
Fast and Simple Hardware Accelerated

Voxelizations Using Simplicial Coverings ⋆

A. J. Rueda, C. Ogáyar R. J. Segura, F. R. Feito ,

Departamento de Informática

Escuela Politécnica Superior

Universidad de Jaén

Campus Las Lagunillas, Edif. A3

23071 Jaén (Spain)

1 Introduction

Voxelization of solids is concerned with converting geometric objects from their

continuous geometric representation into a set of voxels that best approximates

the continuous object. Voxel representation of solids has applications in Solid

Modeling, Volume Graphics and Physical Simulation. It has extensively used

for rendering objects which are difficult to represent by traditional surface

representations, like clouds, fire, smoke or terrain models [Kau93]. A new

⋆ This work has been partially granted by the Ministry of Science and Technology

of Spain and the European Union by means of the ERDF funds, under the research

projects TIC2001-2099-C03-03 and TIN2004-06326-C03-03.

Email addresses: ajrueda@ujaen.es (A. J. Rueda), cogayar@ujaen.es (C.

Ogáyar), rsegura@ujaen.es (R. J. Segura), ffeito@ujaen.es (F. R. Feito).

Preprint submitted to Elsevier Science 17 May 2005

application of voxelization techniques is the 3D scan-conversion of models for

the emerging 3D raster displays [BS00,PK00,EBM*99]. This new technology

represent the evolution from traditional 2D displays to a new generation of

devices that can generate real 3D images, not depending on the position of

the observer. Although they are still expensive and rather uncommon, the use

of 3D displays will become widespread in the future. These devices work in a

similar way to 2D displays: an object has to be previously 3D scan-converted

to a voxel framebuffer in order to be visualized.

The method described in this paper is an extension of a 2D rasterization algo-

rithm for polygons proposed by the same authors in previous works [RSR*04].

Both methods are conceptually very simple, and avoid the use of tessellations,

complex data structures or previous sortings of edges and faces. This vox-

elization algorithm was already presented in [RSF04], where a conventional

non-hardware accelerated implementation was described.

2 Previous works

The simplest approach to compute a voxelization consists of testing the inclu-

sion of the center of every voxel in the solid. This inclusion test can be solved

by applying a simple crossing count or a more sophisticated method. The main

drawback of this method is its poor performance: the number of inclusion tests

can be extremely high even when working with moderated voxel resolutions.

Another straightforward way to voxelize a solid is based on the extension of

the 2D scanline algorithm to 3D. In this case a plane is used to sweep the

solid following an axis aligned direction (e. g. y axis). For each slice of voxels,

a set of rays is cast (e. g. one per row, following x direction) to compute a list

2

of intersections. Then, the list of intersections is used in a scanline algorithm

way to scan-convert the slice of voxels.

Huang [HYF*98] describes a method for voxelizing planar objects which pro-

vides topological conformity through geometric measurements. This method

eliminates common voxelization artifacts at edges and vertices. It is based on

3D discrete spaces and separability, that is: in order to voxelize a plane (or a

polygon) two parallel planes are built, so the plane to be voxelized lies between

then (all planes are parallel). This method works fine, but it does not allow

the voxelization of the inner part of the solid.

Sramek [SK99a] introduces the Voxelization Model (V-model), which is an

alias-free voxelization method for geometric objects. The V-model of an object

represents it in a three-dimensional continuous space by a trivariate density

function. This function is sampled during the voxelization and the result-

ing values are stored in a volume buffer. Several filtering and interpolation

methods can be applied to the surface density profile. This method allows an

alias-free discrete representation of an object, but it does not take care of the

interior of the solid.

Fang [FC00] proposes a method based on the use of the graphics hardware.

This algorithm proceeds in a similar way to the 3D scanline algorithm, moving

a cutting plane, called Z-plane, parallel to the projection plane, with a con-

stant step size in a front-to-back order. The thin space between two adjacent

Z-planes within the volume space defines a slice. For each new Z-plane, the

algorithm defines the new slice as the current orthogonal viewing volume, and

renders all the surface primitives using standard OpenGL rendering proce-

dures. Since the boundary planes of the viewing volume are used as clipping

3

planes in OpenGL, the clipping mechanism of the graphics engine will ensure

that only the parts of the surfaces within the slice are displayed. The resulting

frame buffer image from the display of this slice will become one slice of the

resulting volume.

The method presented by Haumont [HW02] converts complete polygonal scenes

into voxelized representations. It stores the status (in/out) of the volumetric

space areas in the cells of an octree. First, the algorithm looks for a point

in the scene for which the status can be determined; second, the status is

propagated to the surrounding visible cells. This two steps are repeated until

the status of all the cells in the octree is determined. The advantage of this

method is its robustness, it can successfully handle issues like cracks, holes,

interpenetrating meshes and overlapping geometries. The drawbacks of this

technique are its noticeable slow performance and high memory requirements.

Jones [Jon96] presents a method which voxelizes a model using a point to

triangle distance function. With this approach, each voxel on the grid is treated

as a point, and its distance to each triangle of the model is calculated. There

are several optimizations to enhance the performance, but in general it is a

slow method. Like other approaches, it does not take care of the interior of

the solid.

3 Voxelization algorithm

The theoretical basis of our voxelization algorithm is the point-in-tetrahedron

inclusion test of Feito et al. [FT97]. Given an arbitrary origin point O and

a polyhedron G defined by the triangular faces f0, f1, . . . , fn, then we define

4

S = {T1, T2, . . . , Tn} as a covering of G with 3D-simplexes (tetrahedra) Ti,

defined by O and the triangular face fi. Then an arbitrary point P is inside

polyhedron G if

∑

i

sign(Ti) · incl(Ti, P) > 0

where incl(Ti, P) = 1 when P ∈ Ti, and 0 otherwise. On the other hand

sign(Ti) = +1 when the vertices of the triangular faces of the tetrahedron Ti

follow a counter-clockwise ordering, 1 when they follow a clockwise ordering,

and 0 when the tetrahedron is degenerated. This test can be reformulated as

shows the following lemma:

Lemma 1 Let be G a polyhedron, and O an arbitrary origin point. Let be

S = {T1, T2, . . . , Tn} the covering of G with tetrahedra defined by O and each

triangular face of G. A point P inside G is covered by an odd number of

tetrahedra from S.

Proof. The Jordan Curve Theorem ensures that a ray starting at O and

touching point P intersects an odd number of edges of G after P . These edges

generate an odd number of triangles in S covering point P . 2

The voxelization algorithm for polyhedra consisted of triangular faces is out-

lined below. Of course this approach is valid for polyhedra consisted of general

polygonal faces if these are previously tessellated.

(1) Compute the centroid of the polyhedron. Set this point as origin O.

(2) Take a triangular face △ABC of the polyhedron and construct the tetra-

hedron △ABCO.

(3) Scan-convert the tetrahedron △ABCO in the 3D presence buffer.

5

(4) Return to step 2 until all the faces of the polyhedron have been processed.

(5) The final state of the 3D presence buffer represents the voxelization of

the polyhedron.

The presence buffer is a 3D array of presence values, with the same dimensions

that the voxel space. Each voxel has an associated presence value, which can

be represented with a single bit. A value 1 in its presence value indicates

that the voxel belongs to the solid whereas a 0 value indicates the opposite.

The scan-conversion of a tetrahedron in the presence buffer implies flipping

all the presence values covered by it. Once all the tetrahedron have been

scan-converted, Lemma 1 ensures a presence value 1 only in those voxels that

belong to the polygon. Then the voxelization stored in the presence buffer can

be directly used for any purpose, encoded by an efficient spatial data structure

like an octree, or transferred to a 3D display framebuffer in order to visualize

it. In the last case, some additional color information must be applied, which

can be generated by a volumetric function or interpolated from a 3D map of

sampled data (see Figure 1).

The center of mass of the polyhedron is the best choice for the origin of the

tetrahedra because the average size of the tetrahedra is smaller, which implies

a lower total amount of voxels to be touched. Translating the center of mass

to the origin of coordinates also simplifies many computations during the

tetrahedra scan-conversion.

The described algorithm is simple, robust and flexible: it can handle any kind

of polyhedron, including non-convex, self-intersecting or holed, as its underly-

ing principle is the Jordan Curve Theorem.

6

Fig. 1. Scan-conversion of solids on a 3D display.

4 3D scan-conversion of tetrahedra

As it has just been shown, the most important step in the voxelization al-

gorithm is the scan-conversion of a tetrahedra in the presence-buffer. For

this purpose, we propose a approach based on the scan-conversion of succes-

sive slices of the tetrahedron, similar to the scanline algorithm for polygons

[FDF*94]. Let △ABCD be an arbitrary tetrahedron, as depicted in Figure 2.

The method is given by four steps.

(1) Choose a slicing direction. We will assume slicing is done moving a plane

along y axis. Sort the vertices of the tetrahedron by their y coordinate.

We assume A is the vertex with higher y coordinate, B the next, and so

on with C and D (see Figure 2). Sweeping starts at ys = A.y and finishes

at O.y.

(2) Compute the intersections of the edges of the tetrahedron with the current

7

(a) (b) (c) (d)

Fig. 2. Slicing a tetrahedron

Ay > ys ≥ By By > ys ≥ Cy Cy > ys ≥ Dy

P0 AD AD AD

P1 AB BD BD

P2 AC CD CD

P3 - BC -

Table 1

Edges required for point interpolation depending on the sweep plane relative posi-

tion.

sweep plane. We denote these points P0, P1, P2, P3, as shown in Figure

2.b. This intersections can be computed by a simple linear interpolation

or applying a faster incremental approach. Table 1 shows the edges that

must be used to compute these points, depending on the value of ys.

Notice that point P3 only appears in the interval By > ys ≥ Cy, as

depicted in Figure 2.

(3) Voxelize the slice ys of the tetrahedron. This can be done by simply scan-

converting the triangle △P0P1P2 using a simple scanline approach. In the

interval By > ys ≥ Cy, an second triangle △P3P2P1 must also be scan-

8

converted. During this operation, the presence values of all the voxels

x, ys, z covered by the triangles must be flipped.

(4) Decrement ys and repeat steps 2 and 3 until ys = Oy.

5 Conventional and hardware-accelerated implementations

The described algorithm can be easily implemented using simple data struc-

tures. The presence buffer can be represented in main memory by a 3D array of

bits and each tetrahedron is scan-converted to this array by using the method

described in the previous section. See [RSF04] for a in-depth description of

this implementation and time comparisons with other approaches.

During the execution of a conventional implementation of the algorithm, most

time is spent in the scan-conversion of 2D triangles. We can take advantage

of graphics hardware to perform this task. A hardware-accelerated implemen-

tation using OpenGL primitives is outlined below. Instead of computing a

voxelization by iterating over the tetrahedra set, the scan-conversion of the

tetrahedra is done in parallel for each 2D slice of the presence buffer:

(1) Create a p-buffer with the dimensions of the voxel space (i. e. 128x128).

(2) Initialize ys to the dimension of the voxel space.

(3) Clear the p-buffer and set the logical pixel operation to GL XOR. Set

the drawing color to (1, 1, 1).

(4) Compute the list of tetrahedra that intersect slice ys, that is, those that

verify Ay > ys ≥ Dy.

(5) Compute the points intersection points P0, P1, P2, P3 for the current slice

and each tetrahedron of the list. Draw the triangles △P0P1P2 and △P3P2P1.

9

(6) Transfer the current slice to a 3D texture or a data structure in main

memory.

(7) Decrement ys and return to step 3 until ys = 0.

Transferring each slice to a 3D texture is interesting for two reasons: it is

efficient and allows a direct application of a volume rendering methods. As

soon as required, this information can be retrieved to main memory in order

to perform any additional processing.

The main drawback of the previous approach is that a large set of triangles

must be computed in main memory and sent to the graphics adapter in each

slice, introducing a significant traffic overhead. These triangles change from

one slice to the next, preventing the use of vertex arrays or display lists. This

problem can be avoided if the set of triangles is updated from one slice to the

next in the own adapter by using a vertex program.

The vertex program computes the position of the points P0, P1, P2, P3 for a

given tetrahedron and a current slice, applying linear interpolation on the cor-

responding edges, as described in table 1. The coordinates of the tetrahedra

vertices A, B, C, D are passed to the program as varying parameters, as well

as the index of the point (0-3), necessary to compute the interpolation, and

an identifier of the triangle that owns the vertex (1 for △P0P1P2 and 0 for

△P3P2P1). On the other hand the size of the voxel, the coordinates of the cor-

ner of the minimal bounding cube of the object with minimal xyz coordinates,

the current slice and the model-view projection matrix are passed as uniform

parameters. The full Cg code of the vertex program is shown below:

struct VertexResult // Output data

{

10

float4 position : POSITION ;

float4 color: COLOR0 ;

};

#define IN_MAIN_TRIANGLE(A) A. vertexInfo [0]

#define VERTEX_INDEX(A) A.vertexInfo [1]

#define INSIDE_INTERVAL (v,a,b) (a < v && v <= b)

#define INTERP (A,B,s) (lerp (A, B, (s - A[2]) / (B[2] - A[2])))

#define CULL_VERTEX (A) (A = float4 (-1, -1, -1, 1))

VertexResult main (

int2 vertexData : POSITION , // x->triangle type, y->vertex index

float3 tetraVertexA , // Vertex A coordinates

float3 tetraVertexB , // Vertex B coordinates

float3 tetraVertexC , // Vertex C coordinates

float3 tetraVertexD , // Vertex D coordinates

uniform float3 minBound , // Min xyz corner of the bounding box

uniform float voxelSize ,

uniform float slice , // Current slice

uniform float4x4 modelViewProjectionMatrix)

{

VertexResult result ;

float4 vertexPos ;

// Convert the tetrahedron vertices from world to voxel space

tetraVertexA = (tetraVertexA - minBound) / voxelSize ;

tetraVertexB = (tetraVertexB - minBound) / voxelSize ;

tetraVertexC = (tetraVertexC - minBound) / voxelSize ;

tetraVertexD = (tetraVertexD - minBound) / voxelSize ;

// If the full set of tetrahedra is going to be sent in each slice,

// test here if the slice intersects the tetrahedron. If the test fails, cull vertex

// If secondary triangle, only process when By > slice >= Cy

if (IN_MAIN_TRIANGLE (IN) ||

INSIDE_INTERVAL (slice , IN.tetraVertexB[1], IN. tetraVertexC[1]))

{

if (VERTEX_INDEX (IN) == 0) // Process p0

vertexPos =

float4 (INTERP (IN.tetraVertexA , IN.tetraVertexD , slice).xy , 0, 1);

else

11

if (VERTEX_INDEX (IN) == 1) // Process p1

vertexPos = float4 ((slice >= IN.tetraVertex2[1]) ?

INTERP (IN.tetraVertexA , IN.tetraVertexB , slice).xy :

INTERP (IN.tetraVertexB , IN.tetraVertexD , slice).xy , 0, 1);

else

if (VERTEX_INDEX (IN) == 2) // Process p2

vertexPos = float4 ((slice >= IN.tetraVertex3[1]) ?

INTERP (IN.tetraVertexA , IN.tetraVertexC , slice).xy :

INTERP (IN.tetraVertexC , IN.tetraVertexD , slice).xy , 0, 1);

else

if (VERTEX_INDEX (IN) == 3) // Process p3

vertexPos =

float4 (INTERP (IN.tetraVertexB , IN.tetraVertexC , slice).xy , 0, 1);

}

else

CULL_VERTEX (vertexPos);

result .position = mul (modelViewProjectionMatrix , vertexPos);

result .color = float4 (1, 1, 1, 1);

return result ;

}

If the full tetrahedra set is sent to the graphics pipeline in each slice, the vertex

program must check that the current slice does intersect the tetrahedron. If

the result is negative, the vertex must be culled. This can be avoided if some

preprocessing is done, computing the relevant tetrahedra for each slice. The

three vertices of the triangle △P3P2P1 are also culled when the slice is outside

the interval By > ys ≥ Cy. The third version of the voxelization algorithm,

using programmable GPUs, works as follows:

(1) Create a p-buffer with the dimensions of the voxel space.

(2) Initialize ys to the dimension of the voxel space. Setup the modelView-

ProjectMatrix, voxelSize and minBound uniform parameters.

(3) Compile a display list with two triangles, △P0P1P2 and △P3P2P1 per

12

tetrahedron, setting the varying parameters to the tetrahedron vertices

A, B, C, D. This is illustrated in the code fragment below. Alternatively,

an array of vertices and four parameter arrays can be used instead.

// Setup for tetrahedron nt. The tetrahedra vertices have been previously sorted.

// Send A, B, C, D to the six vertices

cgGLSetParameter3fv (tetraVertexA , tetraList [nt][0]);

cgGLSetParameter3fv (tetraVertexB , tetraList [nt][1]);

cgGLSetParameter3fv (tetraVertexC , tetraList [nt][2]);

cgGLSetParameter3fv (tetraVertexD , tetraList [nt][3]);

// Triangle 1

glVertex2i (1, 0); // P0

glVertex2i (1, 1); // P1

glVertex2i (1, 2); // P2

// Triangle 0

glVertex2i (0, 3); // P3

glVertex2i (0, 2); // P2

glVertex2i (0, 1); // P1

(4) Clear the p-buffer and set the logical pixel operation to GL XOR.

(5) Set the uniform parameter slice to ys. Draw the triangles.

(6) Transfer the current slice from the framebuffer to a 3D texture or main

memory.

(7) Decrement ys and return to step 4 until ys = 0.

In this implementation, the solid voxelization is almost entirely solved by the

GPU. This is very interesting because computing a voxelization of a solid for

high resolutions requires a high amount of time and space. Another advantage

of this approach is that once the display list has been compiled, or the vertex

arrays have been setup and sent to the graphics adapter, several voxelizations

of the entire solid or different parts of it, at different resolutions can be effi-

13

Fig. 3. Examples of voxelizations at different resolutions.

ciently computed. The main different between the vertex arrays and display

lists implementations is that the first one sends the minimal set of tetrahedra

to each layer, in contrast to the second one, which requires the full set of tetra-

hedra to be compiled in a previous stage. Figure 3 shows two voxelizations

computed by this approach, using different voxel resolutions.

Both hardware-accelerated methods described in this section allow the use of a

fragment program to compute a color per voxel in a very simple and efficient

way. Example shown in Figure 4 illustrates the results of a applying a 3D

Perlin noise generator implemented as a fragment program to a voxelization

computed by one of the previous methods.

6 Experimental results

We have compared our two approaches, hardware-accelerated, and GPU accel-

erated using vertex programs against the classical boundary-only voxelization

algorithm of Sramek’s [SK99a]. Our implementation of this method was done

by adapting the code from his VXT library. All the algorithms have been im-

14

Fig. 4. Use of a 3D Perlin noise generator to set a color per voxel.

plemented in C++, using the same compiler, data structures, coding style and

optimizations. The tests ran on a AMD64 2.2Ghz with 1 GB of RAM and a

GeForce 6800 on Windows XP, using the models shown in Figure 5.

Tables 3 and 2 show the excellent performance of the algorithm against a

conventional method. Sramek’s method only beats our approach at low res-

olutions with large models. This is due to the time required to build the

display list during the setup phase, which is dependent on the number of ver-

tices. In the voxelization phase this delay can not be recovered because of the

low resolution. Our approach performs better as the number of vertices and

triangles of the model keeps low and the voxelization resolution keeps high.

The strongest point of Sramek’s algorithm is that time grow slowly with an

increasing number of triangles, and is mainly dependent on the voxelization

resolution.

Table 2 illustrates the noticeable time differences between the GPU-based

approach based on vertex arrays and display lists. The execution times of the

second implementation are remarkably better, although its performance falls

abruptly with large models. The reason for this fall may be in the size of the

15

Fig. 5. Models used for the voxelization tests.

16

643 1283

Model Vertices Triangles New HA New VP Sramek New HA New VP Sramek

Simple 42 25 0.0088 0.0031 0.0563 0.0032 0.0032 0.6034

Celtic Cross 2366 1849 0.0147 0.0014 0.0363 0.0292 0.0037 0.4554

Depot 10591 5466 0.0511 0.0009 0.0693 0.1092 0.0035 0.5791

Mobile Phone 25946 13025 0.0994 0.0012 0.0656 0.1988 0.0023 0.4883

Dragon 202520 100207 1,2508 1.7029 0.2887 2.3448 4.0169 0.7611

Table 2

Voxelization times (in secs.) of the hardware-accelerated implementation (New H),

GPU vertex program implementation using display lists (New VP) and Shramek’s

boundary-only conventional method for 643 and 1283 voxel resolutions.

2563 5123

Model Vertices Triangles New HA New VP Sramek New HA New VP Sramek

Simple 42 25 0.0134 0.0058 4.4940 0.0696 0.0108 43.9656

Celtic Cross 2366 1849 0.0634 0.0047 3.7144 0.1886 0.0110 46.0224

Depot 10591 5466 0.2319 0.0042 3.9336 0.5476 0.7433 38.6934

Mobile Phone 25946 13025 0.6091 0.8746 3.7207 0.9039 1.9770 49.0143

Dragon 202520 100207 4.7673 8.6638 4.0288 9.2517 18.0581 40.4131

Table 3

Voxelization times (in secs.) of the hardware-accelerated implementation (New H),

GPU vertex program implementation using display lists (New VP) and Shramek’s

boundary-only conventional method for 2563 a 5123 voxel resolutions.

display list, and it is likely to be dependent on the graphics hardware used.

Although slower, vertex arrays show a more linear and predictable behaviour.

17

643 1283 2563 5123

Model VA DL VA DL VA DL VA DL

Simple 0.0030 0.0031 0.0017 0.0032 0.0030 0.0058 0.0077 0.0108

Celtic Cross 0.0069 0.0014 0.0100 0.0037 0.0201 0.0047 0.0369 0.0110

Depot 0.0935 0.0009 0.1869 0.0035 0.3853 0.0042 0.7272 0.7433

Mobile Phone 0.2337 0.0012 0.4522 0.0023 0.8746 0.6091 1.8530 1.9770

Dragon 1.6914 1.7029 3.3484 4.0169 6.6215 8.6638 13.5793 18.0581

Table 4

Voxelization times (in secs.) of the GPU implementations, based on vertex arrays

(VA) and display lists (DL).

7 Conclusions

In this work we have presented a simple and efficient method for the voxeliza-

tion of polyhedra which can be easily implemented using common graphics

hardware or GPUs with vertex program support. Both implementations have

two advantages: they are very fast, and release the CPU from the expensive

computations implied in the voxelization process.

As we have seen in the previous section, the performance of the GPUs ap-

proach is noticeable worse when working with large models, because of the

high number of vertices and triangles that have to be processed in the setup

phase. We believe that this setup phase can be faster if the tetrahedra infor-

mation is stored in a vertex texture and accessed from the vertex program

during the voxelization. This avoids the construction of the parameter arrays

in the vertex program approach, and allows the compilation of smaller display

lists.

18

References

[BS00] Blundell, B., Schwarz, A. Volumetric Three-Dimensional Display

Systems. John Wiley, 2000.

[EBM*99] Ebert, D., Bedwell, E., Maher, S., Smoliar, L. Downing, E. Realizing 3D

visualization using crossed-beam volumetric displays. Communications

of the ACM, 42, pp. 101-107, 1999.

[FC00] Fang, S., Chen, H. Hardware accelerated voxelization. Computer &

Graphics, 24, pp. 433-442, 2000.

[FT95] Feito, F., Torres, J. C. Orientation, simplicity and inclusion test for

planar polygons. Computer & Graphics, 19, pp. 596-600, 1995.

[FT97] Feito, F., Torres, J.C. Inclusion test in general polyhedra. Computer &

Graphics, 21, pp. 23-30, 1997.

[FDF*94] Foley, J. D., van Dam, A., Feiner, S. K., Hughes, J. H. Introduction to

Computer Graphics, Addison Wesley, 1994.

[HW02] Haumont, D., Warzie, N. Complete polygonal scene voxelization. Journal

of Graphics Tools, 7, pp. 27-41, 2002.

[HYF*98] Huang, J., Yagel, R., Filippov, V., Kurzion, Y. An accurate method

for voxelizing polygon meshes. Proceedings of the IEEE symposium on

Volume Visualization, pp. 119-126, 1998.

[Jon96] Jones, M. W. The production of volume data from triangular meshes

using voxelisation. Computer Graphics Forum, 15, 5, pp. 311-318. 1996.

[Kau93] Kaufman, A., Cohen, D., Yagel, R. Volume Graphics. IEEE Computer,

26, 7, pp. 51-64, 1993.

19

[PK00] Pastoor, S., Kiesewetter, R. 3-D displays: A review of current

technologies. DISPLAYS, 17, pp. 100-110, 1997.

[RSF04] Rueda, A. J., Segura, R., Feito, F. R., Ogayar, C. Voxelization of solids

using simplicial coverings Proceedings of WSCG’2004, pp. 227-234, 2005.

[RSR*04] Rueda, A. J., Segura, R., Ruiz de Miras, J., Feito, F. R. Rasterizing

complex polygons without tesselations. Graphical Models, 26, pp. 805-

814, 2004.

[SK99a] Sramek, M., Kaufman, A. A. Alias-free voxelization of geometric objects.

IEEE Transactions on Visualization and Computer Graphics, 5, pp. 251-

267, 1999.

[SK99b] Sramek, M., Kaufman, A. VXT: a C++ class library for object

voxelization. Proceedings of the International Workshop on Volume

Graphics, 1999.

[WND99] Woo, M., Nedider, J., Davis, T., Shreiner, D. The OpenGL Programming

Guide, 3rd. edition, Addison Wesley, 1999

20

