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Zusammenfassung

Heutzutage ist die Strömungsmechanik ein wichtiges Forschungsgebiet in vie-
len Bereichen, z. B. bei Spezialeffekten in Filmen, bei der Planung von
Küstenstrukturen im Ingenieurwesen oder bei der Simulation astrophysikalischer
Phänomene. Obwohl jedes dieser Probleme sehr unterschiedliche Szenarien bein-
haltet, verwenden sie alle dasselbe zugrunde liegende physikalische Modell für
Flüssigkeitsströmungen, und daher sind auch die Simulationsansätze, die zur Sim-
ulation des Modells in jedem Problem verwendet werden, identisch. Ein häufig
verwendeter Ansatz ist die Methode der Smoothed Particle Hydrodynamics (SPH),
ein Lagrangescher Ansatz zur Lösung der Navier-Stokes-Gleichungen.

Idealerweise sollte die Auflösung der Simulation so hoch wie möglich sein,
jedoch sind globale Auflösungserhöhungen nicht praktikabel, während vorherige
Methoden zur lokalen Auflösungsänderung nicht praktisch nutzbar waren. In
dieser Dissertation werden Forschungsarbeiten zu räumlich adaptiven SPH Meth-
oden vorgestellt, die sich mit diesen Einschränkungen befassen, inklusive grundle-
gender und praktischer Probleme. Die vorgestellten Methdeon erlauben Simula-
tionen mit um Größenordnungen höheren Adaptivitäten als in früheren Ansätzen.

Der Schwerpunkt der Forschung in dieser Dissertation liegt auf dem Prozess
der Aufteilung eines einzelnen Partikels mit niedriger Auflösung in mehrere Par-
tikel mit höherer Auflösung. Durch die Einführung eines kontinuierlichen adap-
tiven Prozesses mit einem neuartigen zeitlichen Blending und einem neuen
Konzept der Umverteilung der Auflösung, wurden Simulationen mit einer um vier
Größenordnungen höheren Adaptivität als bisher möglich. Diese Prozesse wur-
den weiter verbessert indem eine neuartige Optimierungsstrategie für die Ver-
feinerung verwendet wurde, welche a priori und auch während der Simulation
selbst durchgeführt werden kann sowie ein verbessertes zeitliches Blending. Die
verbesserten Prozesse stabilisieren die räumlich adaptiven Simulationen erhe-
blich und ermöglichen praktischere und zuverlässigere Simulationen.

Ein weiterer wichtiger Schwerpunkt der vorgestellten Forschungsarbeiten ist
die Behandlung von Rändern bei räumlich adaptiven Simulationen. Unter der An-
nahme dass die lokalen Grenzen planar sind, wurde eine analytische Lösung für
planare Grenzgeometrien verwendet um einen skaleninvarianten Ansatz für die
Behandlung von Grenzen zu entwickeln, der für räumlich adaptive Simulationen
verwendet werden kann. Die Randbehandlung für nicht-adaptive Simulationen
wurde durch diesen Ansatz ebenfalls erheblich verbessert, da dieser genauere
Interaktionen mit Randmerkmalen unterhalb der Partikelauflösung ermöglicht.

Zuletzt werden Verfahren zu GPU-basierten Beschleunigungsstrukturen und
Algorithmen erforscht, die die effiziente Implementierung und das Rendern von
räumlich adaptiven SPH Simulation ermöglichen. Außerdem werden Methoden
für anisotropes Rendering und zur Reduktion vom Speicherverbrauch vorgestellt.
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Abstract

Fluid mechanics is an important area of research in many fields, e.g., special
effects in movies, coastal structure design in engineering or the simulation of
astrophysical phenomena. While each of these problems involve very different
scenarios, they all use the same underlying physical model for fluid flows, and the
simulation approaches used to simulate the fluid in each problem are also the
same. One commonly used approach is the Smoothed Particle Hydrodynamics
method, which is a Lagrangian approach to solving the Navier-Stokes equations.

To obtain better computational performance and more detailed simulations,
the achievable resolution of the simulation should be made as high as possible.
Uniform, global increases in resolution are however computationally prohibitive,
whereas existing methods utilizing local changes in resolution suffer from vari-
ous issues. This dissertation presents research on spatially adaptive Smoothed
Particle Hydrodynamics to address many of these issues, including fundamen-
tal problems, e.g., simulation stability, and practical problems, e.g., computational
performance. The findings presented in this dissertation allow simulations to have
adaptivity orders of magnitudes higher than that in prior work.

The primary focus of the research in this dissertation is on the process of split-
ting a single particle with low resolution into many particles with higher resolution.
By introducing a continuous adaptive process with a novel temporal blending pro-
cess and a new concept of resolution sharing, simulations were shown to have
adaptivity three orders of magnitude higher than what was previously possible.
These processes were then further improved using a novel optimization strategy
for refinement that can be carried out a priori and also during the simulation itself,
with the latter utilizing evolutionary optimization, as well as an enhanced temporal
blending scheme. The improved methods significantly stabilize spatially adaptive
simulations, allowing for more practical and reliable simulations.

Another important focus of the presented research is on boundary handling for
spatially adaptive simulations. By assuming the local boundaries are flat, an an-
alytic solution for flat boundary geometries was used to develop a scale-invariant
boundary handling approach that can readily be utilized for spatially adaptive sim-
ulations. Boundary handling for non-adaptive simulations was also significantly
improved by this approach as it allows for more accurate interactions with bound-
ary features below particle resolution.

Finally, this dissertation also covers research on GPU-based acceleration struc-
tures and algorithms that enable the efficient implementation and on-the-fly
rendering of spatially adaptive fluids. Mechanisms to both handle anisotropic
Smoothed Particle Hydrodynamics simulations and to significantly reduce the
memory usage of both adaptive and non-adaptive simulations are also presented.
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Chapter 1

Introduction and Foundations

Fluid simulations have become an important part of Computer Animation in re-
cent times driven by a desire for more detailed and realistic simulations, especially
for situations that are impossible to create using actual fluids, either due to their
impracticality or potential safety concerns. Many different simulation approaches
exist within Computer Animation to achieve these simulations; where this disser-
tation focuses on the Lagrangian Smoothed Particle Hydrodynamics method, as it
is versatile, physically motivated and computationally efficient [Kos+19]. However,
using high global resolutions is difficult as computational requirements scale cu-
bically with reductions of the particle radius. Locally adaptive resolutions focus
computational resources where they are important through local changes in reso-
lution and can significantly reduce computational requirements [SG11; OK12].

Within Lagrangian simulation approaches, such as SPH, changing the reso-
lution locally while ensuring consistent and computationally efficient simulations
across varying resolutions is a challenging problem. Many different spatially adap-
tive methods have been proposed for SPH before the start of this research project,
e.g., Adams et al. [Ada+07], Solenthaler and Gross [SG11] and Orthmann and Kolb
[OK12]. However, none of these methods are able to handle incompressible sim-
ulations at high adaptive ratios (e.g., of 1000 and higher), limiting their practical
applicability. Other significant challenges faced in these methods include han-
dling adaptive particle data without incurring significant computational overhead
and handling boundary objects consistently across varying resolutions.

To address these issues, this dissertation first provides a general overview of
the field of Smoothed Particle Hydrodynamics, its spatially adaptive variants and
relevant mathematical foundations. This initial in-depth discussion is necessary
as there exists a wide range of applied terminology and notations, and serves as a
foundational framework for the reproduced papers. This overview also discusses
how the publications reproduced within this dissertation cumulatively address the
aforementioned issues. Moreover, some general concepts that are relevant to the
papers are discussed, e.g., additional aspects regarding stability and accuracy.
After this overview, the published papers are reproduced with added contextual-
ization to position their arguments within the dissertation.

This cummulative dissertation contains six published works [WHK16; WHK17;
WK19; WAK20; WK20; WK21] that cover adaptive simulation techniques, data han-
dling, rendering and boundary handling for SPH. This work covers the corpus of
work published as a student assistant and PhD student at the University of Siegen.

1



2 1.1. SMOOTHED PARTICLE HYDRODYNAMICS

1.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) was initially conceived by Gingold and
Monaghan [GM77] as a particle-based approach to solve hydrodynamic problems
in astrophysical simulations of non-spherical stars. The method relies on concepts
based on prior work by Bartlett [Bar63], Parzen [Par62] and Boneva, Kendall and
Stepanov [BKS71]. This approach has been adapted to many other applications, in-
cluding the simulation of incompressible liquids in Computer Animation [Kos+19].
The goal of this section is therefore to build a tenable foundation for the remainder
of the dissertation by providing a derivation of the overall SPH method using prior
work and a clear definition of important formulae.

In general, SPH works by discretizing continuous fields using Lagrangian par-
ticles that carry discrete quantities and a local interpolation scheme, and thus
reconstructing the underlying continuous fields using spatially compact smooth-
ing kernels. SPH is fundamentally built on an identity transformation of a field
A(x), which is defined at all points x ∈ Rd in space by

(1.1) A(x) =

∫
Rd

A(x′)δ(x− x′)dx′,

where δ is the Dirac delta function and Rd describes an infinite d-dimensional
simulation domain. This identity is then modified by replacing δ with a com-
pact smoothing kernel which converges to a delta function for vanishing size, i.e.,
limh→0W (x− x′, h) = δ(x− x′) and yields an approximation

(1.2) A(x) ≈ ⟨A(x)⟩ =
∫
Ω

A(x′)W (x− x′, h)dx′,

where h is the support radius, describing the size of the compact spherical support
domain Ω, and W is a compact smoothing kernel. Note that the specific require-
ments for a kernel function will be discussed in further detail in Section 1.2. The
chevrons ⟨A(x)⟩ indicate that this is a pointwise interpolation of A(x). For read-
ability, the chevrons will be discarded if it can easily be inferred that the quantity
referred to is an approximation. The next step is then to introduce the density ρ(x)
at a given spatial position x into the integral, which yields

(1.3) ⟨A(x)⟩ =
∫
Ω

A(x′)

ρ(x′)
W (x− x′, h)ρ(x′)dx′.

This approximation is then discretized by replacing the integral with a summa-
tion and the mass element ρ dV with the particle mass m, yielding

(1.4) ⟨A(x)⟩ ≈
∑
j∈Nx

mj

ρj
AjW (x− xj, h),

with Nx being the set of neighbors relative to x, i.e., the set of all particles with
|x− xj| ≤ h, and ρ, which can be evaluated using eq. 1.3 as

(1.5) ρ(x) =
∑
j∈Nx

mjW (x− xj, h).
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The numerical accuracy of this interpolation strongly depends on the local par-
ticle distribution, i.e., the so-called color field value that is calculated as

(1.6) C(x) =
∑
j∈Nx

mj

ρj
W (x− xj, h),

which ideally evaluates to 1 everywhere, and consequently the gradient of this field
should be 0 everywhere. However, the particle ordering in actual simulations can
become very disordered, which in turn limits the achievable numerical accuracy.
The particle ordering can be restored, at least in weakly compressible formula-
tions, using particle-shifting [Sun+19] where particles are shifted locally to yield
a more isotropic particle distribution. It is important to note that, at the time of
this dissertation, only some initial research has been proposed regarding particle-
shifting methods that are applicable to incompressible SPH simulations [KGS19].
Moreover, no particle-shifting methods so far are applicable to spatially adaptive
simulations, where the non-isotropic particle distribution on resolution interfaces
is still an open numerical problem, for further details see Chapter 3.

In addition to the reconstruction of the actual underlying field A(x), gradient
terms play an important role in fluid dynamics. The gradient of a field A(x) can be
derived straightforwardly by applying the gradient operator ∂

∂x
to eq. 1.4, giving

(1.7) ⟨∇xA(x)⟩ ≈
∑
j∈Nx

mj

ρj
Aj∇xW (x− xj, h),

where ∇x denotes the gradient taken with respect to the position x. Note that the
subscript on the gradient operator is generally dropped for readability when the
respective value is clear from context. In addition to scalar fields, vector-valued
fields can be handled by replacing the scalar field A(x) in eqs. 1.4 and 1.7 with a
vector-valued field A(x), which yields the following set of general SPH interpolants
for vector fields

⟨A(x)⟩ ≈
∑
j∈Nx

mj

ρj
AjW (x− xj, h),

⟨∇x ·A(x)⟩ ≈
∑
j∈Nx

mj

ρj
Aj · ∇xW (x− xj, h),

⟨∇x ×A(x)⟩ ≈ −
∑
j∈Nx

mj

ρj
Aj ×∇xW (x− xj, h).

(1.8)

However, these gradient expressions yield poor gradient estimates as these
formulations do not correctly handle constant fields, i.e., ∇xA(x) ̸= 0 for A(x) =
c : ∀x ∈ Rd and c ∈ R. Moreover, to abide by Newton’s Third Law [New87],
these would need to be symmetric with respect to the interaction between two
particles i and j, i.e., Fi→j = −Fj→i, but this formulation does not ensure this
property. By taking the resulting error terms of eq. 1.7, into consideration [Pri12],
gradient formulations that resolve these problems can be derived. From [Pri12], a
formulation that is exact for constant functions is defined as

∇xA(x) ≈
1

ρ(x)
[⟨∇x(ρ(x)A(x))⟩ − A(x) ⟨∇xρ(x)⟩]

=
1

ρ(x)

∑
j∈N

mj(Aj − A(x))∇xW (x− xj, h),
(1.9)
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while a formulation which ensures symmetric gradients is defined as

∇xA(x) ≈ ρ(x)

[
A(x)

ρ(x)2
⟨∇xρ(x)⟩+

〈
∇x

A(x)

ρ(x)

〉]
= ρ(x)

∑
j∈N

mj

(
Aj

ρ2j
+
A(x)

ρ(x)2

)
∇xW (x− xj, h),

(1.10)

with analogous terms for vector-valued fields A(x). Note that in addition to these
gradient terms, another set of derivatives can appear if the support radius h is not
constant, i.e., h varies over time, or depends on other properties of the particle.
Consequently, when applying a derivative operator on eq. 1.4, the derivative of h
by x, i.e., ∂h

∂x
, does not become 0 in all cases.

In Computer Animation contexts, this issue is generally avoided by setting the
support radius to be constant for each particle and consequently removing any
derivative of the support radius. Note that the papers reproduced in Chapters 2
and 3 utilize non-constant support radii and discuss the effects of doing so in more
detail, especially in regards to simulations with symmetric SPH formulations.

In CFD contexts the derivative of the support radius is generally solved by re-
lating the support radius to the density of a particle, i.e., h ∝ ρ, where a corrective
term 1

Ωi
[Mon92; Pri12] is introduced for each particle i, where

(1.11) Ωi =

[
1 +

hi
ρid

∑
j∈Ni

mj
∂W (xi − xj, h)

∂h

]
,

with d being the dimensionality of the simulation. This term is then multiplied onto
all gradient estimates, e.g., onto the basic gradient estimate in eq. 1.7:

(1.12) ∇iAi ≈
1

Ωi

∑
j

mj

ρj
Aj∇iWij,

where ∇i indicates a spatial derivative with respect to the position of particle i.
At this point it is important to note that from an underlying mathematical stand-

point, SPH can readily handle varying particle sizes, i.e., particles of different vol-
ume. However, issues can arise due to numerical considerations and changes in
spatial resolution, which will be discussed later on in Sec. 1.6.

Furthermore, handling particles of different phases, i.e., multi-phase flows, can
require significant adjustments to the SPH model presented here [SP08; Yan+16;
RXL21], and handling spatial adaptivity with multi-phase flows is still an open prob-
lem. Moreover, significant research regarding the underlying accuracy and stability
of SPH is still ongoing, e.g., with regards to particle isotropy and kernel functions;
see for example [DA12; Vac+21]. While these issues are important to SPH and
for future research, they are outside of the scope of this research and will not be
further discussed in this dissertation.

1.2 Kernel functions

So far only an arbitrary kernel functionW was used; however, kernel functions have
to fulfill several properties in order to be numerically reasonable [Pri12]:
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• W has to be positive and monotonically decreasing with increasing distance
between particles, i.e., W (x, h) ≥ 0 : ∀x ∈ Rn and W (x, h) ≥ W (x′, h) :
∀|x′| ≥ |x|,x′ ∈ Rn,x ∈ Rn,

• symmetric with respect to x− x′, i.e., W (x− x′, h) = W (x′ − x, h),

• normalized, i.e.,
∫
Ω
W (x− x′, h)dx′ = 1, and

• converges towards a Dirac delta function with decreasing support radius, i.e.,
limh→0W (x− x′, h) = δ(x− x′).

Gaussian smoothing kernels fulfill all these and are defined as [DA12]

(1.13) W (x− x′, h) =
Cd

hd
e−

||x−x′||2

h2 ,

with the normalization constants 1√
π
, 1
π

and 1
π
√
π

in 1D, 2D and 3D, respectively. Even
though the influence of particles farther away than h rapidly diminishes, Gaussian
smoothing kernels are not practically useful as they have no compact support.
Consequently, compact kernel functions are generally preferred as they limit the
number of useful neighbors of a particle [DA12]. Note that here the support of the
Gaussian kernel is often referred to as its smoothing scale and the support radius
H , chosen as a multiple of the smoothing scale, is denoted as the cutoff distance
after which particles are no longer considered. Accordingly, there exists a ratio
H
h

between the smoothing scale h and the support radius H . Within Computer
Animation, Gaussian kernels find no practical application so this distinction is
generally dropped by implicitly assuming that H

h
= 1 and, consequently, H =

h, which simplifies many equations and notations, without loss of generality. A
generic kernel function and its spatial derivative can be defined for the interaction
of two points x ∈ Rd and x′ ∈ Rd as [DA12]
(1.14)

W (x− x′, h) =
Cd

hd
Ŵ

(
|x− x′|

h

)
,∇xW (x− x′, h) =

x− x′

|x− x′|
Cd

hd+1

∂

∂ |r|
h

Ŵ

(
|r|
h

)
,

with Ŵ being the actual kernel with a compact support of 1. Many different choices
exist for this kernel; in this dissertation the most used ones are the Wendland4
kernel and the cubic spline kernel. The cubic spline kernel is given by [DA12]

(1.15) Ŵ (q) = [1− q]3+ − 4

[
1

2
− q
]3
+

,

where [·]+ = max(0, ·), with normalization constants
{

8
3
, 80
7π
, 16

π

}
in 1D, 2D and 3D.

On the other hand, the Wendland4 kernel is given by [DA12]

(1.16) Ŵ (q) = [1− q]6+
[
1 + 6q +

35

3
q2
]
,

with normalization constants
{

9
π
, 495
32π

}
in 2D and 3D, respectively. Based on the

numerical properties of the kernel, see the extensive discussions by Dehnen and
Aly [DA12], each kernel function also has an ideal number of neighborsNh, which is
55 for the cubic spline kernel and 200 for the Wendland4 kernel. However, in Com-
puter Animation the number of neighbors is often constrained by computational
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requirements and generally set to be lower, i.e., the Wendland4 kernel function is
used with a desired number of neighbors of around 60. Using this desired number
of neighbors, it is straightforward to determine the support radius of a particle in
3D, see Chapter 2, as

(1.17) hi =
3

√
Nh

3

4π
3
√
Vi,

with Vi being either the rest volume of a particle in a Computer Animation context,
i.e., Vi = mi

ρi,0
, or the apparent volume of a particle in a CFD context, i.e., Vi = mi

ρi
.

Note that the latter introduces the dependency h ∝ ρ, which means that deriva-
tives of the support radius h are non-zero, e.g., dh

dt
̸= 0, which necessitates the

derivative terms discussed at the end of the prior section. Furthermore, this de-
pendence also introduces a coupled problem as the support radius impacts the
density estimate used for calculating it, which is usually resolved through an itera-
tive solving process [Pri12]. The paper reprinted in Chapter 2 discusses alternative
ways to control the support radius to improve computational performance and to
reduce memory consumption. It is important to note that numerical evaluations
of kernel functions, e.g., pairing and tensile instabilities as well as ideal neigh-
borhood sizes and distributions, have only been thoroughly performed for uniform
resolution simulations [DA12], but not for for spatially adaptive simulations.

So far, only an arbitrary support radius h has been used for all calculations in-
volving kernel functions, i.e., h is constant and equal for all particles, but this is
generally not the case, e.g., in spatially adaptive simulations. In practice, three
different formulations exist to determine the support radius used when two par-
ticles i and j are interacting: (i) the scatter-based formulation hij = hj , (ii) the
gather-based formulation hij = hi, and (iii) the symmetric formulation hij =

hi+hj

2
.

In a CFD context the scatter-based formulation has found wide adoption as this
formulation reduces the complexity of support radius derivative terms, whereas
in a Computer Animation context the symmetric formulation is used for spatially
adaptive simulations due to different underlying pressure solvers, see Chapters 3
and 7. Using the support radius of an interaction hij between two particles i and
j, the basic SPH interpolant (1.4) can re-expressed as

(1.18) Ai ≈
∑
j∈Ni

mj

ρj
AjWij,

where Ni is the set of neighbors of particle i and Wij = W (xi − xj, hij). Finally,
instead of using spherical support domains described by a single scalar support
radius h, an alternative formulation of SPH utilizes ellipsoidal-shaped support do-
mains [Owe+98], i.e., the support radius becomes a matrix G such that G = 1

h
Id

results in W (r, h) = W (r, G). Consequently, the kernel function is defined as

(1.19) W (r, G) =
Cd

det(G)
Ŵ (|Gr|),

where det(G) is the determinant of G. These anisotropic SPH formulations have
found no significant adoption in recent SPH simulations within the Computer An-
imation community, due to their increased complexity offering few numerical ad-
vantages for uniform simulations [Owe+98]. Despite this, they have found wide
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usage in rendering contexts as the anisotropic support domain can match free
surface regions better [YT13], see Chapter 5. Furthermore, determining the ideal
support domain size for an anisotropic simulation is still an open problem, espe-
cially for spatially adaptive simulation approaches. For a more in-depth discussion
of anisotropic SPH formulations see the paper reproduced in Chapter 5.

1.3 Governing equations

The foundations of SPH established in Sections 1.1 and 1.2 build a mathemati-
cal framework that can be used for fluid simulations. Implementing the simulation
would however require a compatible set of equations describing the fluid mechan-
ics of the system to be simulated. Hence this section describes the derivation of
this set of equations, and also how they are discretized using SPH. The basic un-
derlying equation to most SPH models [Pri12; Kos+19] is the continuity equation
which relates the rate of change of density over time to the divergence of the flow,
and is given as

(1.20)
Dρ

Dt
= −ρ∇ · v,

with D
Dt

being the material derivative. Note that for an incompressible liquid, i.e.,
ρ is constant, the rate of change of density is 0, which also implies that fluid is
divergence-free. This continuity equation is then used in conjunction with the
incompressible Navier-Stokes equation, which is defined as

(1.21) ρ
Dv

Dt
= −∇p+ µ∇2v + fext,

where µ∇2v describes the viscosity of the flow, fext are external body forces applied
on the system, e.g., gravity, and ∇p is the pressure force.

In Computer Animation the most commonly used time integration scheme is
the semi-implicit Euler scheme [Ihm+13; BK15], i.e., vt+∆t = vt+∆tDvt

Dt
, where the

timestep ∆t plays an important role to the simulation stability. When solving the
Navier-Stokes equation (1.21), which is a partial differential equation, the Courant-
Friedrichs-Lewy (CFL) condition provides a necessary condition for convergence
of the solution and provides an upper bound on the global timestep ∆t as

(1.22) ∆t ≤ λ
hmin

|vmax|
,

where hmin is the smallest support radius across all particles, vmax is the largest
velocity magnitude of any particle and λ ≤ 1 is the CFL scaling factor. Intuitively,
any choice of λ ≤ 1 would be sufficient as this prevents particles from moving
more than their support radius per timestep, but this is generally not sufficient to
ensure a stable simulation. In practice, many other numerical effects need to be
taken into account, e.g., how particles can move in and out of the support domain
of other particles and, due to the compact kernel function, cause errors in gradient
estimates, which will be discussed in Sec. 1.6. Furthermore, a timestep with λ ≥ 1

2

is not sufficient in ensuring that particles do not move through each other, i.e., two
particles moving directly towards each other can still be outside of each other’s
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ALGORITHM 1.1: A simple schematic SPH simulation algorithm.

1 for all particles i:
2 Compute Ni = {j| ∥xi − xj∥ ≤ hij}
3 for all particles i:
4 Compute ρi =

∑
j∈Ni

mjWij

5 for all particles i:
6 Compute vadv

i = vi +∆t 1
ρi

[
µ∇2vi + fexti

]
7 for all particles i:
8 Solve for ∇p such that Dρ

Dt = 0
9 for all particles i:

10 Integrate v′ = vadv + ∆t
ρ ∇p,x

′ = x+∆tv′

11 for all particles i:
12 Update ∆t = λ hmax

|vmax|

support radius at one timestep but pass through each other in the next. Conse-
quently, a common heuristic choice for λ is 0.4 [Mon92; Ihm+13], as this provides
a reasonable balance between stability and computational expediency.

Solving the incompressible Navier-Stokes equation (1.21) can be split into a
multi-step process [Ihm+13], where (i) for a given an initial velocity field v the
advected velocity field vadv is evaluated as

(1.23) vadv = v +∆t
1

ρ

[
µ∇2v + fext

]
,

(ii) a pressure field p is then determined such that Dρ
Dt

= 0 to enforce the continuity
equation, by solving for pressure values on individual particles i using pressure
forces defined as

(1.24) ∇pi =
∑
j∈Ni

mj

(
pj
ρ2j

+
pi
ρ2i

)
∇iWij,

and (iii) a new velocity field v′ is calculated using vadv and ∇p as

(1.25) v′ = vadv +∆t
1

ρ
∇p.

The main challenge in this process is determining the pressure force that en-
forces the continuity equation, and multiple approaches exist to solve this prob-
lem [Ihm+13; BK15]. For more details on this derivation, see the Eurographics SPH
Tutorial by Koschier et al. [Kos+19]. Assuming that neighborlists are used in the
simulation, a simple simulation algorithm can then be derived, see Algorithm 1.1.
Note that additional forces, e.g., due to vorticity refinement [Ben+18] or surface
tension [AAT13] need to be included in the calculation of the advected velocity.

The most commonly used approaches in Computer Animation to solve for the
pressure forces first involve using the continuity equation (1.20) to predict the
density in the next timestep [Ihm+13; BK15]. Replacing the material derivative Dρ

Dt

in the continuity equation with a finite forwards difference, Dρ
Dt

= ρt+∆t−ρt

∆t
, and using

a difference formulation,∇·v(x) = ρ(x)
∑

j∈Nx
mj(vj −v(x)) ·∇xW (x−xj, h), for



1.3. GOVERNING EQUATIONS 9

the velocity divergence yields [Ihm+13]

(1.26)
ρt+∆t
i − ρti

∆t
=
∑
j∈Ni

mjv
t+∆t
ij ∇iWij,

where vt+∆t
ij = vt+∆t

i − vt+∆t
j . Using a semi-implicit Euler scheme for the velocity,

vt+∆t = vt +∆tat, eq. 1.26 can then further be refactored to yield

(1.27) ρt+∆t
i = ρti +∆t

[∑
j∈Ni

mj

(
vt
i +∆tat

i − vt
j −∆tat

j

)
∇iWij

]
.

Splitting the acceleration a of a particle into the acceleration due to pressure ap

and the acceleration due to non-pressure forces aadv gives

ρt+∆t
i = ρi +∆t

[∑
j∈Ni

mj

(
vi +∆taadv

i − vj −∆taadv
j

)
∇iWij

]

+∆t2

[∑
j∈Ni

mj

(
ap
i − ap

j

)
∇iWij

]
,

(1.28)

where time indices t have been dropped. Eq. 1.28 can then be refactored into

(1.29) ρt+∆t
i = ρi +∆t

[∑
j∈Ni

mjv
adv
ij ∇iWij

]
︸ ︷︷ ︸

ρadv
i

+∆t2

[∑
j∈Ni

mja
p
ij∇iWij

]
.

Finally, in order to solve for unknown accelerations due to pressure forces
eq. 1.29 can be refactored into a system of equations

(1.30) ∆t2

[∑
j∈Ni

mja
p
ij∇iWij

]
= ρt+∆t

i − ρadv
i ,

where the left-hand side depends on unknown pressure values p, and the right-
hand side is also referred to as the source term. To solve this system of equa-
tions, ρt+∆t

i needs to be determined. Setting ρt+∆t
i = ρ0,i results in a pressure

force that will enforce an incompressible simulation, i.e., ρi = ρ0,i, and setting
ρt+∆t
i = ρi will result in a pressure force that enforces a divergence-free simula-

tion, i.e., Dρ
Dt

= 0. Implicit Incompressible SPH (IISPH) [Ihm+13] only utilizes the
incompressible variant, whereas Divergence-Free SPH (DFSPH) [BK15] first uses
the divergence-free variant and then the incompressible variant to yield improved
overall simulation behavior. Note that due to particle neighborhood deficiencies
at free surfaces, solving eq. 1.30 directly can yield negative pressure values when
enforcing incompressibility. This can be avoided by using max(ρ0,i − ρi, 0) on the
right-hand side of eq. 1.30.

Solving the system of equations 1.30 for pressure is generally done in an iter-
ative process, where some stopping criterion needs to be chosen to decide when
the solution is good enough. One straightforward solution is basing the stopping
criterion on the rate of change of pressure per iteration. In practice [Ihm+13;
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BK15], however, the stopping criterion is commonly based solely on the error in
the solution, which can be done straightforwardly by evaluating

(1.31) ϵi = ρt+∆t
i − ρadv

i −∆t2

[∑
j∈Ni

mja
p
ij∇iWij

]
,

where ρt+∆t
i depends on the problem being solved. Using the rest density of each

particle, the residual error ϵ can be utilized to determine an average relative error
per particle as [Ihm+13]

(1.32) η =

∑n−1
i=0

ϵi
ρi,0

n

with n being the number of particles. However, this estimate does not yield desir-
able results in spatially adaptive simulations as the number of particles in regions
with higher resolution will skew the average error, as these regions are usually
close to the fluid surface with little compressive stress. Consequently, using a
mass-weighed error term

(1.33) η =

∑n−1
i=0 mi

ϵi
ρi,0∑n−1

i=0 mi

yields better convergence in practice. Regardless, finding the optimal conver-
gence criteria for spatially adaptive simulations is still an open problem. Further-
more, the convergence of the iterative solver strongly depends on the timestep
used [Ihm+13] where, larger timesteps generally require more iterations to con-
verge. Accordingly, some optimal timestep ∆topt exists such that it results in the
overall lowest computational cost, i.e., a timestep that balances the number of
steps per simulated time with a higher cost per individual step, but finding this
optimal timestep is still an open problem.

Furthermore, larger timesteps yield increased errors in the estimation process,
which will be discussed later in Sec. 1.6, and sudden changes in the timestep can
yield significantly different convergence behaviors. This leads to issues in spatially
adaptive simulations as particles being refined into higher resolutions reduce their
support radii, which significantly reduces the largest feasible timestep satisfying
the CFL condition. Accordingly, a sudden increase in resolution, as is the case
during the initial refinement in a spatially adaptive simulation, results in a sudden
change in the maximum permissible timestep. These errors can be diminished by
limiting the change in the maximum permissible timestep before the occurrence
of any significant change of resolution or scenarios that would cause a sudden
change in timestep. However, it is generally not straightforward to detect these
issues a priori, and addressing this problem is still an unsolved problem for black-
box scenarios and beyond the scope of the research in this dissertation.

1.4 Boundary handling

Within most simulation scenarios, especially within Computer Animation, the fluid
is generally not evaluated within an empty space, but is contained within some con-
tainer or domain where other objects, e.g., rigid obstacles, influence the fluid flow
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behavior. In this regard, SPH simulations require both models for boundary con-
ditions and models of boundary geometries, which are not generally represented
in a Lagrangian form. In practice, many different boundary conditions exist, e.g.,
inlet and outlet conditions [Taf+17], open and periodic boundary conditions, as
well as different varieties of rigid boundary conditions, e.g., no-slip and free-slip
boundary conditions. In this dissertation only rigid boundary geometries and their
integration into an SPH model are considered.

To integrate boundary geometries into the SPH model, the first step is to modify
the local domain Ωx around a particle at position x based on its support radius
h, as the simulation domain is no longer fully discretized using fluid particles.
Consequently, if some boundary domain B overlaps with the local support domain
Ωx then the discretization using fluid particles only applies in the non-overlapping
region, i.e., Ωf

x = Ωx \B. The local boundary domain Ωb
x = Ωx∩B, however, cannot

be directly discretized using fluid particles. Consequently, the continuous SPH
interpolation operator eq. 1.2 becomes

(1.34) A(x) ≈
∫
Ωf

x

A(x′)

ρ(x′)
W (x− x′, h)ρ(x′)dx′ +

∫
Ωb

x

A(x′)

ρ(x′)
W (x− x′, h)ρ(x′)dx′,

where only the fluid contribution is discretized using particles, yielding

(1.35) A(x) ≈
∑
j∈Nx

mj

ρj
AjWij +

∫
Ωb

x

A(x′)

ρ(x′)
W (x− x′, h)ρ(x′)dx′.

Accordingly, the main challenge in boundary handling is finding an appropriate
way to discretize the boundary contributions to an SPH interpolant. In general, four
categories of approaches exist in SPH to model boundary objects, which are:

1. External boundary handling methods

2. Particle-based methods

3. Wall-renormalization methods

4. Boundary-integral methods

Moreover, if pressure forces are calculated explicitly when interacting with
boundaries, pressure values need to be evaluated for boundary domains, either
pointwise or globally. Consequently, the different approaches will first be dis-
cussed, and then pressure extrapolation methods commonly used in Computer
Animation will be outlined.

1.4.1 External boundary handling methods

These methods were initially utilized with weakly compressible SPH formulations
and used a variety of approaches to model boundary effects. However, these meth-
ods were often not strongly physically motivated and difficult to integrate into SPH
interpolants. Some examples include particle level sets [Los+08] and direct forc-
ing [BTT09]. Owing to their non-physical nature, they are generally not integrated
into the SPH interpolant, i.e., eq. 1.35 simply becomes

(1.36) A(x) ≈
∑
j∈Nx

mj

ρj
AjWij,
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which makes the physically accurate modelling of complex fluid-boundary effects
impractical. Furthermore, implementing physically motivated and accurate two-
way coupling effects in these methods is not readily possible.

1.4.2 Particle-based methods

Particle-based methods can be classified into three sub-categories: (i) full sam-
pling methods, (ii) ghost-particle methods, and (iii) surface sampling methods.

Full sampling methods represent an entire boundary geometry with particles
sampled as if the boundary geometry were part of the fluid domain [AHA12]. Ac-
cordingly, boundary particles are created as if they were fluid particles, and they
can be directly integrated into an SPH simulation, albeit with a restricted integra-
tion scheme as they cannot move individually. Consequently, eq. 1.35 becomes

(1.37) A(x) ≈
∑
j∈Nx

mj

ρj
AjWij,

where Nx is the set of all neighboring particles, relative to x, including bound-
ary particles. However, sampling complex boundary object geometries completely
with particles is a challenging problem. Some work has been done on generating
optimal initial conditions in SPH [Die+15], which could be applied on this problem
as well, but the additional number of particles required, relative to surface-only
approaches, generally makes this approach unattractive.

Ghost-particle methods utilize virtual boundary particles that may not be sam-
pled consistently across different fluid particles. These virtual particles are placed
inside the boundary object or on its surface. This can be achieved in many ways,
e.g., using local uniform stencils per particle [Fou+19], mirroring fluid particles into
the boundary domain [YRS09], or by creating local optimized particle configura-
tions [BGT17]. These particles can generally be integrated directly into an SPH
model without further modification, i.e., eq. 1.35 becomes

(1.38) A(x) ≈
∑
j∈Nx

mj

ρj
AjWij,

with Nx is the set of all neighboring particles relative to x, including boundary
particles. However, locality can yield problems as different particles may have dif-
ferent boundary particle configurations [Fou+19], due to oversampling in sharp
corners [YRS09] and/or be limited to mostly flat boundary regions [BGT17]. Ac-
cordingly, while these approaches can yield very desirable effects, they have also
found limited application.

Surface particle methods utilize only a single layer of particles which is consis-
tently sampled on the surface of the boundary object, where each particle carries
an artificial volume to correct for the single layer and irregular sampling of the sur-
face [Aki+12]. While this approach introduces some additional terms, i.e., artificial
volumes and densities, it can be integrated into most SPH models straightfor-
wardly, i.e., eq. 1.35 becomes

(1.39) A(x) ≈
∑
j∈Nx

mj

ρj
AjWij +

∑
j∈Bx

ψj

ρj
AjWij,
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with Nx and Bx being neighboring fluid and boundary particles, respectively, and
ψj is an artificial mass assigned to a boundary particle to correct for the sampling
[Aki+12]. However, sampling boundary surfaces is a challenging problem and the
sampling quality can strongly influence the fluid behavior [BGT17].

Regardless of the specific approach, particle-based approaches are a relatively
natural extension of SPH dynamics and, consequently, the inclusion of two-way
coupling can be done straightforwardly [Ihm+13]. Additionally, particle-sampled
boundary geometries can also interact in a rigid-rigid fashion using the sampled
particles [Gis+19], which makes these approaches attractive for Computer Ani-
mation. However, spatial adaptivity poses a significant problem to any explicitly-
sampled boundary representation, as the representation needs to be locally ad-
justed based on the local fluid resolution to avoid erroneous behavior, e.g., parti-
cles penetrating the boundary; see the discussions in the paper reprinted in Chap-
ter 6. While locally adjusting the resolution of the sampled boundary in a similar
manner as for deformable rigid objects [Aki+13b] might be applicable, this ap-
proach has not been investigated exhaustively.

1.4.3 Wall-renormalization approaches

Wall-renormalization approaches include the boundary contribution indirectly as
a corrective term for the fluid-only interpolant, i.e., a renormalization constant γ is
determined by

(1.40) γ(x) =

∫
Ωf

x

W (x− x′, h)dx′,

for the local boundary domain Ωb
x where the fluid-only interpolation is inversely-

scaled by this term, i.e., eq. 1.35 becomes

(1.41) A(x) ≈ 1

γ(x)

∑
j∈Nj

mj

ρj
AjWij,

with the gradient terms
(1.42)

∇A(x) ≈ 1

γ(x)

∫
Ωf

x

A(x′)∇xW (x− x′, h)dx′ +
1

γ(x)

∫
∂ΩB

x

A(x′)nW (x− x′, h)dx′,

where ∂ΩB
x is the boundary surface and n is the surface normal. Evaluating these

terms, however, is not trivial. Many different approaches, which commonly uti-
lize some form of the divergence theorem [Lag61; Gau13; Ost28; Gre28], have
been proposed in the past for this purpose, e.g., using semi-analytic approaches
in 2D [Fer+13] and 3D [May+15], for incompressible methods [Ler+14] and using
fully analytical approaches [Chi+19]. These methods can be computationally ex-
pensive, and the solution of the integrals is often limited to specific applications,
dependent on the boundary element sizes and contain gradient terms that are not
trivial to evaluate.

Within Computer Animation, these approaches have not been adopted widely
but they offer an interesting avenue in future research, especially regarding spatial
adaptivity. Chiron et al. [Chi+19] proposed an approach that is applicable regard-
less of the boundary element size, which could potentially be applied to spatially
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adaptive SPH simulations. However, integrating two-way coupling into these ap-
proaches is generally difficult and not as straightforward as with particle-based
approaches.

1.4.4 Direct boundary integral methods

Direct boundary integral methods, in contrast to renormalization approaches, di-
rectly evaluate the integral form of the SPH interpolant across a boundary do-
main [FM15], making them fairly straightforward to integrate into existing SPH
methods, i.e., eq. 1.35 remains unchanged:

(1.43) A(x) ≈
∑
j∈Nx

mj

ρj
AjWij +

∫
Ωb

x

A(x′)

ρ(x′)
W (x− x′, h)ρ(x′)dx′,

where the integral term is directly evaluated. Koschier and Bender [KB17] uti-
lized a pre-determined grid of integral values, for computational efficiency, and
local boundary contact points to implement two-way coupling, making the ap-
proach practical to use. The paper reprinted in Chapter 6 presents a semi-analytic
boundary integral approach that does not require expensive computations before-
hand and can be applied across varying resolution scales. However, the approach
reprinted in Chapter 6 does not use an exact solution of the integral but uses an
approximation based on an assumption of local flatness instead, which also in-
creases the scale invariance of boundary geometries. Note that on a fundamental
level, both integral and renormalization approaches solve very similar problems,
despite being applied in a very different manner on the SPH interpolant.

1.4.5 Boundary pressure

In general, pressure forces in SPH are evaluated using a symmetric gradient for-
mulation [Ihm+13], i.e., the following integral is evaluated over a local boundary
domain Ωb

x:

(1.44) ∇xp(x) ≈
∫
Ωb

x

[
p(x)

ρ(x)2
+

p(x′)

ρ(x′)2

]
∇xW (x− x′, h)ρ(x′)dx′.

This term has to be evaluated for fluid particles, i.e.,

(1.45) ∇ipi ≈
∫
Ωb

i

[
pi
ρ2i

+
p(x′)

ρ(x′)2

]
∇xW (xi − x′, h)ρ(x′)dx′,

where several choices have been proposed to evaluate the boundary pressure term
p(x′). The most direct approach is to assume that p(x′) = 0, but this is generally
not stable in incompressible approaches. The second most direct approach is
pressure mirroring, i.e., p(x′) = pi, where the pressure is assumed to be constant
across the local boundary domain but different for each particle. This approach is
straightforward to implement but causes inconsistencies in the pressure values.

The next most direct approach are interpolation methods which are generally
only applicable to particle-based approaches. In these approaches, the pressure
for each boundary element can be evaluated as if they were fluid particles [Ban+18a],
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and consequently, all boundary particles have consistent but different pressure val-
ues. While this is straightforward to implement since the same process is used for
all particles, the resulting pressure field is not smooth at the boundary surface.

To solve this problem, Band et al. [Ban+18a] proposed a moving least-squares
pressure extrapolation approach, where pressure values on boundary elements
are not interpolated using SPH but extrapolated based on pressure values on fluid
particles. This approach yields a significantly smoother pressure field, and can
be applied to arbitrary positions, i.e., the extrapolation can be performed for non-
particle-based boundary elements; see the paper reprinted in Chapter 6. Finally,
several other approaches exist in the CFD community, but these have not been
applied in a Computer Animation context and, consequently, will not be discussed.

1.5 Data handling and particle neighborhoods

The previous sections have only discussed mathematical and physical foundations
of SPH, but implementing an actual SPH simulation also requires approaches
to handle particle-based data and efficiently evaluate SPH interpolants. While
many details of data handling are strongly platform specific, i.e., GPU and CPU-
based SPH simulations have significantly different requirements for data struc-
tures, some notions still apply agnostically. In general, most SPH simulations uti-
lize two data structures, where the first is a neighborlist per particle, which stores
an explicit reference to all neighbors of a given particle, and the second is a lookup
structure to find the region in memory corresponding to a region in space. Creating
a neighborlist is relatively straightforward using an appropriate lookup structure,
i.e., each particle needs to search for potential neighbors, and store a reference
to each actual neighbor. While important for the computational performance of
the simulation, these structures are highly platform dependent; this will be further
elaborated on in the papers reprinted in Chapters 2, 4 and 5.

The main challenge in implementing a lookup structure is to consume as lit-
tle memory as possible while allowing for fast access of memory based on the
queried region in space. For example, a naı̈ve lookup structure would refer any
point in space to a single list containing all n particles, requiring O(n) accesses
to memory for each query of a spatial region, which is computationally infeasible
as the complexity of the entire SPH simulation would consequently becomeO(n2).
Accordingly, the goal is to provide a narrow memory range corresponding to each
specific spatial location as this reduces the overall complexity to O(m · n), where
m is the average number of particles returned for each access.

For uniform resolution simulations, each particle only needs to access other
particles within a global support radius h. This makes tiling the simulation do-
main into cells of size h an obvious approach, as this limits the maximum number
of cells that are accessed per particle to 3d. Using the arguments from the pa-
per reprinted in Chapter 4, this also means that each cell contains on average
3
4π
Nh particles, and each particle will access 81

4π
Nh particles for each SPH inter-

polant in 3D. Storing these cells can be done in a variety of ways, e.g., using dense
grids [Gre10], or compact hash maps [Ihm+14], which have added complexity but
its memory requirements are only dependent on the number of particles, and are
independent on the simulation domain size; see the paper reprinted in Chapter 4.
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For simulations with variable support radii, the tiling should be performed using
the maximum support radius of the simulation. However, this means that particles
with smaller support radii would access more particles as potential neighbors.
While this can be acceptable for non-spatially adaptive simulations, in spatially
adaptive simulations with an adaptive ratio of α, each particle could access up to
81
4π
αNh particles. This is computationally impractical for large adaptive ratios, e.g.,

above 100. Consequently, the paper reproduced in Chapter 4 proposed utilizing a
self-similar space-filling curve to order the cells, a compact hashing approach, and
constructing multiple lookup structures, for the same particle data, based on the
different particle resolutions in the simulation. For more details on this approach,
see the discussion in Chapter 4 and 5.

1.6 On stability, accuracy and error

Before discussing the main topic of this dissertation, namely spatial adaptivity,
a discussion of common terminology that will be used in the evaluation of the
reprinted papers, and in a general context of Computer Animation, is warranted.
Within the CFD community the evaluation of results is mostly done using stan-
dardized benchmark cases, e.g., the lid-driven cavity test [Ler+14; Lee+08], dam
breaking over a wedge [Ler+14; Fer+13], a moving square [Vac+13; Chi+19; Mar+13;
Lee+08] and cylinder test [Vac+13; Taf+17; Chi+19; Mar+13], or against actual real
world experiments [May+15; Fou+19; Chi+19], with a clear definition of terms com-
ing from a numerical analysis background. Regardless, in a CFD context, the ac-
curacy and stability of SPH have been ongoing topics of research for the past 20
years, see the recent survey from Vacondio et al. regarding grand challenges in
SPH [Vac+21], with some recent work providing initial proofs for certain SPH vari-
ants on their solvability in special cases [Imo19].

Within Computer Animation, simulations are often described as being vivid
[Liu+21], having high fidelity [Kug+21], as well as having less artifacts [Ban+18a;
BK15], or use some vague notion of stable [Ihm+13; BK15; Liu+21; Ben+20], but
these terms are generally not well-defined. While the discussion here cannot rec-
tify this issue, it aims to make the evaluation of the reprinted papers more well-
defined. Consequently, this discussion does not aim to define each of the above
terms exactly, but instead proposes a consistent interpretation of these terms as
they are used within this dissertation.

Throughout this dissertation vivid, or high fidelity, refers to a simulation ap-
proach that does not dampen high frequency details, e.g., the fluid surface con-
tains significantly more detail; see Figure 7.12, which demonstrates this effect.
Similarly, the realism of the simulation is not well-defined but tends to mean that
a simulation looks like something that could happen in reality, which is strongly
dependent on the reader’s experience with real world fluid mechanics. Conse-
quently, the terms realism and realistic are only used as abstract notions and not
for quantitative evaluations.

Accuracy, in a general sense, refers to how close a calculated result is to some
idealized outcome. Creating a ground truth reference solution for each simulation,
using physical experiments, is prohibitively expensive and difficult in practice es-
pecially in Computer Animation which commonly involves large scale simulations.
Therefore, the term accuracy instead describes how close a simulation is to results
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obtained solely based on underlying, fundamental, laws. These fundamental laws
serve as guiding principles in the development and evaluation of new methods.
The following principles, in no specific order, are generally relevant in a Computer
Animation context:

• Incompressibility, i.e., ρ ≤ ρ0 [GEF15; BK15],

• Divergence-Freedom, i.e., ∂ρ
∂t

= 0 [BK15],

• Conservation of Mass, i.e.,
∑n−1

i=0 mi is constant at all points in time [SG11;
HS13],

• Conservation of Energy, i.e.,
∑n−1

i=0 u
t+∆t
i ≤

∑n−1
i=0 u

t
i [Ben+17; Ban+18a],

• Conservation of Momentum, i.e.,
∑n−1

i=0 m
t+∆t
i |vt+∆t

i | ≤
∑n−1

i=0 m
t
i|vt

i|, without
external influences [Ban+18a; Liu+21] ,

• Accuracy of the underlying discretization, i.e., ⟨A(x)⟩ = A(x).

Note that momentum and energy are not perfectly conserved in most simu-
lation approaches as they can be dissipated over time, e.g., kinetic energy can
be transformed into thermal energy that is not explicitly tracked. An error is then
defined as any deviation from these six guiding principles, e.g., a particle having
a higher density than its rest density in an incompressible simulation. These er-
rors can be spatially localized (i.e., the underlying cause is limited to individual
particles) or systemic (i.e., the underlying cause affects groups of particles).

Stability then refers to the ability of a method to handle errors that occur dur-
ing the simulation without causing the simulation to diverge significantly from the
expected result that would have occurred without any errors during the simula-
tion. For example, the boundary handling method reprinted in Chapter 6 causes
a single particle to be stuck in concave corners of a simulation domain, but the
overall simulation result is not negatively impacted by this. On the other hand,
Fig. 7.15 demonstrates a simulation scenario where one evaluated method causes
a visually apparent explosion to occur due to errors from refinement close to a
boundary interface. Generally, an unstable simulation will be visibly unstable (e.g.,
through local explosions and unexpected behavior of the fluid) and/or have signif-
icant numerical anomalies (e.g., a particle suddenly accelerates from an expected
velocity to a velocity much higher than any other particle). A stable simulation is
therefore any simulation that remains accurate, within some deviation from the
desired result, during the simulation. Consequently, a simulation method’s sta-
bility describes how many situations the method remains stable in. A method is
considered as more stable than another method if it remains stable in a larger
set of situations, e.g., through a reduction of the magnitude of common errors or
through an increased resilience towards errors.

Understanding what kinds of errors (localized or systemic) can occur from un-
derlying causes related to the six guiding principles is crucial. Consequently, a
brief discussion on how each guiding principle can be violated through errors in
spatially adaptive and incompressible simulations is warranted. Note that these
discussions are based on practical experience as well as empirical evaluations,
and are therefore not an exact analysis of all possible sources and errors.
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Discretization accuracy is mainly limited by this transformation of eq. 1.2 into
eq. 1.3, i.e., the transformation

(1.46)
∫
Ω

A(x′)

ρ(x′)
W (x− x′, h)ρ(x′)dx′ ≈

∑
j∈Nx

mj

ρj
AjW (x− xj, h).

As mentioned before in Sec. 1.1, this discretization is primarily dependent on
the particle distribution. In general, an isotropic particle distribution yields the
numerically best discretization for a spherical support domain. Particle-shifting
techs aim to improve this isotropy, and have found wide usage in weakly com-
pressible simulations in the past [Sun+19; VR17]. However, only recently have
particle-shifting techniques that do not violate momentum conservation for in-
compressible simulations been proposed [KGS19]. Lind et al. [LRS20] provided
a broad survey on the discretization accuracy, especially with regards to particle
shifting, in SPH from a CFD context.

However, the particle distribution for spatially adaptive simulations is inher-
ently non-isotropic, i.e., the transition from regions with lower resolutions to those
with higher ones necessarily implies the existence of non-isotropic distributions.
These errors can therefore occur everywhere in the simulation, especially on reso-
lution interfaces, potentially causing significant problems throughout the simula-
tion. While no particle-shifting method or modified SPH model has been proposed
to address this problem so far, practical experience has shown that avoiding large
resolution gradients and allowing for smooth transitions of resolution can greatly
improve spatial adaptivity. For more details on this, see the paper reprinted in
Chapter 3.

Conservation of mass for a uniform simulation is, in general, trivially possible
as the overall mass of the simulation depends solely on the combined mass of
all particles, which generally remains unchanged. For adaptive simulations, that
do not use adaptive approaches that explicitly remove particles [SG11], the only
error related to mass conservation that can occur are numerical mass rounding
errors due to repeated splitting and merging of particles. However, this error is
generally small and can be ignored as in most situations as the accumulation
only becomes significant over periods longer than typical simulations, e.g., after
millions of changes of resolution.

The conservation of energy and momentum is a two-fold problem:
From a model perspective, if only momentum and energy-conserving methods

are utilized, e.g., a momentum-conserving viscosity model is used [Pri12], then
the total momentum of the simulation should not increase. Furthermore, if all
external effects, e.g., gravity, are accounted for, then the total energy in an accurate
simulation should not increase if energy-conserving models are used throughout.

Errors due to any violation of the other guiding principles are not of a physical
nature and have to be considered separately. Notably, these errors are a symptom
of an underlying error, e.g., a violation of incompressibility, and not the root cause.
For example, if any part of the simulation yields a density error, e.g., two particles
are closer than they should have been under the given simulation parameters,
then an excessive pressure may be generated. However, as this pressure should
not exist in a perfectly accurate simulation, the pressure can generate forces that
introduce energy and momentum into the simulation. If enough energy is added
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to the simulation then the overall simulation can be destabilized. Consequently,
a violation of conservation of energy and/or momentum, is generally not the root
cause of an error but an indicator than an error has occurred, which resulted in this
violation. Accordingly, monitoring the total energy and momentum of a simulation
can be an effective way to detect potentially destabilizing errors.

Density errors are generally a symptom of problems that occurred prior, i.e., if
the density is above the rest density then this is generally, barring errors due to
violations of the discretization accuracy, the result of pressure forces that were cal-
culated in a prior timestep. Density errors mainly arise from two distinct sources:
(i) the convergence criterion of the solver, and (ii) the density prediction step.

The former problem is generally the result of the convergence criterion not
being set to result in a zero error, but instead yielding a small but acceptable
error. This is reflected in practice, where a threshold of 0.01% for the density error
and 0.1% for the divergence error are considered to be sufficient for a simulation to
be incompressible, in the Computer Animation community [BK15]. Consequently,
the error introduced here is systemic and choosing a significantly less stringent
convergence criterion, e.g., a 10% density error, may yield an unstable simulation.
This kind of error can be limited by using the aforementioned convergence criteria.

Errors in the density prediction step are significantly more challenging to han-
dle. This error arises from the usage of a semi-implicit Euler scheme, i.e., only first-
order derivative terms are used for predictions, and from the usage of a compact
support radius h. Both choices inherently yield an error in the predicted density of
the new timestep, i.e.,

(1.47) ρt+∆t(x) ̸= ρt(x) + ∆t
dρt(x)

dt
,

which can be significant. The error from this prediction is dependent on the rela-
tive position of two particles |xi − xj| and their relative velocity d|xi−xj |

dt
, as shown

in Fig. 1.1. This error is mostly determined based on the relative motion between
two particles combined with the timestep ∆t. While a single particle can move
at most 0.4h per timestep using a standard CFL condition [Ihm+13], two parti-
cles moving directly towards each other would reduce the distance between them
by up to 0.8h per timestep. As a result, the error in the density estimate can
be significant and errors of around 80% are not uncommon in practice, even in
uniform resolution simulations. Predictive-corrective incompressible SPH [SP09]
avoids this issue by evaluating a predicted density value using an explicitly inte-
grated simulation, i.e., the method evaluates ρt+∆t(xt+∆t) ≈ ρt(xt +∆tvt) instead
of ρt+∆t(xt+∆t) ≈ ρt(xt) + ∆tdρ

t(xt)
dt

. However, in practice, errors still occur in this
approach as the neighborlists are not necessarily updated at each prediction.

Overall, these prediction errors significantly violate the assumption of incom-
pressibility and cause localized density errors that need to be corrected in the next
solver iteration, which leads to excessive pressure values counteracting this pre-
diction error. On a fundamental level, such a reaction will add additional energy
to the system, which needs to be compensated for to ensure the conservation of
the total energy. The usual approach in compensating for this additional energy is
by introducing an artificial viscosity term to stabilize the simulation. This is most
commonly done by smoothing the velocity field [Mon02], as this dissipates the
introduced energy spatially throughout the simulation. If the artificial viscosity is
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Figure 1.1: This figure shows the error in the estimate of the kernel function using
a first-order Taylor series. Accordingly, the figure shows f(x,∆x) = Ŵ (|x−∆x|)−
Ŵ (x)+∆x ∂

∂x
Ŵ , with Ŵ defined in eq. 1.14 and x,∆x ∈ R. The left subfigure shows

the error for the Wendland-4 kernel and the right subfigure shows the error for the
cubic spline kernel.

set to be too low, however, then the dissipation of energy will be insufficient in
preventing larger stability issues. Furthermore, if the correction of the density er-
ror itself introduces significant errors then the overall errors can quickly diverge
in magnitude and yield an unstable simulation.

Within the context of an incompressible fluid simulation, which will be used
throughout this dissertation, two general kinds of prediction errors occur, each
having its own causes: errors that are uncorrelated in their magnitude and occur
in single particles or clusters of particles, and errors that are correlated in their
magnitude or share an underlying cause, e.g., the overall fluid’s behavior. Accord-
ingly, these errors can be classified based on whether the relative motion between
particles is relatively similar, or are significantly different across particles with an
underlying shared cause.

On one hand, assuming that the velocity field of the simulation is fairly smooth,
the differences in velocity between particles will result in different errors in the
density estimate for different particles. Accordingly, this error can be modeled as
pseudo-random noise on the density estimation error. This error can then readily
be compensated for through artificial viscosity, which smoothens out the resulting
noisy velocity field.

On the other hand, larger scale events in a fluid simulation, e.g., a wave col-
lapsing into a stationary fluid bulk, yield significant differences in the relative mo-
tion between particles, which are correlated through an underlying common event.
These problems are further exacerbated in vortices where the local rotation of the
fluid causes significant relative motion of particles in a region. Such errors are
difficult to compensate for, and the most straightforward solution is limiting the
overall timestep, which in turn limits the maximum error in the density estimate.

To summarize, density errors significantly contribute to the overall simulation
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error, either directly or indirectly, and any spatially adaptive simulation should
avoid introducing significant errors in the density field. Furthermore, simulation
settings should be chosen reasonably, e.g., if a collision of two streams flowing in
opposite directions is to be simulated, then it is generally better to chose a smaller
timestep than the one indicated by the CFL condition before the collision.

1.7 Spatial adaptivity

As mentioned previously in the introduction, global changes in resolution are chal-
lenging due to the required computational resources. Accordingly, spatial adap-
tivity is an attractive alternative approach that limits the increases in resolution
only to areas where this increase is most beneficial, e.g., only at the fluid surface.
However, directly adjusting the position or size of individual particles could intro-
duce significant sources of errors, e.g., combining two particles to reduce the local
spatial resolution can readily yield a change in the density field of the fluid. Thus,
a key point in this dissertation is finding approaches to enable spatial adaptivity
whilst obeying the principles discussed in Section 1.6. In this regard, this section
provides an overview of the main concepts pertaining spatial adaptivity, its appli-
cations within SPH and how errors occurring during changes in resolution can be
diminished.

Spatial adaptivity is at the center of the research discussed within this disser-
tation and the underlying methods used in this field make heavy use of all of the
aspects of SPH discussed in prior sections. In general, spatial adaptivity describes
methods that, during a simulation, change the spatial resolution of the simulation
itself. These changes can yield significant sources of errors, as they were dis-
cussed prior, as directly modifying the position or size of individual particles can
introduce arbitrarily large errors. In this regard, this section will give an overview
of the main concepts of spatial adaptivity, as it is applied within SPH, and how
errors occurring during the change of resolution can be diminished.

The most common application of spatial adaptivity is where the simulation
resolution is either refined to a higher resolution or merged to a lower resolution.
Consequently, adaptivity is, as per the paper reprinted in Chapter 7, a multi-step
process that involves:

• a sizing function to determine the desired resolution of a particle,

• merging a fine particle with other particles,

• smoothing the particle resolution gradient,

• refining a coarse particle into multiple finer particles, and

• methods to limit the impact of errors caused by the steps above.

Changing the spatial resolution in a particle-based simulation requires adjust-
ing individual particles, i.e., combining, splitting and redistributing them. Based on
Sec. 1.6, a set of guiding principles should be used as a guideline for any method.
Consequently, a spatially adaptive method should (i) not introduce discretization
errors, (ii) obey conservation of mass, (iii) obey conservation of linear and angular
momenta as well as energy, and (iv) not introduce density errors.
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The introduction of discretization errors is mainly dependent on the sizing func-
tion. A good sizing function should yield smooth transitions between areas of dif-
ferent resolutions, and the mechanisms to adjust the resolution should yield an
actual resolution close to the sizing function. The mechanisms for changing the
resolution can also introduce other problems, where the density error is generally
the most significant problem. Consequently, the density at a point directly before
and after a change in resolution can be defined as ρ and ρ⋆, respectively, yielding
an error metric at all points in space x ∈ Rd given by

(1.48) ϵ(x) = ρ⋆(x)− ρ(x),

see the discussions by Barcarolo et al. [BOD14] and Vacondio et al. [Vac+13], as
well as the paper reprinted in Chapter 7. Moreover, every particle affected, or
inserted, by a change in resolution has 2d+2 degrees of freedom, i.e., its position,
velocity, mass and support radius, which need to be adjusted in accordance with
the guiding principles in Sec. 1.6. Note that while in CFD contexts the support
radius is commonly optimized, in Computer Animation contexts the support radius
is generally set based on the particle mass, which means that there are only 2d+1
degrees of freedom per particle.

1.7.1 Particle sizing

The goal of a particle sizing function S(x) is to determine what resolution a point
in space x should be simulated with, i.e., what size the particle should have, based
on the importance of its location for the desired outcome of the simulation. Fur-
thermore, based on the guiding principles discussed in Sec. 1.6, S(x) should yield
a smooth transition from areas that are very important (i.e., areas where a higher
resolution is used) to areas that are less important (i.e., areas where a lower res-
olution is used). Accordingly, the first step is finding a metric to decide if some
part of the fluid is important. In Computer Animation, particles at the fluid surface
have the highest importance as the surface has the largest impact on the visual
appearance of a fluid. Detecting the fluid surface in SPH however, especially for
adaptive simulations, is not a trivial problem and various approaches for detecting
the fluid surface have been proposed, e.g., [Mar+10; Ort+13; BTN13]. To create a
smooth resolution gradient, a distance metric describing how far each particle is
from the closest area of high interest can be defined, e.g., the particle’s distance
to the visible fluid surface, which is then used as the basis of S(x). In the papers
reprinted in Chapters 3 and 7, the approach by Barecasco et al. [BTN13] is used
to detect the fluid surface, using a simple geometric construction process. This is
combined with the iterative distance approach of Horvath and Solenthaler [HS13]
to determine the distance of each fluid particle from the visible fluid surface.

Given a distance d(x) to an area of interest, an adaptive ratio α = Vbase
Vmin

of
the volume of smallest particle, Vmin, to that of the largest particle, Vbase, and a
maximum user-defined distance dmax, a sizing function can be constructed as

(1.49) V (x) =

[
1

α
+
d(x)

dmax

(
1− 1

α

)]
Vbase.

This sizing function V (x) determines the desired particle volume for a given
spatial location as a linear interpolation between the finest resolution Vbase

α
at the
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fluid’s surface, and the coarsest resolution Vbase at the user-defined maximum dis-
tance dmax; see Sec. 9 of the paper reprinted in Chapter 7.

Consequently, considering the errors induced on the simulation, this sizing
function should be temporally coherent, i.e., desired resolutions should change
smoothly over time, and changes in resolution should not suddenly occur over
large regions at once, to avoid introducing correlated clusters of errors. However,
there are two straightforward cases that violate these restrictions.

Firstly, if a wave, or other structure, collapses into the fluid, the fluid surface
of that region disappears, and consequently the region becomes less important
as a whole and a large amount of fluid needs to change its resolution simulta-
neously. This problem can be mitigated through a temporal smoothing of the
distance metric, as employed by Horvath and Solenthaler [HS13], as this staggers
the change of resolution over time. However, these situations are also a general
source of instability in spatially adaptive SPH methods. Hence their impact should
also be reduced either by temporally smoothing the change of resolution driven by
the sizing function, e.g., through temporal blending [Ort+13], or using other ways
to produce more gradual changes in resolution; see also the papers reprinted in
Chapters 3 and 7.

Secondly, generating initial particle configurations is challenging, even in uni-
form resolution simulations; see [Die+15]. Accordingly, in Computer Animation,
the most common approach is to start with an initially uniform fluid resolution and
only enable spatial adaptivity at some later point during the simulation. However,
this could lead to the entire fluid volume changing its resolution at once, which
in turn would yield significant correlated errors that need to be accounted for.
Therefore, enabling spatial adaptivity should be performed in gradual steps, e.g.,
α is increased over time. Additionally, to avoid the errors induced by resolution
changes from compounding with simulation stability concerns, spatial adaptivity
should be enabled before any challenging simulation scenarios are expected to
occur.

1.7.2 Decreasing particle resolution

Merging denotes the process in which a set of given particles j ∈M is combined
to form a single particle i. To enforce the constraints based on the guiding princi-
ples from Sec. 1.6, the mass of the resulting particle should be equal to the mass
of the combined particles [BOD14], i.e.,

(1.50) mi =
∑
j∈M

mj.

Then a mass weighted average position and velocity, which enforces conser-
vation of momentum, is determined as

(1.51) xi =

∑
j∈Mmjxj

mi

, vi =

∑
j∈Mmjvj

mi

.

Each merging process also removes the influence of the merged particlesM
and adds a single new particle, i.e., there exists a difference term, related to the
density field, given by

(1.52) ϵ(x) = miW (x− xi, h)−
∑
j∈M

mjW (x− xj, h).
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Note that the above equations describe mi, xi and vi exactly, and therefore the
only remaining free parameter is the support radius of the new particle hi. Con-
sequently, the only way to minimize the difference term in eq. 1.52 is by modifying
the support radius of the merged particle, see Barcarolo et al. [BOD14]. However,
within Computer Animation the support radius is defined solely using the particle
mass and, consequently, this optimization cannot be applied and the error due to
merging cannot be minimized.

In practice, determining the degrees of freedom of a merged particle is not
the main issue. Rather, the biggest challenge arises from the difficulty in finding
particles that are eligible to be merged, as this requires either pairs, or groups,
of particles that are spatially close to each other with a combined mass below
the splitting threshold. Furthermore, not all pairings of particles yield good results
when merged, i.e., the resulting merged particle could be placed at the location of
another particle, which yields significant errors in the density field. Accordingly,
several strategies have been proposed to find appropriate particle pairings; see
the discussions in Chapter 2 for a more in-depth discussion.

In this context, n : n− 1 merging is also relevant, where a single small particle
is merged evenly into a set of other particles. This can conceptually be treated as
a merging of the small particle, which was split into n − 1 parts, with each of the
other particles separately. More complicated merging processes, e.g., n : m, are
an interesting avenue for further research to reduce the overall errors introduced
and smoothen the resulting resolution gradient without affecting the support radii.
Note that as long as suitable particles are chosen, i.e., the resulting merged par-
ticle is not spatially close to another existing particle, the error induced in this
process is negligible in practice. However, if no merging is performed at all, i.e.,
differently sized particles can mix freely, the resulting particle distributions tend to
be numerically problematic and computationally expensive, see Sec. 1.6 regarding
the errors in the discretization.

1.7.3 Smoothing particle resolution

Sharing is a process in which a set of particles j ∈ S redistribute mass and other
quantities to smoothen out the resolution of the fluid. This is mostly applicable to
particles that only slightly deviate from their ideal size, based on a sizing function,
where neither merging nor splitting of the particle would be appropriate. Accord-
ingly, a particle that is too large, relative to its desired size, can be pseudo-split
into two particles at the same location with one particle at the desired size and
one particle to be merged into other particles. Consequently, this process is anal-
ogous to merging and shares the same problem of finding appropriate pairs of
particles. This is discussed in more detail in the paper reprinted in Chapter 3.

1.7.4 Increasing particle resolution

Splitting is a process in which a single coarse particle i is replaced with a set of
refined particles j ∈ R. The problem has d + 2 degrees of freedom per refined
particle, i.e., the positions, masses and support radii of the refined particles can
be adjusted freely, whereas the velocity is fixed to ensure conservation of momen-
tum [Fel06]. This problem contains a significant number of degrees of freedom
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which makes placing the refined particles into the simulation difficult. In this re-
gard, there are two main problems: (i) the particles need to be inserted in some
spatial configuration and (ii) the mass and support radii need to be optimized for
each inserted particle. Overall, the refinement process should minimize the same
point-wise error as the merging process, i.e.,

(1.53) ϵ(x) = miW (x− xi, h)−
∑
j∈R

mjW (x− xj, h),

is to be minimized over the entire simulation domain. This yields a minimization
problem, under a constraint driven by conservation of mass, as

(1.54) min
xR,mR,hR

∫
Rd

ϵ(x)2dx,
∑
j∈R

mj = mi,

Inserting new particles at mostly random positions can work for weakly com-
pressible SPH methods [Ada+07], but the introduced error is uncontrolled and
can yield local errors that are large enough to destabilize an incompressible fluid
simulation. Accordingly, fixed patterns of particle configurations, i.e., so-called re-
finement patterns, have found wide usage in the past as they can be optimized
for a low induced error. For example, Orthmann and Kolb used a 1:2 refinement
pattern [OK12], Solenthaler and Gross used a 1:7 refinement pattern [SG11] and Va-
condio et al. proposed using a 1:13 pattern [Vac+13]. In contrast to this, the paper
reprinted in Chapter 3 utilized refinement patterns for 2 to 16 particles. However,
these patterns are commonly applied equally across all particles, which can lead
to stability issues in the simulation as any error inherent to the refinement process
would not be locally confined. Initial work in avoiding this behavior was done by
Adams et al. [Ada+07], who utilized randomized refinement processes, as well as
Horvath and Solenthaler [HS13], who randomly rotated the refined particles.. The
paper reprinted in Chapter 7 performs an online statistical optimization of the re-
fined particles during the actual simulation to reduce the local error and prevent
introducing the same error everywhere. This method also removes the need to
intuitively find an initial refinement pattern as the optimization process can be
performed a priori using randomized inputs and the online optimization can be
started with these pre-optimized patterns, instead of manually tuned patterns.

With the positions of particles determined using either refinement patterns or
local optimization, two degrees of freedom remain, i.e., mass and support radii.
Considering mass, most approaches utilize a fixed uniform distribution of mass
among the inserted particles [OK12; HS13; WHK17]. However, optimizing this dis-
tribution of masses can yield a reduced error [FB07]. Optimizing the distribution
of masses is usually done a priori, i.e., when the refinement patterns are created,
and under the assumption of an isotropic particle distribution [Vac+13]. In ad-
dition to this optimization, the paper reprinted in Chapter 7 performs an online
optimization of the mass distribution during the actual simulation to reduce the
error inserted into the simulation. In the same way, support radii can be opti-
mized to further reduce the error induced through particle refinement, but this is
not done in Computer Animation as support radii are directly coupled to mass.

The error induced by the refinement patterns can be controlled reasonably well
by using patterns that are not adjusted to the local fluid domain. However, this
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is not the case when boundary objects are present. If a particle that should be
refined is in contact with a rigid object then placing the refined particles as if the
boundary object does not exist can yield significant errors, see the evaluation in
the paper reprinted in Chapter 7. This can be avoided indirectly by ensuring that
particles interacting with boundary geometries have the appropriate resolution,
as done for example in the paper reprinted in Chapter 3. However, this is not an
ideal solution as it requires knowing where fluid-boundary interactions can occur
and when they occur before they occur. Instead, by using the online optimization
process proposed in Chapter 7, the refined particles can account for the boundary
geometry and, consequently, reduce the induced error from refinement.

1.7.5 Error dampening measures

Particle refinement is generally the largest source of errors, and while it is possi-
ble to optimize the error due to refinement, the resulting error is never zero, i.e.,
some residual error will always remain, see the evaluation section of the paper
reprinted in Chapter 7. However, this residual error can be minimized through op-
timized refinement patterns and online optimization. Consequently, the better the
refinement process used, the smaller the error compensation required. This com-
pensation can be achieved by introducing additional viscosity, or other smoothing
effects, but it still needs to be compensated for to avoid spurious instabilities in the
simulation. To account for the induced error, three distinct approaches have been
applied in Computer Animation: (i) increase the artificial viscosity, (ii) remove par-
ticles with significant errors from the simulation, and (iii) temporally blend newly
refined particles into the simulation.

Increasing the global artificial viscosity of a simulation aims to reduce the im-
pact of spontaneous errors induced through refinement. While this does compen-
sate for many errors, see the paper reprinted in Chapter 3, the artificial viscosity
also dampens the fluid behavior in the entire simulation, even in the absence of
changes to the spatial resolution. Accordingly, the paper reprinted in Chapter 7
proposes a local viscosity term that depends on the time since the most recent re-
finement for viscosity interactions involving refined particles. This can be achieved
straightforwardly by scaling the viscosity parameter per particle interaction to be
higher than normal, and then reducing this scaling as the simulation progresses.
Consequently, spontaneous errors due to refinement experience additional damp-
ening without requiring a significant global increase in dampening.

The second approach is to simply remove particles that are causing significant
errors. This approach was first proposed by Solenthaler and Gross [SG11] and later
refined by Horvath and Solenthaler [HS13]. The general idea in these methods
is that simulations of different scales are coupled to each other and resolution
changes involve moving the boundaries between the domains. In this approach,
redundant particles get emitted during refinement, and particles that cause the
largest density errors are removed until the overall desired number of created
particles is reached. Note that this requires relatively fixed boundaries between
resolutions, i.e., different resolutions cannot freely mix, and additional relaxation
steps are still required to stabilize the resolution transition.

The final approach is to blend in new particles smoothly over time, i.e., the
resolution is not changed instantaneously but over a short period of time. This
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approach was first proposed by Orthmann and Kolb [OK12], where the original
particle that was refined is still explicitly tracked throughout the simulation as it
interacts with other particles as if it was still a real particle. However, this explicit
blending approach first requires all SPH interpolations to be performed on the
original and refined particles and then, in an additional step, blending these par-
ticles together using a blend weight that decays over time, i.e., the influence of
the original particle eventually goes to zero. The trajectory of the refined particles
and the original particle are also averaged with each other to help in the blending
process. While this process produces good results, tracking the original particle
and performing the blending explicitly after each SPH interpolation is computa-
tionally inefficient. Consequently, the paper reproduced in Chapter 3, proposes
an implicit blending approach that only utilizes the temporal blending approach
for the density of the refined particles and that does not explicitly track the origi-
nal particle. This method is then further improved through an optimization of the
blend weights in the paper reproduced in Chapter 7.

1.8 Scope of work

Formally, this work thus presents six recently published, internationally peer-
reviewed publications [WHK16; WHK17; WK19; WAK20; WK20; WK21], in each
chapter based on their original text, using the respective author or open-access
versions, with updated and unified formatting and minor corrections of linguistic
problems. Furthermore, references to supplementary materials are either replaced
with a reference to the definite version of the paper or resolved through inclusion
of the supplementary material as an appendix. Every chapter is preceded by a brief
contextualization that places the paper in context of the overall scope of research
presented in this dissertation and delineating the contributions of all involved au-
thors. In this manner the dissertation follows the statutory provisions for a cummu-
lative dissertation laid out in the Promotionsordnung der Naturwissenschaftlich-
Technischen Fakultät of the University of Siegen.
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Chapter 2

Constrained Neighbor Lists for
SPH-based Fluid Simulations

Contextualization
This chapter reprints the publication “Constrained Neighbor Lists for SPH-based
Fluid Simulations” published as a conference proceeding of the Symposium on
Computer Animation (SCA 2016) [WHK16] with co-authors Hendrik Hochstetter
and Andreas Kolb. This work represents the first steps towards the later adap-
tive SPH simulations through its application to multi-scale fluid simulations as a
method that performs local optimizations of fluid quantities, in this case motivated
by memory constraints, to improve the simulation performance, which coinciden-
tally also helped to improve simulations stability in adaptive scenarios.

Conceptually, the focus of this paper is on constraining the maximum num-
ber of neighbors a particle can have. There exists a theoretical ideal number of
neighbors per particle that is reached if a particle is in an isotropic particle neigh-
borhood and at rest density; however, these conditions rarely occur and, especially
with adaptive simulations, the number of actual neighbors of a particle can differ
significantly. This turns out to be a significant problem for GPU-based simulations
as storing reference to all neighbors of all particles, i.e., so called neighborlists, ei-
ther involves over-allocating storage for all particles, to ensure that all particles
can store their maximum number of neighbors, or using non coalescing data stor-
age formats. These restrictions either limit computational performance, in case of
non-coalescence, or limit the maximum number of neighbors excessively through
memory requirements. This problem is addressed in this paper by reducing the
support radius of particles with too many neighbors, relative to the allocated mem-
ory, until their number of neighbors is small enough.

The initial motivation of this paper arose from the collaboration with Hendrik
Hochstetter on GPU-based SPH simulations as existing methods to handle neigh-
borlists did not work well on GPUs and overly limited either performance or simula-
tion scale. The main idea of enforcing maximum neighborlist lengths via adjusted
support radii came from Rene Winchenbach with help and support in validating
the approach by Hendrik Hochstetter. Hendrik Hochstetter supported the devel-
opment of the concept and gave hints related to its implementation. Moreover,
together with Andreas Kolb, he co-authored, i.e., he contributed various sugges-
tions and assistance in structuring and writing of the final paper.

29
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Figure 2.1: Our improved neighbor algorithm can handle real time simulations of
over 500K particles (left image, velocity color coded), multiple fluid resolutions at
once (middle image, support radius color coded), and large scale simulations with
over 35 million particles (right image, velocity color coded).

Abstract
In this paper we present a new approach to create neighbor lists with
strict memory bounds for incompressible Smoothed Particle Hydro-
dynamics (SPH) simulations. Our proposed approach is based on a novel
efficient predictive-corrective algorithm that locally adjusts particle
support radii in order to yield neighborhoods of a user-defined maxi-
mum size. Due to the improved estimation of the initial support radius,
our algorithm is able to efficiently calculate neighborhoods in a single
iteration in almost any situation. We compare our neighbor list algorithm
to previous approaches and show that our proposed approach can handle
larger particle numbers on a single GPU due to its strict guarantees and
is able to simulate more particles in real time due to its benefits in regard
to performance. Additionally we demonstrate the versatility and stability
of our approach in several different scenarios, for example multi-scale
simulations and with different kernel functions.

2.1 Introduction

The Smoothed Particle Hydrodynamics (SPH) method plays an important role in
scientific computing and computer animation. Due to it’s nature as a Lagrangian
simulation it offers high spatial flexibility and support the simulation of incom-
pressible fluids with free surfaces and various physical properties. In SPH fluids
are described by unstructured particle data and local fluid quantities are interpo-
lated from a set of particles within a compact support radius.

As these particle pairings need to be checked for every interaction it can be
beneficial to store them in a neighbor list. Creating these neighbor lists has tra-
ditionally been very expensive on GPUs due to unbounded memory consumption
and irregular access patterns; see [Ihm+11]. But they can still be used on GPUs if
they are reused often in an iterative pressure solver;see [GEF15].

In this paper we introduce an efficient and versatile neighbor list method for
incompressible SPH fluids simulations on GPUs with strict memory bounds and
improved access patterns providing benefits in performance in all situations. To
achieve this we propose a new formulation to locally adjust the particle support
radius in every time step instead of using a fixed support radius. In order to guar-
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antee our strict memory bounds we propose a predictive-corrective algorithm that
correctly reduces the support radius of particles that violate the given bounds until
they are correctly limited. Finally we propose a new structure to store the neighbor
list in that improves access patterns and speeds up the overall simulation.

Using our proposed algorithms we are able to simulate larger particle sets on
a GPU and perform faster calculations when comparing it to previous approaches.
Additionally we show how our method is able to handle multiple fluid resolutions
and dynamic rigid boundaries.

2.2 Foundations and related work

Since the introduction by Gingold, Monaghan [GM77] and Lucy [Luc77] in the
field of astrophysics, SPH has spread into many areas of research including, our
area of interest, computer graphics [MCG03]. First designed for the simulation
of compressible fluids, SPH has since been extended to support incompressible
fluids [MM13; Ihm+13; BK15], strong surface-tension effects [AAT13], two-way-
interactions with rigid bodies [Aki+12] and many more effects. We refer the reader
to the survey paper by Ihmsen et al. for a general overview [Ihm+14].

In SPH, fluid quantities are evaluated by interpolating information of neighbor-
ing particles. The interpolant of a quantity A of particle i at its position xi depends
on the position xj , massmj , density ρj and quantityAj of the neighboring particles
j and is commonly written as

(2.1) A(xi) =
∑
j

Aj
mj

ρj
W (xij, H),

where xij = ∥xi−xj∥ represents the distance between particles i and j [Mon05].
W is a kernel function that weights particle quantities based on xij and the support
radius H . Interactions only take place if xij is shorter than the support radius H
leading to a compact support radius. In practice, the dynamic particle volume
mi

ρi
= Ṽi can be replaced by Ṽi = 1

δi
, where δi =

∑
j W (xij, H) is the particle

density, in order to correctly handle density contrasts [SP08]. To stably handle
free surfaces, Orthmann et al. presented another derivation based on the particle
number density ni =

∑
j VjW (xij, H) as Ṽi = Vi

ni
, where Vi =

mi

ρi,0
is the particle’s

rest volume and ρi,0 its rest density [Ort+13].
The support radius either is uniform for all particles [Ihm+11; AAT13; Aki+12] or

gets locally and dynamically adjusted for each particle to increase the simulation
stability [Mon05; DA12] or in order to reduce the simulation time by only simulating
at full particle resolution in areas of interest [SG11; OK12]. A common approach to
calculate local support radii is given as

(2.2) Hi = shη

(
mi

ρi

) 1
3

,

where η is a configuration parameter set ideally somewhere between 1.2 and 1.3
[Mon05]. Note, we directly adjust the support radius in Eq. 2.2 instead of the
smoothing length hi [Mon05]. To be more consistent, we will only use the support
radius throughout the text which is related to the smoothing length by the constant
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smoothing scale sh = H
h

and depends on the shape of the kernel function [DA12].
In order to conserve quantities and momentum, particle interactions have to be
symmetric. Thus, varying support radii are usually symmetrized as H =

Hi+Hj

2

[Mon92; OK12]. Locally and dynamically adapting the support radius also intro-
duces additional gradient H terms in each derivative. These additional terms,
however, have neglectable effect [HK89], thus, they are usually omitted [HK89;
OK12]. Although locally adapting the support radius is common practice, so far, no
approach aimed at using it to strictly limit the memory consumption of simulations.

Calculating and accessing particle neighborhoods are core problems of ev-
ery SPH framework. To that end, the simulation domain is usually subdivided by
uniform grids [HKK07; Gos+10; Gre10; OK12] often in combination with spatial
hashing [Ihm+11] or by hierarchical data structures [HK89; Gon15] into which par-
ticles are sorted. These data structures allow particles to be accessed based on
their physical location. Often cells are ordered by space filling curves and to in-
crease cache efficiency particles are sorted accordingly so that particles that are
close neighbors in memory are also close neighbors in simulation space [Gos+10;
Ihm+11; Dom+11]. During simulations each particle has to traverse all possible
neighbors in this data structure. Using hierarchical data structures is rather costly
and thus usually only applied for compressible simulations with strongly varying
support radii and gravitational codes [HK89]. For incompressible flows, uniform
cells are commonly used with cell sizes of H3. Then for each particle 27 cells
have to be searched for neighbors. However, still about 87% of these potentially
neighboring particles lie outside the particle’s support radius and thus don’t inter-
act [DA12].

To prevent these spurious particle pairings, neighbor lists can be calculated
which explicitly store all pairs of interacting particles [Ver67; Dom+11]. Especially
in incompressible simulations using iterative solvers [Ihm+13; BK15], many par-
ticle interpolations have to be performed in each time step. Computing a neigh-
bor list only once per time step instead of calculating all possible interactions
for every interpolation strongly improves performance [Ihm+11; GEF15]. Neighbor
lists can either be processed in two passes, a first pass to calculate the number
of neighbors to allocate enough memory and a second pass to actually find the
neighbors [VBC08], or by pre-allocating a fixed array with a maximum number of
neighbors per particle [Dom+11].

The simulation of SPH-based fluids can be efficiently carried out on GPUs
using regular grids to subdivide the simulation domain [HKK07; Gre10; Gos+10;
GEF15]. As hierarchical data structures and hashing involve irregular access pat-
terns and cause thread divergence, they are usually avoided. Due to the restricted
amount of memory, particle neighborhoods are often accessed by traversing cells
for each interpolation [HKK07; Gre10; Gos+10]. Explicitly storing neighbor lists on
the GPU [OK12; GEF15] can get very memory-consuming and thus strongly limits
the number of particles if the neighborhood size is unbounded. So far, no approach
to restrict the size of neighborhoods has been presented.

2.3 Variable support SPH

There is an ideal number of neighbors NH inherent to every kernel function which
depends on the shape of the kernel. For the cubic spline kernel the ideal number
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of neighbors is given as NH = 50 [DA12]. For our improved neighbor list algorithm
we propose a formulation of the support distance that is derived based on the
ideal number of neighbors.

The support distanceHi and the number of neighborsNH are closely related as
within a sphere of radiusHi only a certain number of particles with their respective
volumes Ṽi can be found. This relation can be described as NH =

4
3
πH3

i

Ṽi
. Solving

for Hi then yields our proposed formulation to locally adjust the support radius as

(2.3) Hi = Ṽi
1
3

(
NH

4
3
π

) 1
3

︸ ︷︷ ︸
shη

.

That way, we determine η depending on the properties of the kernel rather than by
manually tweaking.

Our formulation for adapting the support radius is similar to the commonly used
one, see Eq. 2.2. However, we use the adaptive particle volume of Solenthaler and
Pajarola [SP08]

(2.4) Ṽi =
1∑

j W (xij, H)

instead of mi

ρi
. In contrast to our general volume estimate, according to [Ort+13],

we chose this formulation for the support distance as we are interested in the ac-
tual spatial distribution of the particles and not a corrected distribution that takes
into account the particle volume. If the particle volume is taken into account, our
estimate cannot adequately handle boundaries between particle resolutions as in
those cases the adaptive volume would not significantly change due to its correc-
tive effects. Equation 2.4 does not correct the summation for the different particle
volumes and causes the desired change in the adaptive volume. For simulations
of uniform particle rest volumes both formulations lead to the exact same result.

The proposed formulation locally adapts in two ways to the current simulation.
On the one hand for surface particles without a full neighborhood our formulation
increases the support distance and helps fill up the surface particle’s neighbor-
hood which can increase the SPH interpolation at the surface. On the other hand,
for spatially compressed particles, we reduce the support distance and hence re-
duce the number of neighbors to meet the desired maximum.

In the first time step of a simulation, we can only assume an initial distribution
where Ṽi = Vi as we cannot calculate the actual estimate without having a support
distance. As we can assume temporal coherence of the particle neighborhood, we
later use the support radius of the previous iteration to give better approximations
for Ṽi. To facilitate this we apply a linear interpolation of the newly predicted sup-
port radius Hi using Eq. 2.3 and the support radius of the previous timestep H l

i

as

(2.5) H l+1
i = H l

i + ω
[
Hi −H l

i

]
,

where ω is the weight which we usually set as ω = 0.5. By exploiting temporal
coherence, we often find an estimate of the support radius that directly yields the
desired neighborhood size.
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2.4 Constrained neighborhoods

Our proposed constrained neighborhood algorithm aims at efficiently calculating
particle neighborhoods of a fixed, user-defined size. Using a fixed size allows
giving strict bounds on the memory consumption and also allows us to calculate
the neighbor list in a single pass over the underlying particle access data structure
in most situations. Our algorithm works in an iterative way similar to a prediction-
correction method using a soft start by initializing the support radius according
to Sec. 2.3 and then predicting a neighborhood using this support distance and
correcting potential errors. Note that the underlying data structure of our neighbor
lists is an array. We only use the term list to be consistent with literature.

While our initial support radius gives good estimates, it is not able to guarantee
neighbor limits as we always get a distribution of neighborhood sizes above and
below the desired number NH . Although our algorithm is able to enforce a strict
limit ofNH neighbors, in some scenarios it can be beneficial to allow each particle
to store Nadd neighbors, so that in total each particle can have N = NH + Nadd

neighbors.
Fig. 2.2 shows a flow diagram of the proposed algorithm. In the iterative pro-

cess we first try to create a neighbor list of fixed size (see Sec. 2.4.1). While adding
neighbors to the list, we store the support radii of the farthest particles, i.e. the
fringe, of the neighborhood in a fringe buffer of limited size and if necessary, ad-
ditional particles are stored in an overflow buffer (see Sec. 2.4.2). If too many
neighbors are found, the support radius is reduced using the fringe buffer. As
neighboring support radii may also have been reduced, we try to replace corre-
sponding neighbors with neighbors from the overflow list (see Sec. 2.4.3). Only if
we run out of space in the overflow list, or cannot reduce the support radius suf-
ficiently in a single iteration due to resource constraints, we have to do another
iteration over the particle access data structure. Due to the soft start and the over-
flow buffer, in most simulation time steps the neighborhood can be calculated in
a single iteration consisting of a single pass over the underlying data structure.

2.4.1 Initial neighborhood list

First, we calculate a neighbor list of at most N elements for each particle i using
a single pass over the underlying data structure. The fixed space of the neighbor
list, however, may not be large enough to directly contain all neighbors inside the
support radius Hi.

In case, no particle finds more than N neighbors, we are done and the pre-
dicted support radius of Sec. 2.3 is valid for all particles. This corresponds to
the green control flow in Fig. 2.2. In case any particle finds more neighbors, the
respective support radius has to be decreased in order to reduce the number of
neighbors and fit the strict memory bounds. In the worst case, additional iterations
of the neighbor search have to be run.

2.4.2 Overflow lists and tracking the neighborhood fringe

In order to prevent additional iterations of the neighbor search, we keep track
of neighbors that initially do not fit into the neighbor list. Therefore, we use an
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Figure 2.2: Flow chart of our proposed neighbor algorithm. Green elements de-
scribe the path of the method that is always done. Yellow elements describe our
added functions to handle the overflow and to correct the support distance. If
the error flag is set (red box), our algorithm needs another iteration as it cannot
accurately handle all errors in this iteration.
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overflow list that is subdivided into fixed-size partitions. In this list we can store a
limited number of indices of additional neighbors that did not fit into the normal
list without correction. For each particle we can only grab one partition and, in
order to keep memory consumption low, the total number of partitions is limited.

During the construction of the initial neighbor list, we already keep track of the
outermost neighbor particles j for each particle i in the fringe of the neighborhood,
i.e. the farthest particles from i. To that end, we propose to use a fringe buffer that
stores the largest possible support radii Hi = 2xij − Hj for particle i so that the
distance xij to the neighboring particle j is just inside the symmetrized support
Hi+Hj

2
= xij . For each particle the fringe buffer holds the same number of elements

as a partition of the overflow list, however, the fringe buffer is stored in shared
memory in order to allow for an efficient sorting of its elements. We only allow to
store unique values in the fringe buffer and only replace the current minimum value
if a value is found that is larger than the current minimum. Although it only occurs
very rarely, if two or more elements had exactly the same value, the algorithm might
not terminate otherwise. We split the storage of distances and indices as we need
to sort the distances and replace values within the fringe buffer but only add values
to the overflow list, see Fig. 2.2.

If a particle i has found M neighbors with M > N , we have to correct the
support radius so that only N particles remain inside Hi. In order to find the
proper support radius, we use the fringe buffer and sort it in descending order by
distance. The (M −N)-th entry in the fringe buffer is then used to directly set the
support radius of particle i as this is the support radius that particle i needs to
have in order to just contain the targeted neighbor number. Note that as we only
store unique values in the fringe buffer, it may rarely occur that the support radius
is slightly over-corrected.

2.4.3 Merging of initial neighborhood and overflow list

If a particle has used an overflow partition, its support radius has been reduced
in the previous step. As neighboring particles are likely to have found too many
neighbors, too, these possibly can be removed from the neighborhood as well.
Additionally, we want to merge the entries in the overflow list with the normal list.

In order to remove these particles, we simply iterate over the neighbor list
to find particles that are now outside the support radius. These are replaced by
particles from the overflow list that are within the support distance. That way, we
effectively merge the initial neighbor list with the overflow list. Only if particles
remain inside the support radius that do not fit into the neighbor list, we have to
run another iteration to further correct the support radius.

To keep this process efficient we only apply it to particles with an overflow list
and not for every particle in the simulation. Although this causes some spurious
particle interactions, the impact on the simulation performance can be neglected
due to the very limited number of spurious interactions. As we use symmetrized
support radii in the SPH integration, particle interactions always remain symmetric
so that conservation of momentum is guaranteed.
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2.4.4 Discussion

A basic approach to strictly limit the size of the neighborhood is to use a con-
stant support radius but only search up to N neighbors for each particle and then
stop. This, however, causes simulations to get highly unstable because, on the one
hand, the particle neighborhood is no longer symmetric and, on the other hand,
the kernel’s normalization property is violated if particles are removed from the
neighborhood without properly adjusting the support radius.

In contrast, our proposed algorithm works by first predicting and then itera-
tively correcting the support radius in order to reduce the number of neighbors.
As only the farthest particles of the neighborhood get removed, no instabilities
due to asymmetric interactions occur and due to the fact that the support radius
is properly adjusted, the normalization property of the kernel function is still satis-
fied. The support radius is reduced iteratively using a value from the fringe buffer.
As the fringe buffer only contains unique values that are smaller than the current
support radius, the support radius can only be reduced by our algorithm. Hence,
the size of the neighborhood will also be reduced in each iteration and the algo-
rithm terminates successfully.

2.5 Implementation details

2.5.1 Overflow lists

Although in most simulation scenarios only few particles find more neighbors than
the user-defined limit, this would always cause a second iteration of the neighbor
search. In order to prevent additional iterations, we store the overflow of the neigh-
borhood lists in an additional buffer (see Sec. 2.4.2) and later try to merge entries
with the neighbor list. We set the size of this buffer so that each particle can have
one additional neighbor. Each partition of the buffer has 12 elements which cor-
responds to the size of the fringe buffer that we only store in shared memory. We
use a single counter in global memory that points to the first free partition in the
buffer. If a particle needs an overflow partition, we use the current counter value as
start address and increment the counter using an atomic-add operation. If more
overflow lists than available are requested, an error flag is set and we have to start
another iteration.

2.5.2 Constraining the initial support radius

In our implementation, we use a cell based particle access data structure with
uniform cell sizes. The cell size limits the support radius that is allowed for a
particle without clipping the neighborhood. Initially, the cell length is set to fit a
particle with no compression (see Eq. 2.3) and we later limit support radii to this
length.

2.5.3 Coalesced neighbor lists

One technical improvement, we propose, is the use of a coalesced neighbor list. In
traditional neighbor lists [OK12], every particle stores its neighbors contiguously
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in memory. This is a very straight forward implementation, however, on GPUs
this approach does not perform well due to non-coalesced loads and small cache
sizes per particle. In order to resolve this issue, we propose an optimized data
structure in which the classical neighbor list is stored in transposed order. So
we contiguously store the first neighbor of every particle and then the second
neighbor of every particle and so on. This optimization allows us to access the
neighbor list in fully coalescing loads without cache problems.

Note, this structure is only realistically possible if the length of the neighbor list
for each particle is strictly limited. Otherwise, the size of the data structure would
have to be adjusted to the particle with the most neighbors which would be highly
restrictive to simulating large particle numbers.

2.6 Results and discussion

In order to evaluate the runtime performance and memory consumption and in
order to show the versatility and stability of our approach, we ran several test cases.
To enforce fluid incompressibility, we used IISPH [Ihm+13] and DFSPH [BK15]
resulting in an average compression rate of 0.5%. Dynamic rigid objects were
realized using particles [Aki+12]. For static boundaries we used distance fields
[HKK07]. We used the model of Akinci et al. [AAT13] to simulate surface tension
effects. Simulations were run on an Intel i7-5930K with 16GB of host RAM and an
Nvidia GeForce Titan X with 12GB of device RAM. Fluid surfaces were rendered
using screen-space curvature smoothing [LGS09].

First, we present the capabilities of our approach in real-time simulations.
Then, we will give a comparison to previous neighbor algorithms in terms of mem-
ory consumption and computational speed and present simulations of very large
scale. In order to demonstrate the stability of our method, we show complex sce-
narios of multi-scale simulations, rigid-fluid coupling and test the compatibility
with different kernel functions. Finally in order to demonstrate the scaling and
performance of our method we test our approach against previous approaches for
a dambreak scenario using various resolutions.

2.6.1 Real-time simulations

For real-time simulations, at least 30 frames have to be simulated per second.
With our improved algorithm we were able to run a real-time simulation of a dam
break scenario with over 500K particles using DFSPH and the poly6 kernel, see
Fig. 2.1 (left). Using the cubic spline kernel, still 240K particles were simulated in
real-time.

2.6.2 Scaling and comparison to previous work

We compared our new method to three previous approaches by simulating a bunny
that was sampled with fluid particles and dropping it into a basin (see Fig. 2.3).
The simulation ran with 2.4M particles for 15s simulated time using IISPH with
cubic spline kernel. Table 2.1 gives the performance results averaged over all time
steps.



2.6. RESULTS AND DISCUSSION 39

Figure 2.3: A bunny is sampled with fluid particles and dropped into a basin. Sur-
faces are rendered using curvature smoothing.

Table 2.1: Performance characteristics of the Bunny scene for different neighbor
algorithms. ‘Frametime’ gives the run time of a simulation time step. ‘Corrected’
gives the number of particles for which our algorithm adjusted the support radius.
‘Ratio’ gives the time spent to calculate the neighbor list and sort the particles vs.
the total time. ‘Size’ is the neighbor list size in device memory.

Algorithm Frametime (ms) Corrected Ratio Size (MB)
Our approach N = NH = 50 527 51923 9.07% 475
Constant H , coalesced 596.39 - 8.40% 932.61
Two-pass [OK12] 1323.39 - 3.33% 699.457
Cell iteration [Gre10] 765.83 - 1.2% -

We ran our approach with N = 50 and outperformed all other approaches
in simulation speed and neighbor list based approaches in memory consump-
tion. The ‘Two-pass’ algorithm calculates the neighbor list in two passes over the
particle access data structure and stores the exact number of neighbors for each
particle contiguously in memory [OK12]. In comparison, our algorithm reduced the
memory consumption by 47%. Figure 2.4 shows the memory consumption of the
neighborhood sizes resulting from using constant support radius and our adaptive
support radius. Most particles in the fluid volume have more than N neighbors us-
ing constant support. Our method, however, is able to strictly enforce the desired
number of neighbors. The row ‘Cell iteration’ corresponds to the approach in which
the particles neighborhood is recomputed for every interpolation [Gre10]. It does
not need any memory to store neighbor lists but took over 45% longer than our
proposed approach to simulate. The row ‘Constant H , coalesced’ gives the re-
sults for a neighbor list approach with fixed size that uses our proposed coalesced
data structure. By strictly limiting the neighborhood size, we were able to reduce
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Figure 2.4: Comparison of the Bunny scene using constant support radius and our
method using N = 50. The number of neighbors is color coded.

the computation time significantly whilst consuming less memory than previous
neighborlist based approaches.

In order to evaluate the scaling of our method in comparison to previous works,
we simulated 15 seconds of a dambreak scenario (see Fig. 2.9) using various par-
ticle resolutions yielding simulations of 30K to 4M particles. We compared our
algorithm using different neighborhood sizes N = 50, 55, 60 with the naı̈ve neigh-
bor list approach (Two-pass [OK12]), a cell based approach (Cell iteration), and an
approach using our proposed coalesced data structure without constraints (Coa-
lesced). Fig. 2.5 shows the average overall frame- time of the different approaches
for different particle resolutions. Our method was able to handle small and large
simulations very well and outperformed the previous approaches for all particle
resolutions in terms of the overall frametime. This is due to the fact that our
method creates a lower average number of neighbors than previous approaches,
as shown in Fig. 2.6, so that the costly time integration of the SPH equations is
sped up considerably whilst using an efficient access structure. On average our
approach found about 10% less neighbors than methods using a constant support
radius for the cubic spline kernel, when using strict constraints of N=50 neighbors,
without negatively influencing the simulation behavior. The smaller N is chosen,
the smaller the average number of neighbors gets. Fig. 2.7 shows the ratio of
the SPH integration and the overall frametime, the remaining time is spent for
the neighborhood algorithm. With our approach relatively more time is spent for
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Figure 2.5: Average time to simulate one frame (y-axis) for different particle reso-
lutions (x-axis) of our neighbor algorithm (N=50, 55, 60) and previous works.

finding neighboring particles than for the integration. Although our method intro-
duces a larger computational overhead over previous approaches, it yields smaller
neighborhood sizes and hence considerably reduces the time spent for the time
integration and is able to speed up the overall simulation time.

2.6.3 Large scale simulations

One of the main benefits of the proposed approach is that more particles than
with previous neighbor list approaches fit into memory. A large scale scenario
with up to 35M particles in which a stream of water is perturbed by two pillars
could be simulated, see Fig. 2.1 (right). The simulation took 3.5 s per simulation
step and the neighbor list consumed a total of 2240MB with a strict limit of N =
NH = 15 neighbors using IISPH and the poly6 kernel. The only other method able
to simulate 35M particles was the cell iteration. However, it took about 6.8s to
simulate a time step.

2.6.4 Stability and versatility of our approach

Without additional adjustments, our method was able to stably simulate multi-
scale scenarios with volume ratios of 1:8 using Nadd = 25 additional neighbors
(see Fig. 2.8). We were also able to handle volume differences with a ratio of 1:2
without additional neighbors required. We also tried to run simulations in which we
stopped adding neighbors to the neighbor list after N = NH neighbors had been
found. This however caused severe instabilities due to asymmetric interactions.
We thus omit to show these simulations.
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Figure 2.6: Average number of neighbors per particle (y-axis) for different particle
resolutions (x-axis) of our neighbor algorithm (N=50, 55, 60) and previous works.
Note that Two-pass, Cell iteration and Coalesced do not adjust support radii and
thus all yield the same number of neighbors.

Additionally, our method works with two-way rigid-fluid coupling (see Fig. 2.10)
where the fluid particles are directly influenced by dynamic rigid particles.

During our experiments, we also evaluated the effect of differentNadd for single-
scale simulations using the cubic spline kernel. It showed that only in combination
with multi-scale simulations additional neighbors were necessary to achieve stable
simulations. Both for run time performance and memory consumption, Nadd = 0
yielded the best results.

Although for interactive simulations poly6 or cubic spline kernels are usually
employed, more stable kernels are commonly used in scientific computing [DA12].
We were able to stably simulate the Dam Break scenario of Fig 2.9 using seven dif-
ferent kernel functions (poly6, cubic spline, quartic spline, quintic spline,
Wendland2, Wendland4, Wendland6) and set N = NH to their respective ideal
neighborhood size [DA12].

When using variable support radii, both the particle positions and support radii
are time-dependent. Although, in general, this has an influence on the derivation
of time-derivatives, we omitted to take derivatives of Hi into account as their ef-
fects have been shown to be negligible [HK89] and we did not observe any issues
concerning simulation stability by ignoring these terms.

2.7 Conclusions

In this paper, we presented a novel algorithm to efficiently calculate memory-
constrained neighbor lists for SPH-based particle simulations. The approach
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Figure 2.7: Ratio of the time spent in the integration part of the simulation step
over the overall simulation frametime (y-axis) for different particle resolutions (x-
axis).

works by iteratively adapting each particle’s support radius so that a user-defined
maximum number of neighbors is never exceeded. The algorithm works iteratively
in a predictive-corrective way, where the proposed initial prediction is based on
the current simulation state. In order to improve performance, an optimized data
structure for neighbor lists has been proposed that allows for fully coalesced mem-
ory reads on GPUs.

Due to the restricted neighborhood size, both performance and memory con-
sumption can be considerably improved compared to previous approaches. We
are able to stably simulate incompressible fluids including two-way fluid-rigid cou-
pling and multi-scale simulations. Due to our highly efficient method, over 500K
particles could be simulated in real-time and, due to the strictly limited memory
consumption, up to 35M particles could be simulated on a single consumer GPU.
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Figure 2.8: A spherical drop of particles with r = 0.5m drips into a fluid volume
with r = 1.0m. We set N = NH + 25 to handle the boundary between particle
resolutions. For an unbounded neighbor list we set N = NH +150. The number of
neighbors is color coded.

Figure 2.9: Dam break scenario with 500K particles. Surfaces are rendered using
curvature smoothing.
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Figure 2.10: A mixer is filled with 1.3M particles. The spinning rotor is simulated
using dynamic rigid particles. The neighborhood size was set toN = NH . Surfaces
were rendered using curvature smoothing.





Chapter 3

Infinite Continuous Adaptivity for
Incompressible SPH

Contextualization

This chapter reprints the publication “Infinite Continuous Adaptivity for In-
compressible SPH”1 published as a conference proceeding of SIGGRAPH 2017 via
ACM Transactions on Graphics [WHK17]. This work represents the seminal work
regarding to spatial adaptivity on which all further research was based, and intro-
duced the concept of sharing to optimize spatial resolution gradients and multiple
different refinement patterns per particle and the implicit blending approach.

Principally, the focus of this paper is on introducing an overarching spatially
adaptive and incompressible SPH simulation into a computer animation context.
This is achieved through the introduction of a continuous sizing function S(x),
which dictates the ideal resolution at a given spatial location x, where particle
splitting, particle merging and mass sharing are used to minimize the difference
of actual particle sizes with respect to their ideal size. Furthermore, this paper re-
introduces temporal blending, which was previously proposed by Orthmann and
Kolb [OK12], in an implicit manner, i.e., without tracking actual parent particles.
This paper uses the constrained neighborlists approach, see Chapter 2, to limit
the number of neighbors of particles in regions with large resolution gradients
to reduce numerical instabilities. Finally, this paper uses multiple refinement pat-
terns, i.e., a single particle is replaced with 2 to 16 particles, to smoothen resolution
gradients and to not split the same particle multiple times in quick succession.

The initial motivation for this paper arose during the evaluation of the prior pa-
per [WHK16], which made spatial adaptivity computationally feasible, but required
density errors from refinement to be reduced. The core ideas of the sizing func-
tion, implicit blending and the construction of refinement patterns came from Rene
Winchenbach, with input from Hendrik Hochstetter on the design of the refinement
patterns and their optimization. Furthermore, Hendrik Hochstetter and Andreas
Kolb provided significant feedback and assistance during the writing process of
the paper. Finally, the anonymous reviewers of the SIGGRAPH 2017 conference
provided valuable feedback and inspiration for further research opportunities.

1Note that this paper denotes adaptivity ratios as 1 : n, i.e., 1 low resolution particle is equivalent
to n high resolution particles, whereas most other papers denote adaptivity ratios as n : 1.
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Figure 3.1: Adaptive simulation of a bunny shaped drop of water falling into a tank
at particle mass ratios of 1:300. The left image shows the overall splashing effect
while the top right image shows the fine visible surface detail. The color mapped
image shows a cut away view with volume color coded from purple to yellow. Our
algorithm allows for a smooth adaptive simulation with detailed surface and low
interior resolution.

Abstract
In this paper we introduce a novel method to adaptive incompressible
SPH simulations. Instead of using a scheme with a number of fixed par-
ticle sizes or levels, our approach allows continuous particle sizes. This
enables us to define optimal particle masses with respect to, e.g.,, the
distance to the fluid’s surface. A required change in mass due to the
dynamics of the fluid is properly and stably handled by our scheme of
mass redistribution. This includes temporally smooth changes in parti-
cle masses as well as sudden mass variations in regions of high flow dy-
namics. Our approach guarantees low spatial variations in particle size,
which is a core property in order to achieve large adaptivity ratios for
incompressible fluid simulations. Conceptually, our approach allows for
infinite continuous adaptivity, practically we achieved adaptivity ratios up
to 5 orders of magnitude, while still being mass preserving and numer-
ically stable, yielding unprecedented vivid surface detail at comparably
low computational cost and moderate particle counts.

3.1 Introduction

Fluid simulation has been a topic of interest for a long time and has found wide-
spread use in computer animation. While the plausibility and vividness of simu-
lated fluids strongly depend on the dynamics in specific regions, e.g.,, at the fluid
surface including droplets, splashing and formation of fluid sheets, large parts of
the fluid bulk are less important for the overall visual appearance of the simula-
tion. Using a high resolution in specific flow regions, like surfaces, and a coarse
resolution in other parts, like the bulk, has a huge potential to improve efficiency
at no or minimal loss of visual quality.

For grid-based fluid simulation there are various methods to achieve adaptivity,
e.g.,using octrees [LGF04], non-uniform [Kli+06] or tetrahedral meshes [ATW13].
Grid-free, particle-based approaches, such as Smoothed Particle Hydrodynamics
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(SPH), have quite some advantages over grid-based approaches with respect to
mass preservation and modelling of free surfaces. However, only a limited amount
of adaptivity has been achieved for SPH-based simulations of incompressible flu-
ids so far. All existing methods simulate particles on a pre-defined set of dis-
crete particle levels, each fixating a pre-defined particle size [Ada+07; SG11; OK12;
HS13]. Depending on the refinement requirements at a given spatial location, a
specific level, i.e.,, particle size, is chosen. If the currently used particle size needs
to be altered, particles can be replaced instantaneously [Ada+07] or by apply-
ing temporal blending schemes [OK12]. Alternatively, higher resolution can be
achieved by simulating separate scales in regions which require higher resolu-
tion which either suffer from mass loss [SG11; HS13] or only allow for very limited
adaptivity [Cor+14].

Indirect coupling between particle levels is either limited to small particle mass
ratios of 1:8 [Cor+14] or is not mass preserving [SG11; HS13]. Level-based incom-
pressible fluid simulations cannot ensure sufficiently smooth transitions between
regions of different particle resolutions. Thus, direct interaction of particles of dif-
ferent levels can cause instabilities which so far restrict adaptivity to particle mass
ratios of up to 1:64 [OK12].

In this paper we introduce the concept of adaptivity using arbitrary particle
sizes. The main idea is to have a continuously adaptive mass for each particle,
which is driven by the distance to important flow regions, e.g.,, the fluid surface.
Our approach enforces a smooth transition between areas of different resolutions
by directly exchanging mass between particles. As a consequence, our technique
does neither suffer from mass loss like approaches with indirect coupling between
different resolutions, nor from numerical instabilities due to the interaction of par-
ticles with very different sizes and masses. Thus, we allow for virtually infinite
adaptivity.

Conceptually and technically our approach comprises the following features
and contributions:

• the concept of continuously adjusted particle masses (and sizes) with re-
stricted spatial variation, leading to technically unlimited adaptivity,

• a method to flexibly adjust particle masses not only by split/merge opera-
tions but also by redistributing mass among particles which guarantees mass
preservation and prevents problems of finding merge partners,

• an efficient implicit temporal blending method which allows for stable in-
compressible fluid simulation, and

• proper handling of continuously varying particle radii in the SPH simulation
framework.

The rest of paper is structured as follows. First we will discuss related work
in Sec. 3.2 and recapitulate the foundations of SPH in Sec. 3.3. Sec. 3.4 gives
an overview of our approach. Sec. 3.5 describes how to calculate a particle’s dis-
tance to the surface and its desired optimal size. Our novel splitting and merging
schemes and our smooth and conservative mass redistribution are described in
Sec. 3.6. In Sec. 3.7 we discuss our novel concept of implicit temporal blending.
Sec. 3.8 shows how to adjust the simulation to stably work with varying particle
resolution. Sec. 3.9 presents results before conclusions are drawn in Sec. 3.10.
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3.2 Related work

Since its introduction by Gingold and Monaghan [GM77], SPH has been a very
active field of research. First, stiff equations of state were employed to achieve
weakly compressible fluids [MCG03; BT07]. Later, prediction-correction-based
[SP09], iterative [MM13] and implicit methods were used to enforce incompress-
ibility [Ihm+13; BK15].

Adaptive simulation using splitting and merging of particles was introduced by
Desbrun and Cani [DC99]. Adams et al. [Ada+07] adjust particle positions after
splitting to reduce the errors mainly introduced in the pressure term. As direct
interactions between particles of different levels are a common source of instable
simulations, Keiser et al. [Kei+06] use particles that also carry virtual particles of
neighboring resolutions which are then used in the interaction. However, none of
these approaches could be shown to work with incompressible fluids. A way to work
around these instabilities is to use parallel separate simulation scales in which
particles of different sizes interact only indirectly through coupling forces [SG11;
HS13]. Although these methods work well with incompressible fluids, the cou-
pling between resolution levels is rather unphysical and mass preservation is not
guaranteed, as either the overall volume is not considered in the creation of par-
ticles [SG11] or the creation and deletion of high-resolution particles depend on
random values [HS13]. Orthmann and Kolb [OK12] introduced a different approach
to incompressible adaptive SPH by tracking the original particles after splitting
and merging for a while and temporally blending the values of both resolutions to
prevent abrupt changes in quantity fields. Although this allowed for stable simula-
tions, it complicates the evaluation of quantities and the approach has only been
shown to work with iterative pressure solvers and would require very expensive
adjustments if used with current implicit solvers. Recently, Cornelis et al. [Cor+14]
introduced IISPH-FLIP in which the pressure is solved for low resolution SPH par-
ticles while fluid advection uses smaller FLIP particles. Although the approach
works mass-preservingly, it is restricted to mass ratios of 1:8 between SPH and
FLIP particles.

In adaptive approaches with direct particle interactions, instabilities are mainly
due to interactions of particles of very different sizes which currently limit adap-
tivity to mass ratios of 1:64 between the finest and coarsest resolution [Ada+07;
OK12]. In order to improve the stability, different geometric shapes for splitting
have been proposed. While Desbrun and Cani [DC99] found static 1:7-splitting to
be stable, Adams et al. [Ada+07] and Orthmann and Kolb [OK12] used 1:2-patterns
that are either dynamically optimized or temporally blended. In general, fix geo-
metric refinement patterns can still cause large errors, thus, refinement patterns
have been subject to optimization [Vac+13; Vac+16].

All prior approaches to adaptive SPH simulations are based on some notion
of particle level, i.e.,, particles belong to one level of constant particle size and
transitions between levels are achieved using fixed, optimized and/or blended 1:n
refinement (split) and symmetric n:1 coalescing (merge) operations, preventing
smooth adjustments of particle sizes. A crucial problem in the merge operation
is the identification of merge partners, as only particles of the same level can
be merged. Practically, particles often can not be merged due to lacking merge
partners, which leads to isolated small particles in regions of coarse resolution
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and, thus, to massive numerical instabilities. Our approach of continuously vary-
ing particle masses and sizes solves all the above mentioned problems with adap-
tive, incompressible SPH-based fluid simulations. We guarantee smooth spatial
transitions in particles sizes and, thus, we achieve numerical stability at unlimited
adaptivity ratios.

3.3 SPH foundations

In SPH, quantities are interpolated from a weighted average of the surrounding
particles’ quantities as [Mon05]

(3.1) Ai =
∑
j

Aj
mj

ρj
Wij,

where Ai = A(xi) is the interpolated quantity for particle i at position xi and j
are the neighboring particles with quantities Aj . mj and ρj denote the mass and
density. Wij = W (xij, hij) is the kernel function that weights contributions of the
neighboring particles according to their distance xij = |xi − xj| and their support
radii hi and hj where the support radius is one of the most important factors in
SPH. The support radius decides which particles interact how strongly with each
other and is typically [Mon05] calculated for each particle i as

(3.2) hi = η

(
mi

ρi

) 1
3

.

If two particles with different support radii interact, the support of either parti-
cle i can be used, i.e.,hij := hi (gather formulation), the support of particle j ,
i.e.,hij := hj (scatter formulation) or an average of both which yields a symmet-
ric formulation hij :=

hi+hj

2
that is usually preferred. Throughout the text, we will

assume a symmetric formulation. The gradient of a quantity can be determined
using various formulations [Mon05]. We use

(3.3) ∇Ai =
∑
j

(Aj − Ai)
mj

ρj
∇iWij

as it guarantees a proper first order interpolation, where ∇iWij is the gradient of
the kernel function with respect to particle i.

3.4 Overview

We consider the surface to be the most important fluid region, thus, we want to
reserve the highest simulation resolution to the surface and coarser resolutions
to the fluid bulk, i.e.,, according to the distance to the surface. Therefore, we first
calculate the surface distance ϕi for each particle i (see Sec. 3.5.1) and map it to the
optimal mass mopt

i the particle should have using a sizing function (see Sec. 3.5.2).
We calculate the optimal mass as a continuous quantity without restrictions to
levels and try to adapt particles to be as close to mopt

i as possible. Depending on
the ratio of a particle’s current and optimal mass, we classify particles into five
categories
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• o: particle is close to optimal size
• s or l: particle is slightly too small or large, respectively
• S or L: particle is strongly too small or large, respectively

Particles of class L are strongly too large and thus are split into smaller parti-
cles. As introducing new particles into the simulation often causes instabilities,
we use statically optimized 1:n-patterns to reduce the initial error (see Sec. 3.6.1).
Particles of class S are strongly too small and their mass is distributed among
neighbors before they get completely removed from the simulation, yielding an
(n+1):n-merging of particles (see Sec. 3.6.2). The size of particles of classes s and
l is increased or decreased by exchanging mass between neighboring particles
in order to meet mopt

i (see Sec. 3.6.3). In summary, the following operations are
performed according to the particle class

L Split (Sec. 3.6.1)

S

{
Redistribute mass and remove particle (Sec. 3.6.2)

Receive mass from redistribution of S (Sec. 3.6.2)
l Redistribute mass (Sec. 3.6.3)
s Receive mass from redistribution of l or S (Secs. 3.6.2, 3.6.3)
o Leave unchanged

To reduce errors introduced by splitting or merging particles, we propose the
concept of implicit temporal blending that approximately tracks the motion of the
original particles, as if they still existed, and only slowly blends to the new particle
set (see Sec. 3.7). As changing a particle’s mass alters its support radius, we
derive a stable SPH formulation to handle variable support radii (see Sec. 3.8) in
a symmetric SPH formulation. Algorithm 3.1 shows how our adaptive method can
be incorporated into an existing SPH framework.

3.5 Particle classification

As our interest mainly lies on the surface detail, we want to simulate the surface
with the finest particle resolution. Therefore, for each particle i we first determine
the signed distance to the fluid surface (Sec. 3.5.1). The surface distance is then
mapped to a desired optimal particle size mopt

i and classified according to the
ratio of its current mass to the optimal mass (Sec. 3.5.2). The mapping yields
continuous optimal masses determined by the minimummfine and maximummbase

particle masses which are user-defined parameters to control adaptivity.

3.5.1 Surface detection

To determine the surface of the fluid, we use the Level-set function proposed by
Zhu and Bridson [ZB05] which gives an initial estimate of the distance to the sur-
face ϕ̃i(t) for particles i close to the surface, where the values are negative as
particles are on the inside of the fluid. We use the propagation method proposed
by Horvath and Solenthaler [HS13] to iteratively propagate distance values ϕi to
all particles in the simulation and clamp the resulting values to the largest dis-
tance possible ϕmax. We adopt the approach with minor modifications to allow for
adaptive particle sizes.

To avoid spurious detection of surface particles using Level-set functions, we
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mark particles with more than 45 neighbors as interior particles. Additionally, we
do not limit the change of the surface distance for particles in the iterative step of
the algorithm as this provides quicker reaction to changes. As we later derive the
desired particle mass from the surface distance, particles need to have reasonably
smooth distance values. In order to smooth the distance values, we apply an SPH
interpolation ϕi =

∑
j
mj

ρj
ϕjWij in the end.

This algorithm efficiently calculates a stable estimate of the surface distance
of all particles as shown in Fig. 3.3.

3.5.2 Sizing functions and particle classification

Using the previously determined surface distance we now calculate the desired
particle mass mopt

i . At the furthest distance ϕmax we want to use particles of mass
mbase and at the surface we want to use particles of massmfine. Using the adaptivity
factor α = mfine

mbase we determine the optimal particle mass as a linear interpolation
of the mass between mfine and mbase

(3.4) mopt
i (ϕi) = mbase

(
min(|ϕi|, |ϕmax|)

|ϕmax|
(1− α) + α

)
.

Particle i is then classified into the categories described in Sec. 3.4 as

(3.5) Ci =



S mrel
i < 0.5

s 0.5 ≤ mrel
i ≤ 0.9

o 0.9 < mrel
i < 1.1

l 1.1 ≤ mrel
i ≤ 2

L 2 < mrel
i ,

where mrel
i = mi/m

opt
i denotes the relative mass.

o is chosen with a 10% margin aroundmopt
i to prevent particles that are close to

their optimal mass from causing unnecessary computational effort for redistribut-
ing comparably small amounts of mass. Using Ci, our adaptive approach tries to
adjust particle masses according to the surface distance. In regions, however,
where only l or only s particles are present, mi can deviate from mopt

i as no mass
redistribution is applied (see Fig. 3.3). Note, Ci does not relate to fixed particle
sizes as in level-based approaches.

We use the linear scaling of the mass as this creates a very smooth change
in resolution over the simulation domain, whereas linearly changing the radius
would introduce a cubic change of mass. Although both options yield the same
surface detail for unchanged mfine, a cubic change of mass would significantly
increase the number of particles. Certain simulations, especially those of very high
adaptivity ratios, see Fig. 3.2, could benefit from fine tuned sizing functions that
can be interchanged with our linear scaling to improve surface detail even further.
Additionally, we could use different inputs to the sizing function, e.g.,the distance
to regions of high flow vorticity, as long as the distance values are smooth, which
can be achieved by the propagation method of Horvath and Solenthaler [HS13].
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Figure 3.2: This image shows a cross section of the sphere in the sphere drop
scenario where we used an adaptivity ratio of 1:10000. Mass is color coded from
purple mbase to yellow mfine.

3.6 Adaptivity using splitting and merging

In order to adjust particles of classes L and S, we use splitting and merging op-
erations. Particles have usually been split into a fixed number of particles. We,
however, want to achieve a smooth adaptive resolution. Therefore, we use pre-
processed 1:n-particle refinement patterns from which we can choose the ap-
propriate pattern to create particles close to their optimal mass (Sec. 3.6.1). As
particle merging in fixed n:1-patterns is often impossible due to missing merge
partners [Ada+07] or causes large errors that have to be corrected [OK12], we re-
distribute the mass of a single S particle among its n neighbors yielding (n+1):n-
merge processes that overcome these difficulties (Sec. 3.6.2). Additionally, to al-
low for smooth adjustments, particles of class l can redistribute their excess mass
among neighbors classified as s (Sec. 3.6.3).

3.6.1 Increasing resolution using particle-splitting

We split a particle i of class L into n child particles that are close tomopt
i by choos-

ing n = ⌈mi/m
opt
i ⌉. To allow for arbitrary 1:n-splitting we generate patterns using

an optimization process. For each n we initially generate a pattern in which uni-
form particles are placed evenly distanced on the surface of a sphere. For patterns
with n > 4, one of the particles is placed in the center. The particle positions of
these initial patterns are then optimized similarly to Vacondio et al. [Vac+16]. For
the actual splitting process we use the optimized patterns to generate the posi-
tions of the new particles and copy all other quantities of the original L particle
which is the only way to conserve kinetic energy and linear and angular momen-
tum [Vac+16]. The mass of the new particles j is directly set as mj = mi/n which
conserves mass exactly.
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Figure 3.3: Adaptive simulation of a drop of water that drips into a tank with par-
ticle mass ratios of 1:300. Surface distance (top) is color coded from 0 (yellow) to
ϕmax (purple). Support radius (middle) is color coded from yellow to purple. Den-
sity (bottom) is color coded from 0.75ρ0(black) to 1.25ρ0 (red). Note, our method
generates a smooth distance field even with adaptive particles and adapts reso-
lutions according to the distance with respect to the classification. We are able
to generate a smooth density over the simulation even when particles of different
resolutions interact. The apparent banding in the lowest resolution regions is due
to a lack of possible sharing partners as the difference to the ideal mass is too
small to cause splitting.

3.6.2 Reducing resolution using particle-merging

Particles i of class S are smaller than mopt
i /2 and are removed from the simula-

tion by redistributing their mass to nearby particles classified as s or S. Although
our approach uses continuous particle masses and principally allows merging of
arbitrary particle combinations without being restricted to particle levels, we only
merge particle i with neighboring s and S particles as they also carry too little
mass. We only remove one particle to get an (n+1):n-pattern that smoothly adjusts
masses instead of merging in an n:1-pattern.

In order to find neighboring s and S particles of particle i we iterate over all
neighboring particles and check if a neighboring particle j is classified as either
s or S and if it doesn’t already have a distribution partner. We limit the distance
to be within hi

2
to reduce long distance merging that tends to be unstable. Ad-

ditionally, we check if the combined mass mj +
mi

n
< mbase results in a valid size,
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where n is the number of partners already found plus one. If the particle is a valid
partner, we mark it accordingly. If no partner is found, the initial particle i is left
in its current state. Due to continuous masses, arbitrary merging combinations
and the smooth transition of resolutions, in practice this is not an issue.

An S particle i with n partners distributesmn = mi

n
to every partner j. Therefore,

we iterate over all partners that have previously been marked as merge partners
of i and calculate their new masses and other quantities A, i.e.,position, velocity
and surface distance, using a mass weighted average as

m∗
j = mj +mn

A∗
j =

Aimn + Ajmj

m∗
j

.
(3.6)

Once all partners have been updated, the original particle i is removed from
the simulation. By redistributing mass, conservation of mass is guaranteed in our
method and by using mass weighted average positions and velocities, we also
conserve linear and angular momentum [Vac+13].

3.6.3 Mass redistribution

As l particles i have less than 2mopt
i mass, splitting would at least create two par-

ticles with masses less than mopt
i . Instead of splitting these particles, we propose

to redistribute the excess mass mex = mi − mopt
i to nearby s particles. This re-

distribution smoothly adjusts the resolution and prevents l particles from possibly
turning into L particles that later would have to be split.

We use a similar mass redistribution process like for merging in Sec. 3.6.2,
however, only the excess mass mex is redistributed to neighboring s particles j as

m∗
i = mi −mex

m∗
j = mj +

mex

n
.

(3.7)

As the initial l particle i remains and only part of its mass is redistributed, we only
update quantities Aj (positions, velocities and surface distances) of the partner
particles j that receive mass as

(3.8) A∗
j =

mex
n
Ai +mjAj

mex
n

+mj

in order to conserve momentum. As this process is very similar to the merging
in Sec. 3.6.2, both processes can be combined in a single step that finds partners
for both l and S particles.

3.7 Implicit temporal blending

Both adding and removing particles through splitting and merging introduces er-
rors even though positions are updated using weighted averaging and optimized
refinement patterns are applied. Previously this error has been reduced by tem-
porally blending in new particles [OK12] which however involves the simulation of
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ALGORITHM 3.1: Algorithm Overview. New steps required for our method are
marked in orange.

1 RESORT AND NEIGHBORLIST STEP
2 Sort Particles
3 Build neighborlists for all particles [WHK16]

4 DENSITY COMPUTATION
5 Compute ρi =

∑
j mjWij for all particles

6 Blend density for blending particles (see Sec. 3.7)

7 PARTICLE INTEGRATION
8 Calculate advection forces (Surface Tension, Viscosity, etc.) F adv

i

9 Blend velocity for blending particles (see Sec. 3.7)
10 Enforce incompressibility using modified IISPH (see Sec. 3.8)
11 Update position of all particles

12

13 ADAPT RESOLUTION
14 Detect Surface (see Sec. 3.5.1)
15 Apply sizing function to classify particles (see Sec. 3.5.2)
16 Create particles using splitting (see Sec. 3.6.1)
17 Find partners for merging and redistribution (see Sec. 3.6.3)
18 Merge particles and redistribute mass

both particle resolutions and severely changes the standard SPH interpolation. We
thus propose an implicit temporal blending for S and L particles which passively
advects the original particle set.

Our algorithm stores the position xO of the original particle O for the new
particles, in case of splitting, or for the particles that received mass, in case of
merging. These particles use xO to compute a density ρO for the original particle
O that ignores all split particles with the same parent. In the first time step ρO
yields exactly the density as if the old particle still existed and no particles were
added. We calculate the density by blending the new particle density ρi with the
approximate old density ρO as

(3.9) ρblended
i = (1− βi)ρi + βiρO,

where βi denotes the temporal blend weight of particle i. This blended density is
used for all calculations the new particles are involved in. Compared to explicit
temporal blending no changes to SPH formulations are necessary. We blend the
density as all other quantities in an SPH Simulation can be derived from it and
improving the quality of the density improves the overall results.

In order to provide a better estimate for the next step, the velocity v⃗O of the
original particle is calculated as the mean velocity of all new particles with the
same original particle O, or all particles that received mass from the same original
particle O, and xO is updated according to v⃗O. We blend the velocities similarly
to the density as

(3.10) v⃗blended
i = (1− βi)v⃗i + βiv⃗O.
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For our blending process we initialize the particle blend weight for particles
generated by splitting as βi = 0.5 and for particles updated by merging processes
as βi = 0.2. We chose a smaller initial blend weight for merged particles as they
introduce a smaller error. As the tracked position xO becomes less accurate over
time and to fully utilize the new resolution we update the blend weight with a
constant rate of ∆βi = −0.1 per timestep until βi = 0. While βi > 0 the particle
does not participate in split, merge or redistribute interactions as it is still in the
process of transitioning resolution.

3.8 Adapting to variable support radii

For particles with uniform masses, the support radius is only influenced by the den-
sity of a particle (cf. Eq. 3.2) and this influence can typically be ignored [HK89].
Changing support radii due to mass changes in our adaptive simulation, however,
cannot simply be ignored when calculating derivatives without causing instabil-
ities. Pressure solvers like IISPH [Ihm+13] and DFSPH [BK15] rely on the time
rate of change of density to enforce incompressibility and the accuracy of this
derivative is central to their performance.

For our SPH framework with varying radii support, the time rate of change of
density can be expressed as

(3.11)
dρi
dt

=
1

Ωi

∑
j

mjv⃗ij∇iWij,

where

(3.12) Ωi =

{
1 + hi

3ρi
mi

∂Wii

∂hii
, Ct−1

i = l

1 + hi

3ρi

∑
j mj

∂Wij

∂hij
, else

is a corrective factor that depends on the classification Ct−1
i of particle i at the

last (discrete) time step t− 1. See App. 3.A.1 for a comprehensive derivation.
This corrective factor is also applied to the pressure force resulting in a cor-

rected pressure force term as

(3.13) F P
i =

∑
j

mj

ρj

(
Pi

ρ2iΩi

+
Pj

ρ2jΩj

)
∇iWij.

Both Eq. 3.11 and 3.13 are necessary to achieve stable incompressible simulations
at resolution interfaces and for varying support radii. For our simulations we mod-
ified the IISPH algorithm by carrying the Ωi term through the derivation resulting
in simple adjustments to the overall algorithm. The derivation of the pressure term
and the application to IISPH are covered in detail in App. 3.A.2 and 3.A.3 .

3.9 Results and discussion

To compare our adaptive simulation approach with simulations of fixed resolu-
tions, and to show the capabilities of our method, we set up different scenarios.
We used a sphere drop scenario where we drip a sphere of liquid into a basin (see
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Figure 3.4: This image shows the bunny drop scenario rendered using a ray tracer
at an adaptivity ratio of 1:250. The image is at the initial start of the simulation
before the splash. The splashing behavior can be seen in Fig. 3.1.

Figure 3.5: This image shows our qualitative comparison. For the left image we
changed the sizing function to ensure all particles on the left to be of the highest
resolution mi = mbase/32, and for the right image we changed the sizing function
to ensure all particles on the left to be of the lowest resolutionmi = mbase. Volumes
are color coded from purple mbase to yellow mbase/32.

Fig. 3.7) to compare performance and visual quality, a bunny drop scenario where
instead of a sphere we used a bunny shaped object (see Fig. 3.1), a dam break sce-
nario as a common case, and a double dam break scenario (see Fig. 3.9) to show
higher adaptive ratios. We assess the quality of our approach by visually compar-
ing adaptive and non-adaptive simulation results. The performance is assessed
by comparing run times of simulations with similar resolution.

All simulations were run on a single Nvidia Titan X GPU with 12 GiB of VRAM,
an Intel i7-5930k and 16 GiB of RAM. We use the surface tension of Akinci et al.
[AAT13], the artificial viscosity of Monaghan [Mon05], boundaries are represented
as signed distance fields [HKK07]. Fluid renderings were achieved using Hou-
dini and mantra with no modifications required to surface extraction or ray-tracing
techniques.

Qualitative comparison To compare the quality of the results we used the drop
scenario, see Fig. 3.7. This scenario provided challenging dynamics on the initial
impact of the fluid and difficulties of handling the boundary interactions for higher
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Figure 3.6: These graphs show the performance of the sphere drop scenario with
and without adaptivity. The top graph shows the computation time in ms required
per ms simulation time. The bottom graph shows the number of particles over the
course of the scenario for all the different cases. We used 3 fixed resolutionsmbase,
mbase/8 and mbase/32 and four adaptive simulations where mbase was the same as
for the non adaptive tests.

resolutions. Additionally, the quality of the crowning is a simple way of judging the
quality of the result and indicates possible negative impacts. Fig. 3.5 shows the
comparison setup we used. When comparing the high resolution fixed result with
the adaptive result, we see little difference in the crowning, whereas the result is
significantly better in comparison to the low resolution result. Overall the behavior
was very similar on comparable surface resolutions but differed slightly due to the
dependence of certain parameters, e.g. viscosity, on particle resolution. Overall,
the fluid behavior was very similar.

Quantitative comparison Figure 3.6 shows the performance and particle counts
for the sphere drop scene over 30s simulated time using different adaptivity ratios
and fixed resolutions. Comparing the results for α = 1/256 and m = mbase/8 we
see a comparable number of particles over the course of the simulation. Although
our adaptive simulation was slower than the fixed resolution by a factor of 0.7x, we
achieved far more detailed surface dynamics due to the higher surface resolution.
When comparing the results for α = 1/32 and m = mbase/32 which have the same
surface resolution, we see a reduction in the average number of particles from
7.4M to 1.9M particles and a total speedup of 7.3x.
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Scaling Considering scaling we saw the largest performance gains for large res-
olution differences. Due to our sizing function we can roughly estimate the number
of particles for an adaptive compact fluid volume as nα = nbase

(
1 + log2

1
α

)
, where

nbase is the number of equivalent uniform particles of mass mbase. With an adap-
tivity ratio of α = 1/1024 the average memory and computational requirements
increased by 11x compared to m = mbase, like our estimate predicted. Simulating
m = mbase/1024, i.e.,using the finest resolution, would have required approximately
90x more memory than our adaptive approach which could not not fit into mem-
ory. However the average does not take into account the large amount of surface
particles that can be generated as spray on thin fluid details and as such the mo-
mentary particle counts could be significantly different.

Stability For simulations with highly dynamic behavior like a double dam break
(see Fig. 3.8) adaptivity factors of α = 1/1024 could stably be used.

Even for adaptivity factors of α = 1/100000 we found stable behavior consid-
ering the algorithm, however, the computational cost increased significantly past
roughly α = 1/2048 due to the uniform cell grid we currently use to search for
neighbors. Additionally resolution dependent parameters, e.g. viscosity, made
choosing the right parameters difficult. Disregarding the problems due to the data
structure we found no limit to our adaptivity.

Limitations Although similar, there always were differences between adaptive
and equivalent fixed high resolution simulations which mostly depended on vis-
cosity and surface tension parameters. While we could tune parameters to make
the fluids behave more similar, different fluid behavior is a common problem if
different time steps or particle sizes are used [Pee+15]. When using highly adap-
tive simulations, the use of rigid particles [Aki+12] becomes difficult if the rigid is
only sampled at one resolution. Additionally uniform cell grid structures become
restrictive at higher adaptivity ratios.

3.10 Conclusions

We have presented a novel method for adaptive incompressible SPH simulations.
Our method uses continuous particle masses that are smoothly and mass-conser-
vingly adjusted which allows for infinitely adaptive simulations. We use the surface
distance to calculate the optimal mass of each particle that we try to achieve. To
adjust particle masses, we allow for splitting of particles, merging and redistri-
bution of mass among neighbors yielding a fine-grained control of particle mass.
Our novel merging scheme, in which a particle’s mass is redistributed among its
neighbors, alleviates previous problems of finding merge partners and the smooth
redistribution of mass and the proposed implicit temporal blending are able to re-
duce errors in quantity fields. With respect to changing support radii a simple
update to certain equations significantly improved the stability. We are able to
stably simulate highly dynamic fluids with particle mass ratios of 5 orders of mag-
nitude between the finest and coarsest resolution, yielding large speedups and
reductions in memory compared to similar uniform simulations.
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3.A Corrective terms

3.A.1 Time rate of change of density

In order to calculate the time rate of change of density we differentiate the stan-
dard SPH estimate for density ρi =

∑
j mjWij with respect to time as

(3.14)
dρi
dt

=
∑
j

mj
dWij

dt
+
∑
j

dmj

dt
Wij︸ ︷︷ ︸

λi

,

where λi is the term introduced by the time rate of change of mass of a particle
which for adaptive methods is generally non-zero as merging, splitting, and mass
redistribution change the mass of individual particles although the total mass stays
constant due to mass-conservation. Using the total time derivative of the kernel

(3.15)
dWij

dt
=
∂Wij

∂xij

dxij
dt

+
∂Wij

∂hij

dhij
dt

,

we re-factor Eq. 3.14 into terms containing the time rate of change of mass, terms
containing the time rate of change of support radius and the remaining terms as

(3.16)
dρi
dt

=
∑
j

mj
∂Wij

∂xij

dxij
dt

+ λi +
∑
j

mj
∂Wij

∂hij

dhij
dt

.

The kernel derivative with respect to the distance xij can be calculated as

(3.17)
∂Wij

∂xij

dxij
dt

= v⃗ij∇iWij,

where v⃗ij = v⃗i − v⃗j is the velocity difference of the interacting particles and
∇iWij =

∂Wij

∂xi
denotes the kernel derivative with respect to particle i [Mon05].

Due to the symmetric SPH formulation, the kernel derivative with respect to the
support hij can be calculated as

(3.18)
∂Wij

∂hij

dhij
dt

=
1

2

(
dhi
dt

+
dhj
dt

)
∂Wij

∂hij
.

This results in an updated Eq. 3.16 as

(3.19)
dρi
dt

=
∑
j

mjv⃗ij∇iWij + λi +
1

2

∑
j

mj

(
dhi
dt

+
dhj
dt

)
∂Wij

∂hij
.

Here
∑

j mjv⃗ij∇iWij is the standard formulation of the time rate of change of
density for constant support [Mon05]. The λi term is due to the inclusion of time-
varying mass and the last term is due to the varying support radii. Considering the
third term we calculate the support as a function of density, see Eq. 3.2, and thus

(3.20)
dhi
dt

=
∂h(ρi)

ρi

dρi
dt

= − hi
3ρi

dρi
dt
.
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Using this equation we could evolve the last term of Eq. 3.19. However, if we
directly use this term, the rate of change of a particle i would depend on the rates
of change of neighboring particles. Resolving such a dependency would require
an iterative process until a stable result is reached, which is not desirable due to
its high computational effort.

In order to resolve this issue, we make the assumption that, due to our mass
redistribution and smooth resolution changes, neighboring particles receive sim-
ilar amounts of mass and change similarly which is the case for particles that
receive mass. However for particles that distribute mass (case l) the change of
the neighbors is of opposite sign. Let Ct

i denote the classification of particle i at
the (discrete) time t, we thus assume

(3.21)
dhj
dt
≈

{
−dhi

dt
, Ct−1

i = l
dhi

dt
, else.

Considering these two cases, we first cover the result for the else case. Assuming
dhi

dt
≈ dhj

dt
yields

(3.22)
1

2

∑
j

mj

(
dhi
dt

+
dhi
dt

)
∂Wij

∂hij
=
dhi
dt

∑
j

mj
∂Wij

∂hij

for the third term of Eq. 3.19 that includes the time rate of change of support radii.
Using Eq. 3.20, Eq. 3.19 results in

(3.23)
dρi
dt

=
∑
j

mjv⃗ij∇iWij + λi +

(
− hi
3ρi

∑
j

mj
∂Wij

∂hij

)
dρi
dt
.

Re-factoring all terms containing dρi
dt

to the left hand side yields

(3.24)
dρi
dt

(
1 +

hi
3ρi

∑
j

mj
∂Wij

∂hij

)
︸ ︷︷ ︸

Ωi

=
∑
j

mjv⃗ij∇iWij + λi

and moving the corrective factor Ωi over we get the final equation for the else case

(3.25)
dρi
dt

=
1

Ωi

(∑
j

mjv⃗ij∇iWij + λi

)
.

For the case Ct−1
i = l we refer back to Eq. 3.19. By splitting the third term into

terms that contain i and terms that don’t, we get

(3.26)
1

2

∑
j ̸=i

mj

(
dhi
dt

+
dhj
dt

)
∂Wij

∂hij
+

1

2
mi

(
dhi
dt

+
dhi
dt

)
∂Wii

∂hii
.

Due to our assumption that dhj

dt
≈ −dhi

dt
for j ̸= i, the sum-term becomes zero and

using Eq. 3.20 we get the full equation for dρi
dt

as

(3.27)
dρi
dt

=
∑
j

mjv⃗ij∇iWij + λi +

(
− hi
3ρi

mi
∂Wii

∂hii

)
dρi
dt
,
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which can be re-factored to the same form of Eq. 3.25 with a different corrective
factor Ωi = 1 + hi

3ρi
mi

∂Wii

∂hii
.

So far, we carried λi through all equations to provide the full derivation. How-
ever, we found that including this term did not provide any measurable improve-
ment to the stability or behavior of our SPH framework, thus, in practice we drop
the term.

3.A.2 Corrected pressure forces

In order to derive the pressure forces we start with the Lagrangian for the non-
dissipative motion of a fluid in a potential Φ(x) per unit mass in SPH form [Mon05]
as

(3.28) L =
∑
j

mj

(
1

2
v⃗j · v⃗j − uj − Φj

)
,

where uj = u(ρj, sj) is the thermal energy per unit mass and sj is the entropy. Here,
the Euler-Lagrange equation d

dt
( dL
dv⃗i

) − dL
dxi

= 0 is used to derive the equations of
motion. The first term of the Euler-Lagrange equation results in dL

dv⃗i
= miv⃗i. We

assume that the entropy of each element of fluid remains constant, though each
particle can have a different entropy [Mon05]. From the first law of thermodynam-
ics it follows that ∂uj

∂ρj
=

Pj

ρ2j
which yields

(3.29)
dmi

dt
v⃗i +mi

dv⃗i

dt
= −

∑
j

mj

(
Pj

ρ2j

∂ρj
∂xi

− ∂Φj

∂xi

)
.

Similar to the time rate of change of density, the term containing dmi

dt
also showed

no appreciable difference if it was included, thus, we drop it. From the standard
SPH estimate for density we can calculate ∂ρj

∂xi
by applying ∂

∂xi
, which similar to

Monaghan [Mon05] results in

(3.30)
∂ρj
∂xi

=
∑
k

mk

(
∇jWji [δji − δjk] +

∂Wjk

∂hjk

dhjk
dxi

)
,

where δij is the Kronecker delta. The second term can be developed identically to
the similar term in the time rate of change of density resulting in

(3.31)
dρj
dxi

=
1

Ωj

∑
k

mk∇jWji [δji − δjk] .

Using these results in Eq. 3.29 and removing the derivative of the potential similarly
to Monaghan [Mon92] yields a corrected formulation of the pressure force as

(3.32) F⃗ P
i = −mi

∑
j

mj

(
Pi

Ωiρ2i
+

Pj

Ωjρ2j

)
∇iWij.
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3.A.3 IISPH modifications

Adapting the IISPH method requires only a slight modification. In the original
paper by Ihmsen et al. [Ihm+13], Eq. 9 in Sec. 3.1 calculates

(3.33) ∆t2
F⃗ P

i

mi

=

(
−∆t2

∑
j

mj

ρ2i
∇iWij

)
︸ ︷︷ ︸

dii

Pi +
∑
j

−∆t2mj

ρ2j
∇iWij︸ ︷︷ ︸

dij

Pj.

We modify the equation to

∆t2
F⃗ P

i

mi

= −∆t2
∑
j

mj

(
Pi

Ωiρ2i
+

Pj

Ωjρ2j

)
∇iWij =(

−∆t2
∑
j

mj

Ωiρ2i
∇iWij

)
︸ ︷︷ ︸

dii

Pi +
∑
j

−∆t2 mj

Ωjρ2j
∇iWij︸ ︷︷ ︸

dij

Pj

(3.34)

by including our corrective factors Ω. There are no further changes required as
the pressure force is only computed using the terms dii and dij that include the
corrective factors.
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Figure 3.7: This image shows the sphere drop scenario rendered using a ray tracer
at an adaptivity ratio of 1:250. We used this scenario in various configurations for
performance and quality assessment. The top image is the initial configuration
and the bottom image the resulting initial splash.
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Figure 3.8: This image is a traditional dam break scenario rendered using a ray
tracer at an adaptivity ratio of 1:250. The top image shows the initial volume used
in the scenario and the bottom image shows the splashing behavior.
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Figure 3.9: This image shows the initial state of our double dam break scenario at
the top and the behavior after the collision of the two fluid volumes. An adaptive
ratio of α = 1/500 and we used a ray tracer to render the images.



Chapter4

Multi-Level-Memory structures for
adaptive SPH simulations

Contextualization
This chapter reprints the paper “Multi-Level-Memory structures for adaptive SPH
simulations” published as a conference proceeding of the 2019 Vision Modeling
and Visualization conference (VMV 2019) published via Eurographics [WK19]. This
paper was honorably mentioned at the conference and, consequently, a signif-
icantly extended revision was invited for publication in the Computer Graphics
Forum, see Chapter 5. This paper builds on the prior neighbor list approach, see
Chapter 2, and describes data handling processes optimized for spatially adap-
tive SPH simulations using compact hashing, as well as different neighborlist ap-
proaches optimized for memory requirements. The main purpose of these ap-
proaches was addressing limitations to the practicality of highly adaptive simula-
tions as prior data handling approaches, especially on GPUs, did not yield accept-
able computational performance.

Principally, the core idea of the paper is to utilize a self-similar space filling
curve, in this case a Morton code, to sort particles with and then efficiently con-
structing slices through this ordering at different Morton code lengths, based on
the resolution of particles, to generate data structures that are well suited for the
specific resolution. This is achieved through a combination of a dual layered data
structure with a compact cell map that contains particle indices for all occupied
cells and a hash map to find cells related to a spatial position, similar to prior work
of Teschner et al. [Tes+03]. The approaches proposed here have no impact on the
simulation stability, or behavior, making them ideally suited for general usage in a
wide variety of context, and especially for spatially adaptive methods.

The main idea of using compact hashing on GPUs, as well as the concep-
tual ideas of all the neighborlist approaches came from Rene Winchenbach. An-
dreas Kolb contributed to some of the formal presentations of the methods and
co-authored the final paper.

69
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Figure 4.1: Using our multi level memory structure (left image half), we can ef-
ficiently simulate a highly adaptive (1000:1) SPH simulation, for up to 8 million
particles (right image half), using 4 memory levels. At the pictured timepoint the
level 0 domain spans 189× 124× 84 cells (1, 968, 624), whereas the level 3 domain
spans 83 as many cells. Color coding indicates memory level from 0 (blue) to 3
(red).

Abstract
In this paper we introduce a novel hash map-based sparse data structure
for highly adaptive Smoothed Particle Hydrodynamics (SPH) simulations
on GPUs. Our multi-level-memory structure is based on stacking multiple
independent data structures, which can be created efficiently from the
same particle data by utilizing self-similar particle orderings. Further-
more, we propose three neighbor list algorithms that improve perfor-
mance, or significantly reduce memory requirements, when compared to
Verlet-lists for the overall simulation. Overall, our proposed method sig-
nificantly improves the performance of spatially adaptive methods, allows
for the simulation of unbounded domains and reduces memory require-
ments without interfering with the simulation.

4.1 Introduction

Vivid and highly detailed fluid simulations have become an essential part of
modern computer graphics, due to ever increasing demands for more realism.
Smoothed Particle Hydrodynamics (SPH) [GM77] is a simulation technique for fluid
systems, which has been extended recently to allow for highly adaptive incom-
pressible fluid simulations [WHK17]. Spatially adaptive methods dedicate compu-
tational resources where they are most beneficial to the desired outcome. How-
ever, adaptive simulations with adaptivity ratios of 1000 : 1 and higher suffer
from significant performance drops due to limitations in the underlying data struc-
tures [WHK17]. For CPU based, single resolution SPH simulation methods compact
hash maps are commonly used [Ihm+11]. GPU based methods cannot easily utilize
these approaches and instead often rely on dense cell structures [Gre10; Gos+10]
or linked list based structures [Dom+13; WRR18].

In this paper, we present a hash map based data structure, which is specifically
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designed to handle the requirements of highly adaptive SPH methods simulated
on a GPU. Our proposed data structure works by utilizing a hash map to efficiently
access a compact cell list, which refers to particles sorted by a self-similar order-
ing. We extend this method by efficiently creating multiple distinct data structures,
based on different cell sizes, by utilizing the self-similarity. Our method allows us
to significantly reduce the number of non-neighbor particle accesses by provid-
ing an appropriate data structure for different particle resolutions. Furthermore,
we present a corrective algorithm that guarantees symmetric particle neighbor-
hoods, which are essential for spatially adaptive incompressible fluid simulations.
Additionally, we propose a set of novel neighbor-list algorithms, which are applica-
ble to adaptive and non-adaptive simulations, by either improving performance or
memory consumption. Our proposed method significantly improves the practical
applicability of adaptive simulations, and substantially reduces the data structure
overhead. Our proposed method provides better memory scaling and allows for
the simulation of unbounded domains.

4.2 Related work

SPH has been a very active field of research since its introduction by Gingold and
Monaghan [GM77]. Initially, stiff equations of state were employed to achieve sim-
ulations of weakly compressible fluids [MCG03; BT07]. Later techniques are based
on prediction-correction [SP09], iterative [MM13], and implicit [Ihm+13] meth-
ods in order to enforce incompressibility. In addition to solving incompressibility,
divergence-free SPH simulations (DFSPH) have been demonstrated [BK15], which
significantly stabilize the overall simulation and improve visual fidelity. Recent
research has also made large improvements to boundary handling, either by uti-
lizing particles [Ban+18b; Ban+18a; Gis+19], analytical [FM15] or numerical [KB17]
boundary models.

Adaptive simulations using splitting and merging processes were introduced by
Desbrun and Cani [DC99]. This work was extended by adjusting particle positions
after splitting, in order to reduce the error in the pressure term [Ada+07]. To fur-
ther stabilize the interaction between particles with different resolutions, Keiser
et al. [Kei+06] used virtual link particles of neighboring resolutions. To realize
adaptivity in incompressible methods, Winchenbach et al. [WHK17] introduce an
adaptive method, which works with estimates of original particle positions, a tem-
poral blending process, similar to that proposed by Orthmann and Kolb [OK12],
and a process of mass redistribution. This allows for much larger adaptivity ra-
tios than previously possible, in excess of 10, 000 : 1. However, the performance
benefits of higher adaptivity ratios are significantly hampered by the limitations
of existing data structures.

For CPU based simulations, Ihmsen et al. [Ihm+14] give a good overview of
existing data structure methods, and identify a hash map-based method [Ihm+11]
as the most efficient data structure. This approach is, however, not directly ap-
plicable to GPUs due to the way in which the hash map is constructed. For GPU
based simulations, Green [Gre10] introduced a method utilizing a fixed domain
with linearly indexed cell lists. A similar approach was used by Dominguez et al.
[DCG11], which was optimized for multiple GPUs. Goswami et al. [Gos+10] used
Morton codes , however, their approach introduces a complex scheme to balance
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workloads on the GPU, making it difficult to implement and utilize. In order to
limit memory usage on GPUs, Winchenbach et al. [WHK16] introduced an iterative
process to constrain the size of so-called Verlet-lists, which are used to store refer-
ences to neighboring particles. However, all of these methods suffer from scaling
and performance problems for adaptive simulations.

Many generic data structures and methods have been developed, for com-
puter animation, where some notable examples include perfect hash maps to store
sparse voxel data [LH06; Gar+11], which are not easily scalable to multiple reso-
lutions or approximate nearest neighbors from machine learning aspects [AI08],
which are only approximate and designed for high dimensional data. Furthermore,
various CPU based approaches exist, e.g.,OpenVDB [Mus+13], but they often re-
quire significant changes to be realized on GPU based systems. OpenVDB was
realized for GPUs as GVDB, where recently, Wu et al. [Wu+18] introduced a GVDB-
based data structure for FLIP-based simulations that significantly improves per-
formance, but which is not directly applicable to SPH, as FLIP imposes different
requirements on the data structure, which is an integral part of the simulation
itself.

4.3 Basics of Smoothed Particle Hydrodynamics

In general, quantities for a particle i are interpolated from a weighted average
using neighboring particles j as [Mon05]

(4.1) Ai =
∑
j

Aj
mj

ρj
Wij,

where the interpolated quantity is denoted as Ai = A(xi), which depends on the
mass mj and density ρj of neighboring particles within a compact support ra-
dius. For further details refer to [Pri12]. The contributions from these neighboring
particles are then weighted based on a kernel function Wij = W (xij, hij), xij =
∥xi − xj∥, which in turn is based on the support radius of an interaction hij . For
adaptive incompressible methods, hij =

hi+hj

2
is used in order to avoid instabili-

ties. The support radius of a particle can be calculated as

(4.2) hi = η 3

√
mi

ρi
.

Here, η is a configuration parameter set based on the chosen kernel function [DA12;
WHK16], which determines the number of neighboring particles in a resting state
Nh and as such can be found by refactoring of 4

3
πh3 = Nh

mi

ρ0
[WHK16]. Other

kernel functions, e.g.,those of the Wendland family, have much largerNh values, and
therefore require different neighbor list algorithms to prevent excessive memory
usage. In computer animation the support radius is often calculated as

(4.3) h0i = η 3

√
V 0
i ,

which is based on the rest volume of a particle V 0
i instead. The rest volume of a

particle solely relies on the particles physical size, i.e.,V 0
i = 4

3
πr3 for some radius r,

and does not change based on changes in density. As such we denote this support
radius as h0i . This is equivalent to assuming that ρi = ρ0 in (4.2).
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Figure 4.2: These two images show the Morton code Z on the left and the hashed
indicesH on the right for every occupied cell, with color coding indicating indices.
The Morton code gives much greater spatial locality but would lead to a significant
number of collisions.

4.4 Data structures

The main purpose of a data structure for SPH is to relate the spatial position
of a particle with its location in memory in order to reduce the number of particle
accesses fromO(n2) toO(n·m). One possible approach is to divide the simulation
domain into uniform cells of size h [Gre10; Ihm+14]. Note that this notion of a cell
does not introduce any grid-based methodology into SPH and is solely for data
handling. Owing to this, a particle only needs to consider at most 27 cells (a 3×3×3
sub-grid) for accessing (potentially) neighboring particles. The sphere described
by the support radius of a particle will, on average, contain Nh neighbors [DA12]
within a volume of 4

3
πh3, whereas the sub-grid of all potential neighbors has a

volume of 27h3. This means that the sub-grid will contain, on average, 81
4π
Nh ≈

6.5Nh particles, i.e.,15.5% of all potential neighbors are actual neighbors. For an
adaptive ratio of 1000 : 1, however, only 0.016% of all considered particles are
neighbors as a cell of the same size would now contain 81000

4π
Nh particles, causing

significant performance problems [WHK17]. We first introduce our general data
structure for non-adaptive simulations in Sec. 4.4.1, and then the changes required
for adaptive simulations in Sec. 4.4.2.

4.4.1 Single-level data structure

We chose the cell size Cmax to be the same as the largest support radius of any
particle as this ensures that all neighbors of all particles are contained within a
3 × 3 × 3 sub-grid, which would not be possible for an arbitrary cell size. We can
calculate Cmax efficiently by using a reduction operation over all particle support
radii hi as

(4.4) Cmax = max{h0, ..., hn−1}.

The simulation domain itself can similarly be determined as the axis aligned
bounding boxes, from Dmin to Dmax, which surrounds the positions of all particles.
We can determine these bounds by using reduction operations over all particle
positions xi

(4.5) Dmin = min{x0, ...,xn−1},Dmax = max{x0, ...,xn−1}.
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These bounds are used to calculate the size of the simulation domain in cells
as

(4.6) D =

⌈
Dmax −Dmin

Cmax

⌉
.

When using dense data structures, D needs to be kept constant to avoid reallo-
cating memory when particles move outside the current simulation domain. This,
in turn, limits the scene’s extend as it needs to be known a-priori. We can calculate
the integer coordinates x̄ for any position x based on the lower simulation bound
Dmin and the cell size Cmax as

(4.7) x̄ =

⌊
x−Dmin

Cmax

⌋
.

This can be used to determine a linear index L as

(4.8) L(x̄) = x̄x +Dx (x̄y +Dy (x̄z)) ,

where the subscript denotes the dimension. In a dense cell grid, we can utilize
L(x̄) to find the memory location of any position in space. Dense data struc-
tures, however, are not desirable as their memory consumption scales with both
the simulation domain D and the cell size Cmax, instead of scaling with the particle
count nparticles. The Morton code, also sometimes referred to as the Z-ordering, is
an alternative indexing scheme, which describes a self-similar space-filling curve.
We can efficiently determine Z(x̄) by interleaving the binary representation of an
integer coordinates as

x̄ =

...x̄
3
xx̄

2
xx̄

1
xx̄

0
x

...x̄3
yx̄

2
yx̄

1
yx̄

0
y

...x̄3
zx̄

2
zx̄

1
zx̄

0
z

→ Z(x̄) = ...x̄3
zx̄

3
yx̄

3
xx̄

2
zx̄

2
yx̄

2
xx̄

1
zx̄

1
yx̄

1
xx̄

0
zx̄

0
yx̄

0
x,

where the superscript denotes a specific bit. Using a 32 bit Morton code re-
sults in 10 bit per dimension, meaning each dimension can contain a maximum of
#K = 1024 cells. A 64 bit Morton code results in 21 bit per dimension, meaning a
maximum of #K = 2097152 cells per dimension. On one hand it would be possi-
ble to create an octree directly from Morton codes [Kar12], as this code represents
the ordering of an octree. For SPH simulations many nodes of an octree, e.g.,the
root node, do not contain any useful information and furthermore, traversing an
octree is computationally expensive and the memory consumption of an octree is
not independent of the content. On the other hand, a dense data structure using
a Morton code would require excessive amounts of memory.

We instead propose to create a list of all occupied cells, as the number of
occupied cells noccupied is bound by the number of particles nparticles, as the worst
case would be every particle occupying a different cell. To generate this list, we first
re-sort all particles according to their Morton codeZi = Z(x̄i). Using this ordering
we create a list C of length nparticles + 1, where each element is determined as

(4.9) C[i] =


i , if i = 0 ∨ Zi ̸= Zi−1

−1 , if Zi = Zi−1

nparticles , else.
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C now contains either a marker entry (−1 or nparticles), or the first index of a particle
in an occupied cell, which is similar to the approach by Green [Gre10]. We can
now compact C, by removing all invalid entries, which gives us a list Cbegin

compact of
length noccupied + 1. Using this list of occupied cell beginnings, we can calculate
the number of particles in each occupied cell as

(4.10) Clength
compact[i] = Cbegin

compact[i+ 1]− Cbegin
compact[i].

This compact list, however, does not yield any way to find the memory location
for a particle based on its spatial location. To resolve this, we propose to apply
a hash map on top of Cbegin

compact and Clength
compact. Following Ihmsen et al. [Ihm+11], we

determine the hash of an integer coordinate by using three large prime numbers
p1 = 73856093, p2 = 19349663, p3 = 83492791 and the size of the hash table nhash

as

(4.11) H(x̄) = (p1x̄x + p2x̄y + p3x̄z)%nhash,

where we choose nhash as the smallest prime number larger than the maximum
number of particles in a simulation, as this gives a relatively sparse hash map with
few collisions, in general.

However, this hash function leads to low coherency for nearby particles, mean-
ing that particles which are spatially close, might be assigned to very distant
memory locations, see Fig. 4.2, right. If we can avoid hash collisions, we can
embed the cell information directly into the hash map, which removes a level
of indirection. However, if we chose a simple spatially coherent hash function,
e.g.,H(x̄) = Z(x̄)%nhash, we would find significantly more hash collisions, which
outweighs the benefit of more coherence. Contrarily, choosing a perfect hash
function, e.g., [LH06], reduces the number of collisions, but at the cost of a sig-
nificant overhead for its creation. Therefore, we opt for the hash function of Ihm-
sen et al. [Ihm+11] as it provides a good balance between complexity and colli-
sions. Furthermore, as we utilize per-particle neighbor-lists, we need to access
the cells only once during each timestep, as all particle interactions afterwards
are calculated using these neighbor-lists avoiding the spatial incoherence of the
function.

The hash map itself is similar to the cell list in that it contains a begin entry
and a length entry, where the begin entry now points to the first cell mapped to a
hash table entry and the length entry indicates how many cells map to this hash
table entry. If there is no cell then the length is 0, if there is a single cell occupying
this hash map the length is 1 and a length > 1 indicates a hash collision. The hash
map, contrary to the cell list, is not compacted and as such allows us access via the
hash index of an integer coordinate H(x̄). The process required to find a specific
cell c based on the cells integer coordinates x̄c is described in Algorithm 4.1.

To create the hash table H we first start by initializing all hash table entries as
invalid, i.e.,0 length, and re-sort the list of occupied cells according to the hashed
index of the first particle in this cell. We can then, for each occupied cell i, set

(4.12) Hbegin[Hi] = i, if i = 0 ∨Hi ̸= Hi−1,

where we then set the length entry, for each occupied cell i, as

(4.13) Hlength [Hi] = i−Hbegin [Hi]− 1, if i = noccupied ∨Hi ̸= Hi+1
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which naturally handles hash collisions as the predicate is based on Hi ̸= Hi+1

which is only true for the last cell associated with a certain hash value. The overall
algorithm is described in Algorithm 4.2.

ALGORITHM 4.1: The algorithm to access the cell associated with an arbitrary
integer coordinate using our proposed sparse data structure without embedding
C into H. Note that an empty cell can map to the same hash map entry as an
occupied cell, without causing a collision, and as such we always check Zc = Zj

to avoid returning a wrong cell.

1 Calculate x̄c for the cell we are looking for
2 Calculate Zc and Hc for x̄c

3 Look-up b = Hbegin[Hc] and l = Hlength[Hc]
4 If l ̸= 0
5 For h ∈ [b, b+ l)

6 Look-up Particle j = Cbegin
compact[h]

7 Calculate x̄j and Zj

8 If Zc = Zj

9 Return Ccompact[b]
10 Return not found

4.4.2 Multi-level data structures

The prior section described our approach for uniform cell sizes, which would suffer
from the same problems for adaptive simulations as prior methods, due to a mis-
match of cell size and particle resolution. However, as we based our method on
a Morton code, we can utilize the self-similarity to efficiently create multiple, dis-
tinct, data structures for different cell sizes on the same underlying particle data.
This is possible for, coarser, power of 2 multiple cell sizes of the cell size used for
re-sorting the data.

We start with an initially much finer particle sorting Z fine, from which we can
generate the desired coarser resolutions. To determine Z fine we calculate the cor-
responding cell size Cfine, based on the largest dimension P = max (Dx,Dy,Dz),
as

(4.14) Cfine = Cmax
2⌈log2(P )⌉

#K
.

Here, #K depends on the size of the Morton code used (see Sec. 4.4.1), Cfine is the
smallest cell size that can be represented using this code length, and 2⌈log2(P )⌉/#K
= 2−Lfine , Lfine ∈ N is the refinement factor. The algorithm described in the
Sec. 4.4.1 can now be extended by creating the cell list and hash map for a Morton
code Zmax based on Cmax and additional finer levels 0 < L ≤ Lfine using the integer
coordinates

(4.15) x̄L =

⌊
x− xmin

Cmax · 2−L

⌋
.

L = 0 results in the same data structures as the single-level version of this algo-
rithm and L = Lfine the finest possible data structure, with the given Morton code.
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ALGORITHM 4.2: Our proposed single resolution data-structure algorithm. This
algorithm first re-sorts all particles and then creates a compact cell table followed
by the creation of our hash map as described in Section 4.4.1.

1 Initialize
2 Calculate Cmax, Dmin and Dmax using reductions
3 Calculate P 2 based on D

4 Re-sort particles using Z fine

5 Cell table creation
6 Initialize C = −1 and Clength

compact = 0

7 Create C based on Morton codes of consecutive particles

8 Compact C into Cbegin
compact and determine Clength

compact

9 Calculate Hi for all particles

10 Re-sort Cbegin
compact and Clength

compact based on the hash index of the first contained
particle.

11 Hash map creation
12 Initialize Hbegin = −1 and Hlength = 0

13 Create Hbegin based on compacted cell list
14 Calculate Hlength

15 Embed Ccompact into H if Hlength = 1

The corresponding Morton code is determined as ZL(x) = Z(x̄L). We relate the
maximum level Lmax to the maximal adaptivity ratio α of the simulation as

(4.16) Lmax = min
{⌈
log2

3
√
α
⌉
, Lfine

}
,

and generate the data structure for all levels 0 ≤ L ≤ Lmax. We store all data
structures within single continuous arrays, which allows us to calculate the hashed
indices by simply adding an offset based on the level to (4.11) as

(4.17) ZL(x̄) = Lnhash +
(
p1x̄

L
x + p2x̄

L
y + p3x̄

L
z

)
%nhash.

Furthermore, we determine the appropriate level for a particle i according to
its support radius as

(4.18) Li = clamp

(⌊
− log2

hi
Cmax

⌋
, 0, Lfine − 1

)
.

Thus, every particle can easily access all neighbors at any scale L ∈ [0, Lmax] using
the data structure for L. However, when a particle i only looks for neighbors at
its level Li, we may encounter asymmetric interactions, as neighbor searches are
limited by the cell size for level Li; see Fig. 4.3. This could be avoided entirely by
utilizing a gather-formulation of SPH, but this formulation is not stable for adaptive
incompressible SPH [WHK17]. Therefore, we explicitly need to handle this case.

More formally, asymmetric interactions occur when a particle i of lower level
Li is interacting with a particle k of a higher level Lk, i.e.,if Lk > Li ∧ xik < hik.
In order to resolve the asymmetry, we iterate over all neighboring particles k of i
and determine their integer coordinate distance, for the cell size associated with
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Figure 4.3: Asymmetry interaction: Two particles at different levels may not mutu-
ally see each other due to the different cell size. Here, the lower level particle to
the left sees the higher level particle to the right, but not vice versa.

Lk as x̄Lk
ik = x̄Lk

i − x̄Lk
k . We use x̄Lk

ik to identify the problem case that k does not
see particle i by checking

(4.19)
∥∥∥x̄Lk

ik

∥∥∥
1
= max(|x̄Lk

ik,x|, |x̄
Lk
ik,y|, |x̄

Lk
ik,z|) > 1.

We then resolve this issue by atomically updating Lk to be at least Li, as this
ensures that k will search distant enough cells to find i. The overall changes to the
single resolution algorithm are relatively minor but are outlined in Algorithm 4.3.

4.5 Neighbor-lists

As noted in Section 4.4, only about 15.5% of all potentially neighboring particles
are actual neighbors. To avoid the repeated access to non-neighboring parti-
cles, neighbor-lists are a common solution, which store a reduced set of potential
neighbors. Verlet-lists store references to every actual neighbor, but for adap-
tive simulations where the number of neighbors often exceeds 2Nh this would
lead to excessive memory usage. In order to avoid this, we first introduce a
novel histogram based constrained neighbor-list in Section 4.5.1, followed by a
span based neighbor-list in Section 4.5.2 and a bitmask based neighbor-list in
Section 4.5.3.

4.5.1 Histogram based neighbor-lists

A constrained neighbor list, e.g., [WHK16], limits the number of neighbors Ni for a
particle i to an upper bound Nc, where the main motivation comes from reducing
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ALGORITHM 4.3: Changes required to create multiple levels of our data structure

1 Initialize
2 Calculate Cmax, Dmin and Dmax using reductions
3 Calculate P 2 based on D Re-sort particles using Z fine

4 Calculate Ideal level Li for every particle

5 For every Multi-Level-Memory level L
6 Execute Cell table creation and Hash map creation using ZL and HL

respectively.
7 Finalize
8 Enforce symmetric interactions

memory requirements and optimizing access patterns and is not based around a
change of neighborhood size due to a changing support radius, e.g.,by using (4.2).

Naı̈vely, it would be possible to simply exclude actual neighbors from this list,
however this would lead to asymmetries and thus to instabilities. To avoid this, a
constrained neighbor-list method reduces the support radius of a particle hi until
Ni < Nc. The constrained neighbor-list approach of Winchenbach et al. [WHK16]
implemented this in an iterative process, however, due to the cost of an iteration
over all potential neighbors, this method became computationally expensive for
adaptive methods. In order to realize this in a single step, we first consider the
support radius for i in an interaction with another particle j that would result in
|xij| = hij , and as such Wij = 0. We can determine this support radius for each
interacting pair of particles as

(4.20) kij = 2|xij| − hj,

where the constrained support radius hc
i would trivially be the Nc-th smallest value.

However, calculating kij for all potentially neighboring particles and storing this
list to find the Nc-th smallest value is not practical and we instead propose an
alternative histogram-based approach. We create a histogram, whose bins evenly
segment the range [0.5hi, hi) and store the number of particles with

(4.21)
1

2
hi +

B

2#B
hi ≤ kij <

1

2
hi +

B + 1

2#B
hi

in each bin, where B denotes the bin index and #B the number of bins for the his-
togram. This allows us to calculate the bin a particle j belongs to in the histogram
for particle i, as

(4.22) #bij =

⌊
clamp

(
kij − 0.5hnew

i

2#B · hnew
i

, 0,#B − 1

)⌋
.

We can store this histogram within the shared memory of a GPU by choosing
a small enough bin size and number of bins, e.g.,32 bins with an 8 bit bin size
on modern GPUs. Each bin contains the number of particles associated with this
range of values and as such, once the histogram is completed, we can sum up the
counters, starting with the lowest bin, until the sum is larger than the upper bound
of neighborsNc at some bin index b. The final constrained support radius can then
be calculated as

(4.23) hci =
hi
2

[
1 +

1

b− 1

]
.
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In order to avoid an ever decreasing support radius, as constraining can only
reduce hi, we propose to update hi at the end of every timestep based on the rest
support radius (4.3) as

(4.24) hi(t+∆t) = αhi(t) + (1− α)h0i ,

where α is a linear blend weight, usually chosen as 0.95. In general, this neigh-
borlist is still, conceptually, a Verlet-list and requires more than Nh entries as we
cannot reduce Ni below Nh without causing instabilities. For larger kernel func-
tions, i.e.,Wendland kernels, which have very large neighborhoods and adaptive
simulations this becomes quite memory consuming.

4.5.2 Span based neighbor-lists

Instead of storing explicit references to all actual neighbor particles, we store ap-
propriate index-spans in order to be more memory efficient at the cost of covering
more non-interacting neighbor particles. Our general approach is to store one in-
dex span for each of the 27 neighboring cells per particle.

For any neighboring cell c we iterate over the contained particles j ∈ c in
ascending order, and store the first index b where |xib| < hib. We then keep iterating
until we find the last index l where |xil| < hil, which gives the span of particle
indices j ∈ [b, l] that contains all neighbors of i in c. We store b as well as the
length of this span s = l − b+ 1.

The memory requirement for storing a span is size(b) = ⌈log2 nparticles⌉ and
size(s) ∝

⌈
log2Nh

3
4π

⌉
. For non-adaptive simulations size(b) + size(s) is almost

always less than 4 byte, however for adaptive simulations the number of particles
in a cell can become much larger and we require 8 byte in this case. This is
a significant improvement in memory efficiency for non-adaptive and adaptive
simulations utilizing kernel functions with Nh > 27, as the memory consumption
results to 27 · 4 or 27 · 8 byte instead of Nh · 4 and 2Nh · 4 byte for the non-adaptive
and the adaptive case, respectively.

4.5.3 Bitmask based neighbor-lists

The previously described span based neighbor list requires 8 bytes for adaptive
simulations, even though 4 bytes would be sufficient in regions with rather homo-
geneous support radii. Therefore, we propose a third approach that stores bit-
mask indicating neighboring particles for cells that have interacting neighbors
using 4 byte only, accepting that particles in regions with rather inhomogeneous
support radii need additional handling.

Considering the sub-grid of 3× 3× 3 cells, we can find a unique mapping from
this sub-grid to a linear index L ∈ [0, 27), which can be stored in 5 bits, leaving
27 bits for representing the bitmask. In homogeneous regions, a cell contains
Nh

3
4π

particles, i.e.,12 for the cubic spline kernel. The 26 bits indicate, if the cor-
responding particle is an interacting particle. To handle cells with more than 26
neighbors in regions with strongly varying support radii, we have to process all
particles in the neighboring cell. We indicate this by setting the full bitmask to 1.

Using this masked neighbor list guarantees a memory consumption of 27 · 4
byte. The drawback is that cells with more than 26 particles, e.g.,in rather turbu-
lent regions with strongly varying support radii, are handled rather inefficiently.
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Figure 4.4: A dam break scenario where the fluid was initialized opposite of the
rigid obstacles.

However, even in the worst case this is not worse than using no neighbor list at
all.

4.6 Results and discussion

All simulations were run using a single Nvidia RTX 2080 Ti GPU with 11 GiB of
VRAM, an Intel i7-4790 and 16 GiB of RAM. We used DFSPH [BK15] with a den-
sity error limit of 0.01% and a divergence error limit of 0.1%, with rigid objects
represented as density maps [KB17]. Artificial viscosity was modeled based on
XSPH [Mon05], Surface tension was modeled based on [AAT13], fluid air phase
interactions were modeled based on [Gis+17]. For adaptivity we utilize [WHK17].
Rendering was done using a proprietary renderer, with surface extraction based
on [YT13]. We used the cubic spline kernel for all tests. The full source code of
our simulation, and renderer, can be found www.cg.informatik.uni-siegen.de/

openMaelstrom.
Test Scenes: We evaluated our approach using two text scenes. The Pillars

test scene is a dambreak, depicted in Figure 4.4, where an initial fluid volume in-
teracts with many small rigid obstacles on impact. Here, the simulation domain
spans 1533 cells. In this scene we used 2 million particles for the non adaptive
tests and up to 8 million particles in the adaptive tests. The Dragon test scene is a
dambreak scenario, depicted in Figure 4.5, where an initial fluid volume interacts
with a single complex rigid object. Here, the simulation domain spans 27×49×55
cells. In this scene we used 400 thousand particles for the non adaptive tests
and up to 8 million particles in the adaptive tests. For numerical stability we set
Nc = 1.2Nh for non-adaptive scenes and Nc = 2.3Nh for adaptive scenes. We in-

www.cg.informatik.uni-siegen.de/openMaelstrom
www.cg.informatik.uni-siegen.de/openMaelstrom
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Figure 4.5: This image shows the dragon test scene where a fluid volume collides
with a complex rigid object. Color coding indicates the memory levels (blue to
red). The top right view visualizes the data structure cells. The bottom right view
is a uniform resolution simulation with a comparable time per timestep as the
adaptive variant at this timepoint.

tentionally selected the adaptivity ratio to be rather moderate, i.e.,we used 1,000:1,
since we observed an extreme performance drop of several orders of magnitude
for Green’s method [Gre10] for higher adaptivity ratios such as 100,000:1, since
this method was not designed for adaptive simulations. Additionally, Figure 4.5
(bottom right) shows a uniform simulation of comparable computational cost to
the highly adaptive simulation with significantly lower visual fidelity, i.e.,the larger
particles cannot move in-between the body parts of the dragon resulting in lower
visual fidelity.

Non-adaptive data-structure performance: Comparing our proposed sparse
data structure with a dense data structure based on [Gre10] we can see a slight
overall increase in performance (see Tab. 4.1, structure “Ours” and structure
“[Gre10]” for single). Due to the more ideal Morton code for particle ordering,
instead of a linear ordering, we can observe an increase in performance for SPH
operations. However, the re-sorting process is slowed down, as well as accessing
the data structure for the construction of the neighbor-list. Embedding C into H
when no hash collision occurred reduced this overhead slightly (see Tab. 4.1, struc-
ture “Embed”). The memory consumption is slightly higher as the dense structure
requires 2·1533 entries, whereas our structure required 2·106 entries and additional
temporary arrays for construction.
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Methods Overall /ms Re-sorting /ms Neighbor-list /ms Density /ms DFSPH /ms Memory /GiB

Structure Neigh-list single adapt single adapt single adapt single adapt single adapt single adapt

Pillar scene
[Gre10] [WHK16] 278 2557 2.70 7.67 13.54 2067.16 1.80 1.89 216.8 316.8 1.13 6.96

Ours [WHK16] 274 572 7.74 19.71 17.89 45.72 1.74 1.78 196.0 279.5 1.20 7.54
Embed [WHK16] 271 543 9.76 24.78 15.67 38.77 1.72 1.76 195.2 276.9 1.20 7.54
Embed <none > 412 1782 10.32 21.52 − − 1.85 2.24 328.9 596.4 0.68 3.59
Embed Histogram 253 527 9.74 22.06 12.35 26.73 2.01 1.83 196.4 285.1 1.20 7.54
Embed Spans 291 596 10.62 21.80 7.48 28.12 0.59 3.28 222.5 302.9 1.13 5.25
Embed Bitmask 274 866 9.97 22.39 7.80 36.41 0.67 10.64 212.9 436.9 0.91 4.42

Dragon scene
[Gre10] [WHK16] 86 3185 2.40 4.34 4.71 1637.74 2.17 2.48 64.0 1342.4 0.27 7.24

Ours [WHK16] 85 1365 7.03 11.02 6.19 35.86 2.11 2.34 57.6 1187.9 0.29 7.84
Embed [WHK16] 84 1340 8.74 13.86 5.34 30.74 2.08 2.31 57.4 1181.8 0.29 7.84
Embed <none > 129 4402 9.24 12.04 − − 2.24 2.95 96.4 2547.9 0.16 3.73
Embed Histogram 84 1302 8.72 12.43 4.37 21.93 2.43 2.43 57.7 1217.3 0.29 7.84
Embed Spans 93 1472 9.42 12.81 2.53 22.58 0.72 4.31 65.2 1294.6 0.27 5.46
Embed Bitmask 88 2136 8.90 12.58 2.65 28.88 0.81 14.01 62.6 1867.6 0.22 4.59

Table 4.1: The values shown here are given as the average value over 30 simulated seconds. Ours refers to the data structure presented
in Sec. 4.4, with embed referring to the optimization of embedding C into H. For the neighbor lists see Sec. 4.5.1 for the histogram
based variant, Sec. 4.5.2 for the span based variant and Sec. 4.5.3 for the bitmask based variant. Single refers to a non-adaptive
simulation and adapt refers to a simulation with an adaptive ratio of 1000 : 1.
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Adaptive data-structure performance: Looking at the adaptive results (see
Tab. 4.1, structure “Ours” and structure “[Gre10]” for adapt), we can now see a
significant overall difference in performance where our data structure reduces the
simulation time by nearly 60%. This is mainly due to the neighbor list construc-
tion that takes about 50 times longer, requiring about half of the overall compu-
tation time per frame when using Green’s method [Gre10]. We can also observe
increased performance of the SPH operations, where the largest improvement is
for DFSPH with a speed up of about 12% due to the improved particle ordering.
However, our multiple data structure requires more memory than a dense linear
structure, due to now having to store multiple data structures, however the increase
is moderate at some 6-8%.

Non-adaptive Neighbor list performance: When comparing the neighborlists
presented in Sec. 4.5, we observe significantly different performance between the
different neighbor-list approaches for the non adaptive Dragon scene, if compared
to the prior constrained list approach of [WHK17]. Our proposed constrained list
performs almost identical with identical memory consumption. Utilizing our pro-
posed bit mask approach, we observe a slightly slower simulation as DFSPH takes
slightly longer. However the density approximation was significantly faster as the
neighbor-list is significantly smaller, which benefits a simple operation more than
a complex one. We see a similar effect for the span based approach, but an over-
all slightly lower performance. Not using a neighbor-list requires significantly less
memory, and slows the overall simulation down by about 50%, with much slower
complex operations.

Adaptive Neighbor list performance: Considering the adaptive Pillars scene,
we see a different ordering of the methods. Our proposed constrained list has a
slightly improved performance compared to the prior approach, which is mostly
due to the faster neighbor list construction. The bitmask based approach is now
significantly slower (64% overall) but requires only 59% of the memory. The span
based approach performs somewhat better, i.e.,it is 13% slower but requires only
70% of the memory. Compared to [WHK17], not using a neighbor list requires only
47% of memory, but it is 237% slower.

Memory consumption: Overall, non-adaptive simulations require significantly
less memory, as they require less information per particle, and as such we can sim-
ulate up to 35.5 million particles, without utilizing a neighbor-list. Using our bit-
mask approach, we can still simulate about 25 million particles, and using the span
based and constrained methods we are able to simulate about 19 million particles.
Considering the relatively low impact of the bitmask approach for non-adaptive
methods, this results in an increase of 32% for the maximum number of parti-
cles, when compared to prior constrained neighbor-list approach [WHK16] without
a significant drop in performance. For adaptive simulations we can simulate up
to 23.5 million particles, without utilizing a neighbor-list, but the performance of
this approach is too low. Using our bitmask approach we can simulate about 19
million particles, and using the span based approach about 16 million particles.
Using a constrained list would only allow us to simulate about 10 million particles,
which, due to the relatively low overhead of the span based approach, means that
we can increase the maximum number of particles by about 60% by using our
span based neighbor list, when compared to the prior constrained neighbor-list
approach [WHK16]. In summary, none of the neighbor list approaches is supe-
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rior to the others, i.e.,none offers the highest performance at the lowest memory
consumption.

Limitations: For non-adaptive simulations our proposed data-structure only
offers a very minor increase in performance, due to the better memory layout, at
the cost of a slightly higher memory consumption. This increased cost, however,
is only required for relatively small and bounded domains and as such not a prob-
lem in general. For adaptive-methods, we often have to adjust the resolution of
particles to avoid asymmetries and, thus, severe instabilities, which reduces the
overall potential performance gain. In general, smoother resolution gradients are
less affected by asymmetries and allow for larger speed-ups.

4.7 Conclusions

Our contributions allow us to efficiently simulate highly adaptive simulations, with
adaptive ratios beyond 1, 000 : 1, without causing performance limitations due to
the underlying data structuring. Using our data structure allows us to simulate
unbounded domains, where the memory consumption only scales with particle
count, not resolution. In addition, by using our propose neighbor list methods we
can further improve performance, or significantly reduce memory consumption
allowing for higher particle counts. In the future we would like to expand our work
on data structures to multi GPU systems for even larger simulations.





Chapter 5

Multi Level Memory Structures for
Simulating and Rendering

Smoothed Particle Hydrodynamics

Contextualization
This chapter reprints the paper “Multi Level Memory Structures for Simulating and
Rendering Smoothed Particle Hydrodynamics” published in the Computer Graph-
ics Forum [WK20] as an invited extended version of the paper reproduced in Chap-
ter 4. This paper addresses a significant problem with spatially adaptive simula-
tions, i.e., while the simulation of high resolution surfaces was readily possible,
rendering such high resolution surfaces using extracted surfaces was computa-
tionally infeasible and on-the-fly rendering approaches were not well suited to
SPH-based adaptive simulations. Conceptually, this does not improve adaptive
simulations per-se, but makes them significantly more practical by reducing limi-
tations encountered when using adaptive SPH simulations.

Conceptually this paper focuses on the application of the Multi Level Memory
structure [WK19] towards anisotropic SPH models and the rendering of SPH simu-
lations. A significant problem addressed in this scope is the computationally feasi-
ble rendering of adaptive SPH based simulations without requiring memory inten-
sive explicit surface extractions and using only information already available dur-
ing the simulation, i.e., without requiring additional memory. This process makes
spatially adaptive simulations more practically usable by providing a rendering ap-
proach that can be used without reducing the maximum number of particles that
can be simulated on a memory-bound system.

The initial idea of using the Multi Level Memory structure proposed before,
see Chapter 4, for rendering purposes came from Rene Winchenbach and was al-
ready partially utilized during the evaluation of the prior publication. During the
VMV 2019 conference discussions with many colleagues showed a significant in-
terest in this area of application and motivated the extension towards rendering.
Similarly, in this context some initial discussions also raised questions about the
applicability to anisotropic SPH models, leading to their inclusion in this extended
version. Andreas Kolb helped during the writing processes and provided valuable
feedback during the development of the method, especially during discussions
regarding the anisotropic surface model.

87
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Figure 5.1: Using our rendering approach we can render an SPH fluid simulation
with only a small, constant, memory overhead. Pictured here is an inlet stream
colliding with an obstacle using an anisotropic surface rendering. The images to
the right show the underlying particles, color coded for their velocity (top), the
underlying cells, color coded for their Morton code (middle), and an opaque fluid
surface (bottom).

Abstract
In this paper we present a novel hash map-based sparse data struc-
ture for Smoothed Particle Hydrodynamics (SPH), which allows for effi-
cient neighborhood queries in spatially adaptive simulations as well as
direct raytracing of fluid surfaces. Neighborhood queries for adaptive
simulations are improved by using multiple independent data structures
utilizing the same underlying self-similar particle ordering, to signi-
ficantly reduce non-neighborhood particle accesses. Direct raytracing is
performed using an auxiliary data structure, with constant memory con-
sumption, which allows for efficient traversal of the hash map-based data
structure as well as efficient intersection tests. Overall, our proposed
method significantly improves the performance of spatially adaptive fluid
simulations and allows for direct raytracing of the fluid surface with little
memory overhead.

5.1 Introduction

Highly detailed and realistic fluid simulations have become an essential part of
modern computer graphics, where Smoothed Particle Hydrodynamics (SPH)
[GM77] provides a good balance of visual quality and computational cost [UHT17].
Recent advances enable highly adaptive incompressible fluid simulations [WHK17],
which dedicate computational resources where they are most beneficial to the
desired outcome, i.e. at the fluid surface. However, adaptive simulations with
adaptivity ratios of 1000 : 1 and higher suffer from significant performance drops
due to limitations in existing underlying data structures. CPU-based SPH simula-
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tions commonly use compact hash maps [Ihm+11], which are difficult to apply on
GPUs. GPU-based SPH simulations commonly use dense cell structures [Gre10;
Gos+10] or linked list based structures [Dom+13; WRR18], which suffer from high
memory usage and less than ideal particle orderings. Additionally, rendering the
resulting fluid surfaces often involves either expensive explicit surface extraction
methods [Aki+13a; Wu+17] using marching cubes [LC87], which cannot readily be
done on the fly, or screen space-based approaches [LGS09; XZY17], which result
in lower quality visual results and cannot readily handle refraction effects. Further-
more, many rendering methods have varying memory requirements, e.g.,depending
on particle resolution and not particle count, making them impractical to use on
the fly on a GPU as this requires an overly conservative maximum number of par-
ticles to not run out of memory during a simulation.

In this paper, we present a hash map-based data structure, which is specifically
designed to handle the requirements of highly adaptive SPH methods, on GPUs
and CPUs, and is readily extended to enable direct raytracing of the fluid surface.
Our proposed data structure works by utilizing a hash map to efficiently access
a compact cell list, which refers to particles sorted by a self-similar ordering. We
extend this method by efficiently creating multiple distinct data structures, based
on different cell sizes, by utilizing the self-similarity. Our method allows us to sig-
nificantly reduce the number of non-neighbor particle accesses by providing an
appropriate data structure for different particle resolutions. Furthermore, we add
an auxiliary data structure to facilitate traversal of our data structure during render-
ing, which also enables efficient ray-fluid intersection tests. Our proposed method
significantly improves the practical applicability of adaptive simulations, and sub-
stantially reduces the data structure overhead, as well as enabling direct raytracing
of fluid simulations, with constant memory overhead. Finally, our method requires
a constant amount of memory, regardless of simulation domain size, particle res-
olution, or particle distribution, allowing for unbounded simulation domains.

5.2 Related work

SPH has been an active field of research since its introduction by Gingold and
Monaghan [GM77]. Whereas initially only stiff equations of state were used to
simulate weakly compressible fluids [MCG03; BT07], recent advances allow both
divergence-free and incompressible fluids [BK15; Gis+19], allowing for highly de-
tailed and realistic fluid simulations. For a general overview of SPH methods we
refer the reader to [Kos+19].

Spatially adaptive SPH methods using splitting and merging were initially intro-
duced by Desbrun and Cani [DC99], however directly changing particle resolutions
causes instabilities. To reduce these instabilities Adams et al. [Ada+07] adjusted
particle positions after splitting, Keiser et al. [Kei+06] used virtual link particles of
neighboring resolutions, Orthmann and Kolb [OK12] used temporal blending, Hor-
vath and Solenthaler [HS13] used multiple simultaneous simulations and Winchen-
bach et al. [WHK17] used an additional process of mass redistribution. However,
even though recent work enables adaptive ratios in excess of 10, 000 : 1, these
methods are constrained by significant performance limitations due to existing
data structures [WHK17].

To render fluid simulations there are three commonly used approaches : explicit



90 5.2. RELATED WORK

surface extraction, ray casting or splatting. Explicit surface extraction methods are
commonly based on marching cubes [LC87] or metaballs [Bli82], which have been
adapted over time for GPUs [Wu+17; SI12], for varying spatial surface resolutions
[Aki+13a], or for direct rendering [KSN08], however these methods often have
highly varying memory requirements making them difficult to use on the fly. Ray
casting methods are commonly found in volume rendering approaches [DCH88]
where the fluid volume is commonly resampled into a 3D uniform grid [NJB07]
or a perspective aligned grid [FAW10] and then rendered using standard volume
ray casting [KW03]. However, these methods commonly require resampling of
the full simulation data into memory intensive grids. Splatting methods [Zwi+01]
used in real time applications, due to their computational simplicity, render par-
ticles as simple geometry in screen space and then smooth the resulting depth
image [MSD07; LGS09; XZY17], however these methods cannot handle refractions
and reflections properly. Outside of fluid simulations, various other rendering ap-
proaches exist, i.e. for point clouds [Ber+17], however they are usually not directly
applicable.

For SPH-based simulations, Ihmsen et al. [Ihm+14] give a good overview of
existing data structure methods for CPUs, and identify a hash map-based method
[Ihm+11] as the most efficient data structure. This approach is, however, not di-
rectly applicable to GPUs due to the way in which the hash map is constructed.
For GPU based simulations, Green [Gre10] introduced a method utilizing a fixed
domain with linearly indexed cell lists. A similar approach was used by Dominguez
et al. [DCG11], optimized for multiple GPUs. Goswami et al. [Gos+10] used Morton
codes, however, their approach introduces a complex scheme to balance work-
loads on GPUs, making it difficult to implement and utilize. In order to limit mem-
ory usage on GPUs, Winchenbach et al. [WHK16] introduced an iterative process
to constrain the size of so-called Verlet-lists, which are used to store references
to neighboring particles. However, all of these methods suffer from scaling and
performance problems for adaptive simulations due to excessive non-neighbor
particle accesses.

Many generic data structures have been developed for computer animation, i.e.
perfect hash maps to store sparse voxel data [LH06; Gar+11], which are not easily
scalable to multiple resolutions, or approximate nearest neighbor methods from
machine learning [AI08], which are only approximate and designed for high di-
mensional data. To improve the rendering speed of explicit surface methods many
methods have been developed, i.e. bounding volume hierarchies (BVH) [Gun+07;
Lau+09] and kd-trees [FS05], however these structures are varying in their mem-
ory requirements making them difficult to apply on the fly. Furthermore, various
CPU-based approaches exist, e.g.,OpenVDB [Mus+13], but they often require sig-
nificant changes to be realized on GPU-based systems. OpenVDB was realized for
GPUs as GVDB, where recently, Wu et al. [Wu+18] introduced a GVDB-based data
structure for FLIP-based simulations that significantly improves performance, but
which is not directly applicable to SPH, as FLIP imposes significantly different
requirements on the data structure, which is an integral part of the simulation it-
self. Overall, none of the existing data structures can be applied directly both for
rendering and simulation without significant overhead.



5.3. FOUNDATIONS OF ISOTROPIC AND ANISOTROPIC SPH 91

5.3 Foundations of isotropic and anisotropic SPH

In standard SPH a quantity A at a position x is interpolated using a weighted
average of spatially close particles j as [Kos+19]

(5.1) ⟨A(x)⟩ =
∑
j

Aj
mj

ρj
W (x− xj, h),

where m denotes the mass and ρ the density of a particle and W is a kernel func-
tion. Evaluating Eqn. 5.1 at the position of a particle i then results in

(5.2) Ai =
∑
j

Aj
mj

ρj
W (xij, h) =

∑
j

Aj
mj

ρj
Wij,

where xij = xi − xj . The support radius h in standard SPH formulations describes
an isotropic sphere with radius h, which allows one to define the kernel function
W as [DA12]

(5.3) Wij = W (xij, h) = Cd
1

hd
Ŵ (q),

where q = ∥xij∥ /h, d being the dimensionality of the simulation, and Cd a normal-
ization factor. For the interaction of two particleswith different support radii, i.e.,
due to spatil adaptivity, h can be determined as either hi, resulting in a gather for-
mulation, hj , resulting in a scatter formulation, or hi+hj

2
, resulting in a symmetric

formulation. When not evaluating an SPH quantity at a particle, but at an arbitrary
position x, symmetric or gather formulations cannot be directly used and, thus,
the scatter formulation is commonly utilized. Here Ŵ denotes the actual kernel
function, where for an SPH simulation the cubic spline kernel [Mon05]

(5.4) Ŵ (q) =
[
(1− q)3

]
+
+
[
4(0.5− q)3

]
+

is a common choice, with C3 = 14
π

and [·]+ being max (·, 0). For rendering a more
simple kernel is commonly chosen, i.e. [YT13]

(5.5) Ŵ (q) =
[
(1− q2)3

]
+
,

with C3 =
315
64π

. An isotropic support radius results in an equal extent of the support
domain in all directions, i.e. h = hx = hy = hz , which leads to issues on the surface
of the fluid [YT13]. Instead of this isotropic formulation, one can determine an
anisotropic formulation of SPH [Owe+98]

(5.6) Wij = Cd
1

|H|
Ŵ (||H · xij||),

where H is the anisotropy matrix and —H— being the determinant of H. Here the
isotropic variant of SPH is equivalent to H = 1

h
⊮. This anisotropic formulation,

however, also means that the support domain of a particle is ellipsoidal, instead
of spherical, meaning the extent of the domain in all directions is not equal, i.e.
hx ̸= hy ̸= hz , resulting in additional challenges for neighborhood queries as this
requires non-cubic cells in a data structure. Determining a gather and scatter
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Figure 5.2: These two images show the Morton code Z on the left and the hashed
indicesH on the right for every occupied cell, with color coding indicating indices.
The Morton code yields indices that are very similar, for spatially nearby cells, but
results in significant amounts of collisions. Using a Hash function (right) yields no
relation between spatial position and index, causing a low amount of collisions.

formulation for anisotropic SPH can be done directly using the anisotropic matrix
of either particle, however to yield a symmetric formulations we use [HK89]

(5.7) Ŵ (||H · xij||) =
1

2

[
Ŵ (||Hi · xij||) + Ŵ (||Hj · xij||)

]
.

We utilize a standard isotropic formulation for the simulation, and the anisotropic
formulation only for a fluid surface rendering using [YT13]. For an isotropic formu-
lation the support radius hi for particle i can be determined as hi = 3

√
NhVi [DA12;

WHK16], with Vi being the rest volume of a particle, i.e. 4
3
πr3 for a particle of radius

r, and Nh = 50 for the cubic spline kernel.

5.4 Simulation data structure

The main purpose of a data structure for SPH is to relate the spatial position of
a particle with its location in memory in order to reduce the number of particle
accesses from O(n2) to O(n · c), where c is the number of particles accessed for
each particle. Therefore, with c≪ n this results in an asympotically linear scaling
instead of quadratic scaling. One possible approach is to divide the simulation
domain into uniform cells of size h [Gre10; Ihm+14], with h being the particle
support radius. Note that this notion of a cell does not introduce any grid-based
methodology into SPH and is solely for data handling. Owing to this, a particle only
needs to consider at most 27 cells (a 3× 3× 3 sub-grid) for accessing (potentially)
neighboring particles. The sphere described by the support radius of a particle
will, on average, contain Nh neighbors [DA12] within a volume of 4

3
πh3, whereas

the sub-grid of all potential neighbors has a volume of 27h3. This means that the
sub-grid will contain, on average, 81

4π
Nh ≈ 6.5Nh particles, i.e.,15.5% of all potential

neighbors are actual neighbors, i.e.,the factor m in O(n · m) becomes 325. For
an adaptive ratio of 1000 : 1, however, only 0.016% of all considered particles are
neighbors as a cell of the same size would now contain 81000

4π
Nh particles, causing

significant performance problems [WHK17]. We are going to introduce our general
data structure for non-adaptive simulations in Sec. 5.4.1, and the changes required
for adaptive simulations in Sec. 5.4.2. Sec. 5.4.3 will introduce our data structure
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for rendering and Sec. 5.4.4 will discuss how we can optimize the memory layout
of our data structure.

5.4.1 Single-level data structure

Isotropic SPH methods commonly use cubic cells for data handling [Gre10]
[Ihm+11], as the support domain of a particle extends equally along all axes.
Anisotropic SPH methods require non-cubic cells for data handling, as the sup-
port domain of a particle might extend differently along all axes. As our overall
method uses both formulations, we determine the effective support extent h for
each particle, based on the isotropic support radius hii and the anisotropic support
extent along all axes [hxi , h

y
i , h

z
i ], as

(5.8) hi =
[
max

(
hii, h

x
i

)
,max

(
hii, h

y
i

)
,max

(
hii, h

z
i

)]
.

Alternatively, anisotropic SPH methods can be treated as isotropic, for data han-
dling, using hii = max(hii, h

x
i , h

y
i , h

z
i ), however, this places more particles in each

cell, causing more non-neighbor accesses in total. The cell size Cmax is set to
the same value as the largest support extent of all particles. This ensures that all
neighbors for a particle are contained in a 3× 3× 3 sub-grid, which would not be
possible for an arbitrary cell size. As such, we calculate Cmax as

(5.9) Cmax = max{h0, ...,hn−1}.

The simulation domain itself is similarly determined as the axis aligned bounding
box, from Dmin to Dmax, surrounding the positions of all particles. We determine
these bounds by using reduction operations over all particle positions xi

(5.10) Dmin = min{x0, ...,xn−1},Dmax = max{x0, ...,xn−1}.

These bounds are used to calculate the size of the simulation domain in cells
as

(5.11) D =

⌈
Dmax −Dmin

Cmax

⌉
.

When using dense data structures, D needs to be kept constant to avoid reallo-
cating memory when particles move outside the current simulation domain. This,
in turn, limits the scene’s extend as it needs to be known a-priori. We then cal-
culate the integer coordinates x̄ for any position x based on the lower simulation
bound Dmin and the cell size Cmax as

(5.12) x̄ =

⌊
x−Dmin

Cmax

⌋
.

This can be used to determine a linear index L as

(5.13) L(x̄) = x̄x +Dx (x̄y +Dy (x̄z)) ,

where the subscript denotes the dimension. In a dense cell grid, we can utilize
L(x̄) to find the memory location of any position in space. Dense data structures,
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however, are not desirable as their memory consumption scales with both the sim-
ulation domain D and the cell size Cmax, instead of scaling with the particle count
nparticles. The Morton code [Mor66], also sometimes referred to as the Z-ordering, is
an alternative indexing scheme, which describes a self-similar space-filling curve.
We can determine Z(x̄) by interleaving the binary representation of an integer
coordinates as

x̄ =

...x̄
3
xx̄

2
xx̄

1
xx̄

0
x

...x̄3
yx̄

2
yx̄

1
yx̄

0
y

...x̄3
zx̄

2
zx̄

1
zx̄

0
z

→ Z(x̄) = ...x̄3
zx̄

3
yx̄

3
xx̄

2
zx̄

2
yx̄

2
xx̄

1
zx̄

1
yx̄

1
xx̄

0
zx̄

0
yx̄

0
x,

where the superscript denotes a specific bit. Using a 32 bit Morton code results in
10 bit per dimension, meaning each dimension contains a maximum of#K = 1024
cells. A 64 bit Morton code results in 21 bit per dimension, meaning a maximum
of #K = 2097152 cells per dimension. On one hand it would be possible to create
an octree directly from Morton codes [Kar12], as this code represents the ordering
of an octree. To find neighboring particles, in SPH, we only have to consider a
small spatial region and, as such, many octree notes, e.g.,the root node, contain
no useful information but still require memory. Furthermore, traversing an octree
is computationally relatively expensive and the memory consumption of an octree
is not independent of the content. On the other hand, a dense data structure using
a Morton code would require excessive amounts of memory, especially as a 64 bit
Code would require 260 entries.

We instead propose to create a list of all occupied cells, as the number of
occupied cells noccupied is bound by the number of particles nparticles, as the worst
case would be every particle occupying a different cell. Morever, the lower bound
of occupied cells is based on the number of particles per cell, which is bounded
by incompressibility, of 3

4π
Nh, see Sec. 5.4, resulting in approximately 12 particles

per cell for the cubic spline kernel, i.e.,noccupied = 1
12
nparticles. However, during a

simulation many cells contain less particles, i.e. particles flying through the air
after an impact, resulting in an average ratio of approximately 1 : 6 over the course
of a simulation.

To generate the list of occupied cells, we first re-sort all particles according to
their Morton code Zi = Z(x̄i). Using this ordering we create a list C of length
nparticles + 1, where each element is determined as

(5.14) C[i] =


i , if i = 0 ∨ Zi ̸= Zi−1

−1 , if Zi = Zi−1

nparticles , else.

C now contains either a marker entry (−1 or nparticles), or the first index of a particle
in an occupied cell, which is similar to the approach by Green [Gre10]. We can
now compact C, by removing all invalid entries, which gives us a list Cbegin

compact of
length noccupied + 1. Using this list of occupied cell beginnings, we can calculate
the number of particles in each occupied cell as

(5.15) Clength
compact[i] = Cbegin

compact[i+ 1]− Cbegin
compact[i].

This compact list, however, does not yield any way to find the memory location for
a particle based on its spatial location. To resolve this, we propose to apply a hash
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ALGORITHM 5.1: The algorithm to access the cell associated with an arbitrary
integer coordinate using our proposed sparse data structure without embedding
C into H. Note that an empty cell can map to the same hash map entry as an
occupied cell, without causing a collision, and as such we always check Zc = Zj

to avoid returning a wrong cell.

1 Calculate x̄c for the cell we are looking for
2 Calculate Zc and Hc for x̄c

3 Look-up b = Hbegin[Hc] and l = Hlength[Hc]
4 If l ̸= 0
5 For h ∈ [b, b+ l)

6 Look-up Particle j = Cbegin
compact[h]

7 Calculate x̄j and Zj

8 If Zc = Zj

9 Return Ccompact[b]
10 Return not found

map on top of Cbegin
compact and Clength

compact. Depending on the intended purpose of the
data structure, i.e. solely simulation or simulation and rendering, different hash
functions should be used. The cell information is only accessed once during the
simulation, as it is only required for the creation of a neighbor list, but accessed
many times during rendering, as rendering requires evaluating SPH estimates at
arbitrary positions, which have no neighbor list associated. As such, for the sim-
ulation a hash function with few collisions is preferable, but for rendering a hash
function with good spatial locality is preferable. If the hash map is only required
for the simulation we use the hash function of Teschner et al. [Tes+03], which
is determined using three large prime numbers p1 = 73856093, p2 = 19349663,
p3 = 83492791 and the size of the hash table nhash as

(5.16) H(x̄) = (p1x̄x + p2x̄y + p3x̄z)%nhash.

We choose nhash as the smallest prime number larger than the maximum number
of particles in a simulation, as this results in a relatively sparse hash map with few
collisions, in general. Fig. 5.2 shows a comparison of this hash function with the
Morton code, which demonstrates the lack of spatial locality. If the hash map is
also used for rendering we use a more simple hash function, directly based on the
Morton code, as

(5.17) H(x̄) = Z(x̄)%nhash,

which will result in more hash collisions, but also much greater cache locality. Al-
ternatively other hash functions could be used, i.e. perfect hash functions[LH06],
but they are more expensive to create and especially more computationally ex-
pensive to evaluate, making them unattractive for rendering. In general, we place
the cell information in the hash map, if there were no collisions in this hash map
entry, as this avoids one level of indirection.

The hash map itself is similar to the cell list in that it contains a begin entry
and a length entry, where the begin entry now points to the first cell mapped to a
hash table entry and the length entry indicates how many cells map to this hash
table entry. If there is no cell then the length is 0, if there is a single cell occupying
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ALGORITHM 5.2: Our proposed single resolution data-structure algorithm. This
algorithm first re-sorts all particles and then creates a compact cell table followed
by the creation of our hash map as described in Section 5.4.1.

1 Initialize
2 Calculate Cmax, Dmin and Dmax using reductions
3 Calculate P 2 based on D

4 Re-sort particles using Z fine

5 Cell table creation
6 Initialize C = −1 and Clength

compact = 0

7 Create C based on Morton codes of consecutive particles

8 Compact C into Cbegin
compact and determine Clength

compact

9 Calculate Hi for all particles

10 Re-sort Cbegin
compact and Clength

compact based on the hash index of the first contained
particle.

11 Hash map creation
12 Initialize Hbegin = −1 and Hlength = 0

13 Create Hbegin based on compacted cell list
14 Calculate Hlength

15 Embed Ccompact into H if Hlength = 1

this hash map the length is 1 and a length > 1 indicates a hash collision. The hash
map, contrary to the cell list, is not compacted and as such allows us access via the
hash index of an integer coordinate H(x̄). The process required to find a specific
cell c based on the cells integer coordinates x̄c is described in Algorithm 5.1.

To create the hash table H we first start by initializing all hash table entries as
invalid, i.e.,0 length, and re-sort the list of occupied cells according to the hashed
index of the first particle in this cell. We then, for each occupied cell i, set

(5.18) Hbegin[Hi] = i, if i = 0 ∨Hi ̸= Hi−1,

where we then set the length entry, for each occupied cell i, as

(5.19) Hlength [Hi] = i−Hbegin [Hi]− 1, if i = noccupied ∨Hi ̸= Hi+1

which naturally handles hash collisions as the predicate is based on Hi ̸= Hi+1

which is only true for the last cell associated with a certain hash value. The over-
all algorithm to create our hash map based data structure, for a single level, is
described in Algorithm 5.2.

5.4.2 Multi-level data structures

The prior section described our approach for a single fixed cell size, which would
suffer from the same problems for adaptive simulations as prior methods, due
to a mismatch of cell size and particle resolution. Utilizing the self-similarity of
the underlying Morton code, however, we can efficiently create multiple, distinct,
data structures for different cell sizes on the same underlying particle data. All
power of 2 times coarser resolutions follow the same underlying ordering, due the
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octree-like structure of Morton codes. The lowest required resolution for the data
structure is still Cmax, resulting in a coarse grid size of Dc; see Eqn. 5.11. Using the
largest component of the grid, P = max (Dx

c ,D
y
c ,D

z
c), we determine the smallest

cell size possible, as the bit length of the Morton code used limits the number of
cells per dimension to #K ; see Sec. 5.4.1, as

(5.20) Cfine = Cmax
2⌈log2(P )⌉

#K
.

Here 2⌈log2(P )⌉/#K = 2−Lfine , Lfine ∈ N is the refinement factor. The algorithm
described in the Sec. 5.4.1 can now be extended by creating the cell list and hash
map for a Morton codeZmax based onCmax and additional finer levels 0 < L ≤ Lfine

using the integer coordinates

(5.21) x̄L =

⌊
x−Dmin

Cmax · 2−L

⌋
.

L = 0 results in the same data structures as the single-level version of this algo-
rithm and L = Lfine the finest possible data structure, with the given Morton code.
The corresponding Morton code is determined as ZL(x) = Z(x̄L). We relate the
maximum level Lmax to the maximal adaptivity ratio α of the simulation as

(5.22) Lmax = min
{⌈
log2

3
√
α
⌉
, Lfine

}
,

and generate the data structure for all levels 0 ≤ L ≤ Lmax. We store all data
structures within single continuous arrays, which allows us to calculate the hashed
indices by simply adding an offset based on the level to any hash function

(5.23) ZL(x̄) = Lnhash + Z(x̄).

Furthermore, we determine the appropriate level for a particle i according to
its support radius as

(5.24) Li = clamp

(⌊
− log2

hi
Cmax

⌋
, 0, Lfine − 1

)
.

Thus, every particle can easily access all neighbors at any scale L ∈ [0, Lmax] using
the data structure for L. However, when a particle i only looks for neighbors at
its level Li, we may encounter asymmetric interactions, as neighbor searches are
limited by the cell size for level Li; see Fig. 5.3.

More formally, asymmetric interactions occur when a particle i of lower level
Li is interacting with a particle k of a higher level Lk, i.e.,if Lk > Li ∧ xik < hik.
In order to resolve the asymmetry, we iterate over all neighboring particles k of i
and determine their integer coordinate distance, for the cell size associated with
Lk as x̄Lk

ik = x̄Lk
i − x̄Lk

k . We use x̄Lk
ik to identify the problem case that k does not

see particle i by checking

(5.25)
∥∥∥x̄Lk

ik

∥∥∥
1
= max(|x̄Lk

ik,x|, |x̄
Lk
ik,y|, |x̄

Lk
ik,z|) > 1.

We then resolve this issue by atomically updating Lk to be at least Li, as this
ensures that k will search distant enough cells to find i. The overall changes to the
single resolution algorithm are relatively minor but are outlined in Algorithm 5.3.
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Figure 5.3: Asymmetry interaction: Two particles at different levels may not mutu-
ally see each other due to the different cell size. Here, the lower level particle to
the left sees the higher level particle to the right, but not vice versa.

5.4.3 Rendering data structure

A naı̈ve way to render the fluid surface using ray-casting would be to treat the
underlying cell structure as a grid and use traditional ray-casting approaches,
i.e. [KW03]; however, this would require checking every cell inside of the simu-
lation domain along a ray for potential ray-fluid intersections, even though most
cells contain no actual fluid surface. Alternatively, simply checking for fluid-ray
intersections within occupied cells does not work as the fluid surface of particles
within one cell extends into other cells; see Fig. 5.4. At worst, the fluid surface for
every single particle could be distributed amongst 27 cells, which would require
a total of 27 · nparticles cells; however, explicitly storing these cells is not practical,
due to limited memory resources on GPUs. Instead, we propose to store this in-
formation only implicitly using a hash map, as it suffices to mark whether any cell,
that potentially contains fluid surface, maps to a certain hash map entry. Morever,
cells that contain no fluid particles, themselves, can still contain fluid surfaces.
Thus using the data-structure directly require checking every cell intersected by a
ray, instead of only checking cells that can contain fluid surfaces.

The main purpose of this data structure is not to find particles close to a spatial
location, as was the case for the simulation data structure, but instead to check
whether a cell at a spatial location could contain fluid surface. Instead of storing
references to particle ranges contained in a cell, we only store the Morton code of
a cell, as many cells that could contain fluid surface do not contain any particles.
The hash map used here uses the same size as the one for the simulation, which,
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ALGORITHM 5.3: Changes required to create multiple levels of our data structure

1 Initialize
2 Calculate Cmax, Dmin and Dmax using reductions
3 Calculate P 2 based on D

4 Re-sort particles using Z fine

5 Calculate Ideal level Li for every particle

6 For every Multi-Level-Memory level L
7 Execute Cell table creation and Hash map creation using ZL and HL

respectively.
8 Finalize
9 Enforce symmetric interactions

Figure 5.4: An anisotropic particle in a non-cubic grid. The blue cell contains the
actual particle position, red cells are neighboring but cannot contain fluid surface,
green cells are neighboring and can contain fluid surface, and gray cells are not
neighboring. The fluid surface due to the particle is colored dark blue.

due to the low number of cells containing fluid surface, results in only a moderate
number of collisions, even when using non-ideal hash functions.

In order to find cells containing particles at the fluid surface, we first calculate
the signed surface distance ϕ for all particles, using the method of Horvath and
Solenthaler [HS13]. A particle that is close enough to the surface, i.e. ϕi < ri, is
marked as a surface particle. We then iterate over all cells in the compact list of
occupied cells Ccompact and create a list of surface cells

(5.26) R[i] =

{
Z(xc0i

), if ∃c marked as surface : c ∈ Ci,
−1, else,

where Ci is the set of particles contained in cell i and c0i is the first particle con-
tained in a cell, i.e. c0i = Cbegin

compact[i]. Next, we use a compact operation on this
list to yield a compacted list of cells containing surface particles, denoted as F.
Next, similar to the simulation data structure, we sort this list according to the
hash function and create a hash table HR, as before, using this sorted compact
list. Next, we embed the cell information in the hash table, if there was no collision
for a hash entry, as this avoid one level of indirection. At the end of this process,
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ALGORITHM 5.4: Our proposed rendering data-structure algorithm; see Sec-
tion 5.4.3.
1 Initialize
2 Determine signed surface distance ϕ for all particles [HS13]
3 Set s[i] = 1 if particle i close to surface, otherwise s[i] = 0

4 Find surface particle cells
5 Determine cells containing surface particles as R; see Eqn. 5.26
6 Compact cells containing surface particles into F
7 Sort F based on hash function using stored Morton codes

8 Create Hbegin
R based on sorted list

9 Calculate Hlength
R

10 For all hash entries h with Hlength
R [h] = 1

11 Embed Store Morton code of corresponding cell directly in HR[h]
12 Mark entry h as particle cell

13 For all hash entries h with Hlength
R [h] ≥ 1

14 Mark entry h as particle cell collision

15 Spread surface cells
16 Calculate AABBmin

c and AABBmax
c for all cells c ∈ F

17 For each neighboring cell n of all cells c ∈ F
18 If n overlaps AABB of c
19 Calculate Morton code Zn and hash key Hn for cell n
20 If HR[Hn] empty
21 Store Zn in HR[Hn]
22 Mark HR[Hn] as potential surface cell
23 Else If HR[Hn] does not contain Zn already
24 Mark HR[Hn] as collision

a hash table entry either contains a cell, represented as a Morton code, or a range
of cells that map to this hash entry. We then calculate an AABB for every cell i ∈ F,
based on the contained particles, as

(5.27) AABBmin
i = min

c∈Ci
xc − hc;AABBmax

i = max
c∈Ci

xc + hc,

where h is the extent of support along the simulation axes. Finally, for every cell
i ∈ F we check if any of the surrounding cells Ni overlap the bounding box of i.
If we find an overlap with cell n ∈ Ni, we check if n ∈ F using HR, in which case
nothing needs to be done. If n /∈ F and the corresponding hash map entry is empty,
we set the entry to indicate n as potentially having fluid surface. If the hash map
entry was already occupied we mark the entry as having a collision, which means
that any cell mapping to this hash entry is assumed to have fluid surface in it. This
process is also described in Algorithm 5.1.

Given a position x, with a corresponding cell q, we can query this data structure
using the corresponding Morton code Zq and hash key Hq . If HR[Hq] is empty, no
fluid surface can be contained in q. If HR[Hq] is marked as collision, q potentially
contains fluid surface. Otherwise, if HR[Hq] containsZq then q contains particles at
the fluid surface. This rendering data structure is also described in Algorithm 5.4.
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Figure 5.5: Memory layout of the data structures for simulation and rendering for
uniform and adaptive simulations. The render data layout uses a union indicated
by the split fields.

5.4.4 Data structure memory layout

To reduce the memory consumption, and improve the performance, of our data
structure several optimizations can be made to the memory layout of the data
structure. These optimizations are based on a word size of 4Byte, which reduces
the number of required atomic operations significantly. For the Morton code we
use 30 bits in non-adaptive simulations and 60 bits in adaptive simulations.

A hash table and cell list entry of the simulation data structure contain both a
beginning and length entry, using a 4Byte integer each. To embed a cell list entry
in the hash map we reserve a single bit of the beginning entry, as an indicator for
the kind of data, which limits the maximum number of particles to at most 231− 1,
which should not cause problems on single GPUs.

As stated at the beginning of Sec. 5.4, an average cell contains only 3
4π
Nh ≈

11.94 particles, when using a cubic spline kernel, in non adaptive simulations. Fur-
thermore, the maximum number of particles we can simulate on a single GPU is
below 32M . As such, we only require 25 bits to represent the cell begin entry and
approximately 3.6 bits to represent the number of particles per cell. As we still re-
quire a single bit to indicate if a cell entry is embedded, we chose a 25 bit integer
for the cell begin entry and a 6 bit integer for the cell length entry; see Fig. 5.5. To
account for larger support radii for rendering, which might increase the number
of particles per cell significantly, we keep track of the actual number of particles
in each cell, in a separate list, where a length entry of 63 in a cell indicates a re-
quired additional lookup. The data structure for rendering needs to indicate four
cases, requiring 2 bits, as well as store the Morton code, requiring 30 bits in non
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Figure 5.6: The warp program used to calculate ray fluid intersections. Warp here
refers to a group of threads, i.e. 32, executing in parallel on either a GPU or CPU.

adaptive simulations. As such, we can store the Morton code for a cell, and the
case indicator, within a single 4B entry. To account for the 2 bits for the cases
a hash entry in this data structure consists of a 25 bit integer for the begin entry
and a 5 bit integer for the length entry, limiting the number of cells mapped to the
same hash entry to 32, which should not be exceeded in practice. To embed cell
information into the hash map we utilize a union, with a case field indicating the
kind of entry; see Fig. 5.5

5.5 Rendering

Intersecting a ray with the fluid surface could, naı̈vely, be done by simply evaluating
a function at every point along the ray and finding the closest value that matches
the desired iso value; however, this is not practically possible. Instead, we propose
to first find rays that can potentially intersect the fluid, i.e. rays intersecting the
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simulation domain. Next, we iterate along those rays, over the cells in the data
structure, to find cells that can potentially contain fluid surfaces. Finally, we evalu-
ate the ray-fluid intersection, but only within an intersected cell; see Fig. 5.6. Given
a ray

(5.28) rayi(λ) = xo
i + λ · di, λ ∈ R+

0 ,

starting at xo
i with direction di, we check for an intersection of a ray with the sim-

ulation domain using a standard AABB intersection test. Next, in case of an in-
tersection, we calculate the first cell hit by the ray and traverse the domain, along
the ray; see Sec. 5.5.1, until either the ray exits the simulation domain, or we find a
cell that can potentially contain fluid surfaces, see Sec. 5.4.3. For a found cell we
then calculate an intersection using either the cells directly; see Sec. 5.5.2, treat-
ing particles as spheres; see Sec. 5.5.3, or using a surface function to determine
an iso surface; see Sec. 5.5.4.

To implement this process on a GPU, all rays are stored in a queue and we
process one ray at a time in a thread. The simulation domain intersection and
traversal of the data structure is executed independently, on all threads in a warp,
as these do not require any inter-thread communication. Next, after synchronizing
the threads in a warp, we check if any thread has found a cell that can potentially
contain fluid surfaces. For these potential intersections, we then calculate the
actual ray-fluid intersection and store the results, if an intersection is found.

5.5.1 Data structure traversal

In case an intersection of a ray with the simulation domain AABB exists, this cal-
culation yields a close distance λmin and far distance λmax to the domain inter-
sections along the ray, where we clamp λmin to positive values, which yields the
distance along the ray, within the domain, as λl = λmax − λmin

+ . Using λmin
+ , we de-

termine xmin = ray(λmin
+ ), which in turn yields the integer coordinates of the first

cell x̄min hit by the ray, within the simulation domain. Similar to Amanatides and
Woo [AW87], we traverse the simulation domain by first calculating the integer ray
direction as

(5.29) d̄ = [sign(dx), sign(dy), sign(dz)] .

We then determine the next cell boundary, intersected by the ray, as

(5.30) xnext = Dmin +
(
x̄min +max(d̄,0)

)
◦Cmax,

where ◦ denotes the component-wise multiplication (Hadamard product) and the
maximum is applied component-wise. Next, we determine the distance along the
ray, until the next cell boundary is intersected, as

(5.31) λn = xnext − xmin ⊘ d,

where ⊘ is the component-wise division (Hadamard division). For small compo-
nents of d, i.e. |dx| < 10−6, we set the corresponding component of λn to infinite.
Finally, we start the traversal in the cell c̄ = x̄min.

We first check if c̄ can contain fluid surfaces; see Sec. 5.4.3, and in this case
stop the traversal, otherwise we move to the next cell. This increment, using d̄,
is based on the smallest component in λn; however, if the smallest component
λn was larger than λl, we stop the traversal. Otherwise we increment the smallest
component in λn, using d̄⊘ d ◦Cmax, and repeat this process; see Algorithm 5.5.
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ALGORITHM 5.5: Domain traversal algorithm; based on [AW87].

1 Intersect ray with simulation domain AABB, yielding λmin and λmax

2 λmin
+ ← max(0, λmin)

3 xmin ← ray(λmin
+ )

4 Determine x̄min using Eqn. 5.12
5 d̄← [sign(dx), sign(dy), sign(dz)]
6 xnext ← Dmin +

(
x̄min +max(d̄,0)

)
◦Cmax

7 λn ← xnext − xmin ⊘ d
8 λinc ← d̄⊘ d ◦Cmax

9 λl ← xmin − ray(λmin
+ )

10 Initialize c̄ = x̄min

11 Iterate
12 If c̄ can contain fluid surfaces; see Sec. 5.4.3
13 Return Cell found.
14 If λx

n < λy
n

15 If λx
n < λz

n

16 If λx
n > λl: Return No cell found.

17 c̄x ← c̄x + d̄x λx
n ← λx

nλ
x
inc

18 Else
19 If λz

n > λl: Return No cell found.
20 c̄z ← c̄z + d̄z λz

n ← λz
n + λz

inc
21 Else
22 If λy

n < λz
n

23 If λy
n > λl: Return No cell found.

24 c̄y ← c̄y + d̄y λy
n ← λy

n + λy
inc

25 Else
26 If λz

n > λl: Return No cell found.
27 c̄z ← c̄z + d̄z λz

n ← λz
n + λz

inc

5.5.2 Data structure visualization

For simulations with sparse data structures, visualizing the occupied cells is a
useful, and fairly straight forward, visualization. To visualize the data structure,
after the traversal algorithm yields a cell c potentially containing fluid surface, we
check if there is a cell at location c in the simulation data structure, which is only
the case for cells containing particles, not just fluid surface; see Sec. 5.4.1. If there
is no cell, containing particles, we continue the traversal; otherwise, we calculate
the center of the found cell as

(5.32) xc = Dmin + c ◦Cmax,

with a half cell size rc = 0.5Cmax. Calculating the intersection of the ray with this
cell yields λmin

c and λmax
c and the point of ray-cell intersection xi = ray(λmin

c ). Using
d = xi − xc, we determine a normal, where a cell is represented as a cuboid, as

(5.33) nc = [(1 + ϵ)d⊘ rc] ,

where ϵ is a small positive value and [·] denotes rounding to the nearest integer.
As the color for the intersected cell we use the color of the first particle in c. This
process yields all required information, i.e. depth, normal and color, required to
render the data structure.
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ALGORITHM 5.6: Intersection calculation after all threads in a warp have eval-
uated ϕ. ballot(p) is an intra-warp voting function of the predicate p, shuffle(t, i)
returns the value of t for thread i, active is a mask indicating active threads, and
ffs(b) returns the index of the first set bit in b. The result of this algorithm is a
depth t.

1 In parallel for each thread w in warp
2 ϕw ← ϕ(xw)

3 maskL ← ballot(ϕs ≥ ϕiso)

4 maskH ← ballot(ϕs < ϕiso)
5 maskF ← (maskL << 1)&maskH
6 maskR ← ( maskL << 1)& maskH
7 If maskL&0x1
8 i← ffs( maskL)− 1
9 Else

10 i← ffs(maskL)− 1
11 If maskL ̸= 0 ∧maskL ̸= active
12 x0 ← i− 1
13 y0 ← shuffle(ϕw, i− 1)
14 x1 ← i
15 y1 ← shuffle(ϕw, i)
16 dy ←= y1 − y0
17 α← ϕiso − y0/dy
18 t0 ← shuffle(λw, i− 1)
19 t1 ← shuffle(λw, i)
20 t← (1− α)t0 + αt1

5.5.3 Particle visualization

Rendering particles as spheres, overlapping the cell c first involves finding the in-
tersection of the current ray with the cell, similar to the cell visualization, which
yields λmax

c and λmin
c . Using the simulation data structure, we iterate over all parti-

cles that can potentially be overlap c, i.e. all those contained within neighboring
cells of c and c. For each of these particles j, we can calculate a ray sphere in-
tersection, which, if there was an intersection, yields an intersection distance λj .
If λj ∈ [λmin

c , λmax
c ], we store j and λj , if this was the closest intersection found so

far, and keep iterating over the remaining particles. If there was an intersection
with any particle, we can then determine the intersection point xi = ray(λj) and
the intersection normal ni = xi−xj . We use the color associated with the particle,
i.e. using color mapping of some quantity, as the color for the intersection.

5.5.4 Surface rendering

Rendering the fluid surface directly requires extracting an iso surface of some field
quantity ϕ. There are many different ways to determine this quantity; however,
common choices include simply using the density ρ, the surface distance function
of Zhu and Bridson [ZB05], or the anisotropic surface distance function of Yu
and Turk [YT13]. For our approach the choice of function does not influence the
process beyond potentially increasing the computational workload. Therefore, we
assume an arbitrary field quantity ϕ(x) : R3 → R, with an iso value of ϕiso. To
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Figure 5.7: Rendering of the drop scene. A spherical fluid volume is dropped into
a basin and rendered using an anisotropic surface function as a transparent fluid.
The left part of the image shows the initial configuration, whereas the right part
shows a later point in time.

calculate the ray-surface intersection we evaluate a single intersection of a ray
with a corresponding found cell c̄ in parallel, using all threads in a warp, where we
sequentially process the overall set of potential intersections.

To evaluate a single ray-surface intersection we first calculate the intersection
of the ray with the found the cell c̄, yielding λmin

c and λmax
c . For a warp size of w, we

then subdivide the interval [max{λmin
c , 0}, λmax

c ) into w − 1 segments, where each
segment s ∈ [0, w − 1) is assigned a starting position

(5.34) xs = ray
(
max{λmin

c , 0}+ s

w − 1

(
λmax
c −max{λmin

c , 0}
))

,

where each thread in a warp is assigned one position, with the last thread being
assigned x = ray (λmax

c ), and each ray is assigned an according distance value λs.
To evaluate ϕs, at each assigned position xs, we iterate over all particles in all

neighboring cells, where the cell entries are stored in shared memory. Afterwards,
utilizing Algorithm 5.6, we find an intersection depth λf and, if there was an inter-
section, store λf and mark the ray as processed; otherwise, we keep traversing the
simulation domain for this ray. Calculating the intersection normal can be done
directly by evaluating ∇ϕ(x). Note the synchronization required here can be im-
plemented implicitly by checking after each cell traversal if any thread in a warp
has found a cell that can contain fluid surfaces and performing the check imme-
diately. This avoids threads within a warp waiting for other threads and reduces
warp divergence. We refer the reader to the supplementary materials for the im-
plementation of this optimization, which can be found published along the definite
version of the paper reprinted here; see [WK20].

5.6 Results and discussion

All results were simulated and rendered using a single Nvidia RTX 2080 Ti GPU
with 11 GiB of VRAM and an AMD Ryzen 3970x CPU with 64 GiB of RAM. We
used DFSPH [BK15], with a density error limit of 0.01% and a divergence error
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Method Init Intersection-Tests Render
1st 2nd 3rd 4thOverall

Drop scene, Fig. 5.7
[YT13] 12.1 90.1 113.4 103.5 84.8 838.7

Dam break scene, Fig. 5.8
[ZB05] 23 37.5 49.4 17.7 10.5 132.8

Particles 22.2 14.3 23.5 12.6 9.5 69.2

Inlet scene Top Down, Fig. 5.9
[ZB05] 12.7 30.4 41.8 19.1 14.6 136.7
[YT13] 14.1 149.8 204.2 60.6 46.9 503.6
Grid 12.7 2.3 3.4 1.7 1.3 27.86

Particles 12.6 12.9 19.9 13.7 10.9 79.8

Inlet scene Side View, Fig. 5.10
[ZB05] 12.8 46.9 52.7 25.3 18.2 180.2
[YT13] 14.0 237.5 273.3 124.7 79.5 785.3

Table 5.1: Timing for intersection tests. This table states the average computation
time over the entire simulation in milliseconds per sample per pixel, separately
for the first four intersection and the total rendering time including illumination
calculations per sample per pixel. Grid and Particles stands for visualizing the
underlying data structure and particles as spheres, respectively.

limit of 0.1%, and density maps [KB17] to represent rigid objects. Artificial viscos-
ity was modeled based on XSPH [Mon05], surface tension was modeled based
on [AAT13], and fluid air phase interactions were modeled based on [Gis+17].
We used the vorticity refinement method of [Ben+18] and the spatially adaptive
method of [WHK17]. Our overall uni-directional ray-tracing algorithm is imple-
mented in CUDA and inspired by [PJH16], where we used a simple bounding vol-
ume hierarchy for rigid objects, and calculate each bounce of a ray using a loop on
the CPU to avoid recursions on the GPU. We implemented our data structure and
rendering approach in the open source SPH framework openMaelstrom [Win19].
For an in-depth discussion of the simulation data structure we refer the reader
to [WK19]. For all renderings we used a fixed resolution of 1920x1080 and a fram-
erate of 60 fps, with 35 primary rays cast per pixel with 6 and 16 bounces per
primary ray for opaque and transparent renderings, respectively. .

Test Scenes: We evaluated our approach using three test scenes. The Dam
break test scene involves the collision of two initial fluid volumes in a cubic do-
main; see Fig. 5.8, with a particle resolution of r = 0.175m and 3.9 million particles.
The Inlet test scene involves a stream of liquid flowing along a channel and collid-
ing with an obstacle; see Fig. 5.10, with a particle resolution of r = 0.35m and up
to 2.2 million particles. The Drop test scene involves dropping a sphere of liquid
into a basin; see Fig. 5.7, with a particle resolution of r = 0.2m and 1.5 million par-
ticles. For simulation performance see Table 5.2, and for rendering performance
see Table 5.1.
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Scene Fig. Particles Radius/m ∆t/ms Domain Structure/ms Neighbor-list/ms DFSPH/ms Overall/ms

Drop 5.7 1.5M 0.2 4.0 68x68x204 30.5 77.3 1150.6 2079
Dam break 5.8 3.9M 0.175 5.6 1563 41.5 174.9 2312 2919

Inlet 5.9 2.2M 0.35 6.0 156x156x76 22.1 66.8 316.2 517

Table 5.2: The timing values shown here are given as the average time, required to simulate 1/60s, over an entire simulation as
measurements in milliseconds. DFSPH refers to the combined time required to solve for both incompressibility and divergence-
freedom. The timing for the data structure here refers to all steps in Algorithm 5.2, i.e.,including resorting and data structure creation.
Neighbor-list timings refer to the timing of the construction of a constrained neighbor-list [WK19].
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Ray-casting performance: To evaluate the performance of our method, we
first consider the performance cost of the primary ray intersection. These rays are
cast directly from the camera into the scene and traverse similar cells. Primary ray
intersections can be used to implement a deferred shading approach, as the in-
tersection yields both a depth and normal, or using a simple direct lighting model.
When using an isotropic surface function [ZB05], we find good performance in all
scenes, i.e. primary intersection tests requiring less than 50ms. For an anisotropic
surface function [YT13] the overall computational cost is significantly higher, due
to a more expensive surface function and larger cell non-cubic cells. The cost of
the primary intersection, regardless of which surfacing method specific is chosen,
changes significantly depending on the relation of camera and fluid geometry. This
involves many aspects, i.e. many rays parallel to a flat surface require many un-
necessary intersection tests, whereas rays orthogonal to a flat surface require few
unnecessary intersection tests. Additionally the performance changes depending
on how many rays can even intersect the fluid, i.e. the fluid surface might be par-
tially occluded by some other geometry, and also depends on the screen-space
size of the fluid simulation. Finally, the overhead for the construction of the render
data structure is fairly low and is only required once per frame.

Opaque fluid rendering: Rendering an opaque surface does not just require
the primary intersection, but a full path trace per ray. The directions of bounced
rays show very little spatial coherency, which causes the rays to not traverse similar
cells, as was the case for the primary intersection. In all scenes we tested (see Tab.
2), we found that the performance of the first bounced ray is always lower than the
primary ray, and the cost of following bounces decreases with each bounce. How-
ever, if the number of rays intersecting the fluid domain falls below the number of
threads we can executed in parallel, i.e. after a significant number of bounces, the
cost stays relatively fixed. Additionally, the performance depends on the geom-
etry of the surface, i.e. any bounced ray from an intersection with a cube shared
surface is guaranteed to not intersect the surface directly. However, more com-
plex geometries that, for instance, contain cavities where rays enter but rarely exit,
significantly increase computational cost. Furthermore, for an opaque rendering
we require multiple samples per pixel, which further increases the computational
cost.

Transparent fluid rendering: Whereas an opaque surface rendering does not
cause rays to transmit into the fluid, a transparent surface rendering will cause
rays to either reflect or refract into the fluid. This means that the computational
requirements are significantly higher, as rays traversing the interior of the fluid
require many checks for potential fluid intersections, which are mostly negative as
a significant number of internal cells could contain fluid surface. Additionally, rays
moving on the interior of a fluid volume might be reflected multiple times before
they exit the fluid, requiring significantly more bounces per ray than an opaque
surface rendering. These additional computational costs increase the time per
sample-per-pixel by about 3 times. Even though there are options to improve the
computational performance, such as lowering the number of samples per pixels,
utilizing a screen-space based refraction model [LGS09], or considering refrac-
tion on the first bounce only, these methods have a large and complex impact on
visual quality, the study of which is beyond the scope of this article. Even though
our method is slowed down for a transparent rendering, we can still achieve good
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Figure 5.8: Rendering of the dam break scene. Two initial fluid volumes collide in
this scene and are rendered using an isotropic surface function as an opaque fluid.
The left part of the image shows the simulation immediately after the collision,
whereas the right part shows a much later point in time.

Figure 5.9: Rendering of the inlet scene. A fluid inlet stream impacts a rigid obsta-
cle visualized as particle spheres, with particle velocities color coded from purple
(0m/s) to yellow (30m/s) (left), a visualization of the data structure, with the Morton
code of the first particle in each cell color coded from blue to red (middle), and an
isotropic surface extraction (right).

results, especially using anisotropic surface functions, just not at interactive fram-
erates; see Tab. 2.

Simulation data structure memory usage: Our data structure requires a
hash map and a cell list, both containing a begin and length entry; see Sec. 5.4.4.
The length of the cell list is determined by the number of particles, i.e. O(nparticles),
whereas the hash table size is determined as the smallest prime number larger
than the number of particles. As this value is very close to the number of particles,
we can assume that the hash map scales with the number of particles. Using bit-
fields we require 4 Bytes per hash map entry and 8 Bytes per cell table entry. In
contrast to many prior methods, the memory requirements only depend on the
particle count, and not the simulation domain or particle distribution.

Rendering data structure memory usage: Our rendering data structure is
similar to the simulation data structure and, as such, also requires 12 Bytes per
particle, for a 32 Bit Morton Code. Overall, as the simulation data structure is
required for rendering, the total cost per particle is 24 Bytes. However, ignoring
memory requirements for the overall rendering algorithm, i.e. for textures, these
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Figure 5.10: Rendering of the inlet scene using an anisotropic (left) and an
isotropic surface function (right).

memory requirements only scale with the particle count, i.e. O(nparticles), and are
independent of domain size, particle distribution or particle resolution, similar
to the simulation data structure. Furthermore, we do not require any amount of
memory to store an extracted mesh, nor an acceleration structure for the mesh,
nor an intermediate grid used for an explicit surface extraction.

Limitations: Even though our method yields very high quality surfaces at a
low, and constant, memory cost, the computational requirements for the surface
extraction can become very high, especially when using complex surface functions,
i.e. [YT13]. This performance cost becomes especially noticeable in transparent
surface renderings, making them comparably slow. While our approach is ready
to render adaptive fluid surfaces [WHK17], the performance quickly degrades with
higher adaptivity ratios, as applying the same approach as was done for the sim-
ulation (see Sec. 5.4.2) is not directly possible.

5.7 Conclusions

In this paper, we presented a data structure that can be used to efficiently simu-
late and render SPH fluid simulations using a combination of a cell table and hash
map. The memory requirements of our approach do not scale with the domain
size, particle resolution, or particle distribution, but instead solely depend on the
number of particles, making our approach well suited for usage on GPUs. Using
our simulation data structure [WK19], we can efficiently simulate even highly adap-
tive SPH simulations in unbounded simulation domains. Using our rendering data
structure, we can efficiently render an iso surface, without requiring an explicit
surface extraction, using arbitrary surface metrics, i.e. isotropic and anisotropic,
using opaque or transparent shading models.





Chapter6

Semi-Analytic Boundary Handling
Below Particle Resolution for

Smoothed Particle Hydrodynamics

Contextualization
This chapter reprints the paper “Semi-Analytic Boundary Handling Below Particle
Resolution for Smoothed Particle Hydrodynamics” published as proceedings of
ACM SIGGRAPH Asia 2020 via ACM Transactions on Graphics [WAK20]. In this
paper, a boundary model is proposed that is both consistent across varying resolu-
tion scales, i.e., evaluations are consistent for particles before and after changing
resolution, and that does not require particle samplings of boundary geometries.
Overall, this method plays an important role in adaptive SPH simulations as with-
out a consistent boundary model interactions with boundary geometries have to
occur with fluid particles of consistent resolution, which, in turn, limits the appli-
cability of adaptive methods.

The core idea of this paper is that for adaptive simulations the resolution of
a fluid particle could be chosen arbitrarily small, i.e., to a point where boundary
geometries appear as locally planar and particles of any resolution should con-
verge towards this behavior with decreasing resolution. Using this assumption and
an analytic solution for this specific geometric case, which only depends on the
particle-boundary distance, the boundary geometry does not change with chang-
ing particle resolutions and, consequently, remains water-tight and numerically
stable across varying solutions. Furthermore, this assumption reduces the smooth-
ing of boundary features that is inherent to SPH, especially at low fluid resolutions,
yielding much sharper and consistent boundary geometries.

The main idea of using locally planar boundary geometries came from Rene
Winchenbach, who also provided the necessary derivation of the analytic integral
terms. Rustam Akhunov provided the implementation of the particle based bound-
ary handling and provided feedback on the argumentation of the paper during
many discussions in our shared office. Andreas Kolb helped in the writing process
of the paper and provided valuable help regarding the argumentation concerning
signed distance fields. Thanks is also owed to the anonymous reviewers, who ini-
tially rejected the paper for SCA 2020, as they provided many valuable insights
that helped significantly in re-structuring the paper into its final published form.

113



114 6.1. INTRODUCTION

Figure 6.1: Our novel semi-analytical boundary handling method enables fluid-rigid
interactions even under difficult conditions and can be directly combined with
any spatially adaptive simulation technique. This figure shows the simulation of a
collision of an inlet flow from the right with a counterclockwise rotating propeller,
calculated with up to 1.8 million particles and an adaptive volume ratio of 100 : 1.
The boundary configuration is shown in the top right corner, the left and the right
part of the main figure visualizes particle volume and particle velocity, respectively.

Abstract
In this paper, we present a novel semi-analytical boundary handling
method for spatially adaptive and divergence-free smoothed particle hy-
drodynamics (SPH) simulations, including two-way coupling. Our method
is consistent under varying particle resolutions and allows for the treat-
ment of boundary features below the particle resolution. We achieve this
by first introducing an analytic solution to the interaction of SPH parti-
cles with planar boundaries, in 2D and 3D, which we extend to arbitrary
boundary geometries using signed distance fields (SDF) to construct lo-
cally planar boundaries. Using this boundary-integral-based approach,
we can directly evaluate boundary contributions, for any quantity, allow-
ing an easy integration into state of the art simulation methods. Overall,
our method improves interactions with small boundary features, read-
ily handles spatially adaptive fluids, preserves particle-boundary interac-
tions across varying resolutions, can directly be implemented in existing
SPH methods, and, for non-adaptive simulations, provides a reduction in
memory consumption as well as an up to 2× speedup relative to current
particle-based boundary handling approaches.

6.1 Introduction

In modern computer animation the physically accurate simulation of high quality
free surface liquid systems is becoming ever more important, but uniform resolu-
tion increases are strongly limited by available computational resources. However,
not all areas of a simulation are equally important for the outcome, i.e., for com-
puter animation the surface detail is more important than the fluid’s bulk, and as
such methods have been developed that focus the computational resources in re-
gions of interest, which allow for far greater surface detail than would be possible
with a uniform resolution at the same computational requirements. Recent work



6.1. INTRODUCTION 115

has enabled incompressible spatially adaptive simulations with large refinement
ratios for Smoothed Particle Hydrodynamics (SPH) [WHK17]. So far, the robust han-
dling of arbitrary boundaries is an unsolved challenge in adaptive SPH, i.e.,methods
are required that provide consistent interactions with arbitrary boundaries across
widely varying resolution scales. Additionally, representing small boundary fea-
tures requires significantly higher fluid resolutions, relative to boundary feature
sizes.

In SPH boundaries are commonly described using a particle-based represen-
tation [Aki+12], which places boundary particles on the surface of an object, or
using some direct representation of the boundary [Ben+19], i.e., by pre-calculating
boundary integrals based on, for instance, grid-based integration schemes.
Particle-based methods suffer from a dependence on the sampling quality and
while there are methods that can change the particle distribution on-the-fly, there
are no methods that can change the resolution of a boundary sampling on-the-fly.
Direct boundary representation methods suffer from a dependence on the sam-
pling resolution. Koschier and Bender [KB17] precompute a boundary-integral on
a regular grid, which is only correct for one resolution, whilst Fujisawa and Miura
[FM15] utilize empirical methods, to enhance a semi-analytical solution, which are
not transferrable across varying particle resolutions. In Computational Fluid Dy-
namics (CFD) boundaries are commonly described using wall-renormalization ap-
proaches; see Feldman and Bonet [FB07]. These can be realized in many different
ways, i.e., using semi-analytical methods [Chi+19]. None of these methods can be
directly applied to adaptive SPH as they depend on some sampling of the bound-
ary that needs to be adapted to the particle resolution. Moreover, none of the
existing methods can handle small boundary features at or below particle resolu-
tion properly, i.e., integral-based formulations smooth them out and particle-based
methods yield uneven boundaries.

In our paper, we propose a novel-semi analytic boundary handling approach
that comprises the following major contributions:

• An analytic, scale independent, solution to the interaction of particles with a
planar boundary.

• A signed distance field based approach that handles the interaction of a
particle with an arbitrary boundary by local planar approximations.

• Significantly improved handling of small boundary geometries at, or even
below, the current particle resolution.

• A boundary interaction scheme based on a single contact that allows for easy
pressure estimates and two-way coupling.

Our boundary handling scheme can be easily integrated into existing simulation
methods and other boundary effects, e.g., friction, can be adapted without concep-
tual modifications. We evaluate our method in a variety of simulations to demon-
strate its benefits compared to prior approaches, especially considering boundary
representation.
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6.2 Related work

In the following we will mostly focus on boundary handling methods in SPH and
refer the reader to Koschier et al. [Kos+19] for a wider overview of recent work in
SPH in computer animation contexts.

Incompressibility plays an important role in realistic fluid simulations. Whereas
initial work involved weakly compressible (WCSPH) methods [MCG03] and the
predictive-corrective incompressible (PCISPH) method [SP09], recent work fo-
cuses on implicit formulations (IISPH) [Ihm+13]. Following IISPH, Bender and
Koschier [BK15] proposed the current state of the art approach of enforcing in-
compressibility by adding an additional divergence-free solver. Many recent ad-
vances, considering incompressibility and stability, have been achieved by incor-
porating the boundary representation more directly into the SPH model, i.e., by
pressure extrapolation [Ban+18b], or by using particles for rigid-rigid interactions
for strong rigid coupling (ILSPH) [Gis+19]. Macklin and Müller [MM13] devel-
oped a different SPH simulation method utilizing position-based dynamics (PBD),
which was later integrated into a unified simulation model for fluid and rigid sys-
tems [Mac+14].Moreover, spatially adaptive methods have been widely researched
in the past, for example by Adams et al. [Ada+07] for WCSPH, by Solenthaler and
Gross [SG11] using non mass-preserving approaches and recently by Winchen-
bach et al. [WHK17] for incompressible SPH methods. However, these methods
usually assume that a (nearly) fixed particle resolution is in contact with the bound-
ary.

Boundary handling in SPH has been a longstanding research topic and various
different approaches have been proposed to handle fluid-boundary interactions
in the last decade. In general, there exist four categories of boundary handling
approaches:

1. External boundary handling methods

2. Particle-based methods

3. Wall-renormalization methods

4. Boundary-integral methods

External boundary handling methods were initially developed for weakly com-
pressible SPH (WCSPH) utilizing a variety of approaches, i.e., particle level sets
[Los+08] or direct forcing [BTT09], however these methods are limited in their
applicability as they cannot be tightly integrated into SPH methods.

Particle-based methods either handle boundary interactions using ghost parti-
cles representing boundary objects [AHA12], or using explicitly sampled boundary
particles placed on the surface of a boundary object[Aki+12]. However, particle-
based methods suffer from a strong dependence on the quality of the sampling.
Band et al. [BGT17] proposed a particle-based boundary representation with im-
proved accuracy in flat regions, by using local planar boundary fitting and resam-
pling of the particle representation to reduce the sampling problems inherent to
particle-based representations. Band et al. [Ban+18a] proposed an extended
boundary handling scheme that directly estimates pressure values on boundary
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particles, which has been further optimized by a moving-least-squares-based
pressure extrapolation [Ban+18b].

Wall-renormalization approaches extend the fluid domain into the boundary
domain and were initially proposed by Feldman and Bonet [FB07]. Ferrand et al.
[Fer+13] utilized this approach to realize a semi-analytical boundary handling
scheme in 2D, which was later extended to 3D by Maryhofer et al. [May+15].
Leroy et al. [Ler+14] further extended this approach to handle incompressible
SPH methods. However, these methods often only apply to 2D or viscous flows
and can typically not be applied directly to adaptive simulations [Chi+19]. Further-
more, these approaches cannot simply be integrated into computer animation ap-
proaches directly, as these approaches require an additional renormalization term
on top of the direct summation of contributions.

A semi-analytical boundary-integral method was proposed by Fujisawa and
Kenjiro [FM15], that utilized empirically derived functions to allow for incompress-
ible SPH simulations in simple one-way coupled scenarios. Recently, Koschier and
Bender [KB17] developed a Boundary-integral method that pre-calculates bound-
ary integrals on a fixed numerical grid, using an expensive pre-calculation method.
This was improved by Bender et al. [Ben+19] by pre-calculating a modified volume
term. However, these methods either require expensive pre-computations or rely
on empirically derived functions.

6.3 Foundations Of boundary handling in SPH

After a short introduction to the fundamental aspects of SPH, this section gives a
brief conceptual overview of the various boundary handling approaches, and how
they affect SPH. This serves as a basis for the derivation of our method in the
upcoming sections.

The underlying basis of SPH is an approximation of an integral identity using
smoothing kernels with compact support radii. The integral identity of a function
A : Ω→ Rm, defined over a domain Ω ⊂ Rn, can be written, using the Dirac delta
function δ [GM77], as

(6.1) A(x) =

∫
Ω

A(x′)δ(x− x′)dx′.

Replacing the Dirac delta function with a radially symmetric smoothing kernel W :
R+

0 → R+
0 , defined over a spherical domain Dx, around x with radius h, commonly

referred to as support radius, yields an approximation for A as

(6.2) A(x) ≈
∫
Dx

A(x′)W (|x− x′|, h)dx′.

It is important to note that this approximation will only yield exact results, i.e.,
exactly representing a boundary geometry, if the support radius approaches 0,
and thus (6.2) yields (6.1) again. For all nonzero support radii, this approximation
introduces a smoothing of any quantity over a spatial domain, limiting the achiev-
able resolution of an SPH simulation for a given support radius. The smoothing
kernel can be defined as [DA12]

(6.3) W (r, h) =
1

hn
CnŴ

( r
h

)
,
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where n denotes spatial dimensionality, Cn is a normalization factor such that∫
Dx
W (|x′ − x|, h)dx′ = 1 and Ŵ being the actual kernel. Various kernel functions

exist, however, we will focus on the cubic spline kernel, as it is widely used in
computer animation. The cubic spline kernel function has a normalization factor
of 80

7π
in 2D and 16

π
in 3D with the kernel defined as [DA12]

(6.4) Ŵspline(q) = [1− q]3+ − 4 [0.5− q]3+ ,

with [·]+ = max(0, ·). We define Dx as the local boundary domain as the overlap
of the overall boundary domain ΩB with the support domain, DB

x = Dx ∩ ΩB , as
well as the local fluid domain, DF

x = Dx \DB
x . If there is no local boundary domain,

i.e., DB
x = ∅, (6.2) can directly be discretized using fluid particles only, where each

particle carries a mass m and has a density ρ, yielding [Mon92]

(6.5) A(x) ≈
∑
j

Aj
mj

ρj
W (|xj − x|, h),

where j is the set of neighboring fluid particles within h, with respect to x. For
further details on this derivation, as well as gradient terms, we refer the reader
to [Pri12] and [Kos+19].

However, this discretization is only applicable in the absence of any overlap
with a boundary domain. The different categories of boundary handling methods
(see Sec. 6.2) treat regions containing some boundary segment significantly dif-
ferently.

External boundary handling methods do not discretize, or evaluate, (6.2) for
boundary regions, i.e., they use (6.5) everywhere and enforce boundary handling
through some external mechanism, e.g., by clamping particle positions. These
methods are not commonly used in modern simulation methods as they cannot be
tightly integrated into an SPH method like IISPH or DFSPH.

Particle-based methods involve sampling the surface of a boundary domain
with particles [Aki+12]. Here each boundary particle b has a rest volume V 0

b =
γ∑

bb
Wbbb

[Ban+18a], depending on neighboring boundary particles bb. This γ factor

is used to correct for the lack of particles sampling the interior of the boundary
and is commonly set to 0.7 to prevent penetration [Gis+19]. This yields a modified
SPH estimate including boundary particles as

(6.6) A(x) ≈
∑
j

Aj
mj

ρj
Wij +

∑
b

Ab
V 0
b

δb
Wib,

with δb =
∑

bf
VbfWbbf +

∑
bb
V 0
bb
Wbbb + β. This formulation allows a natural ex-

tension of many SPH processes to boundary interactions and also enables strong
rigid-fluid coupling [Gis+19]. However, these interactions strongly depend on the
resolution and quality of the sampling and are not applicable to spatially adaptive
methods. Furthermore, sampling all regions of a boundary domain, even if they
only briefly come into contact with fluid particles, can require significant amounts
of extraneous boundary particles.

Wall-renormalization methods, commonly found in CFD contexts, determine a
wall-renormalization term γ [Ler+14] that describes the relation between Dx and
DF

x , as

(6.7) γ(x) =

∫
DF

x

W (|x− x′|, h)dx′,
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This term is commonly evaluated using the divergence theorem, i.e., by evaluat-
ing (6.7) over the surface of the local boundary domain ∂DB

x using semi-analytical
approaches; see [Chi+19]. This yields a modified SPH estimate as

(6.8) A(x) ≈ 1

γ(x)

∑
j

Aj
mj

ρj
Wij.

The evaluation of wall-renormalization methods, i.e., due to the γ term, is compu-
tationally expensive and assumes that the fluid domain can be extended into the
boundary domain. The latter is, however, not always correct, for instance in case
of a moving boundary object with a velocity independent of the fluid.

Boundary-integral methods directly evaluate the integral (6.2) over the bound-
ary domain [KB17], i.e.,

(6.9) A(x) ≈
∑
j

Aj
mj

ρj
Wij + Ab

∫
DB

x

W (|xi − x′|, h)dx′,

with Ab representing the relevant quantity for the boundary domain. The boundary
contribution λ(x) =

∫
DB

x
W (|x−x′|, h)dx′ is either pre-calculated [KB17] or approx-

imated [FM15]. Note that, as (6.2) is equal to 1 over Dx, the wall-renormalization
factor γ(x) is 1−λ(x). Precomputed values for λ(x) are only valid for a specific par-
ticle resolution, as the value depends on the support radius, and empirically-based
approaches are not consistent across varying particle resolutions.

6.4 Method overview

Our novel semi-analytic boundary-integral-based method is built on the idea of
treating all boundaries as locally planar and utilizing an analytic solution for λ(x) to
evaluate the contributions of all boundaries. This requires us to find a locally planar
boundary, representing an overall boundary domain, for each boundary domain
that a single particle interacts with. This means that (6.9) becomes

(6.10) A(x) ≈
∑
j

Aj
mj

ρj
Wij +

∑
b

Abλ
b
i,n,

where b are the boundary domains intersecting Dx and λbi,n describes the interac-
tion of particle i with the planar boundary representing b in n dimensions for the
position xi.

The assumption of local flatness, as shown in Fig. 6.2, works well for smooth
boundaries where the boundary surface has a well defined first derivative at all
positions, which can readily be utilized to find a local plane that becomes a better
approximation as the support radius shrinks. Spatially adaptive methods can be
used to ensure that high resolution particles are placed in areas of high boundary
curvature to improve this approximation further.

Conceptually, directly evaluating (6.2) leads to a smoothing effect for sharp
features, i.e., features that are as large as, or smaller than, the support radius
are not properly represented. This smoothing causes the boundary shape to not
be properly represented, e.g., sharp corners become smoothed out, which results
in a strong dependence of boundary representation on particle resolution. Our
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Figure 6.2: Considering the boundary as locally flat is less accurate, i.e., for posi-
tion x1 and support radius h1(top right). However, with smaller support radii the
assumption leads to much better representations (bottom right).

method avoids this by ensuring that the locally planar representation of a boundary
coincides with the actual boundary geometry such that

∫
DB

x
W (|x−x′|, h)dx′ = 0.5,

on the boundary surface. This means that particles, regardless of the geometry of
the boundary domain, or the particle resolution, will be influenced solely based on
the distance to the boundary surface, which in turn means that boundary features
are not smoothed out. We will evaluate the differences in boundary-representation
and how they influence the simulation, especially with regard to small features, in
Sec. 6.9.2.

6.5 Analytic planar boundaries

To find an analytic solution for planar boundaries, we initially assume that parti-
cles have a support radius of 1 and demonstrate the analytic solutions in 2D and
3D; see Sec. 6.5.1 and 6.5.2 respectively. Sec. 6.5.3 extends the solution to arbi-
trary support radii. Sec. 6.5.4 discusses gradients and related terms. Sec. 6.5.5
discusses penalty terms.

6.5.1 2D analytical boundary integrals

The boundary contribution term in 2D, for a planar boundary, only depends on the
distance to the plane, which means that

(6.11) λ2(d) =

∫ 1

0

∫ s(q)

0

C2Ŵ (q)dldq,
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Figure 6.3: This figure shows a planar boundary in 2D. Here a particle contains
a fluid region, DF

x , and a boundary region, DB
x , within Dx. For a given relative

distance q and a boundary distance d, we find an angle θ, which describes an arc
segment s(q), which we use to determine the integral.

for spherical coordinates q and l, where s(q) is the length of an arc with radius q,
centered d away from the boundary, that is within DB

x , i.e., s(q) = 2qπ for DB
x = Dx.

As we assume DB
x to be locally flat, s(q) is the arc length of a circle segment C ,

based on the signed distance d from x to DB
x ; see Fig. 6.3. Using standard algebra

we get

(6.12) s(q) = 2q acos

(
d

q

)
,

for d > 0. If q < d the arc length s(q) would result in a complex number and as
such we exclude this region by increasing the lower bound for q to be at least d,
for now. Inserting this into (6.11) yields

(6.13)
∫ 1

d

∫ 2q acos( d
q )

0

C2Ŵ (q)dldq =

∫ 1

d

C2Ŵ (q)2q acos

(
d

q

)
dq.

We can readily extend this integral for d < 0 using the rotational symmetry of the
smoothing kernel as

(6.14) λ2(d) =

∫ 1

0

C2Ŵ (q)2πq2dq − λ2(−d) = 1− λ2(−d).

In order to evaluate the integral in (6.13) we have to specify the kernel being used.
Therefore, we employ the cubic spline kernel function (6.4), although any other
integrable smoothing kernel can be used. As the cubic spline kernel is defined
piecewise, we need to split the integral for d ≤ 0.5 into two definite integrals
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over [d, 0.5] and (0.5, 1], whereas for d > 0.5 we only need to consider the definite
integral over [d, 1.0]. These definite integrals, shown in the appendix as (6.56), can
be solved symbolically, and the final expression for λ2(d) is given in the Appendix
in (6.57).

6.5.2 3D analytical boundary integrals

In 3D, we analogously rewrite the boundary contribution term as an integral over
the 3D unit ball V , using spherical coordinates, as

(6.15) λ3(d) =

∫∫∫
V

C3Ŵ (q)dV =

∫ 1

0

∫∫ A(q)

0

C3Ŵ (q)dAdq,

where A(q) denotes the partial area of a sphere of radius q inside the boundary
domain DB

x , i.e., A(q) = 4πq2 for DB
x = Dx. The relevant area is given as the curved

section of a spherical cap C at distance d from the center for a sphere of radius
q, using standard algebra, as

(6.16) A(q, d) = 2πq(q − d),

which, again, is only well defined for q ≥ d and we, therefore, limit the integral to
[d, 1]. Inserting (6.16) into (6.15) then yields

(6.17)
∫ 1

d

∫∫ 2πq(q−d)

0

C3Ŵ (q)dAdq =

∫ 1

d

C3Ŵ (q)2πq(q − d)dq.

Analogously to 2D, we split the integral-based on the piecewise definition of the
cubic spline kernel, and add an extension for d < 0 using rotational symmetry,
yielding the definite integrals shown in the Appendix as (6.59). These can then be
evaluated symbolically, yielding (6.60) in the Appendix, which put back into λ3(d)
result in the boundary contribution term in 3D for a planar boundary as

(6.18) λ3(d) =


1
60
[192d6 − 288d5 + 160d3 − 84d+ 30] , d ∈ [0, 0.5]

−8
15

[2d6 − 9d5 + 15d4 − 10d3 + 3d− 1] , d ∈ (0.5, 1],

1− λ3(−d), d ∈ [−1, 0).

Interestingly, this term is significantly more simple than the equivalent term in 2D,
see (6.57), but yields very similar numerical values.

6.5.3 Scaling factor

In order to extend the prior derivations to non-unit support radii we insert the
definition of a generic kernel function from (6.3), into an integral over an arbitrary
boundary domain DB

x , which yields

(6.19)
∫
DB

x

W (r, h)dx′ =

∫
DB

x

1

hn
CnŴ

( r
h

)
dx′.

As DB
x includes all radii from 0 to h, we perform a u-substitution with q = r/h,

which yields

(6.20)
∫
DB

x

1

hn
CnŴ

( r
h

)
dx′ =

∫
DB∗

x

CdŴ (q)dx∗,
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where the factor 1
hn vanishes due to the substitution andDB∗

x is the result of scaling
DB

x to a radius of 1, which also means that the flat boundary is at a distance d∗ =
d/h instead of d and x∗ = x′

h
.

In addition to the integral of the kernel function over the boundary domain,
integral values of other functions may have to be calculated, e.g., the source term
of a pressure solver like DFSPH [BK15]. Commonly, these functions depend on
a radially symmetric function f : R+

0 → Rm, based on the relative distance r/h,
divided by some power of the support radius, which yields an integral of the form

(6.21) Ab

∫
DB

x

1

hs
f
( r
h

)
dx′.

Here we can, again, apply a u-substitution to yield

(6.22) Ab

∫
DB∗

x

1

hs−n
f(q)dx∗.

6.5.4 Gradient terms

In addition to the boundary contribution term λn, related terms, i.e., the spatial
derivative, ∇i, with respect to a particle i, are required, for example for pressure
forces. In order to calculate these gradients, we use the fact that the spatial deriva-
tive of the distance d for a flat boundary DB

x equals the normal of the flat boundary
nb, which when normalized yields n̂b =

∇id
||∇id|| . Applying the chain rule gets

(6.23) ∇i

(
Abλ

b
n

)
= Ab∇iλ

b
n (q) = Ab

1

h
n̂b
∂λbn(q)

∂q
.

However, these direct gradient terms in SPH are not exact for constant func-
tions and do not preserve symmetric interactions. By following the ideas of Price
[Pri12] for particles, we can yield analogous terms for our integral-based boundary
representation; see (6.66) and (6.67) in the Appendix. Applying ∂

∂q
to λb3(q) yields

(6.24)
∂λ3(q)

∂q
=


3
15
[96q5 − 120q4 + 40q2 − 7] , q ∈ [0, 0.5]

−24
15

[4q5 − 15q4 + 20q3 − 10q2 + 1] , q ∈ (0.5, 1],

− ∂
∂q
λ3(−q), q ∈ [−1, 0).

In order to realize two-way coupling, modern pressure solvers, see Bender and
Koschier [BK15] Eqn. (8), evaluate a factor that, in terms of boundary integrals, is
expressed as

(6.25)
αi

ρ20
=

∣∣∣∣∣∣∣∣∫
Ωx

∇iW (|xi − x|, h)dx
∣∣∣∣∣∣∣∣2 + ∫

Ωx

||∇iW (|xi − x|, h)||2 dx,

where the former term can be directly calculated using the gradient of the boundary
contribution; see (6.23). To calculate the latter term, referred to as S , we apply the
spatial derivative ∇i to (6.3), yielding

(6.26) ∇iW (|xj − xi|, h) =
xj − xi

|xj − xi|
1

hn+1
Cn

∂Ŵ (q)

∂q
.
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Consequently, we get

(6.27) Sn(d) =
∫
DB

x

1

h2n+2
C2

n

[
∂Ŵ (q)

∂q

]2
dx′,

Note that in contrast to λn in Eqn. (6.56) and (6.59), the integration of the function
over the whole domain Dx is not equal to 1. This results in the definite integrals
(6.61), which can be symbolically integrated; see (6.62) in the Appendix. To correct
for scaling, the result needs to be divided by hn+2 (Sec. 6.5.3), which results in a
final term for S3(d); see (6.63) in the Appendix. Similar steps could be taken to
determine the Laplacian over a boundary, but these terms find no practical use in
modern pressure solvers and as such are left out for brevity.

6.5.5 Penalty terms

A problem with the analytical solution proposed thus far is that for a particle that
is fully within the boundary, i.e., Dx = DB

x , the density gradient will be zero. This
means that if a particle fully penetrates the rigid body it will never get repelled
out of the rigid body. To avoid this problem Koschier and Bender [KB17] and
Bender et al. [Ben+19] proposed different penalty functions, which are applied
to the boundary contribution to penalize full penetration by artificially adding a
monotonically increasing term onto the boundary terms. Similar to Koschier and
Bender [KB17], we chose the following penalty function

(6.28) β(d) = 1− d

h
,
∂β(d)

∂d
= −h−1.

We directly multiply this penalty term onto λn(d), which yields

(6.29) λβn(d) = β(d)λn(d),

which for gradients, by applying the product rule, yields

(6.30) ∇iλ
β
n(d) =

∂β

∂d
n̂Ωxλn(d) + β(d)∇iλn(d).

6.6 Arbitrary boundary handling

To find a locally planar representation of a boundary, to which we can apply the
analytic solution demonstrated in Sec. 6.5, we propose to utilize a signed distance
field (SDF). Signed distance fields can be used to represent arbitrary geometries
and yield the same signed distance value and gradient, regardless of particle reso-
lution, making them well suited for adaptive methods. However, SDFs, in general,
are not ideally suited for highly concave objects, as particles would only be influ-
enced by one part of the geometry, i.e., they are limited to single contact points.
This limitation, however, can be resolved by performing a convex body decompo-
sition on the boundary geometry that allows multiple points of contact for a single
particle with the same overall boundary geometry. Furthermore, discretized SDFs
might not accurately represent the boundary geometry, e.g., due to aliasing arti-
facts. While Sec 6.9.5 discusses how this induced error can be measured, and
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Figure 6.4: The construction of a local plane (blue) for a concave corner of a
boundary (gray) based on the signed distance field ΦB . This constructed plane
ignores the contribution of some regions (red), but additionally includes other re-
gions (green), causing an overall underestimate.

reduced. We assume a continuous SDF for this derivation, i.e., an SDF that is not
limited in accuracy.

An SDF ΦB is determined based on the surface of a boundary domain ∂B, for
at an arbitrary spatial position x, as

(6.31) ΦB(x) = s(x) inf
x∗∈∂B

||x− x∗||, s(x) =

{
−1, x ∈ B
1, else.

Using the normalized numerical gradient of the signed distance field, e.g.,
determined using a central difference scheme, we can find a unit normal n̂B =
∇ΦB(x)/|∇ΦB(x)|, which yields an approximate closest point on the boundary
surface as

(6.32) xB = x− ΦB(x)n̂B.

Note that the usage of a numerical gradient here results in a different result than
using a continuous gradient. Fig. 6.4 shows how for a point x sitting on the angle
dividing between two planes we find a numerical gradient pointing away from the
corner, which also results in a contact point xB that does not lie on the actual
boundary geometry, but instead gives an approximative representation of the cor-
ner. Using n̂B and xB we then construct a plane Eb, which represents the boundary
b, in normal form

(6.33) Eb : n̂B · (x− xB) = 0,

where basing n̂B on the position x instead of xB ensures that forces act away from
the boundary. Figure 6.4 depicts this configuration for a convex corner, where the
constructed plane causes an underestimate of the boundary contribution term.
This underestimate, however, is unavoidable when trying to replace a complex
boundary by a single plane. The effect of this underestimate is evaluated in the
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(a) Boundary (b) Numerical (c) Distance-based (d) Particle-based

Figure 6.5: The boundary contribution term λ evaluated (a) using a numerical
solution (b), our signed distance field-based solution (c) and a particle-based rep-
resentation (d). The signed distance field-based solution represents the boundary
geometry well, but shows underestimates in concave regions and overestimates in
convex regions. The particle-based approach cannot distinguish between inside
and outside of the boundary and shows similar overestimates in convex regions
and underestimates in concave regions. Note that the particle-based approach
only represents the surface of the boundary, i.e., there is no way to distinguish in-
terior and exterior of the boundary. λ color coded from 0 (purple) to 1 (yellow).

results section. For a concave configuration the approximative boundary plane
causes an overestimate of the boundary contribution term. Fig. 6.5 shows the
boundary density contribution for a simple boundary (Fig. 6.5a), using the 30th
order quadrature rule of Xiao and Gambutas [XG10] for a triangulated boundary
domain (Fig. 6.5b), our signed distance field-based approach (Fig. 6.5c), and a
particle-based approach (Fig. 6.5d). The particle-based approach also shows over
and underestimates for the contribution and provides distinction between the out-
side and the inside of the boundary, causing severe problems for fluid particles
penetrating the boundary slightly.

For moving boundary objects, a recalculation of the signed distance field in
every simulation step would be far too expensive. Therefore, we use a rigid body
transformation matrix MB from local model coordinates, in which the origin is the
object’s center of mass, to global simulation coordinates. Using MB any point x,
in global fluid space, can be transformed, into the local model space, via

(6.34) x∗ = M−1
B x.

Afterwards, the closest point on the boundary x∗
B is constructed in model space

and transformed back to global simulation coordinates usingMB . The correspond-
ing normal of the plane n̂∗

B is calculated using the transposed inverse transforma-
tion M−T , yielding

(6.35) Eb :
(
M−T

B n̂∗
B

)
· (x−MBx

∗
B) = 0,

as the representative plane with the contact point MBx
∗
B . This process is also

depicted in Algorithm 6.1. We also utilize this process in case of multiple bound-
ary objects, i.e., each boundary object is represented by an indepedent SDF in
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ALGORITHM 6.1: The process to find a locally representative plane for a complex
boundary object B using its signed distance field in model coordinates.

1 x∗ ←M−1
B x

2 d← Φ∗
B(x

∗)
3 If d > h
4 Return
5 n̂∗

B ←= −∇Φ∗(x∗)/|∇Φ∗(x∗)|
6 x∗

B ← x∗ − Φ∗(x∗)n̂∗
B

7 Return the representative plane (6.35)

the respective objects model coordinates, and interacting with multiple boundary
objects only requires a transformation into each boundary objects coordinate
system. Accordingly, our approach can readily handle multiple boundary objects
without requiring complex SDF operations, i.e., finding a global SDF describing all
objects in a scene.

In order to implement two-way coupling into our simulation, we require several
properties of the rigid body b based on the contact point xib associated with the
position of a fluid particle i. Therefore, we first determine the center of mass of
the rigid body in simulation space as xc

b = Mb0, which yields the velocity of the
contact point as

(6.36) vib = vb + ωb × (xi − xc
b) ,

where vb and ωb are the linear and angular velocity of the overall boundary object.
The acceleration aib of the contact point can similarly be calculated. Determining
the influence of a boundary object on a particle can be done straightforwardly
by including the boundary contribution term for a particle (see Eq. 6.10), however
determining the influence of particles on the boundary cannot be done directly.
Instead, we propose to add up the inverse force from a boundary, Fi→b = −Fb→i,
due to all particles, which yields the influence of the fluid on the boundary. In
addition to the force Fi→b we also require the torque as

(6.37) τi→B = miai→B × [x− xc] .

From this, we determine the linear and angular acceleration of the overall boundary
object, based on the inertia matrix I∗b in model coordinates as

(6.38) ai→B = Fi→B/mB, αi→B = MB (I∗)−1
B M−1

B τi→B.

Finally, for implementing our method, the maximum permissible timestep
needs to be considered. We utilize the CFL condition [Ihm+14], excluding shock
terms, as

(6.39) ∆tmax = 0.4maxi
||vi||
hi

.

For our semi-analytical approach this is not directly possible as there are no
boundary particles that we can use (6.39) for. Instead, we utilize the point fur-
thest from the axis of rotation of a boundary object b, xb,max, in order to determine
the maximum local velocity of the boundary object as

(6.40) vb,max = vb + ωb × [xb,max − xc
b] ,
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based on which we can determine the maximum permissible timestep analogous
to Eq. (6.39). However, instead of the support radius for the particle, we use the
smallest support radius of any particle in the simulation to ensure stability in all
cases.

6.7 Integration into DFSPH

In this section we discuss the integration of our boundary integral method with a
divergence-free SPH method based on Bender and Koschier [BK15] and Band et al.
[Ban+18b]; see Algorithm 6.2. The first step of the simulation comprises the calcu-
lation of the density value for each fluid particle i including boundary contributions,
utilizing (6.10), as

(6.41) ρi =
∑
j

mjWij +
∑
b

ρbλ
b
i,n.

For boundary objects we assume that ρb is equal to the object’s respective rest
density, as we only allow rigid body transformations, which only change the position
of an object but not its shape. Note that Vi here refers to the apparent volume of
a fluid particle

(6.42) Vi =
mi

ρi
,

instead of the actual volume V 0
i = mi

ρ0
; see Band et al. [Ban+18a]. We also require

a predicted velocity, v∗
i = vi +

∆t
mi
Fadv

i , after taking advection forces into account.
In order to calculate this predicted velocity for the boundary objects, we utilize
standard rigid body physics to find the specific local boundary velocity v∗

ib for a
particle, which depends on the particle’s contact point xib at the boundary. Next
we need to determine the diagonal element αi [Ban+18b] as

αi =− Vi∆t2
1

mi

||
∑
j

Vj∇iWij +
∑
b

∇λbi,n||2

− Vi∆t2
∑
j

V 2
j

mj

||∇iWij||2 − Vi∆t2
∑
b

1

ρb
Sb
i,n,

(6.43)

where Sb
n is the given in Eq. (6.63) for n = 3. For all non two-way coupled and

static boundary objects Sb
n is set to 0, as no pressure forces are applied to these

boundaries; see also [Ban+18a]. Similar to Band et al. [Ban+18b], we determine
the source terms for the divergence-free and incompressible solver as

(6.44) sinc
i = 1− mi

Vi
−∆t∇i · v∗, sdiv

i = −∆t∇i · v,

respectively. The velocity divergence can be calculated as

(6.45) ∇i·v =
∑
j

Vj∆vij · ∇iWij +
∑
b

∆vib · ∇λbi,n,

where ∆vij = vi−vj . Note that we only enforce the divergence-freedom for fluid-
fluid interactions to avoid excessive adhesion and repulsion as a particle sepa-
rating from a boundary would cause negative divergence, i.e., its density becomes
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lower, and a particle approaching a boundary would cause positive divergence.
This is because we cannot evaluate the opposite effect on the boundary, i.e., when
a particle has positive divergence the boundary object would experience negative
divergence, during the divergence-free solving process. Other boundary-integral
methods, e.g., [KB17], would be affected by the same problem. To initialize the
pressure, we follow the proposed initialization of Gissler et al. [Gis+19] and set
pi = 0 for all fluid particles. The next step is to determine the acceleration of a
fluid particle due to pressure forces, due to fluid-fluid interactions, as [BK15]

(6.46) apfluid→i = −
∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
∇iWij.

Using the same formulation to calculate the pressure acceleration imposed by
rigid objects requires a pressure value pib for the boundary. This pressure value
is calculated by determining the contact point xib on the boundary and perform-
ing the moving-least-squares-based pressure extrapolation method proposed by
Band et al. [Ban+18b]. As we assume quantities to be locally constant, we can
directly use the pressure value pib for the whole interaction. Thus, the total accel-
eration imposed on a fluid particle i by all rigid objects can be determined as

(6.47) ap
rigid→i = −

∑
b

ρb

(
pi
ρ2i

+
pib
ρ2b

)
∇iλ

b
i,n.

We additionally utilize the acceleration imposed on a fluid particle by a single rigid
object b, ap

b→i, to calculate the reflected force on b, Fp
i→b = −mia

p
b→i, to realize two-

way coupling effects. Accumulating the coupled force imposed by all particles
yields the acceleration of the rigid object as a whole, which yields the local bound-
ary acceleration ap

ib, at the contact point with respect to i. Moreover, we calculate
the divergence of the estimated acceleration as

(6.48) ∇i · api = ∆t2
∑
j

Vja
p
ij · ∇iWij +∆t2

∑
b

ap
ib · ∇λ

b
i,n,

and an updated pressure value for each fluid particle as

(6.49) p∗i = pi +
ω

αi

(si −∇i · api ) ,

where ω is the relaxation coefficient for a relaxed Jacobi solver, chosen as 0.5.
We clamp the pressure to positive values for the incompressible solver, to avoid
excessive surface-tension like effects. This process is repeated until the mass
weighted average of the residual, ri = ∇i · api − si, converges below a threshold η,
i.e.,

(6.50)
∑
i

rimi ≤ η
∑
i

mi,

where η is usually chosen as 0.0001 for the incompressible solver and 0.001 for
the divergence-free solver, similar to Bender and Koschier [BK15]. After the solver
converges, we calculate the pressure acceleration and apply it to both fluid parti-
cles and boundary objects. We finally integrate the system accordingly.



130 6.8. FRICTION

ALGORITHM 6.2: Our overall simulation algorithm using a divergence-free and
incompressible simulation approach with two-way coupling for complex boundary
objects.

1 ρi ←
∑

j mjWij +
∑

b ρbλ
b
n; Vi ← mi

ρi
(6.41, 6.42)

2 Calculate Diagonal element αi (6.43)
3 pi ← 0; sdiv

i ← −∆t∇i · v (6.44)
4 while

∑
imi∇i · api − sdiv

i > ηdiv∑
imi (6.50)

5 Calculate Boundary pressure pib using MLS
6 Calculate Acceleration due to pressure (6.47,6.46)
7 p∗i ← pi +

ω
αi

(si −∇i · api ) , (6.49)

8 Calculate Final acceleration due to pressure adiv
i (6.47,6.46)

9 Calculate Non-pressure acceleration aadv
i

10 v∗
i ← vi +∆t

[
aadv
i + adiv

i

]
11 pi ← 0; sinc

i ← 1− mi
Vi
−∆t∇i · v∗ (6.44)

12 while
∑

imi∇i · api − sinc
i > ηinc∑

imi (6.50)
13 Calculate Boundary pressure pib using MLS
14 Calculate Acceleration due to pressure (6.47,6.46)
15 Calculate Acceleration of boundaries; see Sec. 6.6
16 p∗i ← pi +

ω
αi

(si −∇i · api ) , (6.49)
17 Calculate Final acceleration due to pressure ap

i (6.47,6.46)
18 Calculate Acceleration due to friction aci (6.55)
19 vi ← vi +∆t

[
api + adiv

i + aci + aadv
i

]
; xi ← xi∆tvi

20 Update Rigid body system; see Sec. 6.6

6.8 Friction

To model fluid-rigid friction effects Koschier and Bender [KB17] proposed a
Coulomb model based force, which we also adopt for our approach as it is based
on the same underlying boundary-integral model, however our method can also
be applied to other friction models, e.g., [RDS10]. The friction model of Koschier
and Bender [KB17], however, does not consider boundary pressure values. The
Coulomb model determines a friction force for the interaction of two bodies i and
b as

(6.51) Fc
b→i ≤ µ||Fn

i→b||̂tib,

where µ is the friction coefficient, ||F n
i→b|| the force imposed on b by i in normal

direction and t̂ib the direction of the relative tangential velocity of i and b. The
tangential velocity can be determined as

(6.52) tib = ∆vib − (∆vib · n̂b) · n̂b,

with the relative velocity ∆vib = vi − vb. For the normal force we simply consider
the pressure force, including the estimated boundary pressure of the rigid body,
as

(6.53) ||Fp
b→i|| = −miρb

(
pi
ρ2i

+
pib
ρ2b

)
||∇λbi,n||.
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The acceleration caused by all rigid bodies b on i then becomes

(6.54) a′
b→i =

1

mi

∑
b

Fc
b→i

The velocity change due to this imposed acceleration, however, can become
greater than the relative velocity, which would cause unphysical behavior. To ex-
clude such cases we limit the imposed acceleration to at most − 1

∆t
tib if ∆ta′

b→i ·
t̂ib ≥ ∆vib · t̂ib, which yields the final friction acceleration term as

(6.55) ac
b→i =

1

mi

∑
b

{
a′
b→i, ∆ta′

b→i · t̂ib < ∆vib · t̂ib
− 1

∆t
tib, else.

6.9 Evaluation

In this section, we evaluate our method by comparing it against other bound-
ary representations for small-sized boundary features in 2D (Sec. 6.9.2- 6.9.4),
one-way and two-way coupled simulations in 3D (Sec. 6.9.6), for different bound-
ary samplings (Sec. 6.9.7), as well as regarding adaptivity, friction and stability
(Sec. 6.9.8-6.9.10).

6.9.1 Simulation setup

We implemented our method in the open source GPU-based SPH frameworkopen-
Maelstrom [Win19], using the adaptive method of Winchenbach et al. [WHK17],
XSPH based artificial viscosity [Mon02], fluid-air phase interactions based on
Gissler et al. [Gis+17], surface tension based on Akinci et al. [AAT13], adaptive
time-stepping based on the CFL condition [Ihm+13], the underlying data struc-
ture of Winchenbach and Kolb [WK19] and the cubic spline kernel [Mon05]. We
used an incompressibility threshold of 0.01% and a divergence threshold of 0.1%,
similar to Bender and Koschier [BK15]. Surface distance calculations, for adaptiv-
ity, are based on Horvath and Solenthaler [HS13]. For comparisons with particle
based methods we used ILSPH [Gis+19] with the optimized particle sampling of
Bell et al. [BYM05] in 3D and the approach of Akinci et al. [Aki+13b] with a regular
sampling in 2D. The numerical boundary-integral method in 2D is realized by trian-
gulating the boundary and using the quadrature rule of Xiao and Gambutas [XG10]
(at 30th order) to evaluate (6.2) over each triangle. The resulting images, utilizing
this framework, were rendered using a Monte-Carlo based path-tracing algorithm.
In our results frame-time refers to the accumulated runtime to simulate 16.67ms
of simulation-time. For the comparison with the volume maps approach [Ben+19],
we utilized the open source SPH framework SPlisHSPlasH [Ben16], using the same
methods for fluid effects, e.g., surface tension, running on a CPU instead of on a
GPU, and resulting images rendered using Autodesk Maya. All results were gen-
erated using a single Nvidia GeForce RTX 2080Ti GPU with 11 GiB of VRAM, an
AMD 3970X, and 64 GiB of RAM.
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Table 6.1: Quantitative comparison. All performance numbers are average values with respect to 30 seconds simulation time and timings
refer 1/60s of simulation time. The radius values refers to the largest fluid particle radius in the simulation, and the ratio refers to the
volume ratio of the largest to smallest particle volume. Incomp. and Div.-Free refer to the incompressible and divergence-free solver,
respectively. In all results the divergence-free solver required 2 iterations.

Scene Figure nfluid nrigid radius ratio timestep Incomp. Frame-time Div.-Free Incomp. Adapt
/m /ms Iterations /ms /ms /ms /ms

Basin 6.14b 23K 0.5 8.0 2.86 60 5 13
Basin 6.14c 23K 81K 0.5 8.0 6.48 74 4 8
Basin 6.14d 3.17M 0.1 2.0 4.6 2661 262 1218
Basin 6.14e 3.17M 2.05M 0.1 1.9 9.5 5231 392 2263

Dragon 6.10 left 133K 183K 0.5 8.0 12.58 146 14 53
Dragon 6.10 middle 133K 0.5 7.5 15.87 384 32 225
Dragon 6.10 right 133K 0.5 8.0 10.71 94 7 53
Dragon 6.11 1.98M 0.5 1000 3.9 7.2 2301 105 310 422

Propeller 539K 0.3 3.4 41.5 1642 40 1081
Propeller 6.1 1.98M 0.3 100 0.7 3.1 9501 347 871 1321

Incline 6.17 left 56K 0.5 8.0 8.0 112 7 35
Incline 6.17 right 56K 0.5 8.0 8.1 111 6 35

Boxes 6.12 196K 0.5 6.0 9.3 267 12 113
Boxes 6.13 1.65M 0.5 500 3.3 7.5 3561 116 376 450
Boxes 196K 124K 0.5 6.0 24.3 532 11 367
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(a) 1 : 4 ratio (b) 1 : 1 ratio (c) 4 : 1 ratio

Figure 6.6: A numerical evaluation of how different boundary handling schemes
can resolve a fixed size object (red, 1 × 1 unit) with different ratios of support
radius to object size. For each variant the top row shows a particle-based method
with a coarse (left) and fine (right) sampling and the bottom row shows a numerical
boundary integral method (left) and our SDF-based method (right). The boundary
contribution term λ is color coded from 0 (purple) to 1 (yellow). The isocontours
show where a lone particle (black) and particles with quarter (blue), half (tan) and
three quarter (purple) full neighborhoods would rest.

In 2D we compute SDFs directly, without sampling, based on a polygon repre-
senting the boundary domain. In 3D SDFs can also be evaluated on the fly, based
on a triangular mesh, but this is usually computationally prohibitive. Instead, we
precompute a discrete hierarchical SDF using OpenVDB [Mus+13], based on the
boundary mesh, and then transfer the SDF onto a GPU using GVDB [Hoe16]. The
process of constructing this SDF, and finding an appropriate grid resolution, is
discussed in Sec. 6.9.5. The spatial gradients of the SDFs are determined using
a second order central difference scheme. If this results in a zero length gradient,
we instead utilize a first order forward difference scheme.

The matrix inverse for the moving-least-squares-based pressure estimation
process [Ban+18a] is evaluated using a singular value decomposition (SVD). In 2D
we use a closed form solution for the SVD of a 2× 2 matrix and the optimized SVD
process for 3×3 matrices of McAdams et al. [McA+11] in 3D. The implementation
of the 3D process is available as opensource code [Win18].

6.9.2 Boundary representation

We compare our approach to a numerical boundary integral and a particle-based
approach with a coarse and a fine boundary sampling, regarding their ability to
represent a fixed size boundary feature with 1:4, 1:1 and 4:1 ratio of support radius
to boundary feature size. We, therefore, compute isocontours where particles with
no neighbors and quarter, half and three quarter full neighborhoods are located.
For the fluid to interact correctly with a boundary feature, the isocontours of the
fluid particles have to follow the geometry of the feature and must not intersect
it. In this comparison the numerical boundary-integral approach yields identical
results to a wall-renormalization approach.

For a 1:4 ratio (see Fig. 6.6 left), our approach and the boundary integral ap-
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proach yield identical results in planar-regions h away from any corner. Close
to corners, however, our approach generates significantly sharper isocontours,
whereas the boundary-integral yields smoothed out corners. The particle-based
approach, at a coarse sampling, cannot represent this ratio as the boundary would
be penetrable for isolated particles, whereas a fine sampling of the boundary is
impenetrable. Additionally, both samplings generate uneven isocontours and par-
ticles sit at a significant offset from the actual boundary geometry.

For a 1:1 ratio (see Fig. 6.6 middle), our approach preserves the vertical sec-
tions of the boundary geometry, for all isocontours, whereas the boundary-integral
approach significantly smoothens out the boundary geometry. Our approach pre-
serves the geometry as, by construction, the isocontour for a particle of density
0.5 is coincidental with the boundary geometry, which ensures that the transition
from outside to inside the boundary is always centered around the actual geom-
etry. The particle-based approach is impenetrable and yields similar results for
both sampling densities, but also smoothens out the boundary geometry and still
exhibits uneven isocontours.

For a 4:1 ratio (see Fig. 6.6 right), both the boundary-integral approach and the
particle-based approach smooth out the feature extremely, while our approach still
resolves the boundary geometry properly for particles with at least a quarter full
neighborhood.

6.9.3 Penalty functions

There still remains a problem of an imprecise recovery of the location of isolated
particles for high particle-to-feature size ratios (see the black isocontour for the
4:1 ratio, Fig 6.6 top rightmost). As our approach centers the boundary transi-
tion on the surface, the distance at which particles, with certain densities, rest is
constant with respect to the surface of the boundary. Accordingly, any boundary
feature smaller than twice this separation distance for isolated particles can be
penetrated. This issue can be addressed by the idea of penalty functions, which
modify the contribution of the boundary based on the distance to the boundary;
see Sec. 6.5.5. Geometrically speaking, penalty functions shift and shrink the iso-
contours relative to the boundary geometry.

We now compare our approach with no penalty function, with the linear penalty
function of Koschier and Bender [KB17], the cubic penalty function of Bender et al.

[Ben+19] and with a modified softmax function β(d) =
ln(1+e−2.5d)−ln(1+e−2.5)

ln(2)
; see

Fig. 6.7. The cubic penalty function is equal to 1 on the boundary interior and, as
such, fails to resolve the penetration issue and instead only compresses isocon-
tours on the outside. The linear penalty function, and the softmax function, achieve
an isocontour for isolated particles that follows the feature outline. As previously
discussed by Bender et al. [Ben+19], the linear penalty function is not differen-
tiable at distance h from the boundary, which might cause undesirable behavior in
a simulation. In general, the softmax penalty function, which is continuously dif-
ferentiable for any distance, allows for the interaction of particles with very small
obstacles, i.e., with features that are 20 times smaller than the support radius. In
practice, we utilize the linear penalty function, as it allows for the interaction with
small boundary features, but does not incur the same additional computational
cost.
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Figure 6.7: Comparison of different penalty functions for the 4:1 ratio of Fig. 6.6.
Here, the top left uses no penalty function, top right uses the penalty function
of Koschier and Bender [KB17], bottom left uses the penalty function of Ben-
der et al. [Ben+19], and bottom right uses a modified softmax function. λ color
coded from 0 (purple) to 1 (yellow).The penalty functions significantly impact the
representaiton of a small feature, especially for lone particles (black isocontour),
i.e., the obstacle might only be repsented as a bump.

6.9.4 Simulating small boundary features in 2D

To evaluate the impact of the difference in boundary representation further,
we compare the difference of our approach and the numerical boundary-integral
approach in a 2D dambreak scenario with an obstacle of fixed size (1 × 1 unit)
and particles with relative support radii of 2, 1, 1/2 and 1/4; see Fig. 6.8. Consider-
ing our approach (top row), we can observe a similar deflection angle and overall
behavior regardless of particle resolution, barring a variation of about 2 particle
radii, with no penetration of the boundary object at any resolution. However, our
method, at any resolution, has a single particle sitting on the bottom left vertex of
the obstacle, which will be further investigated later. Considering the boundary-
integral approach (Fig. 6.8 bottom row), we do not observe a consistent deflection
angle and significant penetration of the boundary feature, especially at the 2:1
ratio. Moreover, the deflected flow becomes more collimated and the deflection
angle gets steeper for finer particle resolutions due to the boundary becoming less
smoothed out; see also Sec. 6.9.2. Only for even higher particle resolutions, i.e.,
1/64th of the feature size, the deflection angle converges and coincides with the
one in our approach. However, these high resolutions require inappropriatly high
computational resources. Our approach preserves the overall behavior and yields
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Figure 6.8: Comparison of our semi-analytical approach (top row) to a numerical
boundary-integral approach (bottom row) for an obstacle of fixed size (1× 1 units)
and particles with support radius 2, 1, 1/2 and 1/4 (from left to right). The orange
outline superimposes the outline of the plume of the top right variant to all other
variants. Velocity color coded from purple (0m/s) to yellow (25m/s).

Figure 6.9: Comparison of our semi-analytical approach (top row) to a numerical
approach (bottom row) for an obtuse (left), an orthogonal (middle) and an acute
angle (right) in 2D. Our semi-analytical solution provides very similar overall flow
behavior, except for a single particle resting on the actual corner. Velocity color
coded from purple (0m/s) to yellow (25m/s).

very consistent deflection angles across a wide range of particle resolutions and,
thus, resolves significantly smaller boundary geometry than prior methods.

To investigate this effect we evaluate the influence of the boundary sharpness
by varying the angle of the boundary in a corner scene from acute to obtuse; see
Fig. 6.9. In all three cases our approach yields nearly identical fluid behavior on
the fluid surface. Near to the corner, however, as the corner angle becomes more
acute, a single particle becomes trapped close to the corner. Whilst this effect
does not introduce artifacts into the overall flow behavior, it can be visually appar-
ent. We, therefore, avoid this effect on orthogonal simulation domain boundaries
by rounding off the corners.

6.9.5 Discretized signed distance fields

While a continuous SDF can represent arbitrary geometry exactly, discretizing the
SDF commonly yields a loss of fine details and may introduce sampling artifacts,
e.g., aliasing effects. We chose to represent SDFs as a hierarchical sparse voxel
structure using OpenVDB [Mus+13] and GVDB [Hoe16], where the resolution of the
SDF is controlled by the voxel size. To determine the ideal voxel size to represent a
given boundary mesh, we performed the process shown in Algorithm 6.3 to deter-
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ALGORITHM 6.3: Given an input boundary mesh M, this procedure finds the
appropriate discrete SDF B that represents the input boundary geometry to within
an error threshold η.

1 i← 0 Do

2 r ← rbase
(
1
2

)i
; i← i+ 1

3 Generate candidate SDF B′ with resolution r
4 Reconstruct the isosurface of B′, yielding a meshM′

5 Evaluate the mesh difference D = dist(M,M′)
6 d← supd′∈D d′

7 while d >η
8 Return SDF B′

(a) ILSPH [Gis+19] (b) Volume Maps [Ben+19] (c) Our approach

Figure 6.10: Simulation of a fluid volume hitting a complex boundary object (Stan-
ford dragon) with different boundary handling approaches. Velocity color coded
from purple (0m/s) to yellow (30m/s) for the main view. The closeups show an
earlier timepoint with fluid particles as white and boundary particles as black.

mine the best voxel size iteratively. In this process a candidate SDF is generated
for a given voxel size and the mesh distance of a mesh reconstructed from this
SDF and the initial boundary mesh is computed. Based on this mesh distance
we then either further reduce the voxel size or stop the process if a certain error
threshold is met.

As the error threshold we evaluated the maximum mesh distance and checked
if this distance is less than the smallest particle radius expected within the sim-
ulations. This threshold results in a ratio of support radius, determined as hi =
3
√
50ri ≈ 3.68ri [WHK16], to boundary accuracy of at least 3.68 : 1. For the pro-

peller scenario (Fig. 6.1) the maximum mesh distance was 4.45 · 10−2, with a mean
distance of 2.7 · 10−4, for a finest particle radius of 6.46 · 10−2, with an according
smallest support radius of 2.38 · 10−1, resulting in a maximum ratio of, approxi-
mately, 5.35 : 1. Note that a lower voxel resolution could be utilized if the maximum
error is constrained to spatial regions that are not important, e.g., if no fluid par-
ticles reach these regions, as the mean error is usually significant lower than the
maximum. Furthermore, adaptive SDF representations, e.g., [KDB16], could also
be utilized to adjust the error locally based on the complexity of the geometry, but
in our scenarios this was not necessary.

6.9.6 Comparison of boundary handling in 3D

We first compare our method with Interlinked SPH [Gis+19] in the one-way cou-
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Figure 6.11: Adaptive variant of the Dragon scene using our boundary handling
approach and particle volume color coded from black (high) to white (low).

pled Dragon scene, where a fluid volume impacts a static Stanford dragon model;
see Fig. 6.10. Here, we observe an overall speedup of 1.5× times for our approach
when compared to ILSPH; see Tab. 6.1. In more detail, the lower overall particle
count (no boundary particles) reduces the cost of, for example, the neighborlist
creation and the moving-least-squares pressure extrapolation reduces the overall
iteration count, however each individual iteration is computationally slightly more
expensive. Moreover, the simulation using the volume maps approach [Ben+19]
also shows a higher overall iteration count, due to the lack of a pressure extrapo-
lation approach. However, note that the overall timings are not comparable, as the
volume maps approach is simulated on a CPU instead of on a GPU. Furthermore,
there are significant visual differences between the three simulation approaches.
The main difference is due to the fluid not flowing through some openings of the
dragon; see the close-ups in Fig. 6.10. For the volume maps approach this issue
arises due to a strong dependence on the sampling resolution of the boundary
geometry, which in this case was chosen equal to the sampling resolution used
in [Ben+19] for the dragon model. Increasing the sampling resolution, i.e., by a
factor of 16 in each direction, can reduce some of these sampling deficiencies but
requires approximately 2 hours for precomputing the volume map and over 50GB
of memory to store it, making it difficult to use, especially on GPUs. Furthermore,
the volume, and density, map construction processes also involve first evaluating
an SDF that represents the boundary geometry and, accordingly, are also affected
from issues inherent to SDFs. Considering the particle-based approach, the dif-
ference results from the offset of the boundary geometry for the particle-based
representation that implicitly narrows small object cavities and holes and blocks
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(a) ILSPH [Gis+19] (b) Our approach, uniform resolution

Figure 6.12: Comparison for the Boxes scenario, using different boundary handling
approaches, where a set of stacked boxes is impacted by a fluid volume. Due to
the different representation of the boundaries the results are noticeably different,
i.e., the orientation of the box in the bottom left corner as well as the exaggerated
splashing due to the representation of the narrow passages between boxes on the
initial impact. Velocity color coded from purple to yellow.

fluid particles from entering these regions.
This is in accordance with Gissler et al. [Gis+19] who observed a similar be-

havior considering rigid-rigid separation. They adjusted the separation distance
by tuning the parameter γ in (12) in [Ban+18a], which is not possible for fluid-rigid
interactions as this could lead to holes in the boundary geometry; see Fig. 6.6.
Fig. 6.12 shows a two-way coupled Boxes scene containing two-way coupled boxes
being impacted by a fluid volume. We achieve a speedup of 2×, as the required
iteration count is significantly reduced, which is in accordance with the results
for one-way coupling and [Ban+18a]. The difference in boundary representation
causes significant differences between the overall flow behaviors; see the results
for one-way coupling and Sec. 6.9.2. This difference is due to the feedback be-
tween fluid and boundary for two-way coupling, i.e., the fluid’s dynamic and the
boxes’ motions are both influenced by the smoothed boundary-representation in
a feedback loop. However, these issues are just an amplification of a problem
already discussed in context of Fig. 6.10.

Note that whilst our single contact point model can readily handle two-way
fluid-rigid coupling and provides a significant speedup over particle-based meth-
ods, simulating strong fluid-rigid coupling, as done by Gissler et al. [Gis+19], is
not possible as there is no way to evaluate boundary-boundary interactions in our
model and, thus, have to rely on external rigid-rigid solvers, i.e., Bullet [Cou15].

6.9.7 Sampling

Fig. 6.14 compares different fluid particle resolutions and different boundary rep-
resentations in a simple scenario where fluid is dropped into a basin. We use two
different fluid particle resolutions, r = 0.5 and r = 0.075, and a fixed voxel resolu-
tion of 0.5 for the SDF. For the resolution of r = 0.5 and r = 0.075, the boundary
particle sampling requires about 15 seconds and 81K boundary particles and al-
most fifteen minutes and 2M boundary particles, respectively. At matching fluid
and boundary particle resolutions the simulation is stable, i.e., no particles explode
in the simulation, but significant problems are visible where particles get stuck on
the surface due to the uneven sampling caused by particles, also observed by
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Figure 6.13: Spatially adaptive variant of Fig. 6.12 rendered with an extracted sur-
face using [ZB05]. Adaptivity causes changing resolutions on the outside walls,
which causes artifacts during surface extraction.

Band et al. [BGT17]. This sampling introduces noticeable artificial viscosity, which
causes the overall fluid behavior to change. In Fig. 6.10 the fluid front for the
particle-based approach lages behind the SDF-based boundary with equal fluid
resolution. Mismatching resolutions either result in unstable simulations, in case
boundary particles are too small, and penetration in case of boundary particles too
large; see also Sec. 6.9.2. The boundary-integral-based nature of our approach in-
trinsically solves this sampling problem and yields stable simulations, as the SDF
results in a smooth and continuous boundary representation that is independent
from the fluid particle resolution. Fig. 6.15 nicely demonstrates the flexibility of
SDFs for very large scenes with small boundary features.

6.9.8 Adaptivity

In this section we briefly summarize the behavior of our boundary handling method
related to spatially adaptive fluids. We observe no instabilities directly caused by
the interaction of particles of varying resolutions with the same boundary geome-
try. Moreover, we observe similar flows in adaptive and non-adaptive flows close
to boundaries, e.g., Fig 6.12 and Fig. 6.13, due the underlying consistent behavior
of our method across varying resolutions; see Sec. 6.9.2. Fig. 6.16 demonstrates
this for smoothly varying resolutions along the boundary of a one-way coupled
scenario. Regarding computational cost, our boundary handling approach has no
significant drawback for an adaptive simulation, i.e., it does not require sampling
the boundary with boundary particles of the finest possible fluid particle resolu-
tion. However, note that we cannot evaluate the computational cost for a baseline
resolution, i.e., all particles are at the finest resolution of the adaptive simulation,
as this would require, for example, 133 million particles in the Dragon scene. This
is significantly above the maximum number of 23 million particles that we can
simulate on our hardware, using the data structure approach of Winchenbach and



6.9. EVALUATION 141

(a)

(b) (c)

(d) (e)

Figure 6.14: Comparison of our semi-analytical boundary handling approach (mid-
dle) and a particle-based boundary handling approach (right) considering the be-
havior of a boundary at a fixed sampling with low (top) and high (bottom) resolution
particles. The volume ratio between the low and high fluid particle resolution was
about 300 : 1 with a boundary particle resolution equal to the fluid particle reso-
lution. (a) shows the initial setup of fluid before dropping. Velocity of particles is
color coded, with boundary particles being colored dark grey.

Kolb [WK19].

Fast moving objects, i.e., in the Propeller scene in Fig. 6.1, require a signifi-
cantly reduced timestep, but this is due to the requirements imposed by the CFL
condition and not specifically due to our boundary handling scheme. Furthermore,
for the adaptive method of Winchenbach et al. [WHK17] the particle resolution
depends on the distance of a particle to the fluid surface. Existing surface de-
tection methods can sometimes yield incorrect results, i.e., for thin fluid sheets or
lone clusters of particles causing particles to needlessly change resolution, which
can introduce visual artifacts, that are amplified by parameter scaling problems in
surface extraction methods.

6.9.9 Friction

In order to evaluate the friction model presented in Sec. 6.8, we drop a sphere
of liquid onto an inclined plane with a high friction coefficient in one case and
zero friction in the other case; see Fig. 6.17. This demonstrates the capability
of our method to simulate boundaries ranging from free-slip to no-slip boundary
conditions. Even though the Coulomb friction model should, from a physical per-
spective, not be applied to fluid-solid interactions, it still yields visually pleasing
results. It has been demonstrated in previous work that a particle-based boundary
representation leads to undesirable results due to sampling irregularities [KB17].
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Figure 6.15: This figure shows a River scene where a fluid inlet stream, at a particle
radius of 0.5m moves through a canyon that is 1km long, 400m wide and 200m
high. In this scene up to 8 million particles are simulated. The surface is extracted
using the approach of Zhu and Bridson [ZB05].

6.9.10 Stability

The stability of our method is evaluated in a complex one-way coupled simulation,
shown in Fig. 6.1. Here an inlet stream from the right (initial velocity of 30m/s)
collides with a counter clockwise rotating propeller in a closed housing. Due to
the limited space between the housing and the propeller, and due to the pro-
peller pushing the fluid back towards the inlet stream, a significant compressive
stress is generated. For a uniform particle resolution, as given in Fig. 6.1, the aver-
age timestep requires 42 iterations of the incompressible solver at a CFL limited
timestep of 3.4ms. However, the simulation maintains an average compression
error of less than 0.01%. In general, high compressive stresses are in regions of
low resolution in the fluid bulk, and not at the free surface with higher particle res-
olution. Consequently, when using an adaptive particle resolution in this scenario
(Fig. 6.1), the average timestep is reduced to 740µs as the smallest particle has
a 4.6 times smaller radius. This, in turn, reduces the timestep by a factor of 4.6
due to the CFL condition. As a consequence, the average number of iterations of
the pressure solver is reduced to 3, which significantly reduces the computational
requirements per particle. All in all, 22 timesteps are required per rendered frame,
which significantly slowed down the overall simulation.

To further evaluate the stability of our method, we simulate a fluid stream flow-
ing past a cylinder through a tube in 3D; see Fig. 6.18. For this simulation we
include the background pressure term of Marrone et al. [Mar+13], to avoid the
formation of voids behind the cylinder. Our boundary handling approach is able
to simulate this scenario, including vortex shedding behind the cylinder, even for
inviscid fluids at high velocities. Due to the smooth nature of the boundaries in
this scene our method closely approximates the results of a boundary-integral ap-
proach.
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Figure 6.16: An adaptive dambreak simulation where an initial fluid volume im-
pacts a smooth hemisphere. The top right close-up shows a view from inside the
hemisphere to demonstrate the changing resolution along the boundary. Particle
volume color coded.

6.9.11 Limitations

Our method has three major limitations. Firstly, SDFs can not represent all types
of geometries consistently. In regions where multiple parts of a single rigid body
are within the support radius of a particle, e.g., in narrow cavities, the single con-
tact point model might not accurately represent the interaction. However, this ef-
fect can be reduced by performing a convex body decomposition, apriori, yielding
multiple contact points. Secondly, single particles get trapped in sharp boundary
features. Even though this does not negatively impact the flow behavior, this is an
undesired property which we intend to address using improved penalty functions
in future work. Finally, our approach cannot readily handle deformable boundary
geometries, without significant computational overhead. Additionally, certain as-
pects of SPH, in general, are not yet well applied to spatially adaptive methods,
i.e., surface-detection and surface-extraction methods, inducing visual artifacts.
Moreover, certain aspects of spatially adaptive SPH methods, i.e., how to merge
large amounts of high-resolution particles, are challenging problems, in general,
and can potentially cause simulations to not behave well.

6.10 Conclusions

In this paper we presented a novel semi-analytic boundary handling approach for
SPH simulations. The core idea is to define a locally representative planar bound-
ary, for arbitrary boundary geometries, using an SDF, and to derive an analytic so-
lution for the interaction with planar boundaries to this representative boundary.
Our method yields significantly improved preservation of detail for small bound-
ary features and provides consistent boundary interactions across varying particle
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Figure 6.17: Simulation of the collision of an initial spherical fluid volume falling on
an inclined surface. On the left we set the friction coefficient µ for all boundaries
equal to 1, whereas the right uses a friction coefficient µ = 0. Our method is
readily capable of simulating a wide range of fluid-rigid interactions, ranging from
free-slip (right) to no-slip boundary conditions. Velocity color coded from purple
(0m/s) to yellow (30m/s).

Figure 6.18: This figure demonstrates a flow past a cylinder simulation in 3D for an
inviscid fluid demonstrating vortex shedding behind the obstacle. Local angular
velocity is color coded from zero (blue) to high (red). Note that particles close to
the boundary have a relatively high angular velocity as the boundary is not moving
relative to them.

resolutions. Additionally, our approach can readily be integrated into existing SPH
simulation methods and can handle spatially adaptive simulations, even in two-way
coupled scenarios.

6.A Appendix

The analytical solution in 2D required solving a set of definite integrals:

λ2(d) =


∫ 0.5

d
f(q, d)dq +

∫ 1

0.5
g(q, d)dq, 0 ≤ d ≤ 0.5∫ 1

d
g(q, d)dq, 0.5 < d ≤ 1,

1− λ2(−d), −1 ≤ d < 0

f(q, d) = 2 acos

(
d

q

)
qC2

[
(1− q)3 − 4

(
1

2
− q
)3
]
,

g(q, d) = 2 acos

(
d

q

)
qC2 (1− q)3 ,

(6.56)
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which can be evaluated symbolically. However, the resulting intermediate definite
integrals are skipped for brevity. The final boundary contribution term λ2(d) in 2D
can be determined using the definite integrals from before as

(6.57) λ2(d) = −
1

7π


d1 + d2 + d3 + d4 + d5 + d6, 0 ≤ d < 0.5

e1 + e2 + e3 + e4, 0.5 ≤ d ≤ 1

7πW(−d)− 7π, −1 ≤ d < 0,

with

d1 =
(
−12d5 − 80d3

)
log
(
2
√
1− d2 + 2

)
d2 =

(
30d5 + 80d3

)
log
(√

1− 4d2 + 1
)

d3 = −18d5 log
(
1−
√
1− 4d2

)
; d4 = acos (2d)− 8 acos(d)

d5 =
√
1− d2

(
68d3 + 32d

)
; d6 =

√
1− 4d2

(
−68d3 − 8d

)
e1 =

(
−6d5 − 40d3

)
log
(√

1− d2 + 1
)
; e2 = −8 acos(d)

e3 =
(
6d5 + 40d3

)
log
(
1−
√
1− d2

)
; e4 =

√
1− d2

(
68d3 + 32d

)
(6.58)

The analytical solution in 3D required solving a set of definite integrals

λ3(d) =


∫ 0.5

d
f(q, d)dq +

∫ 1

0.5
g(q, d)dq, 0 ≤ d ≤ 0.5∫ 1

d
g(q, d)dq, 0.5 < d ≤ 1,

1− λ3(−d), −1 ≤ d < 0,

f(q, d) = C3

[
(1− q)3 − 4

(
1

2
− q
)3
]
2πq(q − d),

g(q, d) = C3 (1− q)3 2πq(q − d),

(6.59)

which result in∫ 0.5

d

f(q, d)dq =
192d6 − 288d5 + 160d3 − 66d+ 19

60
,∫ 1

0.5

f(q, d)dq = −18d− 11

60
,∫ 1

d

g(q, d)dq = −16d6 − 72d5 + 120d4 − 80d3 + 24d− 8

15
.

(6.60)

In order to calculate S in 3D the following definite integrals

S3(d) =


∫ 0.5

d
f(q, d)dq +

∫ 1

0.5
g(q, d)dq, 0 ≤ d ≤ 0.5∫ 1

d
g(q, d)dq, 0.5 < d ≤ 1,∫ 0.5

0
f(q, d)dq +

∫ 1

0.5
g(q, d)− S3(−d), −1 ≤ d < 0,

f(q, d) =
4608

π

[
q3 (q − d) (3q − 2)2

]
,

g(q, d) =
4608

π

[
q (q − d) (q − 1)4

]
,

(6.61)
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were solved as∫ 0.5

0

f(q, d)dq =
f1 + f2
420π

,

∫ 0.5

d

f(q, d)dq = −2337d− 578

420π
,∫ 1

0.5

g(q, d)dq = −81d− 46

252π
,

∫ 1

d

g(q, d)dq =
g1 + g2
63π

,

f1 = 26880d9 − 69120d8 + 46080d7 + 21504d6,

f2 = −32256d5 + 8960d3 − 2337d+ 578,

g1 = 448d9 − 3456d8 + 11520d7 − 21504d6,

g2 = 24192d5 − 16128d4 + 5376d3 − 576d+ 128,

(6.62)

which results in a final boundary term in 3D as

(6.63) S3(d) =


1

hd+2
1

315π
[s1 + s2] , 0 ≤ d ≤ 0.5

1
hd+2

1
63π

[t1 + t2] , 0.5 < d ≤ 1,

− 1
630π

[5913d− 5392]− S(−d), −1 ≤ d < 0.

with

s1 = 20160d9 − 51840d8 + 34560d7,

s2 = +16128d6 − 24192d5 + 6720d3 − 1854d+ 491,

t1 = 448d9 − 3456d8 + 11520d7,

t2 = −21504d6 + 24192d5 − 16128d4 + 5376d3 − 576d+ 128

(6.64)

The naı̈ve gradient term, as shown in Sec. 6.5.4, can also be found for particle-
based terms, i.e., [Pri12]

(6.65) ∇iAi =
∑
j

mj

ρj
Aj∇iWij,

which also is not exact for constant functions and also does not preserve symmetric
interactions. For a particle-based representation a term that is exact for constant
functions [Pri12] can be found for boundary integral approaches as

(6.66) ∇Ai =
∑
j

mj

ρj
(Ai − Aj)∇iWij →

ρ0b
ρb

(Ai − AB)∇iλn (d) ,

and one that preserves symmetric interactions as

(6.67) ∇Ai = ρi
∑
j

mj

(
Ai

ρ2i
− Aj

ρ2j

)
∇iWij → ρiρ

0
b

(
Ai

ρ2i
− AB

ρ2b

)
∇iλn (d) ,

utilizing the same derivation as Price [Pri12].



Chapter 7

Optimized Refinement for Spatially
Adaptive SPH

Contextualization
This chapter reprints the paper “Optimized Refinement for Spatially Adaptive SPH”1

originally published in ACM Transactions on Graphics [WK21] and presented at
SIGGRAPH 2021. In this paper an adaptive SPH model is described that builds
on prior work, see Chapter 3, and that improves many of the limitations of this
prior work. The most notable improvement is with regards to refinement patterns
that were constructed based on intuition and manual tweaking in prior work, which
made them both not readily reproducible and not physically motivated. Further-
more, this paper also introduces a novel concept of local viscosity to reduce the
impact of errors during refinement which significantly helps in making adaptive
SPH methods more applicable to practical scenarios.

The core idea of the paper is a combination of a priori and online optimization
steps that adjust refinement patterns a priori for idealized isotropic particle distri-
butions and online during a simulation to actual particle neighborhoods. By com-
bining these optimized refinement patterns, a modified implicit blending process
and a local viscosity model, the overall adaptive simulation becomes significantly
more stable and requires lower damping through artificial viscosity effects. Fur-
thermore, the paper highlights fundamental limits to the residual error in particle
refinement and, accordingly, motivates the usage of error-damping approaches,
e.g., blending and local viscosity, to reduce the impact of these residual errors.

The initial motivation of the optimization came out of the prior work on adaptive
SPH methods, see Chapter 3, where manually tuned optimization patterns were
utilized that were extremely hard to reproduce. Based on Vacondio et al. [Vac+13],
Rene Winchenbach developed the initial concept of the optimization process, and
he deduced all conceptual details and implementational aspects. Andreas Kolb
provided valuable feedback, especially with regards to the difficult derivation of
the method and supported its presentation, as well as the writing of the final paper.
Special thanks is also owed to the anonymous reviewers of the initial submission of
the paper to ACM Transactions on Graphics, as they provided extensive feedback
that helped in significantly improving the paper in a major revision.

1Note that this paper denotes adaptivity ratios as 1 : n, i.e., 1 low resolution particle is equivalent
to n high resolution particles, whereas most other papers denote adaptivity ratios as n : 1.
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Figure 7.1: An inlet, emitted with a moderate resolution, collides with a fluid vol-
ume that is agitated by a moving boundary wall. Our adaptive method can easily
handle the 1 : 500 adaptive volume ratio shown here, without instabilities, and can
readily adapt the resolution of the inlet on the fly without causing the inlet to be
decollimated. Volume color mapped from high (black) to low (white).

Abstract
In this paper we propose an improved refinement process for the simula-
tion of incompressible low-viscosity turbulent flows using Smoothed Par-
ticle Hydrodynamics, under adaptive volume ratios of up to 1 : 1, 000, 000.
We derive a discretized objective function, which allows us to generate
ideal refinement patterns for any kernel function and any number of parti-
cles a priori without requiring intuitive initial user-input. We also demon-
strate how this objective function can be optimized online to further im-
prove the refinement process during simulations by utilizing a gradient
descent and a modified evolutionary optimization. Our investigation re-
veals an inherent residual refinement error term, which we smooth out
using improved and novel methods. Our improved adaptive method is
able to simulate adaptive volume ratios of 1 : 1, 000, 000 and higher, even
under highly turbulent flows, only being limited by memory consumption.
In general, we achieve more than an order of magnitude greater adaptive
volume ratios than prior work.

7.1 Introduction

Fluid simulations play an important role in modern computer animations, and there
is an ever-increasing demand not just for more vivid and higher quality free surface
fluid simulations, but also larger overall simulation domains. However, a uniform
resolution in all parts of the simulation is not ideal as this requires high resolutions
in regions of the fluid where the behavior is not interesting, e.g.,at the bottom of a
pool. Therefore, methods are needed that can focus the computational resources
to where it is most beneficial. This can be achieved using spatially adaptive meth-
ods, which have been used for grid-based simulations for a while, e.g., using oc-
trees [LGF04], tetrahedral meshes [Kli+06], or tetrahedral meshes combined with
an adaptive FLIP simulation [ATW13]. For grid-free methods, based commonly on
Smoothed Particle Hydrodynamics (SPH), prior research mainly focused on weakly
compressible simulations [Ada+07; FB07] and only recent work [WHK17] has en-
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abled incompressible flows with larger refinement ratios.
An adaptive SPH method starts by defining a desired resolution, often based

on surface distance, for each particle using a sizing function. The resolution is then
locally decreased by merging particles, smoothed using sharing between particles,
or increased by refining a particle into multiple smaller particles. These processes
can introduce errors into the simulation and in order to stabilize the simulation
blending methods have been proposed [OK12; WHK17]. Most of the introduced
refinement error is due to a reliance on some intuition [FB07; Vac+13; WHK17]
instead of a fundamental analytical model for particle refinement patterns.

In order to improve the refinement process, we first introduce a continuous ob-
jective function describing these processes, in Sec. 7.5, which can be applied to
symmetric SPH formulations required in adaptive incompressible flows. Sec. 7.6
then demonstrates our novel discretization technique based solely on particles
and derives the error terms, as well as their derivatives, required for efficient op-
timization. In Sec. 7.7 we then utilize our discretization technique to optimize
refinement patterns regarding positions and mass distributions, both a priori for
ideal environments and online using actual particle neighborhoods, using these
discrete error terms. Our results show an unavoidable inherent residual refine-
ment error, which we smooth out using improved and novel techniques to ensure
stability, in Sec. 7.8. Finally we demonstrate the efficacy of our improved method
and its properties in Sec. 7.10.1 by comparing it to prior work, and identifying pos-
sible factors that could further improve stability.

7.2 Related work

In the past, spatially adaptive SPH methods have been widely used within the CFD
context, e.g.,by Vacondio et al. [VRS12], Feldman and Bonet [FB07] and Li et al.
[LWQ15], and to some extent within computer animation, e.g.,by Solenthaler and
Gross [SG11], Orthmann and Kolb [OK12], Horvath and Solenthaler [HS13], and
more recently by Winchenbach et al. [WHK17]. These adaptive methods use differ-
ent approaches to resolve underlying stability issues, e.g.,using multiple separate
simulations, temporal blending methods or, as done in most of these methods, by
using a weakly compressible SPH formulation. Older methods, e.g.,Adams et al.
[Ada+07], developed before modern incompressible pressure solvers existed
(starting with PCISPH [SP09]), did not have to consider as strict stability require-
ments. However, all these adaptive methods need particle patterns for replacing
a particle of lower resolution by particles of higher resolution. This replacement,
however, introduces a density error that needs to be addressed to avoid instabili-
ties.

Solenthaler and Gross [SG11] address the stability issue by utilizing separate
simulations, each using a different global uniform level of resolution, where parti-
cles are directly inserted and those causing large errors are simply removed. Orth-
mann and Kolb [OK12] apply a simple 1:2 splitting pattern and a temporal blending
scheme, which significantly limits the temporal rate of resolution change possible.
Vacondio et al. [Vac+16] propose statically optimized patterns to avoid the den-
sity errors but require asymmetric support radii, which are not stable for incom-
pressible SPH methods. Winchenbach et al. [WHK17] combine manually optimized
refinement patterns with temporal blending to allow for adaptive incompressible



150 7.3. FOUNDATIONS OF SPH

SPH simulations. However, this approach does not fully solve the instability prob-
lem and strongly depends on manual parameter tuning.

Various approaches have recently been developed for SPH-based simulations
in computer animation, e.g.,implicit incompressible SPH (IISPH) [Ihm+13],
divergence-free SPH (DFSPH) [BK15] and position based fluids [MM13]. These ap-
proaches predict and correct fluid compression through predictions in each time
step, but are not designed to handle sudden fluid compressions, such as those
caused by particle splitting. Therefore, errors due to particle refinement need to
be prevented from occurring in the first place by changing the adaptive method
itself, instead of relying on an external pressure solver.

Furthermore, rigid boundary handling is an existing issue for adaptive meth-
ods [WHK17], as commonly used particle boundaries [Aki+12] suffer from sampling
problems. Fujisawa and Miura [FM15] address the sampling problem by using
an analytical integral formulation of boundaries. Koschier and Bender [KB17] ex-
tended this approach using numerical integrals precomputed on grids. Recently,
Winchenbach et al. [WAK20] introduced a signed distance field based boundary
integral method that does not require expensive precomputation steps and en-
sures consistent behavior across varying particle resolutions. Band et al. [BGT17]
utilize a moving least squares method to fit planes to particles for sufficiently flat
boundaries. The method is then used to calculate accurate pressure values for
boundary particles instead [Ban+18b]. Finally, Gissler et al. [Gis+19] introduced
an extended SPH model to simulate rigid to rigid interactions using SPH. Bound-
ary integral based methods are a good general choice, as they avoid the sampling
issue, but also introduce non-SPH representations.

Finally, temporally adaptive methods are alternative approaches to allocate
computational resources where they are most beneficial. Adjusting the time step
of an SPH simulation, globally, using the CFL condition has found wide adop-
tion in SPH, with initial work by Desbrun and Gascuel [DG96] and later by Ihm-
sen et al. [Ihm+10]. Assigning different particles, or regions, different time steps
has also been proposed by Desbrun and Gascuel [DG96], however, this approach
has not find wide adoption, due to the complexity involved in synchronizing differ-
ent time steps. Reinhardt et al. [Rei+17] applied this concept, through regional-
time-stepping, to modern pressure solvers, but is only applicable to CPU-based
SPH variants.

7.3 Foundations of SPH

SPH is a numerical method to solve continuous integrals by approximating an
underlying continuous system using discrete particles, see [Mon92] and for further
explanations [Kos+19]. These particles are then used to approximate continuous
quantities using the basic SPH interpolation operator for a particle i utilizing all
neighboring particles j, which is given by

(7.1) A(xi) =
∑
j

mj

ρj
A(xj)Wij,

wherem, ρ and xi denote the mass, density and position respectively, and the sub-
script denotes indices of the particle. Wij = Ŵ (|xij|, hij) is a radially symmetric
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kernel function that depends on the distance between positions |xij| = |xi − xj|
and the support radius of the interaction hij . This term can be chosen as asym-
metric, e.g.,as hij = hi, which results in a gather formulation, or as hij = hj , which
results in a scatter formulation, or as the average support radius, hij =

hi+hj

2
, which

results in a symmetric formulation. For adaptive incompressible SPH only a sym-
metric formulation is stable [WHK17] , whereas for adaptive weakly compressible
SPH (WCSPH) a common choice is the scatter formulation as this significantly
simplifies many derivative terms [Vac+13].

Commonly used kernel functions include the cubic spline kernel [Mon05]
[Ihm+13; KB17] and the Wendland kernel functions [Vac+16]. The exact choice
of kernel function does not influence our method, but still changes the support ra-
dius of a particle. Every kernel function has an ideal number of neighbors [DA12],
i.e., NH = 50 for the cubic spline kernel, which yields the support radius for a
particle by solving 4

3
πh3 = NHVi, as there should be NH particles of volume Vi

contained within a spherical support radius H . The support radius H is related to
the smoothing scale h through a factor H

h
. Within Computer Animation, H

h
is often

defined as 1 [Kos+19] and, thus h is also often referred to as support radius. We
will follow this notion in our paper.

7.4 Method overview

Spatial adaptive methods generally begin by determining the desired resolution
for a particle using a sizing-function, e.g.,using the particle’s surface distance, or
based on visibility, and classifying particles accordingly into different categories
[WHK17] and then adjusts the resolution of each particle to be closer to its desired
resolution. This can, in general, be done using three distinct processes:

Merging: This process combines multiple high-resolution particles into lower
resolution particle(s) to reduce the local spatial resolution. This can be done in
multiple ways, e.g., merging 2 particles into 1 (2 : 1-merging), distributing one par-
ticle onto several other particles (n : n− 1-merging) or combining many particles
into one (n : 1-merging). This process is fully constrained for n : 1 merging due to
mass and momentum conservation.

Sharing: This process changes a particle that is larger than its ideal resolu-
tion by distributing parts of its mass and quantities to nearby particles which are
smaller than their ideal resolution. This process is essentially an extension of
merging, where the original particle remains in the simulation. The process for
interactions between two particles is also fully constrained, due to mass and mo-
mentum conservation.

Splitting: This process splits (or refines) a particle that is significantly larger
than its ideal resolution into multiple smaller particles. Quantities of the inserted
particles are not fully constrained, i.e.,the mass of each created particle can vary as
long as the overall mass is preserved. Additionally, geometric patterns have been
used in all prior methods to insert new particles into the simulation, but these
often require significant manual tuning to achieve a certain level of stability. In
general, different refinement methods rely on different splitting steps, e.g., 1 : 2 or
1 : 8. However some methods allow for arbitrary changes (up to a certain limit) of
1 : n. Some splitting methods include procedures to reduce the impact of errors
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ALGORITHM 7.1: An overview of the off-line a priori and the online optimization
process to generate the initial refinement pattern and its local adaptation during
simulation, respectively.

1 // A priori optimization of n patterns
2 For all refinement patterns
3 Initialize pattern with random positions and uniform weights
4 Optimize positions; see Sec. 7.6.1 and 7.7.1
5 Optimize weight distribution; see Sec. 7.6.2 and 7.7.1
6 Optimize positions and weights simultaneously 7.7.1
7 Store pattern for refinement
8

9 // Online optimization of particle i
10 Determine ideal particle radius si; see Sec. 7.9
11 If particle radius ri ≤ 2si: return // no refinement
12 Determine pattern to be used p = ⌊clamp(ri/si, 2, n)⌋
13 Initialize refined particles using a priori pattern for p particles
14 Optimize positions using gradient descent; see Sec. 7.6.1 and 7.7.2
15 Optimize masses using evolutionary optimization; see Sec. 7.7.2
16 Initialize blend process for refined particles; see Sec. 7.8.1
17 Insert refined particles and remove old particle

introduced by the refinement process.

The merging and sharing processes are mostly limited by the search for eligible
particle groups, often resulting in 2 : 1 merging and 1 : 1 sharing being used. These
processes are fully-constrained by mass and momentum conservation, and also do
not cause visually apparent instabilities. The splitting process, however, causes
instabilities, i.e., due to changes to the density field, and can be optimized [FB07].
Refining a single low resolution particle o, with massmo at position xo and velocity
vo, into n particles, i.e.,a 1 : n split, has to preserve mass, kinetic energy, as well
as linear and angular momentum, and should not modify the underlying density
field to avoid compression. Mass-conservation can be enforced by ensuring that
the total mass of the refined particles is equal to mo, whereas momentum and
kinetic energy are conserved if and only if the velocities of the refined particle are
equal to vo [Fel06]. Consequently, the error introduced on the underlying density
field can be controlled by optimizing the mass distribution and positions for the
refined particles. This yields 4n degrees of freedom, making manual parameter
tuning impractical.

The approach, to optimize the refinement, we present is independent of the
number of high-resolution particles being created and of the kernel function used,
and is applicable to any adaptive method that relies on particle refinement and any
incompressible or weakly compressible solver. However, we first require an un-
derlying objective function for a symmetric SPH formulation, as prior optimization
approaches relied on an asymmetric scatter-based SPH formulation. Our overall
refinement process is described in Algorithm 7.1.



7.5. CONTINUOUS OBJECTIVE FUNCTIONS 153

7.5 Continuous objective functions

In general, the splitting process works by replacing the original low resolution
particle o with a set of higher resolution particles S . The problem now is based
on the choice of parameters for the new particles, where for n particles we get
d ·n positional parameters (for d dimensions) and n weights determining the mass
distribution. The distributed mass needs to equal the original mass, e.g.,mo =∑

s∈S ms, due to mass conservation. However, there is no way to directly determine
the patterns and prior work often employed fixed refinement patterns, e.g., 1:2
[OK12], 1:7 [SG11], or 1:13 [Vac+16] or for multiple n [WHK17], which are based on
using intuitive shapes and often involve manual tuning.

Mass and momentum are directly conserved. The underlying fields that should
be kept constant are the density and velocity fields [Fel06], with a focus on the
density field, as a change to density would introduce significant instabilities. The
change to the density field at any point x can be defined, based on the density
before ρ(x) and after ρ∗(x) refinement [Fel06]

(7.2) τ(x) = ρ∗(x)− ρ(x),

which can be evaluated over a continuous domain Ω as

(7.3) E =

∫
Ω

τ(x)2dx.

This can be seen as a continuous objective function, where the ideal refine-
ment process would cause a total error of 0. This can also be seen as enforcing
density invariant refinement, i.e.,Dρ

Dt
= 0 [BK15], but instead of a change over time

the change occurs due to particle refinement. Feldman and Bonet [FB07] use an a
priori optimization process to minimize E , using an initial refinement pattern found
by intuition, i.e.,an icosahedra in 3D configuration. Fixing the relative positions of
particles reduces the problem to determining a single scaling parameter and the
mass distribution, which Feldmann and Bonet solve for a scatter-based formula-
tion of SPH. However, the approach of Feldman and Bonet [FB07] is not directly
applicable to incompressible SPH simulations, as these require a symmetric SPH
formulation to avoid instabilities [WHK17].

For a symmetric SPH formulation, the support radius of an interaction de-
pends on the definition of a support radius h(x) for every integration point, which
could be determined using the approaches from Monaghan [Mon02] and Winchen-
bach et al. [WHK17] that base the support-radius on the density at this position,
which also means that particles of equal resolution have varying support-radii,
i.e., Vi = Vj ≠⇒ hi = hj . These approaches, however, introduce a coupled prob-
lem (refer to [Pri12] for a more thorough examination), where the evaluation of the
density depends on the support radius which, again depends on the density. This
problem can be stated as

(7.4) ρi =
∑
j

mjW

(
|xi − xj|,

hi + hj
2

)
, hi = η 3

√
mi

ρi
,

where η is a parameter used to determine the number of neighbors for a particle,
commonly chosen as η ≈ 2.6 for cubic spline kernels [WK19]. This term could be
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Figure 7.2: The result of optimizing the refined particle positions (red) for a sym-
metric SPH formulation (left) and a scatter SPH formulation (right), with the density
field error τ(x) color coded from purple to yellow.The error is visualized from 0 to
6 · 10−4 for symmetric SPH on and the left from 0 to 1 · 10−4 for asymmetric SPH
on the right. Note that the errors in the converse terms, e.g., the right pattern
evaluated utilizing the symmetric error metric, result in orders of magnitude worse
behavior, highlighting the need to chose the appropriate formulation for the opti-
mization process.

evaluated iteratively until the result converges, but this would require a very ex-
pensive computation for every point of integration. Nonetheless, the symmetric
formulation can still be used to optimize the refined positions xs for all refined
particles s ∈ S , even though the process is significantly slower than for a scat-
ter formulation. The results of this optimization are shown in Fig. 7.2, where the
generated distribution of particles is significantly different between the symmet-
ric and scatter formulation, i.e., two particles are placed close to the position of
the original particle instead of one. The patterns Ps and Pa are generated using
a symmetric (Es) and asymmetric (Ea) formulation of Eqn. 7.3, respectively. Here,
Es(Ps) = 2.4 · 10−4, Ea(Ps) = 5.8 · 10−4, Es(Pa) = 3.0 · 10−3 and Ea(Pa) = 3.8 · 10−5.
However, this does not mean that one of the generated patterns is superior to the
other as they are optimized for fundamentally different SPH formulations, i.e., they
are not alternative options. As such, the appropriate pattern should be chosen for
each formulation and applying patterns optimized for asymmetric SPH formula-
tions leads to a significantly worse error (by an order of magnitude).

7.6 Discretized objective function

Minimizing Eqn. 7.3 by iteratively solving Eqn. 7.4, is not practical, especially in
3D, due to computational costs. Instead, we propose to only evaluate Eqn. 7.2 at
the current positions of particles, which significantly reduces the computational
complexity as this only requires NH + n evaluations, for n refined particles. We
denote the original particle as o, the set of refined particles of o as So, the set
of neighbors of o, including o, as No and the discretized error term E for the sur-
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rounding particle positions and newly inserted particle positions as EN and ES ,
respectively. For clarity we will drop the subscript on S and N whenever possible..

Following Vacondio et al. [Vac+13], we can evaluate the error on neighboring
particle positions, by effectively removing the old particle and inserting the refined
particles, as

(7.5) τn =
∑
s∈S

msWns −moWno,∀n ∈ N .

For a refined particle s ∈ S , we can calculate the error term as the difference
between the original particles density ρo and the density evaluated at the current
position of s, which resembles the numerical SPH approximation error. This results
in the following error term τs for a specific refined particle s:

(7.6) τs =

(∑
n∈N

mnWsn +
∑
k∈S

mkWsk

)
− ρo,∀s ∈ S.

The discretized error terms are then the mass weighted sum of square error terms,
per particle, which yields

(7.7) EN =
∑
n∈N

mnτ
2
n, ES =

∑
s∈S

msτ
2
s .

The overall minimization problem can then be defined as minimizing the positions
and masses of the inserted particles, under the constraint

∑
s∈S ms = mo due to

mass-conservation, as

(7.8) min
xS ,mS

E = min
xS ,mS

(EN + ES) .

The partial derivatives of this minimization problem with respect to positions xs

and masses ms are described in Sections 7.6.1 and 7.6.2, respectively.
Note that this problem has a trivial, but useless, solution where all refined parti-

cles are placed at the original particles position and a single refined particle having
the mass of the original particle, i.e.,all other refined particles have zero weight.
We avoid this trivial solution by iteratively optimizing positions and masses and
by imposing a limit on the optimized masses. Thus, we add the constraint

(7.9) ∄ms ≥ 8mi, ∀i, s ∈ S,

which restricts the largest ratio of masses between refined particles to be at most
8. These restrictions additionally prevent degenerate optimization solutions where
single particles have zero mass.

This problem can be solved in ideal, isotropic and hexagonal, particle distri-
butions using initially random positions and mass ratios for the refined particles
a priori. Due to the relatively low computational cost, it can also be solved online
for an actual particle in a fluid simulation using the results of the a priori opti-
mization as a starting point. Fig. 7.3 shows the result of optimizing the particle
distribution for 6 particles using our proposed discretization (purple) and by using
the continuous form (red), where the results are very similar (ignoring rotation and
translation), demonstrating a close approximation of the underlying problem. The
minimization problem is derived in detail in the appendix (Section 7.A).
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Figure 7.3: The result of optimizing the positions of 6 refined particles using our
discretized problem (purple) and the continuous form (red), which results in a small
difference, demonstrating a good approximation through our proposed discretiza-
tion.

7.6.1 Spatial derivatives

Even though particle refinements can interfere with each other, leading to a global
optimization problem, we refine particles separately with respect to their current
neighborhood, see [OK12]. Thus only derivatives based on refined particles for
each original particle need to be considered, and N can be assumed to be con-
stant. This also allows for the optimization of all individual refinement steps in
parallel. We thus need to consider the derivative of E with respect to the position
of every inserted particle. In general a kernel function can be written as [DA12]

(7.10) Wij = W (∥xij∥ , hij) =
C

hdij
Ŵ (q) ,

where hij =
hi+hj

2
, q =

∥xij∥
hij

, C is a normalization constant, d is the spatial di-

mensionality of the simulation and Ŵ (q) being the kernel function, i.e.,Ŵ (q) =
[1− q]3+ − 4[0.5− q]3+ for the cubic spline kernel, where [·] = max (·, 0). The deriva-
tive of the kernel function W with respect to the position of a particle i can then
be calculated as

(7.11) ∇iWij =
xij

|xij|
C

hd+1

∂Ŵ (q)

∂q
= x̂ijW

′
ij,

with W ′(r, h) = C
hd+1

∂Ŵ (q)
∂q

and x̂ij =
xij

|xij|
. Using some linear algebra, shown in

detail in the appendix 7.A, the spatial derivatives of the discretized error term for
neighboring particle positions EN and refined particle positions ES with respect
to the position of a refined particle i is given as

(7.12) ∇iEN =
∑
n∈N̄

mn (τi + τn)∇iWin,
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with N̄ = N \ o, and

(7.13) ∇iES =
∑
s∈S

ms (τi + τs)∇iWis.

7.6.2 Mass distribution derivatives

For the efficient formulation of our optimization cost function, we utilize a set of
tunable weights

(7.14) Λ = [λ0, . . . λn−1] ,

where 1
λi

describes the individual mass ratio for each inserted particle i, with the
constraint

∑
s

1
λs

= 1, i.e.,ms = mo/λi. Plugging these weights into the error terms
τn (Eqn. 7.5) and τs (Eqn. 7.6) yields

τn = mo

∑
s∈S

1

λs
Wns −moWno,

τs =
∑
j∈N

mjWsj +mo

∑
k∈S

1

λk
Wsk − ρo.

(7.15)

To calculate the derivative of the overall error terms with respect to these weights,
we first need to consider the derivative of the kernel function with respect to the
support radius, which can be written as

(7.16)
∂Wij

∂hi
= −1

2

[
d

hij
Wij + qW ′

ij

]
,

which is a term not commonly found in computer animation; see appendix 7.A for
further details. This can be used to evaluate the derivative of the kernel function
with respect to the mass of a particle, which yields

(7.17)
∂W (xij, h)

∂mi

=
∂W (xij, h)

∂xij

∂xij

∂mi

+
∂W (xij, h)

∂h

∂h

∂mi

,

where ∂xij

∂mi
= 0. The term ∂W (xij ,h)

∂h
can be determined using Eqn. 7.16, with h =

hi+hj

2
. Using the definition of the support radius hi = η 3

√
mi

ρi
[Mon05] and applying

the derivative, the missing term is given as

(7.18)
∂hi
∂mi

=
1

3
η

(
mi

ρi

)− 2
3 ∂mi

ρi

∂mi

=
1

3
η

(
mi

ρi

)− 2
3

∂mi

∂mi
ρi −mi

∂ρi
∂mi

ρ2i
,

where ∂mi

∂mi
is 1. Applying ∂

∂mi
further to the standard SPH estimate for density

ρi =
∑

j mjWij yields

(7.19)
∂ρi
∂mi

=
∑
j

(
∂mj

∂mi

Wij +mj
∂Wij

∂mi

)
,

where ∂mj

∂mi
= δij (Kronecker Delta). Putting these equations together results in

(7.20)
∂Wij

∂mi

=
∂Wij

∂h

[
hi
3mi

+
hi
3ρi

(
Wii −

∑
k

mk
∂Wik

∂mi

)]
,
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which means that the value for ∂Wij

∂mi
depends on itself and values of neighboring

particles. In theory this could be solved iteratively, similar to the relation of density
and support radius, but we opt to follow the common computer animation notion
of all particles having a support radius solely based on their rest density, i.e., hi =
η 3

√
mi

ρ0
instead of hi = η 3

√
mi

ρi
and, accordingly, Vi = Vj =⇒ hi = hj . This means

that

(7.21)
∂Wij

∂mi

=
hi
3mi

∂Wij

∂hi
.

Calculating the derivative of the kernel function with respect to a mass weight
additionally requires the derivative of a weight λj by another weight λi. If in the
optimization the weight of one particle is increased and all other particles are
equally decreased, we can find a derivative

(7.22)
∂

∂λi

[
1−

∑
i ̸=j

1

λi

]
=

{
1

n−1
1
λ2
i
, i ̸= j

0, else.

This can be expressed more generally by introducing a matrix M, describing the
distribution of weights, which for Eqn. 7.22 yields

(7.23) Mij =

{
1

n−1
, i ̸= j

−1, else.

Note that each column of the matrix should sum to zero to ensure mass conserva-
tion during optimization. Additionally, for refined particles the support radius does
change with respect to the change of mass of a refined particle. For two particles
s and j, this results in the following term

(7.24)
∂hsj
∂λi

=
1

2

(
∂hs
∂λi

1S(s) +
∂hj
∂λi

1S(j)

)
,

with 1 being the indicator function defined as

(7.25) 1S(j) =

{
1, j ∈ S
0, else.

Finally, we can find the derivatives of the discrete error terms for neighboring
positions and refined positions, respectively, are calculated as (see Appendix 7.A).

∂EN

∂λi
=
∑
n∈N̄

mn

[
τn
Mis

λ2i
Wns +

1

λs

∂Wns

∂λi
(τn + τs)

]
,

∂ES

∂λi
=
∑
k∈S

ms

[
τs
Mik

λ2i
Wsk +

1

λk

∂Wsk

∂λi
τs

]
,

(7.26)

where

∂Wsj

∂λi
=

1

6λ2i
(hsλsMis1S(s) + hjλjMij1S(j))

∂Wsj

∂hsj
,

∂Wsj

∂hsj
= − 1

hsj

(
dWsj + |xsj|W ′

sj

)
,W ′(r, h) =

C

hd
∂Ŵ (q)

∂q
.

(7.27)
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7.7 Optimization methods

The main goal of the introduction of the discretized objective function and its
partial derivatives in Section 7.6 is to determine optimal particle positions and
masses for the refinement of fluids, irrespective of specific kernel functions or
neighborhood requirements. The naı̈ve solution is to start with a random distri-
bution of positions with an equal amount of mass per inserted particle. However,
optimizing from this starting point is too expensive to be done online during a
simulation. Instead, we propose optimizing the refinement patterns a priori for
ideal conditions, e.g.,in an isotropic hexagonal particle distribution, and use the
resulting patterns as initialization for an online optimization.

7.7.1 A priori optimization

In order to generate a generic set of refinement patterns, we assume that an arbi-
trary particle o has an isotropic hexagonal neighborhood of particlesN . Therefore,
we can simply apply our optimization to this ideal neighborhood and the inserted
refined particles. We utilize an original particle with the properties

(7.28) ho = 1, Vo =
4

3
π

1

Nh

, ro =
3

√
1

Nh

,

as this allows us to easily rescale the generated patterns for a particle with radius
r, by scaling the generated pattern by r. We also separate the optimization for
positions and masses into two distinct processes for efficiency. Using the an-
alytical partial derivatives, from Sec 7.6.1 and 7.6.2, it is fairly straightforward to
apply any optimization algorithm, e.g.,L-BFGS-B from SciPy [JOP+01], to optimize
the positions of splitting patterns by stacking the components of the inserted par-
ticles’ position [x0,x,x0,y, ...,xn−1,z], which for n particles results in n · d variables.
Figure 7.4 shows example patterns generated for 4, 8, 16 and 32 particles, respec-
tively, in a 2D setting and Figure 7.5 shows patterns for 3D settings, which were all
initialized with random particle distributions. Figure 7.4 shows that the error for
the resulting configuration is mainly reduced at the particle positions, while it is
rather high in between particles, where it has no practical influence.

Different kernel functions yield very similar spatial configurations, however, not
all kernel functions converge equally fast, due to pairing instabilities; see Dehnen
and Aly [DA12] for a general discussion on the differences between kernel func-
tions. Particles may move further from the center, even beyond the hexagonal
packing distance, or move together, i.e.,they pair, during the optimization. How-
ever, in either case, which can be identified easily, we restart the optimization with
a different random initialization to avoid these local minima.

For the optimization of the mass distribution we utilize the SLSQP optimization
method from SciPy [JOP+01]. However, other minimizers can be used as well,
as long as the optimizer can handle the required constraint, i.e.,non-negativity of
masses and mass conservation.

7.7.2 Online optimization

Applying the optimization methods described for the a priori optimization to online
optimizations would be too expensive due to computational costs, and as such we
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Figure 7.4: Optimized patterns for 3 (top-left), 8 (top-middle), 12 (top-right), 16
(bottom-left), 24 (bottom-middle) and 64 (bottom-right) particles, in 2D for the
cubic spline kernel, showing particles from S (red), N (light blue) and the removed
particle o (white). The coloring indicates τ , demonstrating that the error focuses
mostly in regions that are not occupied by any particle.

aim to use simpler methods.

To optimize the positions we use a simple gradient descent algorithm. As we
target GPUs for our optimizations, we use a number of threads (e.g., 96) per par-
ticle that should be refined, where we can parallelize the evaluation of ES and EN .
Here N denotes the actual set of neighbors of o. In addition we use a simple
backtracking line search algorithm in order to determine the gradient step length
γ, as we start from an already good initial guess. In our implementation we use
up to 32 gradient steps with 8 backtracking attempts with an initial step length of
γ = 0.01 and a backtracking weight β = 0.5.

The mass distribution of the particles, however, relies on a more complex opti-
mization. The partial derivatives of the discretized objective function with respect
to the mass ratios are significantly more complex which makes them expensive
to evaluate. Furthermore, the memory used to calculate the Hessian, for some
non linear constrained optimization methods, severely limits performance due to
memory restrictions. As such, we chose to adapt an evolutionary optimization to
our problem, which preserves mass conservation, while not requiring a gradient
evaluation.

To avoid explicitly enforcing the constraint
∑

s∈S
1
λs

= 1, we define a set of
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Figure 7.5: This figure shows the patterns for 4, 8, 12, 16, 32 and 64 particles in
3D for the Wendland 2 kernel (N=100) with the particle color being chosen for
visual distinctiveness only. The transparent object visualizes the convex hull of the
particle positions.

unnormalized values

(7.29) Φ = [ϕ0, . . . , ϕn−1] ,

from which the set of constrained weights is calculated as

(7.30) Λ[i] =
ϕi∑
s∈S ϕs

.

Note that Eqn. 7.30 enforces
∑

s
1
λs

= 1 by construction. To determine Φ we sample
a normal distribution X , with mean X̄ and standard deviation σ, for every element
as

(7.31) Φ[i] = clamp
(
X
(
X̄ = 1, σ2 = 1

)
,
1

2
, 2

)
,

which we evaluate on every thread associated with a particle, e.g.,giving us 96
different sets. The values are clamped to avoid negative masses and very large
differences between individual particle weights. We then evaluate the discretized
objective function for all sets and determine the set Φb with the lowest error. Using
this set we can then determine an updated set of weights

(7.32) Φl+1[i] = clamp
(
X
(
X̄ = Φb[i], σ

2 = 2−l
)
,
1

2
, 2

)
.
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ALGORITHM 7.2: Our online optimization process applied to every particle o that
is refined into n particles, executed in parallel on 96 threads.

1 Initialize positions of refined particles X using a priori pattern; Sec. 7.7.1
2 Initialize weights of refined particles Λ to all be n; Eqn. 7.30
3 e← EN + ES using X and Λ; Eqn. 7.7
4 // Optimize positions using gradient descent
5 For g ∈ [1, 32]
6 γ ← 0.01
7 For s ∈ [1, 8]
8 Evaluate ∇iE with X for i ∈ S ; Eqns. 7.12 and 7.13
9 Xg[i]← X[i] + γ∇iE

10 eg ← EN + ES
11 If eg < e
12 Update X← Xg and stop s iteration
13 γ ← γ · β
14 // Optimize weights using evolutionary optimization
15 Initialize Φ[i] = 1,∀i ∈ S
16 Λb[i]← 1/n
17 e← EN + ES using Λb and X
18 For l ∈ [1, 8]
19 For every thread t

20 Sample Φl
t using Eqn. 7.32

21 Λl
t[i] = Φl

t[i]/
∑

s∈S Φl
t[s]

22 elt ← EN + ES using Λl
t and X

23 Find thread with lowest error t = inft e
l
t

24 If elt < eb
25 Update Φ← Φl

t,Λb ← Λl
t, eb ← elt

We repeat this process for 8 iterations as a variance σ2 ≈ 0.004 has no practical
influence on the result. We also always consider Φ = [1, . . . , 1], as this set of values
describes a uniform distribution of mass. Note that this process is similar to a
general random optimization and evolutionary optimization techniques but with
modifications to enforce a constraint and to be parallelizable. The overall online
optimization process is shown in Algorithm 7.2.

7.8 Error smoothing

Our minimization process, as will be shown later in the results in Section 7.10.1,
cannot reduce the refinement error to zero, even for ideal particle distributions.
Thus, we need to utilize further measures, which can help reduce the instabili-
ties caused by the refinement error as they are not negligible for incompressible
fluid simulations. In order to achieve this, we will first introduce a non-constant
temporal blending method, followed by an extension of existing artificial viscosity
methods that introduces local viscosity on newly refined particles.
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7.8.1 Non-constant temporal blending

The basic idea of a temporal blending method [OK12] is that quantities are the
result of a linear blending operation between the actual quantities As of refined
particles s ∈ So and an estimated quantity for the original particle Âo as

(7.33) Ablended
s = (1− βs)As + βsÂo,∀s ∈ So,

where β describes a linear interpolation weight. In order to estimate the quantity
for the original particle Winchenbach et al. [WHK17] track the position where the
original particle would be at a new time point t+∆t as xo using the average velocity
of all particles refined from o as

(7.34) xt+∆t
o = xt

o +∆t
1

n

∑
s∈So

vts,

where n is the number of refined particles from o. Using this estimated position
and the standard SPH estimate from Eqn. 7.1, we can determine an estimated
quantity Âo by ignoring all particles refined from o and adding the interaction of o
with itself

(7.35) Âo = mo
Ao

ρo
Woo +

∑
j

{
mj

Aj

ρj
Woj, j ∈ N \ So,

0, j ∈ So
.

Winchenbach et al. [WHK17] additionally apply a clamping operation to es-
timated density values ρ̂o. The blending weight as described by Orthmann and
Kolb [OK12] and Winchenbach et al. [WHK17] is given as

(7.36) βt+1
s = βt

s +∆β, β0 = 1,

where a constant change in blend weight per time step t is utilized. The initial
blend weight is 1, with a fixed change of blend weight per time step of ∆β = − 1

Θ
.

Here Θ is usually chosen to be 10 and denotes the number of time steps over
which blending occurs. Instead we propose to utilize the following blend weight β
for any particle i as

(7.37) βi = clamp
(
∆t0

2∆t

[
1− ti

Θ∆t0

]
, 0,

1

2

)
which bases the blend weight βi on a value describing the lifetime of a particle ti,
the current time step ∆t, the time step at the time of refinement ∆t0, as well as the
number of blend steps Θ. For a fixed time step this results in a linearly decreasing
weight, per time step, as prior methods, but instead of starting with an initial blend
weight of 1 we start with a blend weight of 1

2
. However, if the time step changes

during the blending process, i.e., ∂∆t
∂t
̸= 0, the blend weight gets adjusted as well.

For increasing time steps, ∂∆t
∂t

> 0 the blend weight decreases more slowly. For
example with ∆t0 = 0.1 and Θ = 10, changing the time step to ∆t = 0.2 halfway
through the blend process causes the blend weight to change from β = 1

4
to β = 1

8
.

For decreasing time steps ∂∆t
∂t

< 0 the blend weight instead reverts to β = 1
2
. This

is motivated by the fact that ∂∆t
∂t

> 0 indicates a stabilizing overall simulation,
whereas ∂∆t

∂t
< 0 indicates a destabilizing simulation.
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7.8.2 Local viscosity

In general, the refinement error alters the local density in an incompressible fluid,
causing visually noticeable instabilities. This divergence can be smoothed by in-
troducing a higher artificial viscosity. However, increasing the artificial viscosity
on a global level for all particles prevents the simulation of an overall relatively
inviscid liquid. To avoid this problem, we only introduce additional artificial vis-
cosity locally, which only affects particles that are in the process of being blended,
e.g., those with βi > 0. XSPH [Mon02] uses artificial viscosity to modify the velocity
of a particle i, which is given as

(7.38) vnew
i = vi +

∑
j

c
mj

ρj
vijWij,

where c is the viscosity factor. We propose a modified cnew given by

(7.39) cnew = c

{
1, i ∈ So ∧ j ∈ So(
1 + 0.5

βi+βj

2

)
, else

,

which can similarly be applied to a traditional artificial viscosity formulation
[Mon05] by changing the corresponding viscosity factor ν . This term still results
in the same global viscosity applied to all particle interactions c, but introduces
an additional local viscosity c (βi+βj)

4
that only affects interactions of particles with

newly refined particles, as β is 0 for any non-blending particle, and excludes in-
teractions between refined particles belonging to the same original particle. This
additional term has a maximal magnitude of 0.5c, i.e.,it increases viscosity locally
by at most 50%. Applying this artificial viscosity in our experiments reduces any in-
stabilities that remain after our optimized refinement process, without noticeably
changing the global behavior.

7.9 Sizing-functions

In adaptive SPH a sizing function determines the ideal particle volume V (x) at
a location x and is commonly defined using a distance function d(x) from the
region of interest, e.g.,the fluid surface. Usually, the sizing function specifies a
smooth gradient from a base volume Vbase at a maximum distance dmax to the
finest volume Vfine = 1

α
Vbase at the fluid surface with a desired adaptive volume

ratio α. Winchenbach et al. [WHK17] proposed a linear sizing function that scales
the volume directly with the distance, i.e.,V ∝ d, as

(7.40) V (x) =

[
1

α
+
d(x)

dmax

(
1− 1

α

)]
Vbase.

Unless otherwise noted we use this formulation for all of our results as the lin-
ear sizing of volume yields high surface-resolutions at moderate overall particle
counts. However, other sizing functions might also be used. A practical problem
that arises for Eqn. 7.40 is that very high adaptive volume ratios, e.g.,1 : 4, 000,
can result in a very thin sheets of high-resolution particles at the surface, which
does not provide the expected improvement in quality. This effect, however, can
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be avoided by either using deep fluid volumes to increase the thickness of the
highest-resolution sheet, additional factors in the sizing, e.g.,camera visibility or
closeness to an object of interest (see the torus scene), or by using a different siz-
ing function. A straight forward replacement for the sizing function in Eqn. 7.40 is
to scale the particle radius linearly, resulting in a cubic scaling of particle volume
based on surface distance. This sizing function can be defined as

(7.41) V (x) =
4

3
π

[(
1
3
√
α
+
d(x)

dmax

(
1− 1

3
√
α

))
rbase

]3
.

However, this sizing function generates significantly more particles for the same
adaptive volume ratio, when compared to Eqn. 7.40, resulting in a reduction of
achieved adaptive volume ratios by a factor 100. For example, for a scene with an
achievable adaptive volume ratio of 1 : 1, 000, 000 using Eqn. 7.40, using Eqn. 7.41
would result in an achievable adaptive volume ratio of 1 : 10, 000, due to computa-
tional resource limitations.

7.10 Results and discussion

All simulations were run on a single Nvidia GeForce RTX 2080ti GPU with 11 GiB
of VRAM, a 32 core AMD Ryzen 3970x with 64 GiB of RAM. Pressure solving was
done using DFSPH [BK15] with XSPH [Mon05] for artificial viscosity, with fluid
air phase interactions based on Gissler et al. [Gis+17], surface tension effects
model from Akinci et al. [AAT13], with the vorticity refinement method of Ben-
der et al. [Ben+17], dynamically adjusted time steps based on the CFL condi-
tion [Ihm+13] and the data handling model from Winchenbach and Kolb [WK19].
In all examples we set DFSPH to a density error of 0.01% and a divergence error
of 0.1%. Renderings were done using a custom ray tracing program, with surface
extraction based on the work of Yu and Turk [YT13]. Surface distance calculations
were based on a modified approach of Horvath and Solenthaler [HS13]. We use
the overall adaptive method of Winchenbach et al. [WHK17] in our evaluations,
although our approach is not restricted to this adaptivity approach. We imple-
mented our approach in the open source SPH framework openMaelstrom [Win19]
using the boundary handling approach of Winchenbach et al. [WAK20]. For the a
priori optimizations we use SciPy [JOP+01]

7.10.1 Test scenes

We evaluated our approach in seven scenes. The inlet scene involves a fluid inlet,
surrounded by a box, emitting fluid into a basin, which is agitated by a moving
wall on the opposing side of the inlet stream; see Fig. 7.1. The corner dam break
scene involves an initial fluid volume located in one corner of the simulation do-
main colliding with a regular obstacle in the opposing corner of the domain; see
Fig. 7.6. The double dam break scene involves two fluid volumes, initially located
in opposing corners of the simulation domain, colliding with a simple cubical rigid
object placed in the center; see Fig. 7.11. The simple dam break scene involves
a fluid volume in a simple box shaped domain with no additional obstacles; see
Fig. 7.12. The stream scene involves a fluid inlet in a simulation with no gravity;
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Figure 7.6: The corner dam break scene with an extracted fluid surfaced based
on [YT13] for an adaptive volume ratio of 1 : 100.

see Fig. 7.14. The hemisphere dam break scene involves a fluid volume colliding
with a hemisphere on the floor; see Fig. 7.15. The moving sphere scene involves
a solid sphere slowly being moved through a resting fluid volume; see Fig. 7.17.
Finally, the torus scene involves a torus rotating about its vertical axis in a rest-
ing basin of liquid; see Fig. 7.16. We chose a basic particle radius of r = 0.5m in
all of our scenes, however our method would also work at different basic particle
resolutions.

7.10.2 A priori position optimization

To evaluate our a priori optimization process, we optimized refinement patterns for
2 to 32 particles using the cubic-spline, quintic-spline, Wendland 2 and Wendland
4 kernels, using an L-BFGS-B optimizer [Byr+95]; see Fig. 7.7. The total error
shows similar behavior for different kernel functions, i.e.,the refinement pattern for
two particles has high error, with patterns around five to ten particles having lower
errors, and increasing error ratios on higher particle counts. In our evaluation the
cubic-spline function shows the largest error, an order of magnitude higher than
the quintic-spline function, and the Wendland 4 Kernel to have similar behavior to
the quintic-spline function. Additionally, the error on the neighboring particles is
the main component of the overall error, i.e.,the error on the refined particles is two
orders of magnitude smaller. Interestingly, the 1:13 splits results in icosahedron-
shaped refinement patterns for all kernel functions, with one particle at the center,
which is the configuration manually defined by Vacondio et al. [Vac+16].

7.10.3 A priori mass optimization

To evaluate the mass optimization process we use the patterns optimized a priori
for positions only, see Sec. 7.10.2, and used a constrained trust-region optimizer
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Figure 7.7: The logarithmic error terms E (solid), EN (dashed) and ES (dotted) for
a 1 : n split using a cubic-spline (blue), quintic-spline (red), Wendland 2 (green)
and Wendland 4 (purple) kernel functions in 3D after optimizing positions only.

[BSS87] to optimize the masses, without changing positions; see Fig. 7.8. The
results are almost identical to the position optimization alone and do not show
significant overall improvement for the kernels evaluated here.

7.10.4 A priori simultaneous optimization

After the a priori optimization of both positions and masses, we further optimized
the refinement patterns, using a constrained trust-region and SLSQP optimizer
[Kra88], by simultaneously optimizing positions and masses; see Fig. 7.9. The
results show an overall reduction of the error by up to a factor of 2, mostly reducing
the error on the neighboring particles and not on the refined particles themselves.
The overall refinement patterns stay in very similar overall spatial configurations
and get only slightly modified during the combined optimization.

We tried two different initialization schemes for the combined optimization,
i.e., starting from pre-optimized spatial layouts and random initialization. While
the pre-optimized initialization results in stable, but potentially local minima, the
combined optimization did not robustly converge when initialized with random
positions and masses, regardless of the optimization algorithm used. Furthermore,
comparing our results against the prior refinement patterns of Winchenbach et al.
[WHK17] (see Fig. 7.10), we can observe a significant reduction in the error terms.
Overall, our refinement patterns provide an improvement of about two orders of
magnitude, regarding both the error on refined and neighboring particles, and
yield comparable errors across all refinement ratios.

7.10.5 Online optimization

Starting with the a priori optimized refinement patterns we used the double dam
break scene to evaluate the errors during an SPH simulation, using the cubic-
spline kernel and refinement patterns for 2 to 16 particles. In general, using the a
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Figure 7.8: The logarithmic error terms E (solid), EN (dashed) and ES (dotted) for
a 1 : n split using a cubic-spline (blue), quintic-spline (red), Wendland 2 (green)
and Wendland 4 (purple) kernel functions in 3D after optimizing masses (with pre-
optimized positions).

priori refinement patterns worked reasonably well in most cases. We, however, fre-
quently observed instabilities, particularly in the fluid interior that resulted in local
compression, which can destabilize the entire simulation. Applying our proposed
online optimization avoids virtually all of these interior instabilities, however, insta-
bilities caused by boundary interactions and by fully constrained particle merging
remain (see also Sec. 7.4). Overall, applying the online optimization to practical
particle configurations during a simulation results in slightly higher error values
(in average an additional error of E ≈ 0.01) compared to the a priori optimiza-
tion under ideal particle configurations. This additional error is not reduced when
using the same optimization methods as a priori. Furthermore, outside of remov-
ing instabilities, the online optimization provides significant visual benefits on the
fluid surface as using the exact same pattern on the surface leads to visibly re-
peating particle patterns on the surface, which are also visible in some surface
extraction approaches. In the gravity-free stream scene, our method is capable
of producing a smooth fluid surface in a difficult scenario and provides a smooth
resolution gradient from low to high resolution, whereas prior methods were not
able to stably simulate this scene, when enforcing incompressibility; see Fig. 7.14.
Additionally, this improved behavior on the surface of an inlet flow allows us to
emit particles at a fixed low resolution, as done in the inlet scene, and only re-
fining the particles once they become visible. Moreover, evaluating the overall
energy of the simple dam break scene, see Fig. 7.13, shows a significantly re-
duced loss of energy when using all aspects of our method, compared to prior
work. Whilst using the online optimization alone, without local viscosity, does not
provide significant benefits in this regard, i.e., the blue and green lines are fairly
close, using our online optimization allows for the utilization of our local viscosity
scheme that provides a significant reduction in dampening. Using the blending
process, and refinement patterns from Winchenbach et al. [WHK17] results in a
mostly stable simulation, but causes some instabilities. For example, at 12 sec-
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Figure 7.9: The logarithmic error terms E (solid), EN (dashed) and ES (dotted) for a
1 : n split using a cubic-spline (blue), quintic-spline (red), Wendland 2 (green) and
Wendland 4 (purple) kernel function in 3D after simultaneous optimization (with
pre-optimized positions and masses).

Figure 7.10: The logarithmic error terms E (solid), EN (dashed) and ES (dotted) for
a 1 : n split for a cubic-spline kernel using our approach (blue) and manually tuned
refinement patterns [WHK17].

onds (see Fig. 7.13) a momentary increase of the total energy can be observed,
which was caused by an instability induced by a particle refinement. Reducing the
impact of these momentary increases in energy can be achieved by increasing the
artificial viscosity, however, this causes an overall significant loss of detail and a
noticeably viscous fluid behavior; see Fig. 7.12 bottom right and top right. Note
that increasing the artificial viscosity only reduces the impact of these instabili-
ties but does not prevent them completely; see Fig. 7.15 top row. Furthermore, the
moving sphere scene (see close-up Fig. 7.17) highlights the smooth transition of
particles between resolutions, even as they are close to a boundary object, using
our method.
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Figure 7.11: The double dam break scene we used to evaluate performance and
online optimization, particle velocity color coded from purple (0 m/s) to yellow (30
m/s). Top left shows a low resolution simulation (r = 0.5m), bottom left an adaptive
resolution simulation (rbase = 0.5m, 1:128 adaptive), top right a uniform simulation
with the same particle count as the adaptive simulation (r = 0.218m) and bottom
right a high-resolution simulation (r = 0.1m).

7.10.6 Influence of local viscosity and blending

In order to evaluate the influence of our blending scheme and the local viscosity
approach we use the simple dam break scene. We visually compare the overall
flow behavior of using our blending with local viscosity and online optimization,
our blending and online optimization, our blending and the blending approach of
Winchenbach et al. [WHK17] (using their refinement patterns). Comparing our
blending against the prior approach, we only observe a small difference (Fig. 7.12
bottom left and bottom right). Adding the online optimization allows us to lower
the overall viscosity of the simulation, as it becomes more stable, resulting in more
flow details. However, adding the local viscosity allows us to reduce the global ar-
tificial viscosity by a factor of 2, resulting in a significant increase of more surface
details. In the hemisphere dam break scene the induced instabilities from the
refinement process using prior approaches are too high to be compensated by
an increased artificial viscosity and, thus, fully destabilize the simulation at higher
adaptive volume ratios; see Fig. 7.15 top right. In contrast to this, our online opti-
mization process ensures a low refinement error and, accordingly, enables much
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Figure 7.12: The simple dam break scene we used to evaluate the impact of our
proposed blending, local viscosity and online optimization approaches, particle
velocity color coded from purple (0 m/s) to yellow (30 m/s). Top left uses our
blending, local viscosity and online optimization, top right uses our blending and
online optimization, bottom left uses our blending and bottom right uses the ap-
proach of [WHK17]. Velocity color coded.

Variant nfluid radius ratio ∆t Frame Adaptive
/m /ms /s /ms

Low 168K 0.5 1:1 8.0 0.15
Average 1.9M 0.218 1:1 5.8 1.55

High 21M 0.1 1:1 2.0 45.0
Adaptive 1.9M 0.5 1:128 3.8 1.77 325

Table 7.1: Quantitative comparison for the double dam break scene; see Fig. 7.11.
All performance numbers are average values with respect to 30 seconds simulation
time and timings refer 1/60s of simulation time.

higher adaptive volume ratios in difficult scenarios.

7.10.7 Performance

To evaluate the performance and efficiency of our method we first use the double
dam break scene; see Fig. 7.11. In this scene, we compare the adaptive simu-
lation with a volume ratio of 128:1, a fixed resolution simulation with the same
number of particles as the adaptive simulation, on average, and a high-resolution
simulation at approximately the finest resolution of the adaptive simulation. The
simulated time is 30 sec; see Table 7.1 for the quantitative results. Overall, our
method provides comparable performance to a simulation of equal particle count,
with some overhead due to the usage of an adaptive method. Note that the time
per frame of our method minus the time spent on adaptivity related methods is
less than the time per frame of the average resolution simulation due to a lower
time step requiring fewer pressure solver iterations per frame. Compared to the
high-resolution variant, our method with moderate adaptive volume ratios pro-
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Figure 7.13: The overall energy for the simple dam break scene over 30 simulated
seconds. The dashed line indicates potential energy, the dotted line kinetic energy
and the solid line indicates total energy. The graph compares the prior approach
from [WHK17] (black) against our approach with our blending, local viscosity and
online optimization (red), with our blending and online optimization (blue) and with
only our blending (green). The top right section shows the orange region closer
up.

vides a significant speed-up of approximately 25 times. Accordingly, the speed-
up will become significantly higher, at higher adaptive volume ratios. However,
due to computational resource limitations, we were not able to provide a similar
comparison against higher uniform resolution. Overall, the surface appearance
of our method is similar to the high-resolution one, i.e.,considering the tearing of
thin fluid sheets, but at orders of magnitude lower computational costs, even at
moderate adaptive volume ratios. Furthermore, in the torus scene, our method
can focus computational resources in small areas of interest, allowing for much
greater detail without requiring hundreds of millions of particles in areas that are
not of interest. However, scenes of very high adaptive volume ratios are difficult to
render as the adaptivity induces a highly uneven particle distribution that causes
raytracing acceleration structures, e.g., kd-trees, to be very unbalanced and, thus,
inefficient. Accordingly, even when rendering particles as spheres, the computa-
tional requirements increase linearly with higher adaptive volume ratios, i.e.,O(α),
and make rendering very high ratios computationally difficult. For example, with
our computational resources, the hemisphere dam break scene required 4 hours
to render a sequence of 30 seconds at an adaptive volume ratio of 1 : 1, 000, the
moving sphere scene took 2.5 days to render at a ratio of 1 : 20, 000 for a 20
second sequence, whereas the torus scene required multiple hours for a single
frame at a ratio of 1 : 1, 000, 000.

Finally, at very high adaptive volume ratios, the neighborhood search becomes
computationally increasingly expensive. For example, at a ratio of 1 : 1, 000, a
cell contains approximately 12, 000 particles, compared to 12 particles per cell
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Figure 7.14: The gravity-free stream scene, particle volume color coded from black
to yellow. The prior approach [WHK17] (top) is not able to stably simulate this
scenario, whilst our improved method (bottom) only produces some slight irregular
particle distributions.

in homogenous resolutions. The data-structure approach of Winchenbach and
Kolb [WK19] resolves these problems in most situations; however, due to symmet-
ric interactions of particles, required to ensure stability, the number of particles
queried to find the actual neighbors of a particle can still be significantly higher
than for homogenous resolutions. This problem can reduced by ensuring a large
enough distance between low and high-resolution particles, e.g.,by setting dmax

sufficiently high in Eqn. 7.40. Furthermore, limiting the number of neighbors per
particle, see [WHK16] and [WK19], can further reduce the problem for actual SPH
evaluations, however the neighborhood search is still a computationally expensive
operation.

7.10.8 Clamping mass distributions

When using an adaptive method, the user specifies a desired volume ratio between
the volume of the smallest Vfine to the volume of the largest Vbase particles. However,
this desired ratio is almost never exactly achieved. For example, a particle with
V = 1

350
Vbase and a desired ratio of 1 : 1000 might be split into 3 particles, which

results in particles of volume 1
1150

Vbase, exceeding the desired ratio. Optimizing
the mass distribution exacerbates this effect as the optimization process creates
particles of very different volumes. In Sec. 7.7.2, we proposed to clamp the weights
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Figure 7.15: The hemisphere dam break scene, particle volume color coded from
black to white. The top row uses the prior approach, while the bottom row uses our
approach, with the left column using a 1 : 32 adaptive volume ratio and the right
column using a 1 : 1000 adaptive volume ratio. Without an online optimization pro-
cess (top row), instabilities appear at the boundary that get more pronounced as
the adaptive volume ratio increases and would require significant added viscosity
to reduce. Using our approach (bottom row), with its online optimization, yields a
stable simulation for both adaptive volume ratios.

ϕ between 0.5 and 2, which limits the variation in particle sizes. In the simulation
shown in Fig. 7.6 the clamped optimization process results in an effective ratio of
1 : 1250 instead of the desired 1 : 512 ratio. Not clamping the weights resulted in
an effective ratio of 1 : 7500. Consequently, this substantial difference in smallest
particle volume requires a significantly smaller time step, due to the CFL condition.

7.10.9 Limitations

The adaptive method of Winchenbach et al. [WHK17], which we base our contribu-
tions on, already demonstrated scaling problems of certain parameters, e.g., the
surface tension parameters used by Akinci et al. [AAT13] and parameters used
for surface extraction by Yu and Turk [YT13]. That is, these parameters are heavily
dependent on particle sizes, causing visual discontinuities in the surface extrac-
tion. Additionally, Winchenbach et al. [WHK17] described a problem with bound-
ary handling methods based on particle representations, due to size differences,
which can be avoided by using non-particle-based methods, i.e., [KB17]. More-
over, particle merging can lead to instabilities, especially close to boundaries, if
applied with SPH solvers commonly used in computer animation. Furthermore, if
the sizing function is based on the surface distance of a particle, i.e., using the
surface-distance method of Horvath and Solenthaler [HS13], the stability of these
methods plays an important role in the stability of the overall method. Accordingly,
some artifacts may arise due to a non-stable sizing function, i.e., particles sitting
on the surface of a boundary might not be properly detected as surface particles.
Investigating this is beyond the scope of this paper.

Additionally, rendering a simulated fluid surface is an important aspect in com-
puter animation. However, existing surface extraction methods are not designed
for varying particle resolutions. They often involve parameters that significantly de-
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Figure 7.16: The torus scene, particle volume color coded black to white, with the
bottom right showing the overall simulation domain. Our method can simulate an
adaptive volume ratio of up to 1 : 1, 000, 000, allowing for fine details close to the
torus but limiting overall computational resources.

pend on the particle resolution and lead to visual artifacts such as missing details
in high-resolution areas, lumpy surfaces in low resolution areas or visible changes
in areas of varying resolution. Because of this, and since we explicitly need to
investigate the varying particle resolution, we opt for displaying particle-based
renderings and only provide an example of a surface extraction for parameters
chosen for the high-resolution surface; see Fig. 7.6. For very high adaptive volume
ratios even particle-based renderings become impractical; see Fig. 7.16.

Please note that in the images we use linearly color coded quantities. Thus, a
change from the highest particle volume to a particle with half the volume, i.e., a
1:2 refinement, results in a visual discontinuity. Nonlinear color mapping could
resolve this discontinuity to some degree, but makes the results more difficult to
interpret.

7.11 Conclusions

We presented an optimization approach for particle refinement patterns, based on
a novel discretized objective function that describes the error introduced by the
particle refinement for symmetric SPH formulations. This allows us to significantly
improve stability and removes the need for user intuition and parameter tuning,
and is applicable to arbitrary refinement ratios using any kernel function. Our
optimization approach works both a priori, to generate refinement patterns for
ideal particle distributions, and online, to optimize the refinement pattern during
a simulation with respect to the specific particle neighborhood. We also presented
an improved non-linear blending process that, together with a novel local artificial
viscosity formulation, that removes the impact of residual refinement errors. Our
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Figure 7.17: The moving sphere scene, particle volume color coded from high
(purple) to low (yellow). Here a sphere slowly moves through a pool of liquid with
an adaptive volume ratio of 1 : 20, 000.

improved process allows for the simulation of highly adaptive incompressible SPH
flows, even in highly turbulent and low-viscosity situations. Currently, our approach
is mostly limited by other methods it relies upon, i.e., surface extraction methods.

7.A Appendix

This document is intended to provided an additional, detailed, derivation of some
of the aspects of the main paper content and was originally part of the supple-
mentary material but is included as an appendix here for completeness.

7.A.1 Problem statement

In order to determine the error terms, and their derivatives, of our contribution
we need various derivative terms of an SPH kernel function. As these terms are
often hard to find, require special care to be taken when determining them or are
a common source of notational differences, we will first discuss generic kernel
functions and their derivatives before transitioning to the actual error terms. The
kernel derivatives are no new contribution but are important to keep consistent.

7.A.2 Kernel functions

In SPH the most essential part is the kernel function. A kernel function W is used
in the core formulation of SPH:

(7.42) A(x) =
∑
j

Aj
mj

ρj
Wij.

This formulation allows one to determine the value of a quantityA at any point x
using neighboring particles j and their respective quantity Aj , their corresponding



7.A. APPENDIX 177

mass mj and their density ρj weighed by the kernel function W . A kernel function
for SPH has to fulfill the following basic, mathematical, requirements:

• Converge to a Dirac delta function with 0 support: lim
h→0

W (x−x′,h) = δ(x−x′)

• Integrate to one over the support domain:
∫
Ω
W (x− x′,h)dx′ = 1

• Have compact support: W (x− x′,h) = 0; ||x− x′|| > κh

• Be symmetric: W (x− x′,h) = W(x′ − x,h)

• Be even:∇x′W (x− x′,h) = −∇xW(x− x′,h)

The kernel should also be positive, monotonically decreasing and sufficiently
smooth for good behavior in an SPH method. In practice many types of functions
can achieve this goal, but the exact choice of function is not relevant here.

A generic kernel function can be written as:

(7.43) W (x− x′,h) =
αd

hd
Ŵ(q)

With d being the spatial dimension, αd a scaling factor to satisfy
∫
Ω
W (x −

x′,h)dx′ = 1, q = ||x−x′||
h

a dimensionless number representing the relative
distance and finally Ŵ a function that is defined over the range [0, 1]. The scaling
factor αd is also notated as C if the dimensionality is clear from context.

Ŵ is sometimes referred to as a normalized kernel function, as it requires an
input in the range [0, 1], however this might be misleading as sometimes W̄ (x −
x′,h) = W(x−x′,h)

W(0,h)
is also referred to as a normalized kernel function.

For an actual particle i we define the support radius h as

(7.44) hi = η 3

√
mi

ρi
,

where η is a parameter that controls the number of neighbors per particle, mi

representing the mass of the particle and ρi being the actual density of the particle
given as

(7.45) ρi =
∑
j

mjWij.

At this point it is relevant to note a difference in notation between computer
animation and computational fluid dynamics. The former uses h directly as the
support radius, whereas the latter uses h as the smoothing length and H as the
support radius, where H is determined by multiplying h by H/h, which for cubic
spline kernels is ≈ 1.84. For our purposes we utilize the computer animation no-
tation as this means a kernel function is defined based solely in the range [0, h]
instead of [0, 1.84h] for cubic spline kernels.

In order to ensure symmetric interactions, under adaptive resolutions, a
symmetric support radius for an interaction of two particles i and j has to be
chosen as
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(7.46) Wij = W (|xi − xj|,
hi + hj

2
),

where hi+hj

2
indicates this choice of a symmetric kernel function.

7.A.3 Spatial derivative ∇iWij

Applying the spatial derivative ∇i = [ ∂
∂xi
, ∂
∂yi
, ∂
∂zi

] to the kernel function W results
in

(7.47) ∇iWij =
xij
|xij|

C

hd+1

∂Ŵ (q)

∂q
,

where C
hd+1

∂Ŵ (q)
∂q

is sometimes also denoted as ∇W (r, h) with no subscript on
∇ in literature, however this can easily be misleading to readers so we avoid this
notation and instead define

(7.48) W ′(r, h) =
C

hd+1

∂Ŵ (q)

∂q
.

Accordingly we can write ∇iWij as

(7.49) ∇iWij = x̂ijW
′
ij.

Note, however, that this is just a notational short hand to make some terms
more readable.

7.A.4 Derivative by support radius ∂
∂hWij

The prior derivative by spatial quantities is relatively common in literature as it is
required for many methods, i.e. pressure solvers. A derivative by support radius
is much less commonly found as it is most often part of so called ‘gradient-h‘
terms that are sometimes used in CFD, or astrophysical, applications of SPH that
require these terms for an improved numerical accuracy. As this term is much
less commonly used we will go into more detail on this derivative and how certain
approximations have to be used for symmetric SPH.

The first step is to apply the derivative ∂
∂h

to the kernel function, which yields

(7.50)
∂W (r, h)

∂h
=
∂
[

C
hd Ŵ (q)

]
∂h

,

where due to the product rule this expression can be expanded as

(7.51)
∂W (r, h)

∂h
= C

∂ 1
hd

∂h
Ŵ (q) +

C

hd
∂Ŵ (q)

∂h
.
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The first term can be simplified by re-substitution of the kernel function itself
as

(7.52) C
∂ 1

hd

∂h
Ŵ (q) = −d

h

C

hd
Ŵ (q) = −d

h
W (r, h).

The second term can be simplified by applying ∂
∂h

further as

(7.53)
C

hd
∂Ŵ (q)

∂h
=
C

hd
∂Ŵ (q)

∂q

∂q

∂h
,

with q = r
h
. We can simplify ∂q

∂h
by again applying the derivative to yield

(7.54)
∂q

∂h
= r

∂ 1
h

∂h
= −r 1

h2
.

Thus the second term, using a re-substitution of W ′, becomes

(7.55)
C

hd
∂Ŵ (q)

∂q

∂q

∂h
= −q C

hd+1

∂Ŵ (q)

∂q
= −qW ′(r, h),

which in total results in

(7.56)
∂W (r, h)

∂h
= −d

h
W (r, h)− qW ′(r, h).

Applying the symmetric SPH formulation to W asW
(
r,

hi+hj

2

)
, where effectively

h =
hi+hj

2
, which, due to partial derivatives, gives the final derivative for the kernel

function as

(7.57)
∂W (r, h)

∂hi
=

1

2

∂W (r, h)

∂h
=

1

2

[
−d
h
W (r, h)− qW ′(r, h)

]
,

which for a specific interaction between two particles i and j can also be written
as

(7.58)
∂Wij

∂hi
= −1

2

[
d

hij
Wij + qW ′

ij

]
.

7.A.5 Derivative by mass ∂
∂mi

Wij

In addition to the partial derivative of the kernel by the support radius, we also
need the partial derivative by mass, ∂

∂mi
. Applying this to the kernel function yields

(7.59)
∂W (r, h)

∂mi

=
∂W (r, h)

∂r

∂r

∂mi

+
∂W (r, h)

∂h

∂h

∂mi

.
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We set ∂r
∂mi

= 0 as the position is not directly influenced by the mass. This

leaves ∂W (r,h)
∂h

∂h
mi

where ∂W (r,h)
∂h

is treated as before. The remaining term then is ∂h
mi

.
Recall that

(7.60) hi = η 3

√
mi

ρi
,

where we apply the derivative by ∂
∂mi

, which yields

(7.61)
∂hi
∂mi

=
1

3
η

(
mi

ρi

)− 2
3 ∂mi

ρi

∂mi

=
1

3
η

(
mi

ρi

)− 2
3

∂mi

∂mi
ρi −mi

∂ρi
∂mi

ρ2i
,

where ∂mi

∂mi
is obviously 1. Refactoring results in

(7.62)
hi
3mi

+ η
1

3

(
mi

ρi

)− 2
3 mi

ρ2i

∂ρi
∂mi

=
hi
3mi

− hi
3ρi

∂ρi
∂mi

,

where ρi =
∑

j mjWij , as per normal SPH. If we apply the derivative ∂
∂mi

to this
term, and utilize the product rule again, we get

(7.63)
∂ρi
∂mi

=
∑
j

(
∂mj

∂mi

Wij +mj
∂Wij

∂mi

)
,

where the first term is trivial as it is 0 for i ̸= j and 1 otherwise. This further
simplifies the equation to

(7.64)
∂ρi
∂mi

= Wii +
∑
j

mj
∂Wij

∂mi

.

If we now recall that ∂Wij

∂mi
, which was the actual partial derivative we were look-

ing for, we get a recursive derivative with a dependency on all neighboring values
as well. We can write this dependency as:

(7.65)
∂W (r, h)

∂mi

=
∂W (r, h)

∂h

∂h

∂mi

,

(7.66)
dhi
dmi

=
hi
3mi

− hi
3ρi

∂ρi
∂mi

,

(7.67)
∂ρi
∂mi

= Wii +
∑
j

mj
∂W (r, h)

∂mi

.

Or, by simplifying the equations, we can simply write:
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(7.68)
∂Wij

∂mi

=
∂Wij

∂h

[
hi
3mi

+
hi
3ρi

(
Wii −

∑
k

mk
∂Wik

∂mi

)]
.

This could in theory be solved, approximately, by evaluating this term until the
result converges within some ϵ threshold. However, this makes evaluating the gra-
dient function prohibitively expensive.

We can, however, make an assumption by using non varying smoothing lengths
where instead of using hi = η 3

√
mi

ρi
, we assume that the effective volume Vi = mi

ρi
is

always the same as the resting volume V 0
i = mi

ρ0i
, where ρ0i denotes the rest density

of particle i, we get

(7.69) hi = η 3

√
mi

ρ0i
.

This does not correct for varying amounts of mass in a spatial region, meaning
that the constraint of ρiVi = const, which is required for some CFD approaches, is
violated, but this seems unavoidable and is common practice in computer
animation. Doing this now changes ∂hi

∂mi
significantly as ∂ρ0i

∂mi
becomes 0 and thus

(7.70)
dhi
dmi

=
hi
3mi

,

resulting in the final derivative of the kernel function by the mass of a particle
as

(7.71)
∂Wij

∂mi

=
hi
3mi

∂Wij

∂hi
,

which is comparatively trivial to calculate.

7.A.6 Derivative by mass ratio ∂
∂λi
Wij

For later optimizations we have a set of weights Λo = [λ1, . . . , λn], which are con-
strained by

(7.72)
∑
i

1

λi
= 1,

which means that we can determine an individual weight 1
λj

in two ways. We can

express the weight trivially as 1
λj

= 1
λj

and using the other weights,by refactoring
the constraint. These two expressions can be written as

(7.73)
1

λj
=

1

λj
∧ 1

λj
= 1−

∑
i ̸=j

1

λi
.
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Applying the partial derivative to the first term is straight forward as we can
simply write

(7.74)
∂

∂λi

[
1

λj

]
=

{
0, i ̸= j

− 1
λ2
i
, else

.

The other term is significantly more challenging as just directly applying the
derivative would yield

(7.75)
∂

∂λi

[
1−

∑
i ̸=j

1

λi

]
=

{
1
λ2
i
, i ̸= j

0, else,

which is not ideal as this is the equivalent of assuming that any change of
ratio of one particle is applied equally to a single other particle, and every other
particle assumes for it’s derivative to take all of the change. To avoid this we
instead assume that the change is distributed equally, which in turn yields

(7.76)
∂

∂λi

[
1−

∑
i ̸=j

1

λi

]
=

{
1

n−1
1
λ2
i
, i ̸= j

0, else,

with n being the size of the set of weights. Combined with the first formulation
we could now combine these terms together to get a derivative applicable in every
case. However, instead we introduce a matrix M, which describes this distribution.
This means that for the case of 1 to 1 we can define

(7.77) Mij =

{
1, i ̸= j

−1, else,

and in the case of an even distribution

(7.78) Mij =

{
1

n−1
, i ̸= j

−1, else.

A good distribution matrix M should fulfill the condition

(7.79)
∑
j

Mij = 1,

to preserve reasonable behavior. In general any arbitrary matrix could be cho-
sen, i.e. M ∈ Rn×n, but we only utilized the even distribution one. As such we can
write:

(7.80)
∂

∂λi

[
1

λj

]
=

Mij

λ2i
.
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This term complicates partial derivatives by λi significantly as, for example,
∂Wns

∂λi
̸= 0 if s or n also relate to Λo, i.e. they are part of the same set of refined

particles (this term will later be clarified) So. Now applying the partial derivative to
a kernel function we get:

(7.81)
∂

∂λi

[
W

(
|xj − xs|,

hs + hj

2

)]
.

Utilizing the chain rule, as before, we can write this as

(7.82)
∂Wsj

∂r

∂r

∂λi
+
∂Wsj

∂h

∂h

∂λi
,

with r = |xj − xs| and h =
hs+hj

2
. The first derivative term is zero, as ∂r

∂λi
= 0,

but the second term remains. From before we know that

(7.83)
∂W (r, h)

∂h
= −d

h
W (r, h)− qW ′(r, h),

which leaves only ∂h
∂λi

as unknown. Due to symmetric support radii for
interactions we can write

(7.84)
∂h

∂λi
=

1

2

∂hs
∂λi

+
1

2

∂hj
∂λi

.

The derivatives of the support radii by the weights are only non zero if s or j are
in the same set of refined particles So as i. As such we can rewrite this in terms
of the indicator function

(7.85) 1So(j) =

{
1, j ∈ So
0, else,

as:

(7.86)
∂h

∂λi
=

1

2

(
∂hs
∂λi

1So(s) +
∂hj
∂λi

1So(j)

)
.

We can determine the support radius of a particle as

(7.87) hs = η 3

√
ms

ρ0s
= η 3

√
1

λs

mo

ρ0o
= η 3

√
mo

ρ0o

3

√
1

λs
=

ho
3
√
λs
.

If we now apply the partial derivative, with respect to the mass ratio of any
particle i (which is part of the same set of refined particles as s) we first substitute
1
λs

= c and get
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(7.88) hs = η 3

√
ms

ρ0s
= ho

3
√
c,

where we can trivially apply ∂
∂λi

as this is

(7.89)
∂hs
∂λi

=
1

3
hoc

− 2
3
∂c

∂λi
=

1

3
ho

(
1

λs

)− 2
3 ∂ 1

λs

∂λi
=

1

3
ho

1
3
√
λs
λs
∂ 1

λs

∂λi
=

1

3
hsλs

Mis

λ2i
,

where the last step is done by resubstituting hs = ho
3√λs

. Putting this back into
∂h
∂λi

then yields

(7.90)
∂h

∂λi

1

2

(
1

3
hsλs

Mis

λ2i
1So(s) +

1

3
hjλj

Mij

λ2i
1So(j)

)
.

Collecting the common terms 1
3λ2

i
we can simplify this to

(7.91)
∂h

∂λi
=

1

6λ2i
(hsλsMis1So(s) + hjλjMij1So(j)) ,

which gives the final derivative term

(7.92)
∂Wsj

∂λi
=

1

6λ2i
(hsλsMis1So(s) + hjλjMij1So(j))

∂Wsj

∂hsj
,

with

(7.93)
∂Wsj

∂hsj
= − 1

hsj

(
dWsj + |xsj|W ′

sj

)
.

7.A.7 Summary

To sum it up we can define a kernel function in general for the interaction between
two particles i and j as:

(7.94) Wij = W (|xi − xj|,hij) =
αd

hd
ij

Ŵ

(
q =

|xi − xj|
hij

)
with the helper notation

(7.95) W ′(r, h) =
C

hd
∂Ŵ (q)

∂q
.

We can then get the following set of derivative terms:

(7.96) ∇iWij =
xij

|xij|
W ′

ij.
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(7.97)
∂Wij

∂hi
= −1

2

[
d

hij
Wij + qW ′

ij

]

(7.98)
∂Wij

∂mi

=
hi
3mi

∂Wij

∂hi

(7.99)
∂Wsj

∂hsj
= − 1

hsj

(
dWsj + |xsj|W ′

sj

)

(7.100)
∂Wsj

∂λi
=

1

6λ2i
(hsλsMis1So(s) + hjλjMij1So(j))

∂Wsj

∂hsj
,Mij =

{
1

n−1
, i ̸= j

−1, else,

7.A.8 Refinement error terms

In our contribution we utilized a generic error formulation, which has been used
before, and before calculating required derivative terms we would like to expand
on this error term and it’s motivation and aspects.

In general there are five quantities that should be preserved:

1. Conservation of Mass

2. Conservation of Linear Momentum

3. Conservation of Angular Momentum

4. Conservation of Energy

5. Conservation of Field Quantities

Out of these conservation of mass is the easiest quantity to preserve as we can
simply enforce the constraint

(7.101)
∑
s∈So

ms = mo.

Conservation of Linear momentum is also straight forward as we can set the
velocity of all refined particles equal to the initial particle

(7.102) vs = vo,∀s ∈ So,

which under mass conservation guarantees that

(7.103)
∑
s∈So

msvs = movo.
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Similarly Angular Momentum can be conserved straight forward if the newly
refined particles have equal velocity and have a center of mass that is equal to
the position of the original particle, i.e. by using symmetric refinement patterns.
However, enforcing this quantity exactly is very difficult and as such is usually not
explicitly taken care of.

This leaves conservation of energy and conservation of field quantities and
prior work has shown that it is not mathematically possible to conserve both
quantities at the same time. Obviously, decreasing or even increasing energy in a
simulation is not ideal but neither is a non-conservation of field quantities.

As everything in SPH is based around the density, keeping the density field con-
served across a refinement process might be the best option as locally
increasing density would lead to compression, which incompressible SPH methods
tend to not handle very well (as they are designed to prevent errors from occurring
not necessarily to remove them after they suddenly appear). As such we chose to
prioritize conservation of field quantities (specifically density) over conservation
of energy.

Using this conservation approach for an adaptive process we can determine
an error at any position in space due to a refinement process by defining a spatial
error

(7.104) τ(x) = ρ∗(x)− ρ(x)

as the difference of density before (ρ) and after (ρ∗) refinement. This error term
can be evaluated across a domain, which due to compact support radii is bounded
by the ho, as

(7.105) E =

∫
Ω

τ(x)2dx,

using a sum of squared error term.
This is a continuous error function, which could also be interpreted as enforcing

Dρ
Dt

(divergence-freedom) over a refinement step, instead of a time step.
We can modify τ by realizing that the difference of before and after can be

represented as removing the original particle and adding the particles, keeping
everything else equal as

τ(x) =
∑

j∈Nx\o

mjW (|x− xj|,h) +
∑
s∈So

msW (|x− xs|,h)︸ ︷︷ ︸
ρ∗(x)

−


∑

j∈Nx\o

mjW (|x− xj|,h) +moW (|x− xo|,h)︸ ︷︷ ︸
ρ∗(x)


(7.106)

simplifies to:
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(7.107) τ(x) =
∑
s∈So

msW (|x− xs|,h)−moW (|x− xo|,h) .

However, this term cannot be evaluated easily for symmetric SPH formulations
due to the h term. For a scatter based formulation, as it was used for weakly
compressible methods in the past, h simply evaluates to hj , i.e. the support radius
of the interacting particle. This would change the τ term to now be

(7.108) τ(x) =
∑
s∈So

msW (|x− xs|,hs)−moW (|x− xo|,ho) ,

which is straight forward to compute as both hs and ho are either easy to calcu-
late or known (see the prior discussion on kernel functions). For symmetric formu-
lations however h evaluates to h(x)+hj

2
, where h(x) represents the support radius

for a location. This could potentially be evaluate using

(7.109) h(x) = η 3

√
m(x)

ρ(x)
, ρ(x) =

∑
j∈Nx

mjW

(
|x− xs|,

h(x)− hj

2

)
.

This term however is not directly computable as we have a dependence of
h(x) to itself, where we would iteratively solve these equations until the result
convergence, and a dependence on the mass of a point m(x), which would be
resolved by using some trapezoidal integration scheme, which assigns a volume
to each integration point and thus a mass. This complexity makes this error term
computationally very expensive and not useful in practice due to finite resources.

We resolve this problem by realizing that the core issue stems from requiring
h(x), which is unknown. However, the support radius is known (exactly) at the posi-
tions of neighbors of the original particle, the position of the original particle and
can be evaluated at the positions of the refined particles. Assuming the common
practice of computer animation that V = V 0 (for calculations of support radii),
hs = η 3

√
V 0
s and ms = 1

λs
mo we can determine the error on the positions of the

neighbors of the original particle as

(7.110) τ(xn) = τn = mo

∑
s∈So

1

λs
Wns −moWno,∀n ∈ N̄o

and on the positions of the refined particles as

(7.111) τ(xs) = τs =
∑
j∈Ns

mjWsj +mo

∑
k∈So

1

λk
Wsk − ρo,∀s ∈ So.

In the second term we assume that ρ(xs) = ρ(xo), as this conserves the quan-
tity on the refined particles with respect to the original particle and asNs ⊆ No we
cannot make the simplification that was applied to the error term on the position
of neighboring particles.
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In order to calculate the overall error terms we then simply weigh these terms
by the mass of the respective particle and get the following terms:

(7.112) En =
∑
n∈N̄o

mnτ
2
n,Es =

∑
s∈So

msτ
2
s ,

(7.113) E =
∑
n∈N̄o

mnτ
2
n +

∑
s∈So

msτ
2
s .

As this error describes the violation of the conservation of density (as a field
quantity) through refinement, a minimal error will mean the minimal violation, i.e.
we get an optimization problem of minE.

To recap:
In prior work Feldmann used the following set of error terms (for scatter based

SPH):

(7.114) EF =

∫
Ω

τ F(x)dx, τ F(x) =
∑
s∈So

msW (|x− xs|,hs)−moW (|x− xo|,ho) ,

with
∫
Ω

being discretized using a trapezoidal integration scheme.
We could define the following set of error terms:

ES =

∫
Ω

τS(x)dx, τS(x)

=
∑
s∈So

msW

(
|x− xs|,

h(x) + hs

2

)
−moW

(
|x− xo|,

h(x) + hs

2

)
,

(7.115)

with
∫
Ω

being discretized using a trapezoidal integration scheme and h(x) be-
ing iteratively solved until the value converges.

Finally we can define the following set of error terms:

(7.116) E =
∑
n∈N̄o

mnτ
2
n +

∑
s∈So

msτ
2
s ,

(7.117) τn = mo

∑
s∈S

1

λs
Wns −moWno, τs =

∑
j∈Ns

mjWsj +mo

∑
k∈So

1

λk
Wsk − ρo,

where E is already discretized as described previously.
In order to conserve linear momentum and mass, we cannot modify all aspects

of the refined particles. As such we can only modify their relative positions (xS :
xs, s ∈ So) and their relative mass distribution (mS : ms = 1

λs
mo, s ∈ So) under

constraints (λs > 0∀s ∈ So,
∑

s∈So
ms = mo).

If we were to define an optimization problem directly
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(7.118) minxS ,λSE = minxS ,λS

∫
Ω

τ(x)dx,

we would find an optimal but useless solution, regardless of the specific τ used
as the solution:

(7.119) xs1 = xo,ms1 = mo,ms∈S\s1 = ϵ

is ideal but useless as it sets the mass of all but one particle to virtually zero
and makes one particle identical to the original particle. To avoid such solutions
prior work has split the optimization of position and mass to be in sequence, which
we also do for our optimization method. As such we first optimize

(7.120) minxSE = minxS

∑
n∈N̄o

mnτ
2
n +

∑
s∈So

msτ
2
s


and then optimize

(7.121) minλSE = minλS

∑
n∈N̄o

mnτ
2
n +

∑
s∈So

msτ
2
s


under the constraints λs > 0∀s ∈ So and

∑
s∈So

ms = mo. This split also allows
us to use an unconstrained optimization method for the positional optimization
(which involves d times as many parameters) and only requires a constrained op-
timization for the mass distribution optimization.

7.A.9 Optimizing by position

In general we had two distinct error terms in

(7.122) E =
∑
n∈N̄o

mnτ
2
n +

∑
s∈So

msτ
2
s ,

where one represents the error evaluated on the positions of the neighbors of
the original particle

(7.123) τn =
∑
s∈S

msWns −moWno

and one represents the error evaluated on the positions of the newly inserted
particle

(7.124) τs =
∑
j∈Ns

mjWsj +
∑
k∈So

mkWsk − ρo.
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As the optimization with respect to position, i.e.

(7.125) minxSE = minxS

∑
n∈N̄o

mnτ
2
n +

∑
s∈So

msτ
2
s

 ,
is an unconstrained optimization problem, we don’t need any constraints and

can simply utilize any optimization method. Common choices could include a
gradient descent (as is done for our online optimization) and L-BFGS-B (as is done
for our a-priori optimization), but most methods require at least the first derivative
of the error function with respect to the optimization variables.

As such, if we apply the gradient with respect to the newly refined particle

i, ∇i =
[

∂
∂xi
, ∂
∂yi
, ∂
∂zi

]
, to the discretized error function we can simply move the

gradient operator into the summation as

(7.126) ∇iE =
∑
s∈So

2msτs∇iτs +
∑
n∈N̄o

2mnτn∇iτn,

which can be further simplified by splitting the first summation based on i as

(7.127) ∇iE = 2miτi∇iτi +
∑

s∈So\i

2msτs∇iτs +
∑
n∈N̄o

2mnτn∇iτn.

Here we now only require the terms ∇iτi, ∇iτs and ∇iτn as everything else has
been discussed before.

7.A.10 For refined particles ∇iτi

Applying ∇i to τi directly results in

∇iτi = ∇i

[∑
j∈Ni

mjWij +
∑
k∈So

mkWik − ρo

]
=
∑
j∈Ni

mj∇iWij︸ ︷︷ ︸
I

+
∑
k∈So

mk∇iWik︸ ︷︷ ︸
II

−∇iρo︸︷︷︸
III

.
(7.128)

I and II can be evaluated as is and cannot be further simplified. III however
evaluates to 0 as the density of the original particle does not depend, in any way,
on the refined particles position. This means that we get the following term:

(7.129) ∇iτi =
∑
j∈Ni

mj∇iWij +
∑
k∈So

mk∇iWik.
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7.A.11 For refined particles ∇iτs

Applying ∇i to τs directly results in

∇iτs = ∇i

[∑
j∈Ns

mjWsj +
∑
k∈So

mkWsk − ρo

]
=
∑
j∈Ns

mj∇iWsj︸ ︷︷ ︸
I

+
∑
k∈So

mk∇iWsk︸ ︷︷ ︸
II

−∇iρo︸︷︷︸
III

.
(7.130)

Where again III evaluates to 0. I evaluates to 0 as well as s cannot be i, due
to the separation of summations before, and as such there is no term in this sum-
mation that can contain i. II similarly evaluates to 0 for all k ̸= i, which leaves
yields

(7.131) mi∇iWsi.

Due to the symmetry of a kernel function we can then also write

(7.132) ∇iτs = mi∇iWis.

7.A.12 For neighboring particles ∇iτn

Applying ∇i to τn directly results in

(7.133) ∇iτn = ∇i

[∑
s∈S

msWns −moWno

]
=
∑
s∈S

ms∇iWns︸ ︷︷ ︸
I

−mo∇iWno︸ ︷︷ ︸
II

.

Similar to before II evaluates to 0. In the summation term I the only term that
remains is

(7.134) mi∇iWni.

Due to symmetry of the kernel function we can then write

(7.135) ∇iτn = mi∇iWin.

7.A.13 Complete derivative term

Combining the previous terms we can then write the objective function as:

(7.136) E =
∑
n∈N̄o

mnτ
2
n +

∑
s∈So

msτ
2
s
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and the gradient of this objective function with respect to the position of a
refined particle ∇i as

∇iE =2miτi

[∑
j∈Ni

mj∇iWij +
∑
k∈So

mk∇iWik

]
+
∑

s∈So\i

2msτsmi∇iWis +
∑
n∈N̄o

2mnτnmi∇iWin,

(7.137)

which can be refactored slightly to collect similar terms:

∇iE = 2mi[τi
∑
j∈Ni

mj∇iWij + τi
∑
k∈So

mk∇iWik

+
∑

s∈So\i

τsms∇iWis +
∑
n∈N̄o

τnmn∇iWin].
(7.138)

As ∇iWii = 0 and by changing the variable naming for the second loop we can
further simplify this as:

(7.139)

∇iE = 2mi

∑
j∈Ni

τimj∇iWij +
∑
n∈N̄o

τnmn∇iWin +
∑
s∈So

ms (τi − τs)∇iWis

 .
Furthermore as Ni \ i ⊆ N̄o with ∇iWin = ∀n ∈ N̄o \ Ni and ∇iWii = 0, we can

further simplify as

(7.140) ∇iE = 2mi


∑
n∈N̄o

mn (τi + τn)∇iWin︸ ︷︷ ︸
∇iEN

+
∑
s∈So

ms (τi + τs)∇iWis︸ ︷︷ ︸
∇iES

 ,
where we have two summations over independent sets of neighbors and refined

particles, which could be referred to as ∇iEN and ∇iES . This accordingly yields

(7.141) ∇iE = 2mi [∇iEN +∇iES ] .

(7.142) ∇iEN =
∑
n∈N̄o

mn (τi + τn)∇iWin,∇iES =
∑
s∈So

ms (τi + τs)∇iWis.

7.A.14 Optimizing by mass

Optimizing the mass directly would be possible, i.e. optimizing mS but this is not
ideal. Certain methods (i.e. SLSQP) can enforce constraints of the form

∑
n 1/xn =

c easier than a constraint of the form
∑

n xn = c. As such we first replace the mass
of a refined particle s, i.e. ms, with a ratio of the original mass
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(7.143) ms =
1

λs
mo,

under the constraint
∑

s∈So
1/λs = 1. Applying this to the discretized error

function yields

(7.144) E =
∑
n∈N̄o

mnτ
2
n +mo

∑
s∈So

1

λs
τ 2s ,

and further applying it to the error terms τn and τs gives:

(7.145) τn = mo

(∑
s∈S

1

λs
Wns −Wno

)
, τs =

∑
j∈Ns

mjWsj +mo

∑
k∈So

1

λk
Wsk − ρo.

A set of weights [λ1, ...λn] corresponding to a set of refined particles So is de-
noted by Λo for readability. This gives the optimization problem

(7.146) minΛSE = minΛS

∑
n∈N̄o

mnτ
2
n +mo

∑
s∈So

1

λs
τ 2s

 .
As this is a constrained problem, many common optimization methods cannot

be applied here, i.e. gradient descent, but some methods still require a derivative
of the error function with respect to a variable and as such these are also given
here.

As such, if we apply the derivative with respect to the newly refined particle i’s
mass ratio, ∂

∂λi
, to the discretized error function we get

(7.147)
∂E
∂λi

=
∑
n∈N̄o

2mnτn
∂τn
∂λi

+
∂

∂λi

[
mo

∑
s∈So

1

λs
τ 2s

]
,

This then gives us:

(7.148)
∂E
∂λi

=
∑
n∈N̄o

2mnτn
∂τn
∂λi

+mo

∑
s∈So

(
∂ 1

λs

∂λi
τ 2s +

2τs
λs

∂τs
∂λi

)

Recall that

(7.149)
∂

∂λi

[
1

λj

]
=

Mij

λ2i
.

Going back to the partial derivative of E we can then write:
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(7.150)
∂E
∂λi

=
∑
n∈N̄o

2mnτn
∂τn
∂λi

+mo

∑
s∈So

2τs
λs

∂τs
∂λi

+mo

∑
s∈So

Mij

λ2i
τ 2s ,

where two partial derivatives, ∂τn
∂λi

and ∂τs
∂λi

, remain similar to the positional
derivatives of ∇iτn and ∇iτs. However, note that the term ∇iτi does not ap-
pear directly as this was only a reasonable simplification for spatial derivatives,
as ∇iWii = 0, which is not the case here.

7.A.15 For neighboring particles ∂τn
∂λi

First, recall the definition of τn using the weights Λo as

(7.151) τn = mo

(∑
s∈S

1

λs
Wns −Wno

)
.

Applying the partial derivative ∂
∂λi

to this term, and pulling the derivative into
the braces, gives

(7.152)
∂τn
∂λi

= mo

(
∂

∂λi

[∑
s∈S

1

λs
Wns

]
− ∂Wno

∂λi

)
,

where ∂Wno/∂λi is independent of i and can be dropped. This leaves the re-
maining term

(7.153)
∂τn
∂λi

= mo
∂

∂λi

[∑
s∈S

1

λs
Wns

]
,

where we can move the derivative into the summation and use the product rule
to get

(7.154)
∂τn
∂λi

= mo

∑
s∈S

(
∂

∂λi

[
1

λs

]
Wns +

1

λs

∂

∂λi
[Wns]

)
,

which can be further expanded into

(7.155)
∂τn
∂λi

= mo

∑
s∈So

(
Mis

λ2i
Wns +

1

λs

∂Wns

∂λi

)
.

7.A.16 For refined particles ∂τs
∂λi

First, recall the definition of τs using the weights Λo as
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(7.156) τs =
∑
j∈Ns

mjWsj +mo

∑
k∈So

1

λk
Wsk − ρo.

If we now apply the partial derivative ∂
∂λi

to this we get

(7.157)
∂τs
∂λi

=
∑
j∈Ns

mj
∂Wsj

∂λi
+mo

∑
k∈So

∂

∂λi

[
1

λk
Wsk

]
− ∂ρo
∂λi

,

where the last term is independent of i and thus 0. We next utilize the product
rule on the second term, which yields

(7.158)
∂τs
∂λi

=
∑
j∈Ns

mj
∂Wsj
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+mo

∑
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∂

∂λi

[
1

λk

]
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1

λk

∂

∂λi
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)
,

which can be further simplified into

(7.159)
∂τs
∂λi

=
∑
j∈Ns

mj
∂Wsj

∂λi
+mo

∑
k∈So

(
Mik

λ2i
Wsk +

1

λk

∂Wsk

∂λi

)
.

7.A.17 Putting it together

First recall the initial formulation:

(7.160)
∂E
∂λi

=
∑
n∈N̄o

2mnτn
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∂λi

+mo

∑
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2τs
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∂τs
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τ 2s ,

we can insert the prior summations:

∂E
∂λi

=
∑
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s∈So

Mis
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τ 2s .

(7.161)

In order to simplify this term we first split every summation term apart and
rename j to n and, as Ns ⊆ N̄o, we also update the set affinity:
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∂E
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(7.162)

Collecting summations we can simplify:

∂E
∂λi
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(7.163)

which due to symmetry further simplifies
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(7.164)

or by substitution:

(7.165)
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(7.166)

7.A.18 The optimization problem

The overall problems initially described were
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minxSE = minxS

∑
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2
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∑
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2
s

 ,
minλSE = minλS

∑
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2
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s∈So

msτ
2
s

 .
(7.167)

In order to use common optimizers we can tetermine the gradient of E with
respect to the position of a refined particle i as:

(7.168) ∇iE = 2mi [∇iEN +∇iES ]m

(7.169) ∇iEN =
∑
n∈N̄o

mn (τi + τn)∇iWin,∇iES =
∑
s∈So

ms (τi + τs)∇iWis.

And for the derivative of E with respect to the weight of a refined particle i,
under the constraint
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(7.170)

with

(7.171) τn = mo

∑
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(7.173)
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Chapter8

Conclusions

In this dissertation research was presented that focused on spatially adaptive
Smoothed Particle Hydrodynamics simulations both in regards to their method-
ological basis, e.g., focused on changing resolution, and on their practical imple-
mentation, e.g., focused on computational challenges. As a whole, this allows for
simulations that have significantly reduced instabilities to allow for more practical
usage of spatial adaptivity (see Chapter 7), scale-invariance of boundary handling
(see Chapter 6), reduced memory and computational requirements (see Chapter 4)
and improved on-the-fly rendering (see Chapter 5). Overall, the research can be
separate into research focused on computational challenges and research focused
on the underlying methodological aspects for spatial adaptivity. Regarding com-
putational challenges, the papers reprinted in Chapters 2, 4 and 5 contribute as:

• Chapter 2 served as the initial starting point of the research where the pri-
mary motivation was computational in nature, i.e., reducing memory require-
ments. To achieve this, a process was proposed to limit the support radius of
particle to constrain the number of neighbors a particle has. As a result this
process allowed for an upper bound to be placed on memory consumption,
which was directly beneficial to spatially adaptive simulations as in those
neighborhoods can be of significantly varying size from particle to particle.

• Chapter 4 built on Chapter 2 and proposed a GPU-based data structure
using compact hashing to change the memory dependence of GPU-based
SPH simulations from depending on the size of the simulation domain and
particle resolution to depending on the number of particles. Furthermore,
by using a self-similar space-filling curve, multiple hash maps can be con-
structed, which allows for significant speed ups for spatially adaptive sim-
ulations, whilst significantly reducing memory requirements. Finally, an im-
proved process was proposed to constraining the support radius and as well
as set of neighborhood algorithms to speed up uniform resolution simula-
tions.

• Chapter 5 built on the compact hash map data structure of Chapter 4 by
expanding the method to allow for anisotropic SPH simulations. Furthermore,
a set of algorithms was proposed to allow for an efficient on-the-fly rendering
of uniform and spatially adaptive SPH simulations by directly exploiting the
underlying data structures. The rendering approach can render particles as
spheres and isosurfaces with a fixed memory consumption per particle.
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The papers reprinted in Chapters 3, 7 and 6 focused more heavily on the underlying
fundamental and methodological challenges in spatial adaptivity as:

• Chapter 3 served as the seminal research of all further spatial adaptive re-
search in this dissertation and introduced multiple contributions. These con-
tributions were a combination of an improved temporal blending scheme, the
introduction of a novel fluid quantity redistribution process to smoothen the
resolution gradient, as well as an improved particle refinement process us-
ing not just one refinement step size, but multiple. Furthermore, the concept
of a sizing function was utilized to determine a continuous desired resolu-
tion on a per particle basis to remove sharp resolution transitions. Overall
this allowed for multiple orders of magnitude greater spatial adaptivity, but
highlighted several short comings, e.g., regarding boundary handling.

• Chapter 7 built on Chapter 3 in part by proposing an improved temporal
blending scheme and by introducing a local artificial viscosity term to dampen
the impact of errors introduced during particle refinement. However, the
main contribution was a novel approach to generating refinement patterns
that, up to this point, relied heavily on intuition and, accordingly, were not
readily replicable between different researchers. The novel generation pro-
cess removes all requirements on intuition and can be applied to any kernel
function and any number of particles and is both applicable a priori, to gen-
erate optimal fixed patterns, and during a simulation, to improve the a priori
patterns for the specific local particle distribution. Overall, these contribu-
tions significantly reduced instabilities in the simulation and, accordingly,
allow for much lower artificial viscosity in the flow.

• Chapter 6 addressed a long standing problem in spatial adaptivity regard-
ing boundary handling as many widely utilized methods, e.g., particle-based
boundary handling, demonstrate a strong dependence of the fluid behav-
ior on the sampling approach and resolution of boundary geometries. The
approach presented here resolves this through introducing a non-particle
based boundary handling approach that demonstrates very similar, and sta-
ble, behavior across varying fluid resolutions. This is achieved through the
combination of an analytic solution for planar boundary geometries, the as-
sumption that locally boundary geometries are flat and a signed distance
field based boundary representation. This approach also allows for two-way
coupling of spatially adaptive fluids, through the utilization of a single-point
contact model, and furthermore improves non-uniform simulations by more
accurately treating small boundary features below fluid resolution.

The results overall demonstrate a significant improvement over prior work for
spatially adaptive SPH simulations, e.g., the paper reprinted in Chapter 7 allows for
adaptive ratios of one million to one, compared to prior work that was limited to
approximately a hundred to one. They also demonstrate a significant improvement
for uniform SPH simulations, e.g., the paper reprinted in Chapter 6 demonstrates a
significant improvement with regards to handling of small boundary features below
particle resolution. Overall, the presented research also reduces the need for intu-
ition, e.g., for finding optimal refinement patterns, and improves the predictability
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of achieved results, e.g., due to scale-invariant boundary handling. However, the
research also highlighted important avenues for future work including:

• Global splitting operators would address one of the fundamental limitations
of current spatially adaptive methods, i.e., current state of the art methods
replace particles individually without considering resolution changes of ad-
jacent particles. By considering resolution change not on a per-particle level
but in a region, resolution changes could yield resolution gradients much
closer to the desired resolution gradient. However, including all this infor-
mation in a traditional optimization process is challenging as it would involve
a large amount interdependent parameters and accordingly utilizing alterna-
tive optimization approaches would be an avenue of future research.

• Improved particle merging would be especially beneficial in the fluid bulk
where particles of different resolutions can mix without them individually
finding appropriate partners for merging. This is in line with the first point,
i.e., if lowering the resolution occurred in a region, and not on a per-particle
level, then this could potentially reduce errors introduced by merging. Prac-
tically, this process is similar to finding a particle configuration that obeys
certain flow quantities, e.g., velocity and density, for a constrained fluid.

• Fluid bulk adaptivity would help in applying spatial adaptivity to a broader set
of problems outside of Computer Animation. Within Computer Animation vir-
tually all spatially adaptive methods aim to improve the surface resolution,
whereas in engineering problems the fluid bulk is often equally important.
To achieve this sizing functions would have to be found that can adequately
measure interest in points internal to the flow. Such a sizing function, how-
ever, is difficult to design as the resolution change has to occur before some-
thing happens. Accordingly, one potential approach in this regard is utilizing
learning based approaches to predict if an area could soon become relevant.

• Pressure solver convergence is a significant practical problem as most pres-
sure solvers are designed under an assumption of uniform resolution. Ac-
cordingly, convergence criteria are often based on arithmetic means, which
are not adequate for varying resolutions as, especially in Computer Anima-
tion, particles of low resolution are generally those under higher stresses,
which is not reflected in an arithmetic mean. While utilizing a mass-weighted
sum has proven useful in the past, research into more advanced criteria
might yield improved stability in a wider range of scenarios.

• Diffusion process modelling would significantly broaden the scope of spa-
tial adaptivity but including diffusion and mixing into such a simulation is
not straightforward. The main consideration here is that particles that are
being merged on a resolution basis, may not be eligible to be mixed, i.e., the
merging process would act as an unphysical source of mixing. One poten-
tial avenue in this regard is simulating intra-particle physics, i.e., allowing
particles to represent multiple fluid kinds simultaneously.
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Pauly. Multiresolution particle-based fluids. Technical Report 520.
Department of Computer Science, ETH Zurich, 2006, p. 10 (Cited on
pages 50, 71, 89).

[KGS19] Abbas Khayyer, Hitoshi Gotoh, and Yuma Shimizu. “A projection-
based particle method with optimized particle shifting for multiphase
flows with large density ratios and discontinuous density fields”. In:
Computers & Fluids 179 (2019), pp. 356–371 (Cited on pages 3, 18).

[Kli+06] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and
James F. O’brien. “Fluid animation with dynamic meshes”. In: ACM
SIGGRAPH 2006 Papers. 2006, pp. 820–825 (Cited on pages 48,
148).

[Kos+19] Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias
Teschner. “Smoothed Particle Hydrodynamics Techniques for the
Physics Based Simulation of Fluids and Solids”. In: Eurographics 2019
- Tutorials. The Eurographics Association, 2019, pp. 1–41 (Cited on
pages 1, 2, 7, 8, 89, 91, 116, 118, 150, 151).

http://www.scipy.org/
https://devblogs.nvidia.com/thinking-parallel-part-iii-tree-construction-gpu/
https://devblogs.nvidia.com/thinking-parallel-part-iii-tree-construction-gpu/


210 7. Conclusions

[Kra88] Dieter Kraft. “A software package for sequential quadratic program-
ming”. In: Forschungsbericht- Deutsche Forschungs- und Versuch-
sanstalt fur Luft- und Raumfahrt (1988) (Cited on page 167).

[KSN08] Yoshihiro Kanamori, Zoltan Szego, and Tomoyuki Nishita. “GPU-based
fast ray casting for a large number of metaballs”. In: Computer Graph-
ics Forum. Vol. 27. 2. Wiley Online Library. 2008, pp. 351–360 (Cited
on page 90).

[Kug+21] Tassilo Kugelstadt, Jan Bender, José Antonio Fernández-Fernández,
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