
Continuous Level of detail on Graphics

Hardware

Francisco Ramos, Oscar Ripollés , Miguel Chover

Universitat Jaume I, Dept. de Lenguajes y Sistemas Informáticos, Castellón de la
Plana 12071 Spain

Abstract

Recent advances in graphics hardware provides new possibilities to succesfully inte-
grate and improve multiresolution models. In this paper, we present a new continu-
ous multiresolution model that maintains its geometry, based on triangle strips, in
high-performance memory on the GPU. This model manages level of detail perfom-
ing fast strips updating operations. We show how this approach takes advantage of
new GPU’s capabilities in an efficient manner.

Key words: multiresolution model, level of detail, triangle strips, real-time
rendering, graphics hardware

1 Introduction

One of the main problems of graphic interactive applications such as computer
games or virtual reality is the geometric complexity of the scenes they repre-
sent. In order to solve this problem, different modelling techniques by level of
detail have been developed, trying to adapt the number of polygons of the ob-
jects to their importance inside the scene. The application of these techniques
is common in standards such as X3D, graphic libraries such as OpenInventor,
OSG, and even in game engines such as Torque, CryEngine, etc., where models
with continuous levels of detail are introduced, based mainly on Progressive
Meshes [1]. The tendency in the last years has been to improve the features
of continuous models by using at their maximum the possibilities offered by
graphic hardware, with the intention of competing with the discrete models

Email addresses: Francisco.Ramos@uji.es (Francisco Ramos),
oripolle@sg.uji.es (Oscar Ripollés), chover@uji.es (Miguel Chover).

Preprint submitted to Elsevier Science 17 May 2005



that, though more limited, are perfectly adapted to current graphics hard-
ware. Specifically, they have worked on the representation of multiresolution
models which use triangle strips to accelerate the visualization by means of
vertex arrays located in the GPU. The fundamental problem of these tech-
niques is the fact that a continuous model needs to make changes on the list
of indexes of the primitives it draws, which causes graphic hardware to lower
its performance when having to carry out this kind of operations.

1.1 Related work

Last years, multiresolution models have progressed substantially. In the begin-
ning discrete models were employed in graphic applications, due mainly to the
little implementation complexity they showed, which is the reason why still
nowadays they keep being used in applications without great graphic require-
ments. Nevertheless, the increase in realism in graphic applications compels
to use multiresolution models which are more exact in their approximations,
which don’t require high storage costs and which are faster in visualization.
This has given way to continuous models, where two consecutive levels of detail
only differ in few polygons and where, besides, the duplication of information
is avoided considerably improving the spatial cost offered by the discrete ones.

The best known continuous multiresolution model is Progressive Meshes [1],
included in Microsoft Corporation’s graphic library DirectX. This model presents
excellent results in visualization in real time, although it is based on triangle
primitives.

Advances have been made in the use of new graphic primitives which minimize
the data transfer between the CPU and the GPU, apart from trying to make
use of the connectivity information given by a polygonal mesh. With this
purpose graphic primitives with implicit connectivity, such as triangle strips
and triangle fans, have been developed. Many continuous models based on this
type of primitives have been recently developed [2-7].

In these years, graphics hardware performance has evolved outstandingly, giv-
ing rise to new techniques which permit to accelerate even more the continuous
models. The use of stripification algorithms which try to take the maximum
advantage of the GPU cache, and the new extensions of graphic libraries which
allow to visualize a whole mesh with few instructions, are examples of these
new techniques.

Nowadays GPUs offer new capacities that, exploited to the maximum, can offer
very good results in several aspects. One of them involves storing information
directly on the high speed memory located in the GPU. This characteristic
allows managing the information in the GPU avoiding data transfer between

2



CPU and GPU and taking the maximum advantage of the proximity of the
memory and the graphic processor. There are some related works which make
use of the new capacities of the current GPUs, such as [8], which implements a
discrete model manager which puts geomorphing into practice by using vertex
shaders; another work is [9] which creates different shaders depending on the
level of detail.

1.2 Motivation

In general, the main problem of continuous models lies in the high cost of
extracting the level of detail, which usually takes about 20% of the total
visualization cost. Apart from the extraction, the use of AGP buses poses the
problem of being much more optimized to upload data than to download it,
favoring the use of the memory of the graphic card to store static objects
that don’t change their geometry. But the appearance of the PCI-Express
bus makes it possible to use a symmetric bus, which allows uploading and
downloading data to the GPU at the same speed, so that it is possible to
work with the GPU memory in a reliable way and without penalizations in
data download.

1.3 Contributions

In this article we present a new multiresolution model integrated into the
graphics hardware. This model makes use of the present GPUs capacities to
store its data structures inside. The fundamental idea on which the model is
based is creating data structures which are efficient for its integration into
the GPU, and that at the same time offer an optimum performance regarding
both visualization and spatial cost. The model works directly with the GPU
memory, obtaining appreciable improvements as shown in the results section.

This way, what this model offers is a complete integration into the graphic
hardware, a low cost of extraction of the level of detail, exploiting the coherence
between levels of detail, and a low spatial cost.

The implemented model features different characteristics:

• Wholly based on triangle strips.
• Simplification based on progressive edge collapses.
• Static stripification. Triangle strips are only generated once, at the highest

level of detail, using a method that takes advantage of GPU’s cache.
• Geometric information of the model is maintained and stored in the GPU.

3



• Level of detail management is performed by a data structure, LOD-Manager,
which allows fast strips updating and removing degenerated triangles from.

2 Fundamentals

Multiresolution models

To construct a continuous multiresolution model based on primitives of im-
plicit connectivity, as triangle strips, it is necessary to fulfil certain require-
ments. On one hand, a mesh made up of this kind of primitive must be available
and, on the other hand, the simplification method that should be employed in
order to generate the different levels of detail must be selected.

There are several mesh simplification methods [10][11], but one of the most
important in the progressive mesh simplification is [1]. This method is based
on iterative edge contractions, and it is the one employed on well-known mul-
tiresolution models such as [2-7].

It is possible to find in literature many works where the problem of converting
a polygonal mesh made up of triangles into triangle strips is solved [12][14].
This process is commonly called stripification, and it can be carried out in a
dynamic or static way. Dynamic stripification involves generating the triangle
strips in real time, that is, for each level of detail new strips are generated.
On the other hand, static stripification entails creating initially triangle strips
and working later with versions of the original strips. There are several models
that use dynamic stripification [3][4], especially variable resolution models. For
their part, other models as [2][5-7] use static stripification techniques.

The main problem of static stripification models can be observed in Figure
1. As model reaches lower levels of detail, it presents vertex repetitions that
do not add any information to the final scene but involve higher data traffic
between the CPU and the GPU. Models as [2][7] solve this problem applying
filters to eliminate degenerated triangles. The first employs filters in visual-
ization, avoiding sending those vertices at the moment of de rendering, and
the second executes a preprocess that detects them initially, storing that in-
formation and eliminating them from the strips before visualizing them.

Given the architecture of present GPUs, it is preferable to employ static strip-
ification techniques since we avoid strip creation and destruction on the GPU,
that would imply an additional cost which would make the model much less
competitive. Furthermore, there is an additional cost entailed by calculating
the new triangle strips at each level of detail, which also penalizes the use
of these techniques. Moreover, it is preferable to eliminate degenerated trian-

4



gles before the visualization, which permits to accelerate it considerably by
resizing strips, apart from allowing a better implementation of the model on
the GPU, avoiding creating a specific code for the filters. Nowadays, varied
acceleration techniques have appeared, which integrated into a multiresolu-
tion model would also become key to improve its performance. Basically, we
can notice stripification techniques oriented to exploit vertex caches [12] and
hardware acceleration techniques by means of graphics library extensions [13].

Fig. 1. Multirresolution triangle strips

High-perfomance memory on GPUs

A vertex buffer object is a feature that enables us to store data in high-
performance memory on the GPU. The basic idea is to provide some buffers,
which will be available through identifiers. There are different ways to interact
with buffers:

• Bind a buffer: it activates the buffer in order to be used by the application.
• Put and get data: it allows us copying data between a client’s area and a

buffer object in the GPU.
• Map a buffer: you can get a pointer to a buffer object in the client’s area, but

it can produce that the driver waits for the GPU to finish their operations.

There are two kinds of vertex buffer objects: array buffers and element array
buffers. On one side, array buffers contain vertex attributes, such as vertex
coordinates, texture coordinates data, per-vertex color data and normals. On
the other side, element array buffers contain only indices to elements in array
buffers. The ability to switch between various element buffers while keeping the
same vertex array allows us to implement level of detail schemes by changing
the elements buffer while working on the same array of vertices.

In order to implement the model on graphics hardware, we have used different
functions which interact with buffer objects. Among them, we can highlight:

• glBindBufferARB: this function sets up internal parameters so that the next
operations work on this current buffer object.

5



• glBufferDataARB: this function is an abstraction layer between the memory
and the application. Basically, this function copies data from the client
memory to the buffer object bound.

• glBufferSubDataARB and glGetBufferSubDataARB: its purpose consist of
replacing or obtaining respectively, data from an existing buffer.

3 Implementacion details

3.1 General framework

A brief diagram of the model is shown in Figure 2. At the beginning, infor-
mation about vertices and strips, at the highest level of detail, is uploaded
into the GPU. Later, by means of LOD-Manager data structure, strips are
updated in accordance with the current level of detail.

In our approach we first perform two essential tasks: generate triangle strips
at the highest level of detail and calculate vertex-collapse simplification.

At runtime, we upload vertices and strips information into the GPU. Then,
depending on application demands, we perform vertex-split or edge-collapse
operations directly on the strips. This task is executed by the LOD-Manager.
Concretely, when a level of detail transition is required, it downloads from the
GPU, the strips affected by these changes. Later, it modifies and uploads the
updated strips to the graphics system. Last, strips information in the GPU is
then used for display.

Fig. 2. Model architecture

6



3.2 LOD-Manager data structures

Main function of LOD-Manager consists in serving level of detail demands
required by applications. It is able to quickly change the geometric informa-
tion located in the GPU by applying a series of pre-calculated records. These
records mainly stores two kind of information: simplifications and filters.

Fig. 3. Removed patterns

Simplification information contains which strips change for each level of detail,
and where are located the vertices to split or collapse. It allows us to quickly
locate information to be modified when we move from a level of detail to an-
other. However, as model moves to coarse LODs, an accumulation of identical
vertices is produced. Sending these vertex repetitions to the graphics hardware
does not contribute at all to the final scene, because it is equivalent to send
degenerated triangles, as is shown in Figure 1. We have checked that most
vertex repetitions can be removed, following patterns like aa(a)+ or ab(ab)+.
Patterns aa(a)+ are replaced by aa, and ab(ab)+ by ab. Figure 3 shows an
example for each kind of pattern, we can observe that final geometry of strips
do not change after removing these patterns.

3.3 GPU data structures

Two essential data structures for the model performance are stored in the
GPU: vertices and strips, which compose the polygonal mesh. On the one
hand, vertices are stored in a vertex array buffer. On the other hand, we
might allocate each strip in an element buffer. However, we have checked that
creating as many buffers as strips implies noticeably decreases in performance
due to bind operations. A solution to this problem, with optimum results,
consist of creating a single element buffer, where is located every strip to be
rendered. In this manner, we avoid continuous bind operations to assign an
element buffer for each strip.

3.4 Controlling level of detail

In continuous multiresolution models, level of detail management, carries two
fundamental tasks: level of detail extraction required by applications and vi-

7



sualization of resultant geometry.

Level of detail extraction

At a high level, pseudo algorithm for moving from LOD n to LOD n+1 would
consist in downloading, from the GPU, the chunks of memory correspond-
ing to the strips affected by the change of the level of detail. After that, we
replace vertex n by the vertex where it collapses to, in every strip where it
appears. Later, derived vertex repetitions must be removed. Finally, the strip
is uploaded to the GPU for visualization.

for LOD = currentLOD to demandedLOD

for Strip = StripsAffected(LOD).Begin() to StripsAffected(LOD).End()

auxStrip=DownloadFromGPU(Strip);

CollapseOrSplit(auxStrip,LOD);

UploadToGPU(auxStrip);

end for
end for

Fig. 4. Level of detail extraction from a LOD to a coarse one.

Visualization

Figure 5 corresponds to the visualizationaalgorithm. This algorithm takes ad-
vantage of new GPU capacities. It directly stores and manages strips to visu-
alize from graphics hardware memory.

for IndexStrip = 0 to NumberOfStrips - 1

glDrawRangeElements (

GL TRIANGLE STRIP,

currentLOD,

NumberOfVertices - 1,

StripBufferManager(IndexStrip).size(),

GL UNSIGNED INT,

(const void*)(StripBufferManager(IndexStrip).Offset()*sizeof(EnteroUn)),

end for

Fig. 5. Visualization algorithm.

4 Results

Figure 6 shows a spatial cost comparative. On average, the presented model
fits in 1.5 times the original mesh in triangles and 2.3 times in triangle strips.

8



Two well-known utilities to generate strips have been tested in this multires-
olution model: Stripe Utility [14] and NVTriStrip Library [12]. Triangle strips
for different objects have been generated from both utilities. Model generated
from the NVTriStrip Library shows better frame-per-second rates than the
Stripe object when the level of detail is higher; this behaviour is shown in
Figure 7b.

Results of visualization are shown in Figure 7a, where it is compared our
approach to other models. It is possible to observe that our model offers the
best visualization times due to its hardware integration.

5 Conclusions

We have presented a uniform resolution model that noticeably improves exist-
ing models, in terms of storage and visualization cost. This model features: a
total graphics hardware integration with implementation on high-perfomance
memory, optimized hardware primitives, vertex cache exploitation and low
spatial cost.

Fig. 6. Spatial cost comparison

Fig. 7. (a) Multiresolution models comparison and (b) stripification techniques per-
fomance in our approach

9



References

[1] Hoppe H. Progressive Meshes. Computer Graphics (SIGGRAPH), 30:99-
108, 1996.

[2] El-Sana J, Azanli E, Varshney A. Skip strips: maintaining triangle strips
for view-dependent rendering. In: Proceedings of Visualization 99, 1999.
p.131-137.

[3] Michael Shafae, Renato Pajarola. DStrips: Dynamic Triangle Strips for
Real-Time Mesh Simplification and Rendering. Proceedings Pacific Graph-
ics Conference, 2003.

[4] A. James Stewart: Tunneling for Triangle Strips in Continuous Level-of-
Detail Meshes. Graphics Interface 2001: 91-100.

[5] O. Belmonte, I. Remolar, J. Ribelles, M. Chover, M. Fernndez. Efficient
Use Connectivity In-formation between Triangles in a Mesh for Real-Time
Rendering, Future Generation Computer Systems, Special issue on Com-
puter Graphics and Geometric Modeling, 2003. ISSN 0167-739X.

[6] J. Ribelles, A. Lpez, I. Remolar, O. Belmonte, M. Chover. Multiresolution
Modeling of Polygonal Surface Meshes Using Triangle Fans. Proc. of 9th
DGCI 2000, 431-442, 2000. ISBN 3-540-41396-0.

[7] J. F. Ramos, M. Chover, LodStrips, Lecture notes in Computer Science,
Proc. of Computational Science ICCS 2004, Springer, ISBN/ISSN 3-540-
22129-8, Krakow (Poland), vol. 3039, pp. 107-114, June, 2004.

[8] Olano, Marc, Bob Kuehne and Maryann Simmons, Automatic Shader
Level of Detail. Proceedings of Graphics Hardware 2003, Eurograph-
ics/ACM SIGGRAPH, July 2003.

[9] Creation and Control of Real-time Continuous Level of Detail on Pro-
grammable Graphics Hardware James Gain, Richard Southern; Computer
Graphics Forum, March 2003

[10] M. Garland and P. Heckbert. Surface simplification using quadric error
metrics. In Proceedings of SIGGRAPH ’97 (Los Angeles, CA), Computer
Graphics Proceedings, Annual Conference Series, pages 209 - 216. ACM
SIGGRAPH, ACM Press, August 1997.

[11] A Developer’s Survey of Polygonal Simplification Algorithms, David P.
Lueke IEEE CG A, June, 2001

[12] NvTriStrip Library, NVIDIA Corporation (2002). Available in
Internet at following URL http://developer.nvidia.com/object/
nvtristrip library.html.

[13] ARB vertex buffer object Specification. http://oss.sgi.com/projects/ogl-
sample/registry/ARB/vertex buffer object.txt

[14] F. Evans, S. Skiena and A. Varshney, Optimising Triangle
Strips for Fast Rendering, IEEE Visualization ’96, 319-326, 1996.
http://www.cs.sunysb.edu/ stripe

10


