Hardware generation of normal maps

Jestis Gumbau, Carlos Gonzélez , Miguel Chover

Universidad Jaume I, Dept. de Lenguajes y Sistemas Informdticos, Castellon de la
Plana 12071 Spain

Abstract

In this paper a method for hardware generation of normal maps is presented. These
normal maps may be applied to low resolution objects so they take on the aspect of
more detailed ones. The proposed method for normal maps generation is a brand-
new method, since even nowadays this process has been performed through software
techniques. Hardware generation greatly reduces time in comparison with present-
day solutions. Moreover, it allows for a dynamic modification of the map. However,
there are some restrictions in relation to how texture coordinates must be distrib-
uted. Vertex and pixel shaders have been used for the generation and usage of the
map. This method works perfectly for terrains and walls.

Key words:
normal map, hardware, shaders, simplification

1 Introduction

The surface textures in the first 3D videogames were only based on the color
information. Afterwards, the idea of combining an illumination map with the
color map was introduced to create more realistic shading effects. However,
the problem then was that the light sources could move and the shading of a
texture depended on these.

The next technique was "bump mapping", which uses the height map. Height
maps are gray-scaled maps that code the information about the objects’
height.

Email addresses: jesus.gumbau@anubis.uji.es (Jesis Gumbau),
cgonzale@sg.uji.es (Carlos Gonzalez), chover@uji.es (Miguel Chover).

Preprint submitted to Elsevier Science 17th May 2005

Finally, the normal map method came into being. Unlike height maps, which
only make use of a map with the information of the height, normal maps
contain 3 vectors of information per pixel(the coordinates of the normal in the
XYZ plane). This information is coded in a RGB color map, corresponding to
each X, Y, Z coordinates with the R, G, B colors respectively. In the normal
map technique two versions of a same polygonal model participate: the high
resolution model, which is used to generate the normal map, and the low
resolution model, where it is applied.

The presented method proposes a fast hardware generation of normal maps
that uses vertexr and pizel shaders. This idea involves a real-time normal map
generation of the object. It also involves a greater processing velocity than
existing methods do, because they make use of the CPU to generate the map.
Present-day methods are generated by software by programming the necessary
instructions for the normal map generation so that the CPU processes them.

It has to be considered that the proposed method can present a more realistic
aspect of the object. This is due to the fact that software methods perform
operations to calculate the normal and the proposed method apply the real
normal value. The difference in quality between the proposed method and
existing methods can be assessed as being almost contemptible.

Two restrictions have to be accomplished:

e Two or more triangles should not share the same texel, otherwise the colors
generated for the normal map would superpose. However, this requirement
is studied in the literature (4)(9), making emphasis on the method presented
in (7).

e Texture coordinates have to be distributed so that the texture should be
correctly applied to both models.

This method works perfectly for terrains and walls, because these objects
usually meet the requirements.

This paper has the following structure. Section 2 refers to previous work con-
cerning this topic. Some basic concepts are introduced in section 3. In section
4, the method is presented in detail and both the generation and the applica-
tion of the normal map are described in subsections 4.1. and 4.2. respectively.
In section 5, the obtained results are provided and commented upon.

2 State of the art

Some normal maps generation applications have already been presented, but
all of them generate the map by software with the corresponding CPU usage.
We emphasize the method proposed in (10), which uses the same method as
that presented in this paper, but by software. Normal maps can be created by
3D edition programs, such as, for example, 3D Studio MAX 7 or Maya 6.0.
Applications exclusively dedicated to the creation of normal maps also exist,
such as ATI’s NormalMapper (1) or nVidia Melody (5).

nVidia’s Melody is an independent program, which presents a simple interface
with different options to load and generate the normal map.

Ati’s Normal Mapper offers libraries and is managed by a command line.

The nVidia’s and ATT’s software make use of the object at two levels of detail,
so the normals are cast from the low resolution model to the high resolution
model, and where they intersect the normal from the high resolution model is
taken in order to be applied to the low resolution model.

3 Basic concepts

A Normal map contain information about the object surface, so it may be
altered in order to modify the appearance of the object without changing
its geometry. In this way, the normal map can be used in the low resolution
model, so that it takes on the aspect of a high resolution one, thus saving the
creation of more triangles, as well as the correspondening computational and
temporal cost. Normal maps can be built in relation to 3 spaces: world space,
object space and tangent space.

o World space: each pixel stores its orientation in the world space, and no
additional computation is required to obtain the normal value. It works
correctly with static meshes.

e Object space: each pixel stores its orientation in the object space, so it
would be necessary to apply the object transformation matrix to obtain the
normal. It works correctly with moving objects.

e Tangent space: each pixel stores its orientation in relation to the face which
the pixel pertain. It is ideal for deformable objects.

Figure 1 shows the normal maps of a sphere in the world and tangent spaces.

Vertex and pixel shaders are used for the hardware generation of normal maps.
Verter and pixel shaders are small fragments of programmable code, which

Figure 1. Normal maps of a sphere in the world and tangent spaces respectively

state the way that the GPU uses the vertices and pixels of the image. So,
OpenGL sends the geometry of the object to the graphics pipeline, which
works with it. By using vertex and pizel shaders however, we can specify
how the GPU has to work with this geometry. Some papers related to this
topic exist in the literature, examples of which are (2)(3)(6)(8)(11). The use
of vertex and pizel shaders is graphically shown in Figure 2.

Figure 2. Graphics pipeline

4 Method

Unlike the present-day normal map generation methods, the presented method
generates the maps by hardware, by making use of vertex and pizel shaders.
The method is based on the use of a 3D object with two different levels of

detail. The idea is to generate the normal map of the high resolution model in
order to assign it to the low resolution model so that it takes on the aspect of a
more detailed object without increasing its geometry. The normal map will be
generated in the world space. The steps taken that generate the normal map
by hardware are explained in subsection 4.1. Although some methods exist
that work by hardware in order to apply the normal map to the low resolution
model, this step is commented upon in subsection 4.2.

So, two vertex shaders and two pizel shaders will be used. The first will gen-
erate the normal map, and the last will apply it to the low resolution model.

4.1 Generation of normal maps

The enabled shaders here perform the following:

e The vertex shader flattens the image, so it transforms the coordinates of
each vertex depending on the texture coordinates. In other words, it is
taken as coordinates x=u, y=v, z=0, where (x,y,z) are the coordinates of
the object, and (u,v) are the coordinates of the texture. Moreover, it passes
the normal through the pipeline. The pseudo-code with these instructions
is shown in Algorithm 1.

e The pixel shader generates the normal map so that it passes the normal
coordinates to the RGB components of the resulting color in this pixel. For
this purpose, it is necessary to convert the normal values into the accepted
range by the RGB plane, that is, [0,1]. Algorithm 2 shows the pseudo-code
of this pizel shader.

in.texcoord.u;
in.texcoord.v;
O.

result.pos.x
result.pos.y
result.pos.z
result.normal .x
result.normal.y
result.normal.z

I~

in.normal.x;
in.normal.y;
in.normal.z;

Algorithm 1. Vertex shader for normal map generation

normal = in.normal.range(0,1);
result.color.r = normal.x;
result.color.g = normal.y;
result.color.b

normal.z;
Algorithm 2. Pixel shader for normal map generation

The result is directly stored in a texture so that it may be applied as a normal
map.

4.2 Application of normal maps

When the normal map has been generated, the created texture is applied to
the low resolution model. This map will represent the virtual direction of the
surface at each point. The enabled shaders here work as follows:

The vertex shader transforms the position of each vertex with the actual
transformation matrix ("Model-view-projection", MVP) and passes the tex-
ture coordinates (normal map) to the pipeline, and the position of each
vertex is transformed by the model transformation matrix (M) to calculate
the lightning in the pizel shader. Algorithm 3 shows the pseudo-code of this
vertex shader.

The pizel shader obtains the color of each texture point, given by the normal
map. This normal map will be applied to the object. Moreover, the pixel
shader calculates the light direction, substracting to the light position the
fragments position (candidate points as being pixels) of the object. Finally,
it converts the normals into the range [-1,1] and the scalar product between
the light direction and the normal is calculated to illuminate the object.
Algorithm 4 shows the pseudo-code of this pizel shader.

result.pos = MVP*xin.pos;
result.mpos = M*in.pos;
result.texcoord = in.texcoord;

Algorithm 3. Vertex shader for normal map application

u
A%

in.texcoord.u;
= in.texcoord.v;

colortex = normalmapl[u,v];
light.dir= in.mpos-in.light.pos;
light.dir.normalize();

normal = colortex.range(-1,1);
color = light.dir“normal;

color = color.range(0,1);
result.color = color;

Algorithm 4. Pizel shader for normal map application

5 Results

The presented method has been tested with some 3D models. The expected
results were obtained, so by using an object without a highly complex mesh,
an image of the object with a more detailed appearance is displayed.

The obtained times are not comparable with those of present-day software
methods, since a few milliseconds are taken by the presented method to gen-
erate the corresponding normal map.

The mesured times with ATI NormalMapper (1), nVidia Melody (5), and the
proposed method using the tested models are shown in Table 1. Next, several
images are shown in order to compare the quality of this method with the
ATT’s and nVidia’s methods. For this purpose, the Tarrasque model at two
levels of detail (725 and 6117 polygons) has been used.

Figure 3 shows the meshes of both the low resolution and high resolution
models, and the high resolution model rendered.

Figure 4 displays the normal map of Tarrasque model generated by our method
and the low resolution model with the normal map of the high resolution
model created by our method. And Figures 5 and 6 display the normal maps
generated by ATT’s and nVidia’s methods and the correspondent low resolution
models with these normal maps applied.

The quality of our method is similar to that of the ATT’s and nVidia’s methods,
as seen in the images.

Moreover, terrain and wall objects have been proved. The method works per-
fectly for this kind of objects, because they usually meet the requirements
of this method. We show an example with Crater object. Figure 7 displays
the high resolution model (199126 polygons), the low resolution model (9079
polygons) and the plane meshes. Figure 8 displays the normal map of the
high resolution model of Crater. And Figure 9 shows the renders of the high
resolution model and both the low resolution model and the plane with the
normal map applied.

Figure 3. Low and high resolution model meshes of Tarrasque with the rendered
model

' '
Figure 4. Normal map of the high resolution model generated by our method and
the low resolution model with it applied

' '
Figure 5. Normal map of the high resolution model generated by ATI’s method and
the low resolution model with it applied

Figure 6. Normal map of the high resolution model generated by nVidia’s method
and the low resolution model with it applied

Figure 7. Low and high resolution model meshes of Crater and a plane object

Figure 8. Normal map of the high resolution model of Crater

Figure 9. Renders of the high resolution model (above), low resolution model with
the normal map applied (left bottom) and the plane with the normal map (right

bottom)

Number of polygons of Number of polygons of Time of Time of | Time of
the low resolution model | the high resolution model || our method ATI nVidia
536 1696 less than 1 16850 16306
4274 7910 less than 1 24125 50589
23378 48048 31 97704 160975
20517 61644 31 129969 | 179569

Table 1

Table of times in milliseconds of normal map generation

References

[1] ATI. Normal Mapper Tool, 2002. http://www.ati.com/developer/tools. htmlAkeley
[2] Ernst, L., Jackel, D., Riisseler, H., Wittig, O. Hardware-supported bump
mapping. Computers and Graphics 20, 1996, nim. 4, pp. 515-521
[3] Hirche, J., Ehlert, A., Guthe, S. Hardware accelerated per-pixel displace-
ment mapping. Graphics Interface 2004
[4] Igarashi, T., Cosgrove, D. Adaptative unwrapping for interactive texture
painting. Symposium on Interactive 3D Graphics 2001, pp. 209-216

5] nVidia.

nVidia

Melody

User

Guide,

http://developer.nvidia.com/object/melody home.html
[6] Peercy, M., Airey, J., Cabral, B. Efficient bump mapping hardware. SIG-
GRAPH ’97 Conference Proceedings. ISBN 0-89791-896-7, pp. 303-306
[7] Sander, P. V., Snyder, J., Gortler, S. J., Hoppe, H. Texture mapping pro-
gressive meshes. ACM SIGGRAPH 2001, pp. 409-416
[8] Schrocker, G. Hardware Accelerated per pixel shading. CESCG 2002
[9] Sloan, P.-P., Weinsteun, D. Brederson, J. Importance driven texture coor-
dinate optimization. Computer Graphics Forum (Proceedings if Eurograph-
ics “98) 17(3), pp. 97-104
[10] Tarini, M., Cignoni, P., Rocchini, C., Scopigno, R. Real time, Accurate,
multi-featured rendering of bump mapped surfaces. Eurographics 2000. Vol-

ume 19, Number 3

[11] Viola, I. Applications of hardware accelerated filtering. CESCG 2002

10

2004.

