Accelerating 3D Non-Rigid Registration using
Graphics Hardware

Nicolas Courty and Pierre Hellier

University of South Brittany - IRISA/INRIA
France

Abstract

In the context of image-guided surgery, there is an increasing need for fast imple-
mentation of 3D image analysis processes. Among the various image analysis tasks,
non-rigid image registration is particularly needed and is also computationally pro-
hibitive. This paper presents a GPU (Graphical Processing Unit) implementation of
the popular Demons algorithm [15] using a Gaussian recursive filtering [4]. Results
shows acceleration factor up to 9 compared to a software implementation, which
allows to use such an algorithm in a functionnal intra-operative context.

Key words: Non-rigid registration, 3D image processing, GPU implementation.

1 Introduction

In the last decade, it has become increasingly common to use image-guided
navigating systems to assist surgical procedures [5]. The reported benefits are
improved accuracy, reduced intervention time, improved quality of life, reduced
morbidity, reduced intensive care and reduced hospital costs. Image-guided
systems can help the surgeon plan the operation and provide accurate infor-
mation about the anatomy during the intervention. Image-guided systems are
also useful for minimally invasive surgery, since the intraoperative images can
be used interactively as a guide. Current surgical procedures rely on complex
preoperative planning, including various multimodal examinations: anatomi-
cal, vascular, functional explorations for brain surgery. Once all information
have been merged, it can be used for navigation in the operating theatre (OR)

Email address: courty@univ-ubs.fr,phellier@irisa.fr (Nicolas Courty and
Pierre Hellier).
URL: http://www.irisa.fr/visages (Nicolas Courty and Pierre Hellier).

Preprint submitted to Elsevier Science 17th May 2005

using image-guided surgery systems. Image-guided surgery involves the rigid
registration of the patient’s body with the preoperative data. With an optical
tracking system, and Light Emitting Diodes (LED), it is possible to track the
patient’s body, the microscope and the surgical instruments in real time.

Unfortunately, the assumption of a rigid registration between the patient’s
body and the preoperative images only holds at the beginning of the pro-
cedure. This is because soft tissues tend to deform during the intervention.
This is a common problem in many image-guided interventions, the particular
case of neurosurgical procedures can be considered as a representative case.
When dealing with neurosurgery, this phenomenon is called “brain shift”. The
magnitude of soft tissue deformation shows striking differences at each stage of
surgery. Brain shift must be considered as a spatio-temporal phenomenon, and
should be estimated continuously, or at least at key moments, to update the
preoperative planning. To do so, intraoperative images (like intraoperative
Magnetic Resonance Images or 3D ultrasound images) are acquired during
surgery and can be used to estimate the deformation of soft tissues. Non-
rigid image registration method is then needed. The literature on non-rigid
image registration is large, we thus refer the reader to comprehensive surveys
on this domain [11,12,17]. Methods usually differ by the similarity measure
(the modeling between data and unknowns) and the type of regularization
(the regularity of the estimated deformation field). All published methods are
computationally expensive. Reported computation times vary between sev-
eral minutes (10 for the fastest method) and several hours and are in all cases
incompatible with an application in the operating room.

This paper proposes a fast non-rigid registration method implemented on GPU
and compatible with the image-guided surgery requirements. The contribution
of the paper is twofold: firstly, 3D image processing is expressed as operations
on 2D textures. Secondly, we propose an efficient recursive filtering scheme
implemented on GPU that is shown to be 10 times more efficient than the
software implemented version. The paper is organized as follow: after a short
presentation on previous work on using the GPU in general purpose appli-
cations (section 2), we briefly recall some theoritical background on the used
registration method (section 3), then our GPU implementation is proposed
(section 4) along with some results (section 5) and a conclusion.

2 Related Work

Though first designed for computer graphics industry, graphics processing
units have revealed over the last years to be high performance computing
platforms at low cost. With their increased programmability, it is now possi-
ble to consider execution of non-graphic applications on such boards. Several

groups have explored these possibilities for a wide variety of computationally
expensive problems (see [6] for a survey). Considering 3D image processing,
some work has been done on visualization [10,1], segmentation [14], and filter-
ing [9]. The use of graphics board to speed-up medical applications has also
drawn attention in the domain of tomography [16] and non-linear warping of
volumes with thin-plates splines [2]. To our knowledge, our work constitutes
the only attempt to implement a non-linear registration on commodity PC
graphics boards. Among other, our recursive filtering method constitutes an
efficient approach to volume processing on GPU.

3 3D non-rigid registration method

3.1 Owerview

We have chosen to use the Demon’s method for its proved effectiveness and
computational efficiency. In particular, this method has been shown to effi-
ciently register an atlas toward a subject [3] and to register brains of different
subjects [8]. This method was proposed by Thirion [15]. At each demon’s lo-
cation (usually the grid of demons is dense, i.e. every voxel is a demon), force
are computed so as to repulse the model toward the data. The force depends
on the polarity of the point (inside or outside the model), the image difference
and gradients. This amounts to a minmax problem: maximization of similarity
and regularization of solution. For small displacements, it has been shown that
the demon’s method and optical flow are equivalent. The method alternates
between the computation of forces and the regularization of the deformation
field until convergence. Here is a synopsis of the algorithm:

DO

1. Compute spatial and temporal gradients

2. Compute dense grid of demons

3. Regularize incremental deformation field

using Gaussian filtering

4. Update deformation field

5. Compute deformed image using trilinear interpolation
UNTIL CONVERGENCE

The convergence condition can be expressed with the mean square error (MSE)
between the reconstructed volume and the source volume. When the MSE
decreases less than a threshold, the algorithm is stopped. In this paper, the 5
steps described above are implemented using GPU. Most of the computation
time is due to the Gaussian filtering of the deformation field (step 3). For an
optimal implementation, we have chosen the recursive implementation of the

Gaussian filtering proposed in [4].

3.2 Recursive filtering

The recursive Gaussian filtering makes it possible to compute infinite impulse
filters with a bounded complexity. Deriche [4] proposes to approximate the
Gaussian filter with 4" order cosines-exponential functions. It is shown that
the approximation is good for Gaussian filters with a standard deviation lower
than 10. Separability is one of the attractive feature of the Gaussian filtering.
Therefore, the three components of the deformation field will be processed
successively. For a 1D signal x, the causal and anti-causal parts of the filtered
signal y are expressed as:

k=3 k=4
y(i) = z_: bpr(i — k) — z_: apy(i — k).

Numeric coefficients a; and by are given in [4] for the Gaussian filter and
its derivatives. The main advantage of recursive filtering is that the number
of operations is bounded and independent of the standard deviation of the
Gaussian filter. The latter is particularly appealing when filtering 3D images
since a classical implementation is computationally expensive for large stan-
dard deviation. Let us finally note that this method allows to minimize the
number of texture fetching within the fragment program responsible for the
filtering (which is one of the most time-consuming operation on the GPU).

4 Implementation

In this section, we present an original and efficient implementation of Thirion
Demon’s algorithm [15]. As presented in section 3.1, one iteration of conver-
gence loop can be divided into 5 main operations. In our implementation,
we factorized the two first steps (computation of temporal and spatial gradi-
ents and computation of demons in each voxel) in a unique fragment program,
followed by the regularization of the field (Gaussian filtering of the 3 field com-
ponents) and finally the reconstruction of a final volume thanks to a trilinear
interpolation of the current volume. The implementation of the trilinear inter-
polation and the demons computation on GPU are straightforward and will
not be described in this section. We mainly concentrate on the representation
of the volume (4.1) and the recursive filtering scheme (4.2).

4.1 Mapping the 3D volume on a 2D texture

Possible decompositions

Data Volume

+X-aligned +Y-aligned +Z-aligned

Figure 1. Possible decompositions of a 3D volume along three orthogonal axis. For
each axis, two decompositions are possible if axial symetry is considered.

In our implementation, the data volume is not represented as a 3D texture,
but instead as a big texture containing all the slices from the volume. This
technique can be reffered to as flat 3D texture, as first introduced by Harris [7].
Figure 1 is an illustration of the different possible decompositions along the
three axis. There are two major advantages to such a decomposition: first of
all, it is possible to process the entire volume in a single rendering pass, and a
render-to-3D-texture extension is no more needed. Secondly, as far as 3D float
texture are not yet supported on the current generation of graphics board, it
would have not been possible to handle the velocity field volume for instance.

Nevertheless, this transformation is not straightforward. Two major problems
arise: texture size limitation (4096 x 4096 for the current generation) and
unicity of such a decomposition. Let us investigate the possible decomposition
for a volume containing D, x D, x D, voxels, where D}, is the volume dimension
along axis k. This 3D data should be mapped onto a 2D texture of size N; X N,
under the constraint that N; < 2" and N; < 2. Such a mapping might not
be doable, let us find the conditions where it can be performed:

Let us first assume that the image plane are square dyadic images, i.e:

dp € N such that D, =D, = 2"

This assumption is not very restrictive when considering medical images, since
this is very standard with actual scanners.

A solution to this problem can be seen as finding n € [1, p — 1] such that:

Nj = Dz x 27" and Nz = optn

under the constraint N; < 2'? and N; < 212,
D, can be bounded as: 3k € N such that 2! < D, < 2% what leads to:
p—n+k<12and p+n <12

Therefore, adding and subtracting the two equations gives:

k<24 —2pand ngg

Since n € [1, p—1], the mapping can be performed if D, < 2*/2P. For instance,
if p =8 (ie., D, = D, = 256), this amount to D, < 256. Practically, this
mapping is therefore doable.

From there, it is possible to access the whole volume in fragment programs
by using a correct look-up function. Let us note Zz =p —n and Zy =p+n
computed from the previous equation. The look-up functions are given by:

float2 fromVolumeToUV(float3 coord){ float3 fromUVtoVolume (float2 uv){
float X = fmod (coord.y,Zx); float x = fmod (uv.x,Dx);
float Y = (coord.y - X)/Zx; float z = fmod (uv.y,Dy);
return float2(X*Dx+coord.x+0.5, return float3(x, (uv.x-x)/Dx
Y*Dy+coord.z+0.5) ;} +(uv.y-2z)/2Zy, z) ;}

Let us finally note that those functions are given for a particular decomposition
along a particular axis. It is easy to retrieve for each decomposition the given
look-up functions.

4.2 Recursive volume filtering on GPU

The regularization of the field is the most critical part in the registration loop.
It consists of the Gaussian filtering of the 3 components of the deformation
field. In order to speed up this process, the recursive filtering scheme presented
in 3.2 was implemented on the GPU. As stated previously, for each axes a
causal and an anti-causal part has to be computed, which sums up in parsing
the volume in one direction and its opposite. In order to factorize those two
traversals, the volume is transferred to the graphics board memory as a texture
containing slices of the volume. This texture contains two decompositions of
the volume conduced along one axis and its opposite (on the red and green
components of the texture), which allows to handle simultaneously the causal
and anti-causal parts. To simulate the traversal process, we simply set up the
view frustum to process one slice in a rendering pass. This process in then
repeated for each slices along the given direction (which amounts to a full
sweep of the volume). Then the causal and anti-causal parts are added in a

single rendering pass, along with a reorientation of the whole volume on the
texture to prepare the next step. Figure 2 is an illustration of this process. At
the end of the third axis processing, causal and anti-causal part are added,
which ends up the convolution process.

>Filtering along| [REREE, »Filtering along > Filtering along
3 AR R R RN . .
e Y axis Z axis
80000000
R |
00060eES® + *
iti Geeseeee ition +
Addlt.lon +. Beeeee0 0 Addlt.lon . Reconstruction
Reorientation $00660606 Reorientation
Texture Texture
Uploading - Filtered Downloading
Initial
Volume
Volume

Figure 2. Different steps in the recursive filtering process. Boxes correspond to
fragment shaders

5 Results

The registration method was tested on 3D magnetic resonance (MR) T1 im-
ages presented in figure 3. In order to implement our library, we used the Ca
toolkit [13] for desiging fragment shaders. The computer used for tests was an
Athlon XP 25004 equipped with a PCI-Express Quadro FX 1400 with 128
Mo of video memory. The library was written in C++ with OpenGL. First
experiments have shown important performances enhancement compared to
a CPU optimized version. Next table sums up the times spent within the
different parts of the loop.

Figure 3. MR images used in the experiments. From left to right: the source volume,
the target volume and the initial centered difference image. These images are 2D
slices of 1283 3D data.

Average Performances (sec)

CPU | GPU | speedup factor
Computing demons 0.6 0.4 x1.5
Field regularization 28 2.5 x 10
Trilinear interpolation | 0.66 | 0.31 X2
Overall time 551 59 x9

Two brains of different subjects are registered and results are given in figure
4. The size of both volume was 1283. Registration was performed in around 19
iterations. Results of the cpu and gpu implementations were satisfactory and
exhibit small differences. This is due to some implementation details that are
different between the software and hardware implementations, like boundary
conditions and floating-double precision.

6 Conclusion

This paper presented a GPU implementation of a non-rigid 3D image regis-
tration method. Results obtained on 128% volumes indicate that the GPU im-
plementation is 9 times faster for comparable implementations and parameter
tuning: the CPU computation takes around 9 minutes, while the GPU com-
putation takes 59 secondes. Those results are encouraging since they demon-
strate the applicability of such methods in an image-guided surgery context.
The paper presented two contributions: 3D image processing is expressed as
operations on 2D textures. In addition, an efficient recursive filtering scheme
implemented on GPU was presented.

In our implementation, the size of the volume remains a critical aspect, as far
as it was not possible to store in video memory all the data needed to process a
2563 volume. We expect future generation boards to provide sufficient amount
of memory (512 Mo) to cope with this difficulty, and larger amount of pipelines
to improve in a very significant way our algorithm. Lastly, though a PCI-
Express card was used, we expect major improvements to our implementation
provided that all the volumes needed for the registration may stay in the
video memory. This would allow to minimize the data transfer to/from video
memory which remains time-consuming when dealing with large volumes.

Results of the GPU-implemented registration

reconstructed image difference image

Results of the software-implemented registration

reconstructed image difference image

Figure 4. Results of the registration of brains of different subjects. Top row: results
of the gpu-implementation, reconstructed image and difference image. Bottom raw:
results of the CPU implementation. The reconstructed image is the target image,
registered toward the source image using backward trilinear interpolation. It must
thus be compared with the source image.

References

[1] C. Hansen A. Lefohn, J. Kniss and R. Whitaker. Interactive deformation and
visualization of level set surfaces using graphics hardware. Proc. of IEEE
Visualization 2003, 2003.

[2] D. Deyc D. Levina and P. Slomka. Acceleration of 3d, nonlinear warping
using standard video graphics hardware: implementation and initial validation.
Computerized Medical Imaging and Graphics, 28:471-483, 2005.

[3] B. Dawant et al. Automatic 3-d segmentation of internal structures of the head
in mr images using a combination of similarity and free-form transformations:
Part i, methodology and validation on normal subjects. IEEE Trans. Medical
Imaging, 18(10):909-916, 1999.

[4] R. Deriche. Recursively implementing the gaussian and its derivatives. Tech.

Rep. 1893, INRIA, http://www.inria.fr/RRRT/RR-1893.html, 1993.

[6] N.L. Dorward. Neuronavigation - the surgeon’s sextant. Journal of
neurosurgery, 11(2):101-103, 1997.

[6] GPGPU. General purpose computation on GPUs. http://www.gpgpu.org, 2004.

[7] M. Harris, W. Baxter, T. Scheuermann, and A. Lastra. Simulation of cloud
dynamics on graphics hardware. In W. Mark and A. Schilling, editors, Proc. of
the ACM SIGGRAPH/FEurographics Conference on Graphics Hardware, pages
92-101, Switzerland, July 2003.

[8] P. Hellier et al. Retrospective evaluation of inter-subject brain registration.
IEEE Transactions on Medical Imaging, 22(9):1120-1130, 2003.

[9] M. Hopf and T. Ertl. Accelerating 3D Convolution using Graphics Hardware.
In Proc. of IEEFE Visualization 1999, pages 471-474, 1999.

[10] J. Krueger and R. Westermann. Acceleration techniques for gpu-based volume
rendering. In Proc. of IEEE Visualization 2003, 2003.

[11] H. Lester and S. Arridge. A survey of hierarchical non-linear medical image
registration. Pattern Recognition, 32:129-149, 1999.

[12] J. Maintz and MA. Viergever. A survey of medical image registration. Medical
Image Analysis, 2(1):1-36, 1998.

[13] W. Mark, R. Glanville, K. Akeley, and M. Kilgard. Cg: a system for
programming graphics hardware in a c-like language. ACM Trans. on Graphics
(TOG), 22(3):896-907, 2003.

[14] A. Sherbondy, M. Houston, and S. Napel. Fast volume segmentation with
simultaneous visualization using programmable graphics hardware. Proc. of
IEEE Visualization 2003, 2003.

[15] JP. Thirion. Image matching as a diffusion process: an analogy with Maxwell’s
demons. Medical Image Analysis, 2(3):243-260, 1998.

[16] F. Xu and K. Mueller. Accelerating popular tomographic reconstruction
algorithms on commodity pc graphics hardware. To appear in IFEE Tra. of
Nuclear Science, 2005.

[17] B. Zitova and J. Flusser. Image registration methods: a survey. Image and
Vision Computing, 21:977-1000, 2003.

10

