
Fuzzy Motion-Adaptive Video Deinterlacing
using Consumer Graphics Hardware

Antonio S. Montemayor1, Felipe Fernández2, Julio Gutiérrez2, Raúl Cabido1†
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Abstract. In the last decade, consumer graphics cards have increased
their power due to the computer games industry. These cards are now
programmable and capable of processing huge amounts of data in a
Streaming Pipelined Architecture. In this work, we adapt a fuzzy motion-
adaptive video deinterlacing solution to the hardware graphics compu-
tation framework. Experimental results show a remarkable performance.
As far as authors know this is the first attempt to implement a fuzzy
video deinterlacing algorithm on the Graphics Processing Unit (GPU).

1 Introduction

Real-time video processing is a complex and demanding task that involves the
use of high-tech systems. There is an increasing migration from analog to digital
video because of the interest on smart technologies in many commercial, traffic,
military, and law-enforcement applications [1, 2].

But also multimedia market has grown now including mobile and small vi-
sualization devices. In near future, those tools will demand more low-cost hard-
ware solutions. These challenges lead to real-time video processing capabilities
and acceptable trade-off between system performance and involving costs. Many
real-time video processing applications in the literature need from dedicated and
expensive hardware.

On the other hand, multimedia and computer games industry have encour-
aged graphics hardware to improve their processing power to unprecedent limits.
Their processing power should not be underestimated and many authors have
demonstrated that these consumer Graphics Processing Units (GPU) have a
great raw performance, even superior to the most common and powerful CPUs
[13–16]. Also, these GPUs can be programmed to customize their rendering
pipeline and thus generating personalized special effects.



Besides, developers can take advantage of these programmable capabilities
even with applications far beyond rendering purposes. In this way, the GPU be-
comes as a co-processor for the central processing unit (CPU) remaining the idea
that they can be encountered in most off-the-shelf desktop computers. Exam-
ples that demonstrate this fact are found in applications that exploits the power
of the GPU for linear algebra calculations [19–22], physically-based simulations
[16], image and volume processing [14, 23–25, 31], neural network implementa-
tions [26, 27], motion estimation and visualization [31] or even acceleration of
database operations [28] among others [29].

Efficient video processing can be achieved using commodity graphics hard-
ware as an alternative to specific high performance hardware. Moreover, this
hardware is not only very affordable but also there are some reliable tools for
making easy the programming task, such as commercial high level shading lan-
guages that tend to improve the abstraction layer between the hardware and the
coding: NVIDIA’s Cg (”C for Graphics”), Microsoft’s HLSL for DirectX9.0 SDK
and the OpenGL Shading Language are the most well-known shading languages.
A brief classification, chronology and explanation of them can be found in [30].

On the other side, fuzzy logic has enhanced to manage uncertainty, and has
been mainly applied to automatic control. It is based on fuzzy sets theory where
inputs do not simply belong or not to a set, but allows degrees of member-
ship. In general terms a fuzzy controller is composed by three processing stages
[3]: input fuzzification, fuzzy rule base evaluation and an output defuzzification
stage. Fuzzy logic has been applied to a variety of fields, including image and
video processing, and computer vision. A detailed survey of applications of fuzzy
techniques to these fields can be found in [4, 5].

In this work we explore a graphics hardware application to a fuzzy video dein-
terlacing problem. This kind of applications have special interest in the graphics
hardware community because commodity graphics cards usually include dedi-
cated hardware for video deinterlacing to provide cinematic-quality and high-
definition video playback. We take into account a fuzzy framework implemented
by means of a composition of linear filters and fuzzy saturation functions, which
have highly efficient computation on the graphics processing unit.

The rest of the paper is organized as follows. In the next section a descrip-
tion of video deinterlacing techniques can be found. Section 3 offers a background
about commodity graphics hardware and its basic architecture. Next, Section 4
provides a brief explanation of the implemented motion-adaptive video deinter-
lacer. Experimental results can be found in Section 5, and finally, Section 6 offers
the conclusions of this work.

2 Video Deinterlacing

Nowadays, analog video coding standards are still based on the interlaced video
scan format. Such approach was found to reduce the required signal bandwidth
transmission. In an interlaced scan format, video frames are split into odd and
even line fields which are transferred consecutively in order to approximate the



whole frame. However, this process gives incomplete images and, in some devices,
poor visual quality results.

Video deinterlacing is the necessary reconstruction task for obtaining progres-
sive video from an interlaced format. Video deinterlacing is usually categorized
in: Motion Compensated (MC) and Non-Motion Compensated (non-MC) algo-
rithms. MC deinterlacing algorithms provide the highest reconstruction quality
although they are computationally more expensive. They are based on a 2D
velocity estimation and pixel shifting calculations.

On the other hand, non-MC techniques are cheaper and can achieve a good
compromise between performance and quality. That is why many small visu-
alization devices use them. An extensive review of deinterlacing technology is
presented by Gerard de Haan in [6, 7].

Simplest non-MC deinterlacing methods are based on time or space line repli-
cation. This way, the missing lines of the actual field replicate the lines from the
previous field (temporal replication, It) or from the known lines of the actual
one (spatial replication, Is).

Temporal or inter-field techniques are also named weave methods, and spatial
or intra-field techniques are also named bob methods. Weave methods are quite
effective in static scenes, while bob methods work better for dynamic ones.

Many spatio-temporal hybrid-deinterlacing techniques have been proposed to
exploit the spatial and temporal correlation of video pictures and to overcome
the artifacts associated with simple deinterlacers. The corresponding techniques
called Motion-Adaptive (MA) algorithms, compute a motion-weighted combina-
tion of a temporal interpolation function It(.) and a spatial interpolation one
Is(.):

Its(i, j, t) = α(i, j, t)Is(i, j, t) + (1 − α(i, j, t))It(i, j, t) (1)

where Its(i, j, t) is the obtained luminance or a RGB component on the column
i, line j and time t of the corresponding field, and α(i, j, t) ∈ [0,1] is the involved
motion value per pixel. To compute this weighting parameter, most of these
techniques are based on the computation of the absolute difference function h(.)
between the luminance of two adjacent fields with the same parity:

h(i, j, k) = |I(i, j, t + 1) − I(i, j, t − 1)| (2)

Unfortunately, due to several noise sources, the luminance difference does not
become zero in all picture parts without motion. This implies that the corre-
sponding motion detector should include some kind of additional spatio-temporal
filtering in order to avoid some undesirable noise effects. This motion filter must
be designed by taking into account the following two main assumptions: the
noise level is usually small in comparison to the signal level, and the moving
objects are large compared with the pixels size.

Thus, there is a need to balance the algorithm’s motion sensitivity with the
ability to provide a good resolution. To accomplish this task, a fuzzy motion
detector was developed by Van de Ville [8, 9] based on a set of 5 fuzzy rules
(FMD1). An improved version of this approach is shown in [10]. There, authors
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Fig. 1. (a) Basic CPU/GPU programming model. When enabled, programmable vertex
and fragment execution paths replace their corresponding stages of the fixed graph-
ics pipeline (represented in dot-lines). Also note the possibility of direct rendering to
framebuffer or rendering to another texture (pbuffer), that can be used again as input
data in the multipass approach. (b) Simple fragment program computation. A common
fragment program will be executed over every position of the input textures (Tex0-
TexN), for example returning a resulting value at (s,t) of the output texture for values
at (s,t) of the input ones.

propose an alternative fuzzy motion detector (FMD2) that simplifies the corre-
sponding computation and provides a good picture quality in both moving and
still image areas. In fact, the core of the computation is based on fuzzy sat-
uration functions and spatio-temporal filtering. Moreover, this work was more
developed in [11] adding a second saturation function and decomposing 2D FIR
kernels into 1D convolutions.

The saturation functions used capture the nonlinearities of the corresponding
fuzzy filter. The saturation function satx1,x2(x) has been initially specified by the
set of fuzzy rules:

if(x is LOW ) then sat = 0; if (x is HIGH) then sat = 1 (3)

where the fuzzy labels LOW and HIGH belong to the corresponding trapezoidal
type-1 fuzzy partition [12] defined by the coordinates (xmin, x1, x2, xmax). Pa-
rameters x1 and x2 simultaneously specify the threshold, gain and saturating
regions of the corresponding variable. The equivalent fuzzy filter obtained pre-
serves the interpretability property of the original system, and is easily under-
standable for a fuzzy or classical system designer.

3 Graphics Hardware

Commodity graphics hardware has evolved drastically since the mid 90’s. With
the aid of the rapid expansion of computer games and multimedia technologies
these consumer GPUs have also become very powerful and inexpensive hardware.



Traditionally, these 3D graphics cards implemented a fixed pipeline for the
processing of primitive descriptions tuned as a state machine from an API such as
OpenGL. But their previously fixed graphics pipeline stages were replaced with
programmable components, the transform and lighting (T&L) and the multi-
texturing one, providing great versatility and power to the developer [17]. The
basic CPU/GPU architecture model is outlined in Fig. 1a.

The hardware accelerated programmability of GPUs has been exposed to
programmers for the development of specialized programs called shaders. These
shaders are loaded into the graphics card for replacing the fixed functionality.
There are two kinds of shaders, respectively called vertex and fragment shaders.
Originally they had to be coded in assembler, but as the graphics hardware
increased in functionality and programmability, these shaders were more diffi-
cult to implement. Even more, the rapid evolution of GPUs forced to rewrite
previous shaders to get maximum performance when a new family of graphics
hardware were released. As pointed out in the introduction, the solution came
with the apparition of commercial high level shading languages and their compil-
ers, which helped in portability and legibility, thus improving the development
process. These shaders are primarily used for rendering complex special effects
and realistic 3D scenes in real-time.

The programmability of the GPU at the fragment level is very well suited for
stream computations. In its simplest form a kernel operation is executed over a
large number of elements in a streaming single-instruction multiple-data (SIMD)
fashion [18, 19].

In the context of computer graphics, a texture is an image that can be
mapped to a polygonal structure to provide realism to the model. Basically,
as an image, it can represent four values (R, G, B, A) as color and transparency
components in every accesible location, called fragments or texels.

The programmer is responsible for organizing the data in a grid to convert
them into a texture, so creating textures in which texels keep numerical values
of interest. In order to achieve maximum performance it is desirable to fill the
RGBA channels of the textures. This is because, in the fragment program, the
processing cost of a single channel in comparison to the processing cost of the
entire quadruple (RGBA) is quite similar.

Textures are fixed to a well determined grid with the aim to operate on their
texels. Then, a custom fragment shader is enabled and the operation kernel is
executed over every fragment by simply rendering. An schematic view of this
process is shown in Fig. 1b.

The output result can be redirected to the input (by means of a pbuffer)
in a multi-pass approach for continuing the processing task. At this point, it is
important to remark that data readback from video memory to host memory is
a well-known computational bottleneck.
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Fig. 2. a) General scheme of the proposed Fuzzy Motion Detector (FMD) for the mo-
tion adaptive deinterlacer. b) Spatial Data Dependence Graph (DDG) of the proposed
FMD.

4 Hardware-Accelerated Video Deinterlacing

By means of the high computational throughput of the graphics card and the
optimized model because of the use of linear convolutions, this kind of appli-
cation is highly efficient to be computed on the GPU. Moreover, and as it is
stated in the introduction, GPUs usually integrate spatial-temporal video dein-
terlacing hardcoded algorithms and they will become the core of many low-cost
deinterlacers.

The proposed fuzzy motion detector is based on the fuzzy motion-adaptive
deinterlacing methods explained in Section 2. Figure 2a shows the schematic
diagram of the proposed FMD and Fig. 2b its spatial data dependence graph.
The proposed fuzzy motion detector operates on 4 consecutive fields, which
are transferred to video memory as 4 different textures (Tex0..Tex3). First it
computes absolute differences (h(t) and h(t-1)) between non-consecutive fields
as expressed by Eq. 2. Then it applies an input saturation function sata,b(.),
a 2D smoothing kernel operation and an output saturation function satc,d(.).
The resulting factor is defined as α(i,j,t)∈[0, 1] which evaluates the spatial or
temporal contribution per pixel to Its as described in Eq. 1. Therefore, the value
of Its needs from the calculation of It and Is in different fragment shaders.

Algorithm 1 shows the pseudocode of the proposed method. The final task
is to achieve a motion matrix for the missing lines of the actual field. This mo-
tion factor is the linear combination weight between the temporal interpolation
reconstruction It and the spatial one Is, following Eq. 1. It is calculated by satu-



rating the input, spreading the signal by a 2D convolution (for example the one
written in the pseudocode) and saturating the output. These process is tuned by
saturation parameters (a, b, c, d), which in general they depend on the dynamism
of the video sequence.

Algorithm 1 System of Recurrence Equations of the Proposed FMD
for t = 1 to K do

for i = 1 to N do
for j = 1 to M do

if (j and t are odd) or (j and t are even) then
h(i, j, t) = |I(i, j, t − 1) − I(i, j, t + 1)| {Motion input}
f1(i, j, t) = sata,b(h(i, j, t)) {Input saturation}
{2D FIR low-pass filter: H and V-T}
f2(i, j, t) = 1/8(f1(i−1, j, t)+f1(i, j−1, t−1)+4f1(i, j, t)+f1(i+1, j, t)+
f1(i, j + 1, t − 1))
α(i, j, t) = satc,d(f2(i, j, t)) {Output saturation 0-1}
{Output Luminance by S-T interpolation}
Its(i, j, t) = α(i, j, t)Is(i, j, t) + (1 − α(i, j, t))It(i, j, t)

end if
end for

end for
end for
Function sat() {sat(.) : R ⇒ [0, 1]}
satx1,x2(x) = (x < x1) ⇒ 0; (x > x2) ⇒ 1; (x − x1)/(x2 − x1)
End Function

5 Experimental Results

Experiments have been performed using the GPU Nvidia GeForce6800 Ultra
(NV45) in a 2.8GHz Pentium 4 host processor, 512MB RAM, AGPx8, under
Windows XP Professional SP2. The applications have been coded in C using
OpenGL as rendering API, Cg 1.3 as shading language and Nvidia v71.84 drivers.
The real-time video capture is done using a simple webcam and DsVideoLib
project [32] which exposes, through DirectShow (DirectX9.0b), captured video
frames as OpenGL textures in a synchronized way. We have simulated an in-
terlaced scan format from a progressive video taking into account only proper
fields.

Figure 3 shows different stages of the processing for a dynamic (left) and a
static (right column) scene for the Salesman test video sequence (QCIF format,
176x144). For this kind of video resolutions we get 95 fps. Moreover, processing
rate is only reduced to 88 fps for a 640x480 VGA video resolutions, which is
much higher than a previous CPU solution (around 30 fps for a QCIF format in
a 1.4 GHz Pentium 4, 128 MB RAM [11]).



The huge performance of this application is mainly based on the fact that
there is no readback from video to host memory and, once textures are uploaded,
all the processing tasks stay in the GPU. However, the frequent branching inside
the needed fragment programs is virtually forcing the use of a modern graphics
card. We have reported only 3 fps for the same 176x144 (QCIF) videos using a
Nvidia GeForceFX5200 (NV34) with less flexibility in the conditional executions.

6 Conclusions

Real-time video processing is a very demanding computational task. In this
work we propose a fuzzy motion-adaptive video deinterlacing implementation
on a common programmable graphics hardware architecture. In particular, high
performance gains can be achieved for this kind of video processing activities
mainly because deinterlacing execution is kept on video memory once data are
uploaded. A major drawback is the conditional branching in the fragment pro-
gram because of the simulation of an interlaced scan format from progressive
video sequences. This fact can be made lighter in a real case, in which only
known lines from each field are provided as input.

Also, modern graphics mobile devices open a new applicability dimension of
low-cost and high performance computing architectures. As a result, these kind
of video processing can be pushed in a near future as a consumer solution.
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Fig. 3. Deinterlacing quality comparison for a dynamic (left) and static (right) scenes.
a) Weave and b) Bob deinterlacing methods, c) α(i, j, t) before the output saturation
function (called f2(i, j, t) in Algorithm 1) and d) proposed FMD video deinterlacer
result with saturation parameters (a=5, b=10, c=50, d=80). Note that video deinter-
lacer based on the fuzzy motion detector results a trade-off between static and dynamic
scenes.


