
GPU-based Simulation of Cold Air Flow for Environmental Planning

Stephan Nowatschina, Martin Bertrama and Christoph Gartha

aTU Kaiserslautern

Simulating the effects of different soil types regarding flow resistance and cold air production is important for
controlling air quality araound urban areas. In this paper we present a mathematical model and a simulation
method for this problem. This model describes the cold air flow to be composed of two variables. The first is the
velocity field which depends on flow resistance and the flow gradient. The second variable is a height field of the
cold air which depends on cold air production and advection. To accelerate the simulation and its visualization,
it is adapted to run on a GPU(Graphical Processing Unit). Implementing the simulation on fragment shaders
makes it possible to render the height field of the landscape and a color map associated with the cold air height.
In two passes we compute the cold air height for each time step and render the result to a texture. In a third
pass, we render the height field of the landscape using this texure as color map.

1. Motivation

During stationary temperature inversions the
air convection in urban areas, which lie close-by
mountainous landscapes, is affected through cold
air flow. Air quality in urban areas and settle-
ments highly depends on this cold air flow. Sen-
sitive changes in the flow intensity or direction
may have serious consequences, such as smog and
heat. Over night the different soils at the slopes
cool down addicted to the property of the soil
causing the air near by to cool down faster than
the air on the same niveau over the valley. Due
to the landscape’s elevation gradient, the cold air
starts to flow downwards creating a downwind.
The cold air flow is merged at the settlement ar-
eas in the valleys and is known as katabatic wind.
The characteristics of this cold air flow depends
both on the height relief of the landscape and on
the thermal and mechanical properties of the ter-
rain. This means, that a different agricultural use
of the soils may affect the cold air flow and with
it the air convection in a settlement area. This
can cause a sensitive change of air quality in these
areas.
To consider the cold air flow during the planning
of new sattlement areas or the changing of exist-
ing structures, it is necessary to simulate this cold
air flow. Based on such a simulation, for example,
we can calculate the effects of new structures, like

streets, bridges and buildings at the city limit,
which might cut the city from the cold air flow
and thus degrade its air quality. Further more it
is possible to simulate the impact of changes in
the agricultural areas around a city on the cold
air flow. These agricultural changes strongly af-
fect the magnitude of the cold air flow, since, for
example, an area which is used as acre cools down
the air much faster than a forest. Moreover, the
flow resistance of an acre is less than the resis-
tance of a forest so that the velocity of the cold
air flow is much higher over an acre. To support
an environmental planning it is very helpful to
have a fast simulation of such effects.
The simulation example presented here is a part
of a valley at the Mosel, the Geisbachtal, where
different agricultural soils exist (Figure 1) and
therefore it is possible to show the influence of
different soils on the production of cold air dur-
ing a night.
In the next section, we summarize related work.
Section 3 of this paper describes the continuous
and discrete mathematical model of our simula-
tion. Section 4 contains our simulation results
for a selected landscape. Finally we conclude and
discuss some extensions for future work in section
5.

1



2 Stephan Nowatschin, Martin Bertram and Christoph Garth

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
	�	�	�		�	�	�		�	�	�		�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

����������������������������
����������������������������

urban area

forest

acre

meadow

vineyard

no data

Figure 1. Soil types stimulating cold air produc-
tion for our simulation

2. Related work

Stam [1] uses the Helmholtz-Hodge decompo-
sition to obtain a stable solution for the Navier-
Stokes equation. This is performed in a multi-
level process combining extern forces, advection,
diffusion and a divergence-free projection of the
velocity field. This method can be used for the
simulation of smoke [4]. Harris [3] implements
the discretization of this multi-level process on
the GPU. Each process step is implemented in
a fragment program and each fragment program
writes its results into a texture used by the next
fragment program. We have not found any math-
ematical models defining cold-air flow in the lit-
erature. The phenomenon of cold-air flow has
been described in [5][6], where only a vague def-
inition of cold-air production and flow resistance
is provided. Our contribution is a simple mathe-
matical model describing this phenomenon and a
GPU-based solver.

3. Algorithm

3.1. Mathematical Model

Before we derive a mathematical model for the
described problem we define some quantities that
are defined on a domain D ⊂



2:

• Soil type : S={meadow,forest,vineyard,
acre,settlement}

• Geographic height :h = h(x, y)

• Cold air height : k = k(x, y, t)

• Velocity : ~v = ~v(x, y, t)

• Agriculural usgae : l = l(x, y)εS

• Cold air production p : S →



• Flow resistance w: S →



For every time step, the cold air height k(x,y,t)
and the associated velocity ~v(x, y, t) need to be
computed for each point (x, y)εD . The related
mass flow (flux) is calculated by:

~F (x, y, t) = k(x, y, t) ∗ ~v(x, y, t) (1)

where * denotes the componentwise multiplica-
tion with a scalar[2].
The variation of the cold air height k̇(x, y, t) de-
pends on a source term p(x, y) := p(l(x, y)), defin-
ing how much cold air is produced in a point
(x, y) during a period of time, and on an advec-
tion term defining the transport of the cold air.
In our model, diffusion has small impact and is
neglected.
The advection term in a cell (x, y) depends on
the velocity field and the gradient of the cold air
height ∇k. The cold air flows contrary to this gra-
dient and so the advection term results in −~v ·∇k
, where · denotes the inner product. Hence, the
change of the cold air height in a point (x, y) is:

k̇(t) = p(x, y) − ~v(x, y, t) · ∇k(x, y, t) (2)

Further more equation (1) requires that the ve-
locityfield is free of divergence to avoid sinks and
sources of cold air in the advection term[2], i.e.:

div ~v := ∂vx/∂x + ∂vy/∂y = 0.

To calculate the variation of the cold air height,
the corresponding velocity ~v(x, y, t) is required.
the velocity depends on the gradient of the slope,
the cold air height and on a factor 1/w. This
factor depends on different agricultural soils and
is a measure for the flow resistance w(x, y) :=



GPU-based Simulation of Cold Air Flow for Environmental Planning 3

w(l(x, y)). In a simulation this parameter can be
used to adjust the velocity.
These considerations provide the velocity in a
point (x, y):

~v = −1/w(x, y) ∗ (∇(h(x, y) + k(x, y, t))) (3)

Our model does not consider inertia of air. Based
on empirical data [6] we found that the velocity is
rather linear in the gradient of the upper cold-air
boundary ∇(h + k) and that the effect of acceler-
ation can be neglected.. To calculate the cold air
flow from equations (2) and (3), these have to be
discretized.

3.2. Discretization

We now define the height field over a regular
grid P = {0, ..., m− 1} × {0, ..., n− 1}, assuming
that the cold air is constantly distributed over
each grid cell Pi,j . Hence, for each cell the cold
air height in the center of the cell is computed and
the resulting value is taken for the whole cell.
First, we compute the velocity of the flow across
each cell boundary. Hereby, the velocity ~v is de-
composed in its components vx and vy, defined
at cell boundaries, see figure ??. This way we
know the velocity of the flow between each pair
of adjacent grid cells. This approach is know as
staggered grid, where vector quantities are repre-
sented at the boundaries between cells[3].
With equation (2) the velocity component in x-
direction is calculated out of the height difference
of the cells Pi,j und Pi+1,j , multiplied with the
factor 1/w(x, y).

vi,j ,x = (hi,j +ki,j −hi+1,j −ki+1,j )∗1/w(x, y)(4)

Hence, the component in y-direction is:

vi,j ,y = (hi,j +ki,j −hi,j+1 −ki,j+1 )∗1/w(x, y)(5)

Based on equations (3) and (4) the change of
the cold air height is discretized. Here the change
in a cell depends on the produced cold air p(x, y)
and on the in- and outflow. An outflow from the
current cell to an adjacent cell occurs if the ap-
propriate velocity for this transition is positive.
Otherwise cold air flows from the neighbor to the
current cell. This in- and outflow is calculated
for each transition. We need to guarantee that
not more cold air can flow out of a cell as really

Figure 2. Grid cell with appropriate velocity vec-
tors

available. With this assumption the flow out of a
cell can be calculated as v(x, y, t) ∗ k(x, y, t). To
avoid flow over multiple cell we constitute for the
discretization that the sum of the outgoing veloc-
ities is not greater than one. Otherwise, we need
to choose smaller time intervalls or we have to
adapt the resistance for the agricultural soil.
Passing through the grid for each cell we need
to calculate the flow to the right and the up-
per neighbor. Then the variation of the cold air
height for vi,j ,x > 0 during a time step dt is :

dxkt+dt
i,j = dxkt

i,j − vi,j,x ∗ kt
i,j

dxkt+dt
i+1,j = dxkt

i+1,j + vi,j,x ∗ kt
i,j

For vi,j,x < 0 it is:

dxkt+dt
i,j = dxkt

i,j + vi,j,x ∗ kt
i+1,j

dxkt+dt
i+1,j = dxkt

i+1,j − vi,j,x ∗ kt
i+1,j

The variation of the height in the y-direction for
vi,j,y > 0 is:

dykt+dt
i,j = dykt

i,j − vi,j,y ∗ kt
i,j

dykt+dt
i,j+1

= dykt
i,j+1 + vi,j,y ∗ kt

i,j

For vi,j,y < 0 it is :

dykt+dt
i,j = dykt

i,j + vi,j,y ∗ kt
i,j+1

dykt+dt
i,j+1

= dykt
i,j+1 − vi,j,y ∗ kt

i,j+1

After a complete iteration through the grid the
new cold air height in an cell (i,j) results from:

kt+dt
i,j = kt

i,j + p(x, y) + dxkt+dt
i,j + dykt+dt

i,j (6)



4 Stephan Nowatschin, Martin Bertram and Christoph Garth

This formulation assures, that the overal cold
air concentration is conserved and in contrast
to equation(2) it is not necassary that the ve-
locityfield ~v is free of divergence. This has the
advantage that no Helmholtz-Hodge decomposi-
tion based on an expensive Possion-equation is
necessary, like, for example, in the Stable Flu-
ids method[1]. The velocity components on the
boundary of the grid can be set to a constant
value which enables an outflow of the air out of
the domain boundaries.

3.3. GPU-based Implementation

Our algorithm computes and renders the fast-
motion cold air development in real time on a
consumer-grade graphics card supporting Shader
Model3. Prior to the rendering we propose two
prerender steps. In each prerender step a rectan-
gular region including our domain is drawn. Due
to the dimension of these regions we can use each
pixel as a grid cell and perform our calculations
in a shader for each pixel.
Implementing the simulation in shaders brings
up some differences compared to a CPU-based
implementation. One difference is that array
data are stored in textures. These textures can
be read by the shader but cannot directly be
manipulated by them. Normaly, the result of
fragment shaders is written to the framebuffer
and then displayed on the screen. To avoid this
for our first two computation steps, we render the
result of our calculations into a pbuffer. After
rendering the entire region, we copy this pbuffer
into a texture which is used in the next pass.
The input of a shader is composed of different
variables and textures and the output is a vector
with four components which is normaly used as
the color of the current pixel. This vector is the
only way to get output from the shader.

We implement the discrete equation (6) in
three steps. In the first step a fragment program
is loaded into the fragment processor, which cal-
culates the outflow of each cell to the four adja-
cent cells. This shader reads the cold-air heights
for the current pixel and its four adjacent pix-
els, and it reads the flow resistance for the pixel.
After loading this shader into the graphic proces-

sor, we create a pbuffer, in which the result of
this shader is rendered. Beside the framebuffer,
a pbuffer is an additional non-visible rendering
buffer for an OpenGL renderer. Below, a part of
our pbuffer implementation is shown:

Display *display;

Display *oldDisplay;

GLXPbuffer pbuffer;

GLXPbuffer oldDrawable;

GLXContext context;

GLXContext oldContext;

oldDisplay = glXGetCurrentDisplay();

oldDrawable = glXGetCurrentDrawable();

oldContext = glXGetCurrentContext();

int iScreen = DefaultScreen(oldDisplay);

GLXFBConfig *glxConfig;

int iConfigCount;

int pfAttribList[] =

{

GLX_RED_SIZE, 32,

GLX_GREEN_SIZE, 32,

GLX_BLUE_SIZE, 32,

GLX_ALPHA_SIZE, 32,

GLX_FLOAT_COMPONENTS_NV, true,

GLX_DRAWABLE_TYPE, GLX_PBUFFER_BIT,

0,

};

glxConfig= glXChooseFBConfigSGIX(oldDisplay,

iScreen,

pfAttribList,

&iConfigCount );

int pbAttribList[] =

{

GLX_LARGEST_PBUFFER, true,

GLX_PRESERVED_CONTENTS, true,

0,

};

pbuffer= glXCreateGLXPbufferSGIX(oldDisplay,

glxConfig[0],

width,

height,

pbAttribList );



GPU-based Simulation of Cold Air Flow for Environmental Planning 5

context=glXCreateContextWithConfigSGIX(

oldDisplay,

glxConfig[0],

GLX_RGBA_TYPE,

oldContext,

true );

}

After creating the pbuffer we set the pbuffer con-
text as the current context, and then our render-
ing results are written to that pbuffer.

void makeCurrent()

{

glXMakeCurrent(display,

pbuffer,

context);

}

Now we draw a rectangular region with
OpenGL. After an ortographical projection and
the viewport transformation this rectangle has
the same size like our domain, so we can use each
pixel in our fragment shader as a cell in our grid.
The results from the pbuffer are copied back into
a texture with glCopyTexSubImage2D and finally
the old context is restored.

void restoreOld()

{

glXMakeCurrent(oldDisplay,

oldDrawable,

oldContext);

}

We use the NV texture rectangle extension to
provide float values not to be restricted on [0;1].
The second step in our implementation uses the
ouput texture of first step to calculate the new
cold-air height for each cell. To do this we load
an other fragment shader into the fragment pro-
cessor and repeat the instructions from step one.
Finally we render the geographic height field us-
ing the results from step two in a third shader to
compute the associated color map for the current
time.

4. Results

We perform our simulation to calculate the
cold air flow around the town Manubach, which

soil type cold air production
vineyard 5 [m3/h]

settlement 0 [m3/h]
meadow 10 [m3/h]

acre 12 [m3/h]
forest 1 [m3/h]

Table 1
Cold-air production per m2.

soil type resistance
vineyard 30 [%]

settlement 90 [%]
settlement 10 [%]

acre 5 [%]
forest 80 [%]

Table 2
Flow resistance in percent.

is located in the Geisbachtal near the Mosel, see
figure 3. The area around this town has different
soil types like vineyard, acre, meadow and forest,
see figure 1. The magnitudes we use for the cold
air production and the flow resistance are listed
in tables 1 and 2. In figure 5 - 11 the cold-air
height is shown for every full hour. It can be
observed that the cold air is merged in the valley
and retained at the urban area, where it cannot
flow as fast as on a free landscape. Furthermore
it can be seen that the cold air from the meadows
in the north of the area is blocked by the forest
between the meadows and the settlement. This
effect is also visible in the small velocities in this
area (figure 4). The greatest cold air height is
obtained in the eastern valley where on one side
the flow is retained due to the settlement and on
the other side of this area the cold air production
is very high due to meadows and acres.
We also implemented our model in a CPU-base
program and visualized the results with matlab.
Our GPU-based program uses a pbuffer to render
into in two steps.Hence, it is necassary to switch
the render context before and after the prerender
steps. This exchanging slows down our GPU-
based implementation, but the advantage of the
pbuffer is the possibility of using floating point



6 Stephan Nowatschin, Martin Bertram and Christoph Garth

values grater than one. We obtained a compu-
tation time for our GPU-based implementation
of about 500 msec for simulating the flow during
one minute and rendering the result. This is
about twice as fast as a software implementation.
A greater speedup can be obtained, when the
resolution of the data set is finer than in our ex-
ample, where the grid was composed of 108×130
cells.

Figure 3. Map of the region

5. Conclusion

With our algorithm we can simulate the effects
of different soil types regarding flow resistance
and cold air production. This is important for
controlling air quality around urban areas. In this
paper we present a mathematical model based on
advection describing the cold-air flow based on
two variables. The first is the velocity field in
which parameters like flow resistance and the flow
gradient are introduced. The second variable is a
height field of the cold air depending on cold-air
productions and advection. With our model it
is possible to show the correlation between these
parameters and the effects of changing agricul-
tural use. In a future work it would be interesting
to find a more accurate mathematical description

Figure 4. Velocities after 7h (created with mat-
lab)

for the flow resistance and for the varying cold air
production. A comparison of our simulation re-
sults with measurements is desired, to determine
the exact resistance and production coefficients of
a landscape.

6. Acknowledgements

We thank Gerd Reis, Gerik Scheuermann, and
Robert Beckmann for their helpful support and
discussion.

REFERENCES

[1] J. Stam : Stable Fluids, ACM Siggraph 1999,
pp.121-128

[2] P.K. Kundu: Fluid Mechanics, Academic
Press, 1990

[3] M.J. Harris: Fast Fluid Dynamics Simula-
tion on the GPU, in GPU Gems, chapter 38,
pp.637-665, 2004

[4] R. Fedkiw: Visual Simulation of Smoke, ACM
Siggraph 2001

[5] A. Helbig, J.Baumüller, M.J. Kerschgens:
Stadtklima und Luftreinhaltung, Springer
Verlag, 1999 (In German)

[6] L. Finke: Regionale Luftaustauschprozesse
und ihre Bedeutung für die räumliche Pla-
nung, in: Schriftenreihe ’Raumordnung’ des
BMBau 06.032, 1979 (In German)



GPU-based Simulation of Cold Air Flow for Environmental Planning 7

Figure 5. Cold air height after 1h

Figure 6. Cold air height after 2h

Figure 7. Cold air height after 3h

Figure 8. Cold air height after 4h

Figure 9. Cold air height after 5h

Figure 10. Cold air height after 6h



8 Stephan Nowatschin, Martin Bertram and Christoph Garth

Figure 11. Cold air height after 7h


