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Abstract

In the context of realistic image synthesis, many stochastic methods have been pro-
posed to sample direct and indirect radiance. We present new ways to use hardware
graphics to sample direct and indirect lighting in a scene. Jittered sampling of light
sources can easily be implemented on a fragment program to obtain soft shadow
samples. Using a voxel representation of the scene, indirect illumination can be
computed using hemispherical jittered sampling. These algorithms have been im-
plemented in our briefly presented multi-mesh caching framework but can be used
in other contexts like radiosity or final gathering of the photon map.

Key words: realistic image synthesis, soft shadow, indirect illumination, jittered
sampling, hemispherical projection

1 Introduction

Realistic image synthesis requires to simulate the behaviour of light and its
interactions with scene objects. The quality of this simulation is important
for artworks realism and essential when synthesized images are used in con-
texts such as architecture, lighting design, car design... A lot of algorithms
allow very accurate simulation, but the time required by such methods to pro-
duce an image can exceed hours according to the scene complexity and to the
desired quality. Unfortunately, in many situations, the user wants real time
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interaction or at least progressive rendering that would allow him to mod-
ify the simulation parameters if unsatisfied with the current resulting image.
Recent hardware-based methods developed for the video game industry allow
visually convincing real time rendering. Unfortunately, the approximations in-
volved in these algorithms are not easily controlled. The sampling techniques
exposed in this article use the graphics hardware to speed up accurate illumi-
nation computations. Using these techniques within a progressive and adaptive
rendering algorithm, called multi-mesh caching, we are able to interactively
render images that progressively converge toward a high quality solution that
includes soft shadows and indirect illumination. Our method provides walk-
through interactivity: while the scene is being rendered, the user can move
around the scene, but scene objects and light sources are static in our current
implementation.

The remainder of this paper is organized as follows. Previous work on global
illumination and on the use of graphics hardware is reviewed in section 2. Sec-
tion 3 succinctly describes the framework in which our work is developed. Our
methods to sample direct illumination and indirect illumination are described
in Section 4 and 5. Our results are presented in Section 6 and discussed in
Section 7.

2 Previous work

Rendering a synthesized image requires two main tasks. First, visible objects
at each pixel of the image are determined; then the shading value of each pixel
is computed. This second task is by far the most time consuming; it requires
to compute the quantity of light (radiance) reflected by visible objects toward
the observer. This radiance can be split according to the paths taken by light
rays from light sources toward the observer. The direct radiance, that involves
only one bounce on an object, is the quicker to compute. It is also the most
visually important part of radiance in regularly lit scenes. Indirect radiance,
that involves inter-objects reflections, is by far longer to compute. Though
indirect radiance is often masked by the direct one, it brings realism to the
obtained images by softening direct radiance and by revealing the atmosphere
of the scene.

Computing the radiance at point z in direction w, involves solving the ren-
dering equation (1) introduced by Kajiya [1]

L.(x,w,) = Le(z,w,) + /fT(x,wi,wr)Li(x,w,-)cos@idwi (1)
Q;



where f, is the BRDF of the object that tells which amount of the incoming
radiance L; from direction w; is reflected toward the observer in direction w,
and L. is the self emitted radiance of the object. Computing radiance L, at
point x of an object requires to compute radiance L; on all objects in sight of
x. Two main approaches have been proposed to solve this recursive equation:
finite element methods and stochastic sampling. Some attempts have been
made to speed up these methods using graphics hardware.

2.1 Radiosity

Radiosity is a finite element method introduced by Goral et al. [2] inspired
by works on heat transfers. The scene is subdivided in small patches in order
to compute light transfers between these patches. First, form factors between
patches are computed. A form factor represents the contribution of one patch
to another one; it depends on the mutual visibility and on the orientation of
the patches. Once form factors are known, a huge linear system, that links
all patches together, is solved. To provide high quality images, the number of
patches has to be important, increasing the memory and computation time
requirements. The provided solution is independent on the viewing point and
can be re-used from one frame to another. Through hierarchical radiosity [3]
reduces this memory and time cost, we preferred to use a stochastic sampling
method.

2.2  Stochastic methods

Kajiya [1] proposed the path tracing algorithm to solve his rendering equation
(1). Path tracing consists of randomly following light paths from the eye to
a light source, bouncing from one object to another in random directions. To
take into account as many kinds of paths as possible, an enormous amount of
paths has to be traced through the scene. Even so, this basic method leads
to very noisy images. To speed up the method, many variations have been
proposed. The next event estimator [4] adds direct radiance to the path each
time the light ray bounces on an object; this reduces the variance of the image
using a less important number of rays. The metropolis light transport method
[5] mutates the most important light paths to reduce the variance with as few
rays as possible.

To reduce the variance, stratified sampling can be used. When a light path
meets an object, a new direction has to be chosen. Instead of randomly picking
this direction, an hemisphere is built over the object and split into cells through
which rays are being sent. Serpaggi et al. [6] proposed to progressively adapt
the hemisphere subdivision to send more rays through non uniform cells.



Another widely used approach is the photon map [7] algorithm, which is a
two-pass method. First, photons are sent from light sources and randomly
traced through the scene to be stored in the photon map (a kD-tree). Then,
the rendering pass requires to collect photons from the photon map in the
neighbourhood of the point to shade and to estimate the radiance from these
collected photons.

2.8  Hardware implementation

Graphics hardware can be used at different places of realistic image synthesis.
First, it can be used to compute illumination at some (if not all) points of the
scene. Second, it can be used to render these illuminated points. The GPU can
be used either as a general processor or for its specific functionalities which
are hidden surfaces removal (through the z-buffer algorithm), fast triangle
rasterization and fast interpolations through rendered triangles.

Instant radiosity [8] is an interesting method that uses the graphics hardware,
for its specific functionalities, to speed up visibility computations. First, a few
photons are propagated through the scene and are used during the rendering
phase as virtual light sources whose shadows are computed on the graphics
hardware using the shadow map algorithm [9]. During the rendering pass,
the scene is rendered multiple times, each time lit by a different virtual light
source. The obtained images are summed in the accumulation buffer to provide
the final image. The more photons are used, the higher is the quality of the
obtained image. Tests showed that 500 virtual point light sources are enough
to obtain fair quality images.

Recent progresses of graphics hardware allowed to port some of the previously
mentioned algorithms on GPUs, which are then used as a SIMD coprocessor.
Purcell et al. used the GPU to compute ray triangle intersection in a fragment
program. This led to the implementation of a ray tracer [10] and of the photon
map algorithm [11]. Using the GPU as an SIMD coprocessor relieved the
burden on the CPU, but does not make full use of the GPU functionalities.
Moreover, sending and retrieving data to or from the GPU requires sometimes
complex parallelization of the algorithms.

Larsen and Christensen [12] use the GPU in a more regular way. They im-
plemented the last pass of the the photon map algorithm on the GPU. First,
photons are traced through the scene by the CPU. Then, the final gathering
step uses the GPU to sample the photon map which is rendered from the point
to shade.



3 Rendering of cached samples

3.1 Samples caching

Computing direct illumination from area light sources and indirect illumina-
tion for each pixel of a picture is very costly and most of the time not necessary
as radiance signal is coherent in space, and in time in case of an animation.
Many methods, inspired by irradiance caching [13], have been proposed to
reduce the number of sample points and interpolate irradiance in between.
To better adapt illumination sampling over the scene objects, radiance signal
should be split up and so that each sub-signal can be sampled according to its
frequency. Zaninetti et al. [14] proposed to sample separately direct radiance
from each light source, indirect diffuse radiance and caustic radiance.

These computed samples can be stored in space partitions like octrees, grids
or 3D-trees. In this case, software interpolations and software rendering have
to be used to obtain an image. Another option is to use an image space cache.
Pighin et al. [15] built a triangular mesh over the image that is progressively
refined and hardware rendered. Simmons and Séquin proposed to build this
progressively refined mesh over an hemisphere so that samples can easily be
reused from one frame to another. The last solution is to store the samples
directly on a mesh built and refined over the geometrical mesh [16].

Each of these caching techniques have there pros and cons. Space partition
caches permit any kind of scene description (not only triangles), and they
allow an easy control of the sampling density. Their main problem is that
they only allow complex software interpolations between a variable number
of samples gathered in the neighbourhood of the interpolation point. Image
space caches permit hardware interpolations, but they lead to interpolate not
only radiance but also geometry over the image. This results in blurry geo-
metrical edges while the mesh is being subdivided. Storing the samples on
a progressively refined geometrical mesh guarantees to correctly render the
scene geometry with its progressively computed radiance. The main problem
of this last technique is that the sampling density cannot easily be controlled.
In case of highly tessellated objects, at least one sample of radiance has to be
computed per vertex of the geometrical mesh.

3.2 Multi-mesh caching

The method, we proposed in [17] and extended since, tries to keep the best
from the previously mentioned caching techniques. We propose to sample sep-
arately indirect irradiance and direct irradiance of each light source. These
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Fig. 1. Overview of the multi-mesh caching method

samples are cached in different meshes. We use small grid caches built over
highly tessellated objects to keep a reduced sampling density of irradiance
over these objects. Irradiance at the vertices of tessellated objects is interpo-
lated using the samples stored in the grid. For the other objects (not highly
tessellated), we build and refine the multiple meshes cache over the objects to
store the different irradiance samples.

The different meshes are progressively refined until mesh elements are small
enough not to miss small radiance discontinuities, and until the user cannot
see any discontinuity due to T-vertices. While the meshes are being subdi-
vided, the image is progressively updated through multiple rendering passes
(see Figure 1). First, using the geometrical mesh, a colour image, or more
precisely a reflectance properties image, is once and for all rendered for each
frame. Second, a direct radiance image is rendered using the direct irradiance
mesh of each light source. Specular and diffuse radiances are computed on the
fly in a fragment program using multiple cached irradiances. Third, an indi-
rect radiance image is rendered using the indirect irradiance mesh. Fourth,
to obtain the image displayed to the user, colour and radiance images are
combined. This final rendering pass also includes a tone mapping operator to
obtain displayable colour values.

Our multi-mesh caching method has some interesting properties compared to
caching methods that use a single cache. First, it allows to better tune the
sampling density over objects, but it also allows more re-use of already com-
puted radiance and irradiance values. Direct irradiance of each light source
can be re-used from one frame to another, even when the observer moves,
as it is the only data required to compute the view dependent direct specu-
lar radiance. Moreover, direct irradiance can be re-used to compute indirect
radiance.



4 Speeding up direct illumination computations

Graphics hardware is designed to quickly solve visibility problems using the
z-buffer algorithm. Computing direct irradiance at a given point requires to
determine the visibility of each light source from this point. Direct irradiance
E, of a light source [s can be computed as :

Eq(z,1s) = /vis(x,x’)L(x')cos@cosG’(ffj (2)

ls

where L(z') is the emittance of element 2" of surface dS of the light source,
0 is the angle between the object normal and light-eye direction, 6" is the
angle between the light source normal and the light-eye direction, vis(z, x’) is
either 1 or 0 depending on the visibility of point 2’ from point z. Traditionally,
ray tracing was used to estimate the visibility, but graphics hardware offers
interesting possibilities. According to the desired quality, different algorithms
are possible from very fast ones, that offer coarse approximations, to slower
but more accurate ones.

All the algorithms presented in the next subsections lay on the same basis.
The graphics hardware is used in a standard way. The camera is placed on the
point to shade and aims at the light source. Actually, a small frustum that
fully includes the light source is computed to parametrize the viewing trans-
formation and perspective projection. The light source and all the potential
occluders that are in the viewing frustum are then rendered. Each pixel of the
obtained image, where the light source projects itself without being occluded,
brings some energy to the point to shade. Summing the energy brought by
each pixel, we obtain the direct irradiance from the light source on the point
to shade.

4.1 Coarse approrimations

4.1.1  Fast visibility estimation

The fastest way to count the number of pixels of the obtained image where the
light source projects itself without being occluded makes use of the occlusion
query functionality of recent graphics hardware. The potential occluders are
rendered first to set up the z-buffer, then an occlusion query is used while
rendering the light source. The occlusion query will contain the number of
pixels where the light source is not masked. Assuming that each pixel carries
the same energy to the point to shade, we easily obtain the direct illumination
value. The main problem is that this assumption is false. Giving each pixel



the same weight does not take into account the fact that each pixel is not seen
under the same solid angle from the point to shade. Moreover, this simplifi-
cation does not allow to take the cosf term from equation (2) into account.
This method, despite being fast, can only give a coarse approximation of the
real direct irradiance.

4.1.2  Regular sampling

To obtain more accurate values, we have to weight each pixel according to the
solid angle it sustends and to the cosf value computed at the pixel. Occlusion
queries are useless to take into account these considerations, as they do not
allow to distinguish between the pixels. The rendered image has to be read
back to the CPU where pixels can be weighted according to their position,
before being summed. Reading back an image can be quite costly. To avoid
wasting bandwidth, the rendered image has to contain only the fewest bits
per pixel as possible; only 1 bit per pixel is really required to distinguish light
source pixels from other pixels (occluders and background). Each pixel solid
angle can be estimated on the CPU as

Y (:ng’ (]\/‘iz(xi/)j\fs)ds (3)

where xx’ is the vector from the eye to the pixel, Ny is the normal to the
image plan, Ng is the normal to the object at the point to shade and dS is
the size of a pixel of the image.

The main problem with this method is that it uses a regular grid (the com-
puted image) to sample the light source. To avoid bias and visible structure in
the computed irradiance, some randomness should be introduced in the light
source sampling. The regular sampling process has also the disadvantage of
not allowing progressive sampling. Once the light source has been sampled,
resampling it won’t increase the obtained irradiance quality, as the same result
will be obtained again and again.

4.2 Hardware jittered sampling

4.2.1  Custom rasterization

Jittered sampling is unbiased and allows progressive sampling. Instead of reg-
ularly sampling the light source, each sample is randomly displaced a little.
Although current graphics hardware is programmable, the rasterization pro-



Cq

Fragment

Triangle to render

Dilated triangle

Aq

Fig. 2. Jittered rendering

cess cannot currently be modified. However, a fragment program can be used
to introduce some randomness in the rasterization process. While rendering
a polygon, the regular rasterization process tests each pixel for membership
to the polygon at the pixel centre. If the pixel belongs to the polygon, then
a fragment is generated and sent to the fragment program. Our method con-
sists in testing each fragment for membership to the polygon at a random
position in the pixel. If this random point does not belong to the fragment,
then the fragment is killed and not rendered. Using this technique, edges of
polygons are modified, leading some fragments to be deleted. Correct jittered
sampling process would lead to create some fragments that were not created
by the regular rasterization process. As fragment programs cannot create new
fragments, we dilate the rendered polygons. This way, more fragments than
needed are sent to the fragment program that tests their membership to the
original polygon.

The position of point P in a plan containing a triangle [A, B, C] can be ex-
pressed as

P=A+aAB+3 AC (4)

P belongs to triangle [A, B, C] if and only if 0 < o, 0 < fand ae+ 3 < 1.

To perform a jittered rendering of triangle [A, B, C], we first dilate it and
compute triangle [A4, By, Cy]. We also compute coordinates o and 3 of Ay, By
and Cy in the (A, AB, AC) basis. Triangle [A4, By, Cy] is rendered, providing
these coordinates with each vertex through texture coordinates parameters.
For each generated fragment P, the fragment program will receive as inputs

interpolated coordinates (ap, Sp) of P in the (A, AB, AC) basis. Coordinates
(ap, Bp) are interpolated at the pixel centre of each fragment. We want to



test a random point R of the pixel for membership to triangle [A, B, C]. Co-
ordinates (g, Sr) of point R have to be evaluated. This can be done using
partial derivatives of the coordinates provided by the DDX and DDY functions
included in GLSL or in the fragment_program_NV extension.

(agr, Br) = (ap, Bp) + uDD X (ap, Bp) + vDDY (ap, Bp) (5)

where u and v are random floats taken in interval [—0.5,0.5]. If coordinates
(g, Br) of point R satisfy 0 < ag, 0 < Bg and ag + Sr < 1, then R belongs
to triangle [A, B, C].

This algorithm has a minor flaw. To make sure that more fragments than
required are sent to the fragment program, we dilate the triangle before ren-
dering them. Using a fixed percentage dilatation does not guarantee that the
rendered triangle will be at least one pixel wider on all sides for all viewing
points and directions. Using a variable dilatation would solve this problem but
would prevent us from using display lists. Another solution we are exploring
is to dilate triangles in the vertex program.

4.2.2  Multi-sampling

Actually, the fragment program can test a same fragment multiple times for
triangle membership at different random positions of the fragment. The mem-
bership can be encoded per bit in the fragment colour result. Testing multiple
times a fragment has an impact on the fragment program speed but it makes
each read back of an image more interesting as more (if not all) bits read back
can contain meaningful information. Testing multiple times a same fragment
makes it impossible to kill a fragment that would only partially belong to the
rendered triangle. This problem can be solved using logical operations on the
frame buffer.

The goal of our algorithm is to obtain an image where each bit of each pixel
colour is 1 if the light source is not occluded and 0 if the light source is
occluded or if it does not cover the part of the pixel represented by the bit.
Each bit of a pixel colour contains a sample randomly taken in a portion of
the surface of the pixel that is regularly subdivided. We do not want to switch
the fragment program when rendering light source instead of occluders. We,
arbitrarily, decided that the fragment program would always output 1 for each
bit that represents a part of the pixel that does not belong to the rendered
triangle, and 0 when the part belongs to the triangle. First, we render the light
source, setting the frame buffer logical operation to NOT; then, we render the
potential occluders, setting the logical operation to AND. When rendering
the occluders, we use depth testing but depth writing is disabled. This way,
partially visible fragments of occluders do not prevent other occluders to fully
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mask the light source for a given pixel. Depth testing, using the depth buffer
initialized with the light source depths, is nevertheless required to insure that
occluders are in front of the light source.

Writing a fragment program that outputs bit fields instead of floating values
was not straightforward on our hardware. Fragment programs can only ma-
nipulate floating values and do not currently provide per bit operators like
the & or | operators of the C language. GLSL specifications let us think that
these operators will be added in the future. It is nevertheless possible for a
fragment program to output bit fields using their float value representation.

5 Speeding up indirect illumination computation
5.1 Iterative indirect illumination computations

As explained in Section 2.2, many stochastic methods can be used to evaluate
indirect illumination. We propose to use an iterative method: first, we com-
pute indirect irradiance that includes only one-bounce paths. This one-bounce
radiance is stored in a mesh that is then used to compute two-bounce indirect
radiance. Progressively, we add indirect irradiance with more bounces. De-
pending on the objects albedo, a variable number of bounces will be required
before the remaining missing energy becomes negligible.

5.2 Hemuspherical sampling

To compute (n)-bounce irradiance E,(z) at point x, (n — 1)-bounce radiance
L, that reaches point x is used.

E,(z) = /Ln_l(x,w)dw (6)

11



Fig. 4. Voxelised (left) and standard (center) sampling using hemispherical projec-
tion and regular sampling using perspective projection (right) (pixels are weighted
according to their contribution).

Software hemispherical sampling is traditionally used to compute this inte-
gral. Hardware can also be used to speed up the computation. The standard
hardware way was either to render the scene on an hemicube, or on a single
plan in front of point x, and to sum the obtained images to a single radiance
value. The first way required to render the scene at least 5 times (once for
each side of the hemicube), while the second neglected radiance coming from
grazing angles. Sampling incoming radiance using a single plan with Opengl
perspective projection is not the best way to distribute the samples on the
rendering plan. Perspective projection gives more importance to peripheral
samples (see Figure 3). A better way to distribute samples is to use a fish eye
projection that naturally gives each pixel the same importance.

Using a vertex program, approximate hemispherical rendering can be per-
formed on current hardware. To project a point onto the image using the fish
eye projection, its x and y coordinates in the eye basis just have to be nor-
malized to obtain its coordinates in the screen basis. The depth coordinate is
the norm of the eye to point vector. The only problem is that Opengl uses
the z and w coordinates computed by the vertex program to clip points that
are outside of the viewing frustum. Using a fish eye projection, such points do
not exist. To avoid point clipping, the vertex program must always output 1
for z and w coordinates; the real depth of the point is sent through another
parameter to the fragment program that writes it back in its regular register
to benefit from the z-buffer algorithm.

5.8 Vozxelisation

To obtain an indirect radiance value using hemispherical rendering, an impor-
tant part of the scene has to be rendered as any object in front of the point to
shade can contribute to its indirect illumination. Rendering all these objects
is very costly. A coarser representation of the scene can be used without intro-
ducing too much change in the obtained indirect radiance. Mesh simplification

12
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algorithms could be used, but an easiest way is to use a voxel representation
of the scene. This way, the time spent to render the scene is only dependent
on the desired quality that implies a given number of voxels.

Instead of storing a single radiance value per voxel, we consider voxels as little
cubes and compute a value for each side of the cube. To compute, store and
use these values, we work with slices of space. Each slice has two faces that
are two parallel plans separated by the width of the voxels. Slices are built
in three orthogonal directions so that the intersection of 3 orthogonal slices
creates a voxel. Voxels’ radiance values are stored in the texture associated
with each slices’ face. To fill the texture of a slice’s face, the part of the scene
inside the slice is rendered into the texture using a parallel projection. Each
face of a slice is filled using opposite parallel projections. When a slice’s face
contains only empty values, the texture is freed and the slice’s face won’t be
rendered to save up memory and time.

Instead of rendering the objects composing the scene, we render the scene’s
slices. Actually, we only render front facing faces of the slices that are in front
of the point to shade (see Figure 5). As this point is, itself, inside a voxel, at
the intersection of 3 orthogonal slices whose faces are not rendered (because
they are back facing), some close objects, like the close to the eye triangle in
Figure 5, are not taken into account. To correct the obtained image, we render
the objects that lie inside this voxel. Actually, we expand a little the volume
containing close objects that may greatly influence the computed radiance,
because the voxel representation may not be precise enough in the close to
the point to shade area.

13
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5.4 Slices hemispherical projection

The main problem of hemispherical projection is that it requires important
tessellation of the rendered objects so that they appear correctly curved. Tes-
sellating the slices leads to so many polygons that a sliced scene representation
does not provide an important speed up of the method compared to a regular
scene representation.

To render the slice, we propose an unusual rendering method. Using a fragment
program, we find for each pixel of the rendered image the point on each slice
and the corresponding texel that falls on the pixel. This is done by rendering
for each slice, a quadrilateral, textured with the slice’s texture, that covers the
full screen. The fragment program that performs the backward projection is
built in 3 steps. First, point S on the hemisphere that falls over fragment F',
is computed (see Figure 6). Screen coordinates of point F' can be randomly
perturbed to perform jittered sampling instead of grid sampling. To compute
S, the required parameters given to the fragment program are the viewing
basis components: eye position F, right direction 7, up direction v and viewing
direction v. S is computed as

S=E+F, 7+ F, i+ \ (7)

where A = /1 — FZ — I is looked up in a texture that easily allows us to kill

fragments where F; — F > 1, that cannot be obtained with an hemispherical
projection.

14



Intersection P of line ES with the slice can be computed from S. The slice is
defined through a point A and a normal 7 that are provided to the fragment
program as parameters.

P =E+kES (8)
where
_AE i
ES n

To finish, we have to find coordinates T" of point P in the slices texture or-
thogonal basis (A, AB, AC).

AT . AB AT . AC
= ly=——3 (10)
HAO

T

HIB

Once the texture coordinates have been computed, we fetch the colour in the
slice’s texture and update the image.

6 Results

6.1 Direct illumination sampling

To test the accuracy of our hardware jittered sampler, we set up a bench
test independently of our rendering software. We set up a single light source
partially occluded by a single quadrilateral occluder. Instead of computing the
radiance of the light source, we only computed the visible solid angle. This
way, we could compare the sampled values with analytically computed solid
angles. To obtain a good idea of the error induced by each sampling scheme,
we computed the error between analytically computed and sampled solid angle
over 10000 points spread over a plan. Regular sampling introduces more error
when the sampled signal has discontinuities aligned with the sampling grid.
This situation, that leads to visual artifacts (see Figure 10), sometimes occurs
while rendering a real scene. For the purpose of our test, we deliberately choose
a light source that is partly aligned (at least one edge) with the sampling grid.
In real rendering situation, care can easily be taken while choosing a viewing
frustum not to align it with the light source, but it is impossible to avoid
alignment between the light source and all potential occluders. Figure 7 shows
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the average, standard deviation and maximum error over the 10000 test points
for each sampling scheme: regular sampling, jittered with 1 sample per pixel,
4 samples per pixel and 8 samples per pixel.

The obtained results are mostly the expected ones. Jittered sampling reduces
the average error; the maximum error and the variance are also reduced. Mul-
tisampling has a small impact on the average error, but it reduces greatly the
maximum error and the variance. Computing 4 samples per pixel almost di-
vides the maximum error by 2, computing 8 samples per pixel reduces a little
more this maximum error. Nevertheless, an unexpected result is obtained. By
construction, using a 32x32 sampling image with 4 samples per pixel (each
sample randomly taken in a quarter of the pixel) should give the same results
than using a 64x64 sampling image with 1 jittered sample per pixel. We ob-
served that using a bigger image with only one sample per pixel gave better
results. We may think of one explanation that we have not been able to vali-
date. During our custom rasterization, we use partial derivatives to compute
whether a point is in or out of the rendered triangle; these partial derivatives
are only approximations discretely computed, whose quality is probably better
when evaluated over smaller pixels (or a bigger image).

The spatial distribution of the error is also important. Figure 8 shows this
distribution on a plan when light source sampling is done using a 48x48 im-
age (results with other image sizes are quite similar). Sampling light sources
using a regular grid introduces a clearly visible structure in the obtained er-
ror distribution, while this structure almost disappears when using a jittered
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8r . Jittered 4
. Jittered 8
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61 H Std deviation
Average
. !

Il LI LT
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Sampling image size

Fig. 7. Average, standard deviation, and maximum error of the estimation of the
solid angle sustended by the light source
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Fig. 8. Distribution of the error over the sampled surface when the solid angle is
estimated using a regular grid (left), a jittered grid with 1 sample per pixel (right),
or 4 samples per pixel (center)

grid. We obtain another unexpected result when using 4 samples per pixel:
the structure in the error is again visible.

To choose between these sampling schemes, sampling speed has to be taken
into account. Speed has been evaluated in a real rendering situation (the office
scene, see Figure 12) to take into account the non negligible time required
to render potential occluders. As our rendering software is multithreaded,
it is impossible to be sure that no other threads are running while timing
a function. This leads to not really representative average times. Instead of
average time, Figure 9 shows median time (computed with 25000 samples
spread over the whole scene) for each phase of the sampling process (rendering
of the occluders, reading back of the image and weighting of each pixel) for
each sampling scheme and 3 sampling image sizes.

Our tests were performed on a Nvidia QuadroFX 3000. The results show that
the costliest part of the sampling process is the rendering of occluders. When
using the regular sampling scheme, the rendering phase cost is practically
independent on the image size. When using jittered sampling, increasing the
image size slows down the rendering. Computing more than one sample per
pixel slows down further more the rendering process. Reading back the image
seems to be in O(y/n), where n is the number of read back pixels (within the
image sizes tested). Weighting the pixels is in O(n), where n is the number of
pixels. According to our tests on our hardware, a 48x48 image with 4 jittered
samples per pixel or a 64x64 image with a single jittered sample per pixel,
seems to be the best compromise between speed and quality.
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Fig. 9. Timings of each phase of the sampling process per sampling scheme and
sampling image size

6.2 Indirect illumination sampling

We tested our indirect illumination technique on the office scene that contains
7000 triangles. The hemispherical projection allows to reduce the size of the
image used to sample indirect illumination. Using a perspective projection
with a field of view of 160° required images of 256x256 pixels to get 45x45
pixels in the central 90° of the field of view. Using an hemispherical projection,
only a 64x64 pixels image is required. The rendered image size can be reduced
by a factor 4 without loosing quality. The smaller the image is, the fastest it
will be read back and summed. If sampling direct illumination required only
8 bits per pixel (only 1 bit is in fact required for visibility determination), 128
bits per pixel are required to sample indirect illumination which is composed
of 3 unbounded floating values (96 bits are actually required). Reading back
the 64x64x8 bits images used for direct illumination sampling takes about
150us, reading back 128x128x128 bits images takes 26ms. This read back cost
is far from being negligible. Reducing the image size to 40x40 with 128 bits per
pixel gives 2ms read back. We choose to use 40x40 images that give visually
satisfying results (for our test scene); further reducing the sampling image size
leads to visible artifacts. More tests would be needed to determine precisely
the best sampling image size for a given scene.

The main problem of hardware sampled indirect illumination is that it requires
to render an important part of the scene. Rendering all these objects can be
the most time consuming phase of indirect illumination sampling according
to the scene complexity. In our quite simple scene, rendering the objects with
a perspective projection has an average cost of 20ms. Using an hemispherical
projection requires to tessellate the rendered objects, leading to an average
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rendering cost of 42ms. Rendering our voxelised representation of the scene
with our slice hemispherical projection algorithm has an average cost of 8ms.
Unfortunately, the voxelised representation is too imprecise in the close to the
eye area where objects have to be tessellated and rendered separately. Our
current implementation, which uses a single grid to partition space, is not
really optimized to limit the number of close to the eye triangles that are
tessellated and rendered.The 8ms they require to be rendered could probably
be reduced with better space partitions like octrees or multi-grids. To sum up,
on our test scene, our algorithm requires 18ms to sample indirect radiance with
a 40x40 pixels image, when a classical approach, with a perspective projection
that requires a 128x128 pixels image, needs 46ms.

Using a triangulated representation of the scene when sampling indirect il-
lumination makes the time required to compute a sample dependent on the
mesh complexity. Voxelising the scene allows to easily reduce the scene with-
out using any algorithmically complex mesh simplification algorithm. Using
a voxelised representation of the scene allows the user to choose a compro-
mise between speed, memory requirements and quality. The more voxels used,
the better the indirect sample quality will be. The memory required is rather

Fig. 10. Visible artifacts on direct radi- Fig. 11. Direct radiance sampled with our
ance regularly sampled with a 48x48 pix- jittered sampling method with a 48x48

els image pixels image

v

Fig. 12. Office scene rendered with direct  Fig. 13. 1-bounce indirect irradiance
and 1-bounce indirect illumination



important. Using 64 slices of 64x64 pixels of 128 bits per face in each direc-
tion requires 25 MB of memory. It must be remembered that one voxelisation
representation of the scene must be stored for each bounce of indirect light-
ing taken into account. Creating a voxelised representation with the graphics
hardware requires 2.9s on our test scene. This creation time is dependent on
the mesh complexity and on the number of slice desired.

7 Discussion

Using the graphics hardware to sample direct radiance of area light sources
offers an interesting alternative to ray tracing. Our method, that allows jittered
hardware sampling, increases the quality of the obtained samples and reduces
their variance. Jittered hardware sampling also allows progressive sampling.
If unsatisfied with the current result, a light source can be sampled multiple
times to increase the sample quality. Computing more than one sample per
pixel increases the length of the fragment shader used, reducing the sampling
speed. Our graphics hardware is not the most recent one, the new generation
of GPUs allows longer fragment programs and is certainly faster.

Sampling indirect lighting is far more costly than sampling the direct one. Our
hardware sampling method that uses an hemispherical projection of voxels is
faster than sampling an hemisphere with software traced rays. Our method
can be used in other contexts than our multi-mesh caching method. For in-
stance, it could be used to perform the final gathering pass in a photon map
algorithm like the one presented in [12]. The main problem of our hardware
voxelisation of the scene is that it samples the scene regularly and not very
densely, producing an aliased representation of the scene. Better voxelisation
might be obtained by creating the scene slices’ textures at a higher resolu-
tion than the one used to store them. The simple grid might be replaced by
more adaptive structures like octrees or multi-grids, in order to take the local
complexity of the scene into account.

8 Conclusion

Graphics hardware is still evolving but it already offers interesting features
to replace CPUs for many algorithms. In this paper, we tried to use the cur-
rent programmability of the GPU to implement a not standard rasterization
and a not standard projection that could be useful in many image synthesis
algorithms. Maybe up-coming GPUs will propose such features in standard.
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