39 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3039841, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

not flexible in adapting to modifications of the observation
model. We note that [36] is a deep network-based approach
for compressive LF recovery, which also takes a mask as an
input to the deep network, achieving flexibility with respect
to different masks for compressive sensing.

Learning light field representations has been addressed
previously since the data is high dimensional and contains
redundant information. Representations based on sparse
coding have been utilized to perform inference tasks such
as disparity estimation [37], [38] and LF reconstruction [2].
Alperovich et al. [39] have shown that an autoencoder trained
on stacks of epipolar-plane images (EPI) can learn useful LF
representations which can be used for supervised training for
disparity estimation and intrinsic decomposition. Recently,
there have been efforts to synthesize a light field from a
single image in [40], [41], [42]. Srinivasan et al. [40] train an
end-to-end network which is based on depth estimation from
single image and subsequent warping to render light field.
CNN-based appearance flow estimation is used in [41], to
accomplish LF synthesis from a single image. Chen et al. [42]
synthesize a light field from single image without estimating
any depth map using deep neural network employing GAN
loss. Generating a light field from a single view can have
several possible solutions. The approaches [40], [41], [42]
output a fixed light field for a given input image. In contrast,
our CVAE can generate different LF patches for the same
input patch, by sampling in the latent distribution.

Generative models
Deep generative models starting from variational autoen-
coders [43], and GANs [44] have emerged as an important
tool for learning data representations in an unsupervised way.
These models have demonstrated an impressive ability in
generating realistic new image samples from specific image
classes [45]. However, training generative models which
can synthesize class independent natural images remains
difficult and often requires huge network architectures like
[46]. Recently, generative models have also been proposed
for videos [47], [48]. However, deep generative modeling to
capture light field distribution has not yet been attempted.

Image reconstruction using generative models
In addition to generating realistic samples of images [45], [49],
generative models have also been used as priors in various
image reconstruction [12], [13], [50], and image manipulation
[51] tasks. Some of these algorithms involve an optimization
in the latent space of the generative model with gradient
descent based updates in [12], [13]. More sophisticated
optimization schemes such as projected gradient descent,
ADMM have also been used in conjunction with GAN
priors for optimization in the latent space [52], [53], [54].
Alternatively, encoder-decoder based optimization has also
been used with gradient-based updates in [50] and with
ADMM in [55]. Such methods have, however, not been
exploited for LF data yet.

3 LIGHT FIELD MEASUREMENT MODEL

Continuous light fields are represented using the plenoptic
function L(x,v) that denotes the radiance of the scene
emitted at the spatial position x and in the angular direction

v. For the discrete light field, we consider the angular
resolution for each axis to be Nv , and the spatial resolution
of each view to be Nx ×Nx. The discrete light field can be
represented in vector form as l ∈ Rk with k = N2

x ·N2
v . In

this work, we attempt to solve 3 different LF reconstruction
problems utilizing generative priors: (i) LF view synthesis/
view upsampling, (ii) Spatial-angular super-resolution aided
by a central view, and (iii) LF recovery from coded aperture
images. Among these 3 models, for LF view synthesis and
spatial angular super-resolution, we assume that the central
view is available. We now consider the specific measurement
models for each of these reconstruction tasks.

View synthesis / Angular super-resolution
The task of view synthesis is to recover all sub-aperture im-
ages (SAIs) from a sparse subset of input views. The forward
model can be considered to be a point-wise multiplication of
the light field with a binary mask M , whose value is 1 at the
known views, and 0 at all other locations, leading to

i(x, v) = L(x, v)�M(x, v). (2)

where � is the point-wise multiplication operator.

Spatial and angular super-resolution using central view
Here the task is to recover all SAIs from a sparse subset
of spatially down-sampled input views. Furthermore, we
assume that the central view is available in full resolution
which aids in spatial upsampling of novel views. The
corresponding measurement model can be written as

i(x, v) = (L(x, v)�M(x, v))↓s(v) . (3)

where M is a binary mask which is non-zero only at known
views, and ↓s(v) is the spatial down-sampling operation of
the known views. However, the central view is available
at full resolution, i.e the downsampling factor is 1, for the
central view.

Coded aperture
Coded aperture images are the result of optical multiplexing
only along angular dimension. In a continuous setting, the
coded aperture image formation model can be written as

i(x) =
∫
L(x, v)M(v)dv (4)

where M represents the coded mask, which depends on the
angles v, but not on the spatial position.

Each of the forward models given in Eqs. (2), (3), (4),is
a linear measurement model, which can be discretized and
represented via (1). In the following, we develop a generative
model for light fields, which can be exploited for solving
such general LF reconstruction problems.

4 LIGHT FIELD GENERATIVE MODEL

Though light field data has high dimensionality, patches
of light fields lie in a manifold of much lower dimension
owing to their redundant structure [39]. Therefore, training
generative models for LF patches instead of full light fields is
a promising alternative. Moreover, the representation learned
on the small LF patches can generalize to a wide variety of
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Fig. 2. (a) Schematic of CVAE. (b) Central view feature (CVF) extraction. (c) Architecture of feature extractor, CVF={CVF1,CVF2}. (d) Schematic of
encoder E1 of CVAE. (e) Schematic of generator G1 of CVAE

different light fields independent of any specific class of
objects.

We introduce generative models for 4D light field patches
based on a class of variational autoencoders known as
Wasserstein autoencoders [14]. In addition to the autoen-
coder MSE loss between input and output, these models have
a maximum mean discrepency (MMD) penalty between the
encoder distribution, and the prior latent distribution, instead
of the Kullback-Leibler (KL) divergence penalty found in the
traditional variational autoencoders. The loss function is
given as

Total loss = MSE loss + λ · MMD loss (5)

We propose a generative model for LF patches, a condi-
tional variational autoencoder (CVAE), conditioned on the
central view. We trained the model for LF patches of spatial
resolution 25× 25. The angular resolution of the LF patch is
chosen to be the same as the angular resolution of the light
field to be reconstructed (5× 5 and 7× 7 in our experiments).

4.1 Conditional Generative Model
Although we restrict the spatial extent of a LF patch to 25×25
pixels, due to diverse possibilities of texture content, parallax
effects and occlusion effects, representing any patch with a
generative model would still be a difficult task. Therefore,
we develop a model which is conditioned on the patch
corresponding to the central view. With the central patch
being fed into the network as an additional input, the encoder
only needs to encode the additional information to represent
the parallax and occlusion effects in the light field. The
decoder learns to utilize the information from the central
view to map the latent variable to the light field.

The schematic of the CVAE with its main components is il-
lustrated in Fig. 2. Features of central view are extracted from
a convolutional feature extractor at different layers (CVF1

and CVF2), which are together referred to here as the central
view features (CVF). These are simultaneously fed to both
encoder and generator. The feature extractor is jointly trained
along with the encoder and generator. We employ 3D and

2D convolutions in our architecture as an alternative to
computationally expensive 4D convolutions. To realize this,
the encoder blocks Enc1 and Enc2 in E1 (Fig. 2 (d)) take the
input 4D LF patch as a set of 3D LF patches by splitting
them along the horizontal and vertical view dimensions,
respectively. The outputs of these encoder blocks are together
fed into a common encoder Enc3, along with a set of central
view features CVF1. The output of Enc3 together with central
view features CVF2 are further encoded by fully connected
layers to output latent code z. The generator G1, takes in the
latent code and central view features CVF2 which first pass
through linear fully connected layers, followed by a common
partial decoder Dec1. This decoder’s output together with
central view features CVF1, simultaneously pass through the
row and column decoders Dec2 and Dec3. These features
are together input to a final 4D convolutional layer. Further
details of CVAE network architecture for both the conditional
models are provided in the supplementary material.

4.2 Reconstruction from Generative Model
To illustrate the performance of the CVAE, Fig. 3 depicts
sample reconstructions (encoding and decoding) from our
CVAE for 4 LF patches. We handle colored light field inputs
by reconstructing each color channel separately. In the second
row of Fig. 3, we observe that our CVAE can reconstruct the
input LF patches quite accurately. It captures the disparity
across different views, and is able to realistically estimate
pixel values that are not present in the central view due to the
parallax. To demonstrate the efficacy of the CVAE latent code
in encapsulating different properties of the input LF patch,
we show the generation of a light field from an arbitrarily
chosen central patch in the third row of Fig. 3. The latent
representation of the LF patch shown in the first row is used
for generating this output. As we can see, the result is a new
LF patch with disparity values similar to the input LF patch
in the first row of Fig. 3. This indicates that the latent vector
indeed encodes an understanding of the geometry of the
scene. In the following, we develop LF recovery techniques
which exploit the strength of our CVAE.
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Fig. 3. Sample reconstruction from CVAE. The first two rows are input LF patches and corresponding reconstructions from CVAE. The third row
shows the CVAE mapping of an arbitrary central patch to an LF patch with disparity similar to input LF patch, using the latent code corresponding to
the second row. Reported numbers are normalized RMSE (NMSE) values of the reconstructions with respect to the corresponding input patches.

5 GENERIC LIGHT FIELD RECOVERY

Light field recovery from measurements as seen in Sec. 3
is an inherently ill-posed problem, and needs strong priors
to obtain acceptable solutions. We consider two scenarios:
i) the central view is available, and ii) the central view is not
available. We now proceed to solve the LF reconstruction
problems in both the cases using our CVAE from Sec. 4.

Central view available
In some LF recovery applications such as view synthesis,
or spatial angular super-resolution, one can assume that
the central view is known. For such scenarios, we utilize
our CVAE model for reconstruction. Given the central view,
the generator of CVAE is trained to always map a latent
code to a light field patch. Therefore, we optimize over
the latent space similar to [12], [13] to obtain a latent
code that best captures the scene geometry corresponding
to the observations. However, unlike [12], [13], we use a
conditioned generative model,which additionally takes the
central view as input. More specifically, we solve

min
z
‖i−ΦG1(z)‖22 (6)

where G1 is the generator of CVAE and Φ is the operator
corresponding to measurement from angular subsampled

views or from spatial and angular subsampled views, assum-
ing the central view is present. We minimize (6) locally using
Adam [56], a gradient-based optimization algorithm. After
finding a local minimum ẑ of (6), G1(ẑ) is considered to be
our final light field estimate.

Central view not available
In LF recovery applications such as recovery from coded
aperture, the central view is not available. Even in this case,
we can utilize the generator of CVAE for reconstruction.
The only difference is that we now optimize both for the
latent code z and the central view c. We solve the following
optimization problem

min
z,c
‖i−ΦG1(z, c)‖22, (7)

where Φ is the forward measurement operator. We solve this
problem using Adam optimizer to obtain local minimizers ẑ
and ĉ. We find our final LF estimate as G1(ẑ, ĉ).

6 EXPERIMENTS

To be able to compare with recent network-based approaches
on small baseline light fields, we evaluate view synthesis
from sparsely sampled views for LFs with angular reso-
lution 7 × 7. We evaluate LF recovery for view synthesis,
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Fig. 4. Result of 7× 7 view synthesis for the LF ‘Cars’. Shown is the novel view at angular location (6,6), depicted as gray location in the inset. The
mask for selecting 5 input views is shown in the inset of ground truth view. Figures in the first row a)−c) depict ground truth view, and the results of
our approach using 5 input views with and without overlapping patches in that order. Figures d)−f) in the second row provide visual comparison
of novel views generated using approach of Wu et al. [28], and our approach using 3× 3 angular views. Error maps and zoomed in patches are
depicted along with corresponding novel views, with error magnified by a factor of 10. Results best viewed when zoomed in.

spatial-angular super-resolution and coded aperture for LFs
with angular resolution 5 × 5. We will make our code
publicly available at https://github.com/KVGandikota/
Generative-Light-Field-Models/.

6.1 Experimental Setup
Baselines:
We obtain the performance references for the reconstruction
tasks using both, model- and network-based approaches
for comparisons. For 7 × 7 view synthesis, we compare
with the recent neural network-based technique of [28].
For comparison with a traditional approach, we report the
performance of the depth-based approach from [28].

The dictionary-based approach of Marwah et al. [2],
developed for compressed sensing, is a flexible technique,
which can be used with any observation model. We use their
open sourced code1 which is available for LFs of angular
resolution 5× 5. We use this as a reference for model-based
approaches on all the 3 recovery tasks for 5 × 5 LFs. For
the best performance of [2], we always compute their result
obtained by averaging over overlapping patches with stride
1. Additionally, for comparison with a recent neural network
baseline, we compare with [60] for 5 × 5 view synthesis.
We use their publicly available code to retrain their model
for this task. For reconstruction from coded aperture we
compare to the neural network based approach of [6].

Datasets:
For training the generative models, we used the following
datasets: i) The training set used by Kalantari et al. [4],
ii) the training set used in CNN-based depth estimation
for light fields by Heber et al. [57], and iii) the training

1. http://web.media.mit.edu/∼gordonw/
CompressiveLightFieldPhotography/

set used in encoder-decoder-based light field intrinsics [39].
These datasets contain a significant number of samples
with effects such as occlusions and specular reflections.
We create a training set by randomly cropping 250K LF
patches of resolution 5 × 5 × 25 × 25 in gray scale from
these datasets and use them for training the CVAE with
angular resolution 5× 5. Similarly, a training set of 250K LF
patches of resolution 7 × 7 × 25 × 25 was created to train
the CVAE with angular resolution 7× 7. The datasets from
[39] and [57] have high disparity, therefore we down-scale
those light fields spatially by a factor of 1.4 before extracting
patches from this data. We investigate the effect of training
with these datasets by training a separate CVAE on each of
them. The comparison of sample reconstructions using these
models with our model trained on all the three datasets is
provided in the supplementary material. Furthermore, we
also study the performance of our generative model for LF
patches of different spatial extents, which is provided in the
supplementary material.

We evaluate the light field recovery on synthetic and
real datasets. Specifically, for LFs of angular resolution
5 × 5, we evaluate the recovery from all the tasks on the
light fields “Dino”, “Kitchen”, “Medieval 2” and “Tower”
from the synthetic New HCI dataset [58]. Furthermore, we
evaluate coded aperture reconstruction on the real light field
from [6]. We evaluate view synthesis for LFs of angular
resolution 7 × 7 on the test set of [4] which contains 30
real light fields captured by a Lytro Illum. Further, we
also evaluate 7 × 7 view synthesis on the LFs ‘Reflective
9’, ‘Reflective 13’, ‘Reflective 22’, ‘Reflective 27’, ‘Reflective
29’, ‘Occlusions 16’, and ‘Bikes12’ from Stanford Lytro light
field archive [59], which contain significant reflections, trans-
parencies, specularities and occlusions.

Authorized licensed use limited to: UB Siegen. Downloaded on November 25,2020 at 08:10:39 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3039841, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Dataset 3× 3→ 7× 7 5 views→ 7× 7
[28] Ours OursOL [24]† Ours OursOL

30 scenes [4] 41.16 38.53 39.77 34.42 38.29 39.57
7scenes [59] 41.24 39.62 40.48 - 39.07 40.00

TABLE 1
Average PSNR of novel views in dB for 7× 7 view synthesis. † indicates

PSNR values of [24] are as reported in [28].

Clean σ = 0.05 σ = 0.1 S&P 50% pixels
[28] 36.02 33.34 29.95 25.02 13.60

Ours 31.74 31.75 31.67 31.66 31.68
OursOL 33.45 33.47 33.41 33.35 33.39

TABLE 2
3× 3→ 7× 7 view synthesis result on the LF ‘Cars’, when input views
other than central view are corrupted. Shown are PSNR values in dB

Generative model training:
We used Pytorch 1.1.0 for all our experiments. For training
the CVAEs, we use mini-batches of size 128 and trained the
models for 5×5 and 7×7 views with spatial extent of 25×25
pixels for 150 epochs. We used Adam optimizer [56], with
β1 = 0.5 and β2 = 0.999. We set the initial learning rate to
10−3, which is decreased by a factor of 2 after 30 epochs,
further by a factor of 5 after first 50 epochs and finally by a
factor of 10 after 100 epochs. For both the models, we choose
the factor λ in eq. (5) to be 100.

LF recovery:
Since our generative models are trained on gray scale patches,
we divide the input into patches of suitable dimensions and
use our generative models on all color channels separately.
We initialize the latent code z with a random sample drawn
from the same posterior distribution that was used for the
latent space during the training of the generative model (i.e.
isotropic Gaussian with variance of 2). We observed that
different random initializations of z lead to similar quality of
reconstruction. For recovery from coded aperture, the central
view is not available. In this case, we initialize the central
view with the coded image itself scaled between 0 and 1. We
solve the LF reconstruction tasks using Adam optimizer as
discussed in Sec. 5, until convergence.

6.2 Results
We now evaluate the efficacy of our approach on different LF
recovery tasks. We perform quantitative evaluation in terms
of PSNR and also qualitative evaluation by comparing light
field views of our approach with ground truth and baseline
methods and show the corresponding error maps. Additional
visual comparisons and videos of the reconstructed LFs are
provided in the supplementary material.

6.2.1 Central View Available
View synthesis 7× 7:
We compare our approach with recent CNN-based technique
of Wu et al. [28] for LF reconstruction from sparsely sampled
input views. We consider upsampling the angular resolution
from 3 × 3 to 7 × 7. Since central view is available for this
task, our approach uses CVAE for reconstruction. We use the
publicly available trained model of [28]2 for evaluating their

2. https://github.com/GaochangWu/lfepicnn

approach. We also report the performance of a traditional
depth estimation-based approach from [28] for this task,
where the depth is estimated using the approach of Jeon et
al. [24], followed by a novel view synthesis by warping the
input views following [26]. Apart from the specific case of
3× 3 input views, our method can still be applicable if any
arbitrary set of views are given as input along with the
central view. To demonstrate this flexibility, we also show
7× 7 LF reconstruction from 5 randomly chosen input views
including the central view. The mask used for selecting the 5
input views is provided in the inset of Fig. 4 a). Since view
extrapolations cannot be handled by Wu et al. [28], we show
visual comparison only with the ground truth for this task.

Results of our quantitative evaluation on 30 real LFs of
Kalantari [4] test set and 7 scenes selected from Stanford
Lytro dataset [59] are provided in Tab. 1. ‘OursOL’ indicates
our reconstruction using overlapping patches with stride 5.
Following Wu et a.l [28], we show the result of average PSNR
of the luminance component of novel synthesized views.
For brevity, we report only average PSNRs of the LFs in
each test set. Quantitative comparisons for individual LFs
are provided in the supplementary material. For the task
of view upsampling from 3 × 3 to 7 × 7, we compute the
average PSNRs of the 40 novel views. For this task, we find
that our performance is approaching the CNN-based method
of [28], with a PSNR reduction of only 1.4 dB when we
use overlapping patches, and 2.6 dB when non-overlapping
patches are used on Kalantari test set [4]. Our approach also
outperforms the depth-based approach using the method of
Jeon et al. [24] by a large margin. Further, our performance is
close to the method of [28] on the scenes selected from [59]
as well, with PSNR reduction of only 0.8 dB and 1.6 dB
respectively, when overlapping and non-overlapping patches
are used. Even when the number of known views is reduced
to 5, our average PSNR of 44 novel views is 39.57 dB on the
30 scenes [4] with a reduction of only 0.2 dB, and average
PSNR of 40.00 dB with a reduction of 0.48 dB on the 7 scenes
from [59], demonstrating the strength of our approach.

A qualitative comparison of the synthesized views for
the task of 7× 7 view synthesis is provided in Fig. 4 for the
LF ‘Cars’ from the 30 scenes test set. The newly synthesized
view at angular location (6, 6) (depicted by gray location in
the inset) are shown. The first row of Fig. 4 (a)−(c) gives
a visual comparison of the results of our approach with
the ground truth when 5 input views are used. Visually,
it can be seen that our approach provides a reasonable
reconstruction quality even when using a limited number
of input views. The second row of Fig. 4 (d)−(f) compares
our method with the approach of Wu et al. [28], for the
task of 3 × 3 → 7 × 7 angular super resolution. In terms
of reconstruction quality, our approach performs slightly
worse than [28]. However, this is to be expected as [28]
uses network specifically trained for this task. In contrast,
we obtain a comparable reconstruction quality with flexible
input views. It can be noticed from the error maps and
zoomed in patches that our approach preserves the details
fairly well. Further, we can observe that there are errors at
the patch boundaries when non-overlapping are used. These
errors are reduced due to averaging effect when overlapping
patches are used.

In Fig. 5, we illustrate our reconstruction of the LF
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a) Ground truth b) [28] 35.76 dB c) OursOL35.06 dB a) b) c) b) [28] c) OursOL

Fig. 5. Visual comparison of our synthesized views (depicted by gray locations in the inset) for the task of 3× 3→ 7× 7 view synthesis for the LF
‘Reflective13’. Columns 1 − 3 depict a) the ground truth views, the result using b) Wu et al. [28] and c) our approach using overlapping patches
respectively. Columns 4− 6, the patches of columns 1− 3. Columns 7− 8 depict the error maps corresponding to columns 2− 3 with error magnified
by a factor of 10. The brightness of the zoomed in patches is increased for better illustration. Average PSNR in dB of 40 novel views is shown.

‘Reflective13’ from the Stanford Lytro dataset and compare it
with the approach of [28] for the task of 3 × 3 → 7 × 7
view synthesis. The novel synthesized views at angular
locations (1, 2) and (7, 2) (depicted by gray location in the
inset of ground truth) are shown. This is a challenging scene
which contains a highly reflective ball in the foreground,
and high disparities (4 pixels between adjacent views) in
the background. We can observe from the synthesized views
and corresponding error maps that our approach provides
reconstructions which are slightly worse than [28]. On closer
inspection of the zoomed in patches, we can observe that
our method can reconstruct well the reflections which are
slowly varying across views (patches on the top in each row).
We observe reasonable reconstruction even when there is
a high variability in the reflections across views (patches
on the bottom). However, our approach cannot handle high
disparities in the background causing ghosting artifacts, as
seen in the corresponding regions in the reconstructions,
which are indicated by red arrows in the ground truth views.
We observe that the approach [28] also cannot handle such
large disparities, which are also evident in the error maps.

To further demonstrate our flexibility vis-a-vis end to end
trained networks, we consider the task of 3 × 3 → 7 × 7
angular super resolution and compare our reconstruction
with Wu et al. [28], when inputs are corrupted. We assume
that the central view is clean and the remaining 8 views
are corrupted by different distortions. The qualitative and
quantitative comparison of our reconstructions with the
approach of Wu et al. [28], with corrupted input views
is provided in Fig. 6 and in Tab. 2 for the LF ‘Cars’. The
reconstructed view at angular location (6, 6) is depicted. With
additive Gaussian noise of standard deviation σ = 0.05 in 8
input views, the PSNR of the reconstructed views using [28]
drops from 36.02 dB to 33.34 dB. When we increase the noise
level to σ = 0.1 this value further drops to 29.95 dB. This
degradation in the quality of reconstruction is also evident
from the error maps in Fig. 6. In contrast, our reconstruction
quality is robust to addition of noise.

We also consider corruption of input views with salt-
and-pepper noise with a probability of 0.05. Even in this
case, the performance of [28] is severely affected, with PSNR
reduction of 11 dB compared to the clean case, where as
our performance only shows a marginal decrease of 0.1 dB.

LF Mask M1 Mask M2

Ours OursOL [2] [60] Ours OursOL [2] [60]
Dino 39.57 41.53 34.61 43.68 38.18 39.83 32.99 42.46
Kitchen 33.59 34.95 30.80 37.01 33.06 34.41 29.83 36.29
Medieval2 34.86 35.94 32.19 36.75 34.55 35.66 31.51 36.25
Tower 31.24 32.30 28.45 34.00 30.28 31.31 27.67 32.97

TABLE 3
5× 5 View Synthesis: PSNR values in dB

We note that we employ an L1 loss, as it is more suited
to handle salt and pepper noise when compared to the
traditional L2 loss in Eq.(6). This demonstrates the flexibility
of our energy minimization-based approach in adapting to
different noise statistics. When we use an L2 loss instead,
our PSNR dropped by about 2 dB compared to the clean
case. Finally, when 50% pixels are randomly dropped from
the 8 known views, the neural network-based approach of
[28], completely fails in reconstruction. In contrast, we can
incorporate an additional mask corresponding to the missing
pixel locations in our optimization, and consequently our
reconstructions remain robust to this distortion. We can also
accomplish LF recovery when the input views, including
the central view are corrupted. As shown in Eq. (7), this
requires optimizing jointly for the latent code and the central
view. We demonstrate with additional experiments in the
supplementary material that our approach can provide a
reasonable reconstruction, even when the central view is
significantly corrupted. We find that using an additional total-
variation (TV) penalty on the central view further improves
our performance under noise.

View synthesis 5× 5:
We compare our approach for view synthesis with [2] and
[60] for two different input views using masks M1 and M2.
For evaluating the performance of [60] we use separate
networks trained end-to-end for view synthesis with each
of the masks. A qualitative comparison of the synthesized
views is provided for the LF ‘Dino’ for mask M1 and M2

in Fig. 7. The locations of known views are depicted in
white in the inset of Fig. 7, and gray represents the location
of the reconstructed view. Extrapolating novel views away
from known views is difficult. Even for this challenging
case, we observe the quality of our reconstruction with
both, overlapping and non-overlapping patches, is better and
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Fig. 6. Novel view at angular location (6, 6) for the task 3 × 3 → 7 × 7
view synthesis. Columns 1− 3 depict the result using Wu et al. [28] and
our approach using non-overlapping patches and overlapping patches
respectively. Shown are the zoomed in patches of the reconstructed
views and error maps with error magnified by a factor of 10. Among the
3× 3 input views, central view is clean. For the the remaining 8 views, we
consider the following corruptions (rows i−iv) i) additive Gaussian noise
σ = 0.05. ii) additive Gaussian noise σ = 0.1 iii) salt and pepper noise
with a probability of occurrence of 0.05. iv) 50% pixels randomly dropped
from views. Results best viewed by zooming in.

sharper compared to the reconstruction from the dictionary-
based approach of [2]. The neural network approach of [60]
provides even better reconstruction, which is expected with
end-to-end networks specifically trained for each of the
masks. This is also evident from the error maps shown in
Fig. 7. We can observe that averaging effect of overlapping
patches mitigates the errors at the patch boundaries in
comparison to our approach without overlapping patches.

The results of our quantitative evaluation on synthetic
HCI data are summarized in Tab. 3, where the PSNR of the
reconstructed light fields is presented. Our approach without
considering overlapping patches is superior by 2.63 dB
and 3.13 dB to the dictionary-based approach of [2] with
overlapping patches with stride 1, for masks M1 and M2,
respectively in terms of average PSNR. Our performance
further improves when we consider overlapping patches
with stride 5, where our approach is better by 4 dB and
4.4 dB, respectively for M1 and M2. Further, the neural
network based approach of [60] performs the best, with an
improvement in average PSNR of 1.69 dB compared to our

LF Mask M1 Mask M2

Ours OursOL [2] Ours OursOL [2]
Dino 37.18 39.71 33.07 35.84 38.11 31.70
Kitchen 31.60 33.30 28.98 30.95 32.67 28.10
Medieval2 33.27 34.87 33.26 32.78 34.50 30.26
Tower 29.95 31.15 27.93 28.99 30.23 26.93

TABLE 4
Spatial-angular super-resolution: PSNR values in dB

approach with overlapping patches for both M1 and M2.

Spatial and angular super-resolution 5× 5:
Fig. 8 provides a visual comparison of our LF reconstruction
with the approach of [2] for the task of spatial-angular super-
resolution on the LF ‘Kitchen’. The masks used for the
measurements are provided in the inset of ground truth
view of the LF ‘Kitchen’ in Fig. 8. The central view is
available in full resolution and is depicted in white. Views
in red are spatially down-sampled by a factor of 3. It can be
observed that our reconstruction of the novel view (depicted
in gray in the inset) with both overlapping patches and
non-overlapping patches is of superior quality compared to
the reconstruction from the approach of [2]. This is further
substantiated by the error maps shown in the Fig. 8, which
depict a much lower error in our reconstruction.

Tab. 4 provides a quantitative comparison of our method
with the dictionary-based approach of [2]. Again, on average
our approach outperforms the approach of Marwah et al. [2]
by more than 2 dB without, and by more than 4 dB with
overlapping patches.

6.2.2 Central View Unavailable
Coded aperture 5× 5:
We evaluate the LF recovery from 2 coded aperture obser-
vations for our approach, [6] and [2], using two different
coded mask sets ‘Normal’ and ‘Rotated’ (available from
[6]), and denote them by M1 and M2, respectively. The
quantitative evaluation on synthetic data is summarized
in Tab. 5. To evaluate the approach of [6], we use the publicly
available trained reconstruction network corresponding to
M1. For M2, we reproduce the values reported in [6], since
a trained network is not publicly available. Even without
overlapping patches, our method gives superior PSNR values
when compared to the model-based approach of [2], with
improvement of 1.6 dB for both M1 and M2. However, our
method is worse by 2.7 dB and 2.3 dB for M1 and M2

when compared to [6]. When we use overlapping patches
with stride 5, the average PSNR on the test set for our
method is comparable to the end-to-end trained model of
[6] and is better by 3.97 dB and 3.71 dB for M1 and M2

when compared to [2]. For qualitative evaluation, we show
sample LF reconstructions using coded masks M1 on the
LFs ‘Dino’ and ‘Medieval’ in Fig. 9. We can observe that
our approach provides a reasonably good recovery, with
performance comparable to an end-to-end trained network.
Our recovery is also more accurate when compared to [2].

To demonstrate the vulnerability of the end-to-end
trained reconstruction pipeline, we altered the coded aper-
ture mask from the set of M1 and then perform LF recovery
using the method of [6]. Minor changes were applied to only
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Fig. 7. Result of view synthesis of the LF ‘Dino’. Masks M1 and M2 are provided as inset of the ground truth views. The columns 1− 5 show the
views depicted by gray location in the inset corresponding to i) the ground truth, and synthesized novel views using ii) the method of [60] iii)−iv)
our approach with overlapping patches and without overlapping patches and v) the method of [2], respectively. Columns 6− 9 illustrate the error
maps corresponding to the reconstructed views in columns 2− 5, with errors magnified by a factor of 10. Shown are the PSNR values in dB of the
reconstructed LFs. (Results best viewed zoomed in).
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Fig. 8. Result of spatial angular super-resolution of the LF ‘Kitchen’. Masks M1 and M2 are provided as inset of the ground truth views. Central view
in full resolution is depicted in white. Measurements at the locations in red are spatially down-sampled by a factor of 3. The columns 1− 4 from left to
right show the views depicted by gray location in the inset corresponding to the i) ground truth, and synthesized views using ii)−iii) our approach
with overlapping patches and without overlapping patches, and iv) approach of [2]. Columns 5− 7 illustrate the error maps corresponding to the
reconstructed views in columns 2− 4, with error magnified by a factor of 10.(Results best viewed zoomed in)

LF Mask M1 Mask M2

Ours OursOL [6] [2] Ours OursOL [6]† [2]
Dino 34.97 38.46 38.7 33.28 34.34 38.0 37.5 32.86
Kitchen 31.07 33.29 33.78 29 31.03 33.14 33 29.40
Medieval2 32.90 35.19 34.74 31.37 32.49 34.84 34 31.42
Tower 29.02 30.43 31.63 27.81 28.47 29.86 31 27.33

TABLE 5
Coded aperture reconstruction: PSNR values in dB. [6]† indicates

approximate PSNR values for the mask M2 are taken from [6].

one of the two masks in the set M1. First, we swap the values
of the mask at locations with coordinates (0, 0) and (0, 2).
With this tiny change, the performance of [6] dropped from
38.7 db to 24.3 db on the ‘Dino’ LF. When we swap the values
at three sets of location, the method of [6] completely failed to
reconstruct a meaningful light field (yielding a PSNR of 12.2
dB). In contrast, the effect of these changes on our approach
is marginal, since our optimization scheme explicitly takes
the mask as an input. With the first swap in the mask, our
PSNR changed to 38.52 dB, compared to 38.46 dB of the
original mask, when we use overlapping patches. With three
swaps, the PSNR value for our reconstruction is 38.19 dB,
demonstrating our flexibility. Views from the reconstructed

LFs are shown in Fig. 10.
We apply our reconstruction method on the real observa-

tions obtained in the work of [6]. In their setup, the black-
aperture image was not completely dark. Consequently, the
image obtained from the black aperture was subtracted from
the observations. In Fig. 11, we show a specific view obtained
from our reconstruction along with the corresponding result
obtained by the authors of [6]. Close-ups near the occlusion
boundaries for two different views (with appropriate vertical
alignment) in Fig. 11 (c) and (d) show a comparable quality
of our approach (left columns) to the results obtains by [6]
(right columns).

We also considered other model-based approaches [21],
[23] for comparison. We note that these works have not
considered view synthesis with arbitrary masks or coded
aperture reconstruction. As [21] uses an iterative approach
that regularizes the epipolar plane images, it works well
with a regular pattern of input views. We found it not to be
directly applicable for view extrapolations while our model
remains flexible with respect to the pattern of input views.
Moreover, we found that [23] crucially depends on a good
initial estimate for view extrapolation. Finally, we found that
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Fig. 9. Coded aperture reconstruction using the coded mask M1 of [6]. The column 1 depicts the the bottom right ground truth LF view. Columns
2− 4 depict the reconstructed views using [6], our approach and [2] respectively. The error maps corresponding to the views in columns 2− 4 are
illustrated in the columns 5− 7, with errors magnified by a factor of 10. PSNR values of recovered LFs are shown. (Results best viewed zoomed in).

(a) Ours 38.19dB (b) [6] 24.4dB (c) [6] 12.2dB

Fig. 10. Effect of minor alterations to the coded mask on reconstruction.
Shown is the top left view. (a) Our reconstruction with 3 swaps in the
mask. (b) Reconstruction using [6] with 1 swap. (c Reconstruction using
[6] with 3 swaps.

the performance of [23] on coded aperture reconstruction
was worse than Marwah et al. [2]. Therefore, we have not
included these comparisons in our results.

Due to patch based processing, and optimization steps
required to reconstruct light fields, our reconstruction times
are longer. For 7 × 7 view synthesis, our approach takes
nearly 12 minutes on a Nvidia GeForce RTX 2080 Ti machine
to reconstruct a full Lytro image (of size 376×541×3×7×7),
which requires 150 update steps per patch. For 5 × 5
view synthesis and spatial-angular super-resolution, our
approach requires 12 minutes to reconstruct LF of size
512 × 512 × 3 × 5 × 5, when 250 update steps per patch
are used. When overlapping patches with stride 5 are used,
our reconstruction times increase by a factor of 25. Another
limitation of our approach is that our reconstructions are
not satisfactory when the disparity between adjacent views
is greater than two pixels. Since the spatial extent of our
generative models is only 25 × 25, it is difficult for our
model to capture large disparities in a low-dimensional latent
representation, as the views tend to be significantly different.
To overcome this limitation, one needs to train a generative
model with higher capacity by using LF patches of larger
spatial extent. Since our work is the first attempt to develop
generative light field models, we consider this to be beyond
the scope of this work.

7 CONCLUSION

We developed the first autoencoder-based generative model
conditioned on the central view for 4D light field patches
for generic reconstruction. We developed algorithms for
generic light field reconstruction by exploiting the strengths
of our generative model and evaluated our approach on three
different LF reconstruction tasks. Experimental results indi-
cate that our approach leads to high quality reconstructions
with a performance superior to other optimization-based
approaches, while being only slightly worse but significantly
more flexible and robust than end-to-end trained networks.
We believe that our experimental results are very promising
and can serve as a starting point for further research on
generative light field models.
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