
Video Input Synthesize Waterfall Scenes

Yu Guan, Wei Chen�, Long Zhang, Chengfang Song, Yi Gong, Qunsheng Peng
{guanyu,chenwei,lzhang,songchengfang,ygong,peng}@cad.zju.edu.cn

State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058, China.

Fig. 1. Two different waterfall scenes produced by our algorithm. The image resolution
is 512×400.

Abstract. In this paper, we propose an new approach for modelling and
rendering dynamic and realistic waterfall scenes that from both texture
and motion analysis based on acquired video sequences. We first gen-
erate a set of basis texture sprites, which capture inherent appearances
and motions of waterfall scenes contained in video sequences. To model
the shape and motion of new waterfall scenes, we construct a set of flow
lines taking account of physical principles. Along each flow line, the basis
texture sprites synthesize a sequence of dynamic texture sprites in 3D
space according to spatio-temporal dynamic synthesis model (STDS).
These texture sprites are further displayed with point splatting tech-
nique, which can be accelerated in programmable graphics hardware.
By choosing different sets of basis texture sprites, waterfall scenes with
different appearances and shapes can be conveniently simulated. Exper-
imental results demonstrate that our approach achieves realistic effect
and real-time frame rates in consumer PC platform, and can be adopted
in entertainment-relating applications such 3D simulator, video games,
etc.

1 Introduction

Waterfall scenes contain rich stochastic motion patterns which are character-
ized by the movement of a large number of small elements. In this paper, we call
these motion patterns texture sprites. Consider a sequence of images of a moving
� Corresponding author



scene. Each image is an array of positive numbers that depend upon the shape,
pose and motion of the scene. Traditional approaches to simulate fluid scenes
can be divided into two categories, namely, particle system based methods and
image or video synthesis methods. Particle system methods model the scenes as
a sequence of animated particles. However, they make use of one texture for all
particles and are difficult to simulate the fluid scenes which possess time-varying
appearance. On the other hand, video synthesis methods decompose image se-
quences into many small 2D samples and analyze the implied patterns. By means
of texture synthesis techniques, these 2D samples can be used to generate var-
ied new scenes. One main disadvantage of these methods lies in that it can not
provide free viewpoint simulation, which is mandatory for most entertainment-
relating applications. Note that, both methods lack a means to model dynamic
motions and render realistic appearances of fluid scenes simultaneously. In this
paper we first analyze sequences of images which are contained in video, capture
inherent appearances and motions of fluid, generate a set of basis texture sprites.
To model the shape and motion of new waterfall scenes, we construct a set of
flow lines taking account of physical principles. Along each flow line, the basis
texture sprites synthesize a sequence of dynamic texture sprites in 3D space
according to spatio-temporal dynamic synthesis model (STDS). These texture
sprites are further displayed with point splatting technique, which can be accel-
erated in programmable graphics hardware. By choosing different sets of basis
texture sprites, waterfall scenes with different appearances and shapes can be
conveniently simulated.

2 Related Work

Creating realistic animations of fluid flow has been an active research area in
the past decade. Particle system methods [9–11] are commonly used to simulate
complex group dynamics such as flocking birds. A particle system is composed of
one or more individual particles, each of which has attributes that affect the be-
havior itself or how and where it is displayed. Particles are normally represented
by graphical primitives such as points or lines, leading to high performance.
In addition, particle system methods introduce some type of random element,
which is used to control the particle attributes such as position, velocity and
color. However, particle system methods concentrate on the behaviors of parti-
cles solely. Typically, only one color or texture is adopted for the appearances of
all particles. In this way, achieving realistic effects with particle system methods
are far from be solved, as shown in Figure 9(a).

There has been extensive work [8, 6, 1, 5] on simulating the motion of fluid
flow based on image or video synthesis techniques. Probably the simplest way is
the video texture approach introduced by Schödl et al. [15]. Based on an input
video clip, its motion cycles is first analyzed and extracted. New and similar-
looking video clips of arbitrary length are then synthesized by re-arranging im-
age frames. This idea is further extended [13] to allow for high level control over
moving objects in video sequences. Rather than using an image frame as the



synthesis element, the approach introduced by Wei and Levoy [16] makes use
of Markov Random Field texture models to generate textures through a deter-
ministic searching process. It can be applied to create 3D temporal textures of
fluid-like motion.

On the other hand, Doretto et al. [4] use Auto-Regressive filters to model
and edit the complex motion of fluids contained in video sequences. To model
the motion of texture particles in video sequences, Wang and Zhu [17] propose
to adopt a second order Markov chain. Szummer and Picard [14] propose to
capture and synthesize dynamic textures by means of the spatio-temporal auto-
regressive model (STAR). Bar-Joseph et al. [2] present an algorithm based on
statistical learning for synthesizing static and time-varying textures matching
the appearance of an input texture. Kwatra et al.[7] demonstrate an algorithm
for image and video synthesis using graph cut approach.

Recently, Bhat et al. [3] present an algorithm for synthesizing and editing
video sequences of natural phenomena that exhibit continuous flow patterns. The
algorithm analyzes the motion of textured particles in the input video sequence
along user-specified flow lines, and synthesizes new video sequence with arbitrary
length by enforcing temporal continuity along a second set of user-specified flow
lines. However, it is limited to input sequences with nearly stationary flow pat-
terns as shown in Figure 9(b).

Note that, aforementioned methods based on video textures, video sprites
or video synthesis are all restricted to one fixed view point because they are
essentially image synthesis techniques. Consequently, they can not provide true
3D effects and fail to satisfy the requirements of spatial walkthrough under
arbitrary viewpoints.

3 Modelling and Rendering of Waterfall Scenes

To fix notation, let I[0, τ ] denote a texture sprite sequence in a discretized time
interval [0, τ ] = {0, 1, 2, · · · , τ}. Each texture sprite Λ = {(x, y) : 0 ≤ x, y ≤ L},
L is the size of texture sprite. For (x, y) ∈ Λ and t ∈ [0, τ ], I(x, y, t) denotes
the pixel color. I(t) ∈ I[0, τ ] is a single texture sprite. Let B[0, τ ] denote a basis
texture sprite sequence. B(x, y, t) denotes the pixel color. B(t) ∈ B[0, τ ] is a
single basis texture sprite.

3.1 Conceptual Overview

Video input synthesize waterfall scenes can be divided into four steps. First, we
construct a sequence of texture sprites based on the analysis to the input video
sequence. Second, we interactively design flow lines by adjusting physical param-
eters, including gravity, wind and height etc. The flow lines act as the skeleton
of the expected waterfall. Third, new dynamic texture sprites are generated au-
tomatically along each flow line, which constitute the running waterfall. Finally,
dynamic texture sprites are displayed by means of point splatting technique in
programmable graphics hardware. Figure 2 illustrates the whole pipeline of our
approach.



Interactive design 
of flow lines

Input video sequence

Generation of basis 
texture sprites

Generation of dynamic 
texture sprites

Point splatting

Generation 
of Foam

Fig. 2. The conceptual overview of our approach.

3.2 Extraction of Basis Texture Sprites

Natural scenes contain rich stochastic motion patterns which are characterized
by the movement of a large number of small deformable. Note that, the time-
varying waterfall moves from up to down and its shape can be decomposed into
multiple small components, i.e., 2D samples. We select representative samples
from the input video sequence manually and analyze their shape variations,
yielding a set of basis texture sprites. For one given waterfall scene, the extracted
basis texture sprites represent all possible shape variations.

Let N(t) denotes the number of different shape basis texture sprites at time
t. Obviously, N(t) will increase stepwise in process of time. However, at each
fixed time t, N(t) has relative stability. Certainly, N(t) does not grow infinitely.
It has an upper limit.

When t → t + ∆t, the rate of growth of N(t) is λ(t). λ(t) is related to time.
The rate of change of λ(t) is in direct proportion to time. Basis texture sprites
set model as follows:

{
dλ(t)/dt = −aλ(t)
λ(0) = b

(a, b are constant) (1)

We obtain:

λ(t) = b ∗ exp(−at) (2)

In regard to N(t):

{
dN(t)

dt /N(t) = λ(t)
N(0) = c

(c is constant) (3)

Substitute equation (2) into equation (3):

N(t) = c ∗ exp[b(1 − exp(−at))/a] (4)



At fixed time t, we compute the number of basis texture sprites according to
equation (4). Then, we extract the N(t) basis texture sprites from video. The
amount of basis texture sprites N :

N =
τ∑

t=0

N(t) (5)

The N basis texture sprites compose a basis texture sprites set. The left
image of Figure 3 shows one frame of input video sequence, while the right
image illustrates the extracted basis texture sprites.

1

4

3

2

(a) (b) (c)

Fig. 3. Interactive generation of basis texture sprites. (a) One frame of input video
sequence. (b) Input video. (c) The extracted basis texture sprites.

3.3 Interactive Design of Flow Lines

The second step is to interactively design the flow lines. The overall shape of the
underlying waterfall is controlled by determining the parameters, such as the
number of flow lines and the approximated length. We take a single flow line
shown in Figure 3 (a) as our example. Any particle begins at the start of the
flow line d1 and passes through a sequence of positions during its moving. Its
corresponding texture sprite varies as shown in Figure 3 (c). To represent the
temporal evolution of particles, we assume that Y axis is the direction of gravity
and the direction of the wind is parallel to XZ plane. The particles are affected
by the gravitational acceleration g, the air resistance f and the wind velocity
windv. Thus, the velocity (Vx(t), Vy(t), Vz(t)) and position (Px(t), Py(t), Pz(t))
of one particle can be written as follows:




Vx(t) = vx + windv · cosθ
Vy(t) = vy − ∫ t

0
(g − f/m)dt

Vz(t) = vz + windv · sinθ




Px(t) = px +
∫ t

0
Vxdt

Py(t) = py +
∫ t

0
Vydt

Pz(t) = pz +
∫ t

0
Vzdt

(6)

Here, (vx, vy, vz) and (px, py, pz) are initial velocity and position. θ is angle
between the wind direction and X axis.



(a) (b)

Fig. 4. (a) Designed flow lines by modifying parameters. (b) Final generated waterfall.

With given control parameters, our algorithm automatically generates flow
lines according to Equation 6. Users are allowed to interactively modify these
parameters to achieve desired effect. One example is demonstrated in Figure 4.

3.4 Spatio-Temporal Dynamic Synthesis Model

In process of time and spatial position, each texture sprite varies significantly
along its flow line. However, the transition between basis texture sprites is not
smooth. To generate all particles along the flow lines, we have to produce dy-
namic texture sprites in virtue of the basis texture sprites. One simplest way
is to linearly interpolate the basis texture sprites. Note that the appearance of
each texture sprite dependents on its position, we use the tangent information
of the flow line between two adjacency basis texture sprites. This modification
produces smooth transition between two basis texture sprites along the flow line.
This method can be formulated as:

I(x, y, t) = (t3, t2, t, 1)M




B(x, y, ti)
B(x, y, ti+1)

p
′
i

p
′
i+1


 + n (7)

In equation (7), B(ti) and B(ti+1) are two adjacent basis texture sprites,
whose position are pi and pi+1. The p

′
i and p

′
i+1 are the tangents at pi and

pi+1 respectively. M is a given transition matrix, and n is a noise process for
the residues. The generative texture sprites sequence sort in chronological order.
Figure 5 gives one synthetic example.

The texture sprite set generated in the previous step can be extended to
support deformed variations. We can rotate and scale texture sprite at one point
along the flow line as shown in Figure 6.



Fig. 5. The top four images are selected basis texture sprites. By interpolating them
sequentially, a set of dynamic texture sprites are generated.

(a) (b) (c) (d) (e)

Fig. 6. Five steps to generate the falling waterfall. (a) Extract basis texture sprites
from natural waterfall or video. (b) Compute the pixel color of other texture sprites
along the user-specified flow lines over time. (c) Generate dynamic texture sprites. (d)
Rotate dynamic texture sprites along the flow line. (e) Scale dynamic texture sprites
along the flow line.

3.5 The Simulation of Foam

To simulate the foam caused by the collision between the falling waterfall and
the water pool, we construct a set of radial flow lines, yielding a great number of
foam patterns. They are simulated using another type of texture sprite as shown
in Figure 7(b).

3.6 Rendering with Point Splatting Technique

To display the falling waterfall scene, each resultant texture sprite is represented
by a textured quad parallel to the view plane. Generally speaking, all dynamic
texture sprites can be divided into two classes, namely, axis-aligned and non-axis-
aligned sprites. For each axis-aligned sprites, it is rendered as a single textured
rectangle in 2D screen directly, which can be accelerated greatly in GPU. In
this way, the bandwidth between CPU and GPU is saved remarkably. Our ex-
periments demonstrates that this scheme increases about the frame rates by up



(a) (b)

Fig. 7. (a) One waterfall scene with foam. (b) Local enlargement of foams.

to 50%. In order to draw non-axis-aligned sprites, a rotated quad is created for
each sprite. The cost to render a rotated quad is much larger than that of the
axis-aligned sprite. Fortunately, most of dynamic texture sprites are axis-aligned.

Note that, the generation of dynamic texture sprites is performed on-the-fly
in programmable graphics hardware. The calculation is accomplished completely
by means of a simple vertex shader. To exploit the power of retained rendering
mode, all texture sprites are loaded in video memory in advance and updated
on-the-fly.

4 Experimental Results

We implemented the proposed approach in a PC equipped with P4 1.7 HZ CPU
and an NVidia 6800 GT video card. The vertex shader and pixel shader are
written in OpenGL Shading Language. The average frame rates of our algorithm
is about 30 fps at the image resolution of 512 × 400.

The extraction of the basis texture sprites is very simple. We can obtain
different types of basis texture sprites from acquire video sequences, leading
to different waterfall scenes as shown in Figure 8.We also compare our results
with that of particle system method [12] and 2D video synthesis techniques [3].
Corresponding images are illustrated in Figure 9. It is obvious that our algorithm
not only achieves realistic effect, but also provides more flexibility.

5 Conclusions and Future Work

In this paper we present a simple and efficient method Video Input Synthesize
Waterfall Scenes for simulating waterfall animation. On the issue of represen-
tation, we present a novel algorithm of manipulating and animating dynamic
texture sprites in 3D space. They are used to generate animated waterfall with
arbitrary length, appearances at the cost of little user interaction. Experimental
results show that our algorithm achieves real-time simulation and realistic effect.
As further work is concerned, we would like to introduce some parameters for



(a) (b)

Fig. 8. Different waterfall scenes with different basis texture sprites.

enhancing the irregularity of texture sprites because our current solution is lim-
ited to simulate some waterfall whose appearance varies intensely. Furthermore,
we intend to extend the algorithm to other types of fluid, including fountains,
smokes, clouds, etc.

References

1. Jeremy S. De Bonet. Multiresolution sampling procedure for analysis and synthe-
sis of texture images. In Proceedings of SIGGRAPH 1997, Computer Graphics
Proceedings, Annual Conference Series, 1997, 361-368. ACM, ACM Press / ACM
SIGGRAPH.

2. Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman. Texture mixing and
texture movie synthesis using statistical learning. In IEEE Transactions on Vi-
sualization and Computer Graphics, 7(2) 1996, 120-135.

3. Kiran S.Bhat, Steven M. Seitz, Jessica K. Hodgins, Pradeep K. Khosla. Flow-
based Video Synthesis and Editing. ACM Transactions on Graphics, 23(3) 2004,
360-363. ACM Press.

4. G. Doretto, A. Chiuso, S. Soatto, Y. N. Wu. Dynamic Textures.International
Journal of Computer Vision, 51(2) 2003, 91-109.

5. Gianfranco Doretto, Stefano Soatto. Editable Dynamic Textures. In Proceedings
of IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition 2003. 2003, 137-142.

6. David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthesis.
In Proceedings of SIGGRAPH 1995, Computer Graphics Proceedings, Annual
Conference Series, 1995, 229-238. ACM, ACM Press / ACM SIGGRAPH.

7. V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: Image
and video synthesis using graph cuts.In ACM SIGGRAPH 2003, 277-286.

8. Randal C. Nelson and Ramprasad Polana. Qualitative recognition of motion using
temporal texture. CVGIP: Image Understanding, 56(1) 1992, 78-89.

9. W.T.Reeves, Particle Systems-A Technique for Modelling a Class of Fuzzy Ob-
jects, Computer Graphics, 1983, 17(3): 359-376.

10. W.T.Reeves, Approximate and Probabilistic Algorithms for Shading and Render-
ing Structured Particle Systems, Computer Graphics, vol. 19, no. 3, 1985, 313-322.



(a) (b)

(c) (d)

Fig. 9. (a) Result by particle system method.(b) Result by video synthesis method
based on the input video sequence shown in Figure 3 (b). (c) and (d) are our results
based on the same video sequence.

11. C. W. Reynolds, Flocks, Herds, and Schools: A Distributed Behavioral Model,
Computer Graphics, vol. 21, no. 4, 1987, 25-34.

12. Karl Sims. Particle Animation and Rendering Using Data Parallel Computation.
Computer Graphics, 24(4) 1990, 405-413. ACM Press.

13. A.Schödl, I.A.ESSA, 2002. Controlled animation of video sprites, In ACM SIG-
GRAPH Symposium on Computer Animation, 121 - 128.

14. M. Szummer and R. W. Picard. Temporal texture modeling. In IEEE Interna-
tional Conference on Image Processing, Lausanne, Switzerland, volume 3, Sept
1996.

15. A. Schödl, R. SZELISKI, D. H. SALESIN, I. ESSA. Video textures. In Proceedings
of ACM SIGGRAPH 2000, 489-498.

16. Li-Yi Wei,Marc Levoy. Fast texture synthesis using tree-structured vector quan-
tization. In Proceedings of ACM SIGGRAPH 2000, 2000, 479-488.

17. Y. Wang, S. C. Zhu. A generative model for textured motion: analysis and synthe-
sis. In Proceedings of European Conference on Computer Vision (ECCV) 2002,
582-598.


