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Abstract

Real-time rendering of virtual weather conditions has been investigated in many
papers. Inserting fog or snow in a scene is rather straightforward. Rain is one of the
most encountered natural phenomena, but its rendering often lacks realism.

In this paper, we propose a realistic real-time rain rendering method using pro-
grammable graphics hardware. In order to simulate the refraction of the scene inside
a raindrop, the scene is captured to a texture which is distorted according to optical
properties of raindrops. This texture is mapped onto each raindrop. Our method
also takes into account retinal persistence.

Key words: natural phenomena, rain, real-time rendering, graphics hardware,
physical model.

1 Introduction

Until a few years ago, speed had usually a higher priority than realism for
real-time applications. Nowadays, with the tremendous possibilities of current
graphics hardware, these two points become less and less antagonist. Real-time
applications begin to have new goals: photo-realism, following physics laws,
handling a large number of natural phenomena.

To achieve a high degree of realism in order to immerse the user in a visually
convincing environment, developers introduce weather conditions in their ap-
plications. Fog rendering reduces the observable depth in the scene, speeding
up the rendering process. It has already been introduced in computer graphics,
even by a full hardware acceleration. Falling snow can be approximated as an
opaque and diffuse material. Consequently, it can be realistically represented
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using simple particle systems. But falling rain still lacks realism, although it
is one of the most encountered weather conditions in real scenes.

Rain rendering methods can be divided into two main categories. Most video-
games use particle systems and static textures, leading to a lack of realism.
Physically-based methods ([SDY02], [KKY93], [KIY99]) intend to simulate
low-motion raindrops on a surface. They generate accurate results, at a high
computation cost. The technique we present here has the advantages of both
kinds of methods, without their drawbacks.

This paper introduces a method for a realistic rain rendering at a high frame-
rate, making use of programmable graphics hardware. In addition, this method
is based on physical properties (geometrical, dynamic and optical) of rain-
drops. An image of the background scene is captured to a texture. This tex-
ture is mapped onto the raindrops according to optical laws by a fragment
shader. We extend this method to take into account retinal persistence: quasi
spherical raindrops appear like streaks. With this motion blur extension, we
generate more visually realistic rain rendering.

After presenting the previous related works, we present the physical (geomet-
rical, dynamic and optical) properties of raindrops. Then, we describe our
method to render realistic raindrops in real-time, and explain how we handle
retinal persistence. We also propose an extension to handle illumination of
raindrops from light sources. Finally, we present our results before conclusion
and future works.

2 Previous works

Real-time rendering:

In most video-games (for example Unreal Tournament 2004, Need For Speed
Underground 2, ...), rain is rendered as a simple particle system, where each
particle is a translucent white streak. This method is not very realistic, but
allows users to have the impression of a rainy environment.

An interesting work for video-games has been developed by N. Wang and B.
Wade for Microsoft Flight Simulator 2004 [WW04]. A textured double cone
is positioned around the observer. Textures of light rain, heavy rain, snow,
etc. are scrolled on the double cone to give a motion impression. The cone is
tilted to cope with the speed of the observer, to give him the impression that
the drops fall towards him. This method is faster than particle systems, but
does not allow any kind of interaction between rain and the environment. In
addition, a texture has to be defined for every desired type of precipitation.
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Physically-based methods:

Many studies ([SDY02], [KKY93], [KIY99]) have proposed methods to render
a limited number of low-motion water-drops on a surface such as a windshield.
These methods produce satisfying results but imply a high computation cost,
partly because of an expensive simulation process.

Computer vision methods:

In the field of computer vision, [SW03], [GN03] and [GN04] have described
techniques to add or remove rain from video. To validate this approach, [GN03]
needs a precise theoretical model to understand the influence of rain in videos,
and for this purpose, it describes a ray tracing method that generates highly
accurate raindrops, but at a prohibitive cost.

Other methods:

Some other papers cannot be related to one of the three above categories.
Langer et al. [LZK+04] have presented an image-based spectral synthesis
method to render snow and rain, where the spectrum of a falling snow or
rain texture is defined by a dispersion relation in the image plane, derived
from linear perspective. This method does not run in real-time. Another work
proposed by Yang et al. [YZZ04] presented a simple method for distorting an
image of the background scene in order to give the impression of drops on a
windshield by using a very low cost algorithm (based on visual observations)
without any relation with physical properties of raindrops. A real raindrop flips
the scene behind it, which this method does not do, hence a lack of realism.

3 Physical properties of raindrops

3.1 Shape, size and dynamics

The widely spread idea according to which raindrops are tear-shaped, or
streak-shaped, is inaccurate. This impression is caused, as we will see in sec-
tion 5, by the phenomenon of retinal persistence. Many papers (referenced in
[Ros00]), prove that falling raindrops look more like ellipsoids. Small raindrops
are almost spherical, and bigger raindrops get flattened at the bottom.

This shape is the result of an equilibrium between antagonist forces. Surface
tension tries to minimize the contact surface between air and raindrop, which
results in a spherical shape. Aerodynamic pressure tries to stretch the drop
horizontally, and gives it an ellipsoidal shape.
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Green [Gre75] has proposed a simple model, balancing surface tension with
the effects of gravity, resulting in ellipsoid raindrop shapes. Beard and Chuang
([BC87], [CB90]) have presented a more complex and accurate model, based
on a sum of weighted cosines, to distort a regular sphere, using the following
equation:

r(θ) = a

(

1 +
10
∑

n=0

Cncos(nθ)
)

(1)

where a is the radius of the undistorted sphere, located at the center of mass
of the drop. The angle θ denotes the polar elevation, with θ = 0 pointing
vertically downwards. A few sample shape coefficients Cn are given in table 1.

Shape co-efficients (cn · 104) for n =

a (mm) 0 1 2 3 4 5 6 7 8 9 10

0.5 -28 -30 -83 -22 -3 2 1 0 0 0 0

1.0 -134 -118 -385 -100 -5 17 6 -1 -3 -1 1

3.0 -843 -472 -2040 -240 299 168 -21 -73 -20 25 24

4.5 -1328 -403 -2889 -106 662 153 -146 -111 18 81 31

Table 1
Shape coefficients Cn for cosine distortion (equation 1) [CB90].

Figure 1 shows typical raindrop shapes for common undistorted radii, com-
puted from equation 1.

Fig. 1. Shape of drops. (a) Compared shapes of raindrops of radii R = 1mm, 1.5mm,
2mm, 2.5mm and 3mm [Ros00]. (b) Shape of a droplet of undistorted radius 0.5. (c)
Shape of a droplet of undistorted radius 1.0. (d) Shape of a droplet of undistorted
radius 3.0. (e) Shape of a droplet of undistorted radius 4.5.

The falling speed of a raindrop depends on its radius. Values presented in table
2 are speeds of raindrops which have reached their terminal velocities, when
gravity and friction forces compensate. This velocity is quickly reached, and
is the speed at which the drops are seen at ground level.
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Spherical drops Ellipsoidal drops

radius (mm) speed (m/s) radius (mm) speed (m/s) radius (mm) speed (m/s)

0.1 0.72 0.5 4.0 2.5 9.2

0.15 1.17 0.75 5.43 2.75 9.23

0.2 1.62 1.0 6.59 3.0 9.23

0.25 2.06 1.25 7.46 3.25 9.23

0.3 2.47 1.5 8.1 3.5 9.23

0.35 2.87 1.75 8.58 3.75 9.23

0.4 3.27 2.0 8.91 4.0 9.23

0.45 3.67 2.25 9.11

Table 2
Speed of raindrops depending on their radii [Ros00].

3.2 Optical properties

In this paper, we do not intend to render rainbows (diffraction of light), so we
do not need to take into account the wave character of light. It is physically
correct to neglect the wave properties of light for drops much larger than the
wavelength of light, which is the case here. We can instead focus on the prop-
erties defined by geometrical optics. In this approximation, light is considered
as a set of monochromatic rays, which refract and reflect at interfaces between
different propagation media.

Fig. 2. Reflection / refraction of a ray in a raindrop.

At an interface, the law of reflection describes the directions of the reflected
ray, and Snell’s law describes the direction of the refracted ray. Directions of
reflected/refracted rays are illustrated in Figure 2.

For a specific ray, given its angle of incidence onto the interface and its po-
larization, the ratio between reflection and refraction is given by the Fresnel
factor.

In Figure 3, an example of refraction can be observed on a photograph (taken
with a 1/1000 s shutter speed). The white dots on the photographed water-
drop are due to the camera flash.
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Fig. 3. A photograph of a real drop refracting the background scene.

4 Real-time raindrop rendering

4.1 Hypotheses

The Fresnel factor computation demonstrates that reflection has only a signif-
icant participation to the color of a surface at grazing angles. For a raindrop,
this means that reflection is only visible on the border of the drop. In our ap-
plication, since a raindrop appears rather small on the screen, and reflection
is visible only in a small part of each raindrop, it is reasonable to neglect the
reflection participation to the appearance of the raindrop, and focus on correct
refraction.

Raindrops are rendered as billboards [MS95] (small quads always facing the
camera); the outline shape of the raindrops is given by a mask pre-computed
from equation 1, for the desired raindrop radius. The computation of the
mask is explained further in section 4.2. The appearance of each raindrop is
computed inside a fragment shader.

4.2 Description of the method

The image perceived through a water-drop is a rotated and distorted wide
angle image of the background scene, as illustrated in Figure 3. To simulate this
effect, we use the render-to-texture facilities of graphics hardware to obtain a
texture which will be map onto each raindrop in a fragment shader.
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In a pre-computation step, we generate a mask for the desired radius, and save
it into a texture.

During runtime, the appearance of each pixel of a raindrop is computed with
the following process:

• Capture the scene to a wide angle texture.
• Using the mask, determine if the pixel is inside or outside the raindrop.
• If it is inside, use the mask to determine the direction of the refracted vector.
• Find the position in the captured texture, when there is no change in the

direction of the incoming ray.
• In image space, add the refracted vector to the position found in the previous

point.
• Extract the desired pixel at this location.

Pre-computation of the mask

Fig. 4. Left: A mask texture pre-computed for a raindrop of radius 1.5mm. Right:
A three-dimensional view of a raindrop of radius 1.5mm.

An auxiliary program uses equation 1 to compute the three-dimensional shape
of a raindrop whose radius is given as a parameter. For each pixel of this shape,
the refraction vector is pre-computed and saved into a texture (Figure 4).
The mask can also be obtained from an arbitrary three-dimensional raindrop
model. In the fragment shader, the mask is used at the same time to give the
raindrop its shape and to determine the refraction vector at the low cost of a
simple texture lookup. Instead of pre-computing this mask, it could have been
possible to use Cg’s refract function, and compute the refraction vectors at
runtime. The drawback of this approach is that it limits the raindrops shapes
to perfect spheres, as finding the point where the ray comes out of the raindrop
implies a high computation cost for arbitrary shapes.
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Capturing the scene to a texture

A camera is positioned at the same location as the observer, with the same
orientation and with a very large angle of vision. This wide angle for the ”Field
Of View over y” (FOVy) parameter of the camera is explained in section 4.3.
The texture generated by this camera is positioned on a plane behind the
raindrops (as illustrated in Figure 5).

Determining the pixel color

For each pixel Pi of the raindrop, a fragment shader extracts the pixel which
is refracted towards the observer from the captured texture (Figure 5). The
fragment shader first determines which pixel Po in the captured texture is the
image of the scene object seen from the observer in the direction of Pi. Then
the refraction vector is extracted from the mask texture, and combined to the
location of Po, to obtain pixel Pc, which gives the color of Pi.

Fig. 5. Extraction of the raindrop pixel from the captured texture. The red quad
delimits the plane onto which the generated texture is mapped. Rays coming from
the observer to the raindrops are refracted towards the captured texture.

In Figure 6, we compare a water-drop simulated using our method (left) and
an image of a real falling droplet (right). A photograph of the original scene
was used as a background image for the simulated drop. The bottom images
show a close view of the original and simulated drops. As the real drop just
left the tap, its shape is not yet stabilized and is not perfectly spherical, and

8



Fig. 6. Left: An image simulated with our method. Right: A photograph of a real
raindrop.

so it does not behave exactly as the simulated one.

4.3 Physical parameters

FOVy of the camera

Fig. 7. Maximum refraction deviation for a raindrop.

The refraction index of air is 1, and that of water is 1.33. On the edges of a
drop, where the refraction deviation is maximal, the angle between the ray
coming from the observer and the normal to the surface is 90◦, as illustrated
in Figure 7. Using Snell’s law, the angle between the incoming ray and the
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internally refracted ray is 48◦. The normal to the point where the ray comes
out of the drop makes an angle of 6◦ with the original incoming ray. The
refracted ray forms an angle of 48◦ with this normal, and so refracts back in
the air with an angle of 81◦ to the normal (applying again Snell’s law), and
so 75◦ from the original incoming ray. The field of view of a raindrop is thus
150◦ wide. This value is sufficient in our application for the ”Field Of View
over Y” (FOVy) parameter of the camera capturing the scene to a texture.

Physical approximations

To obtain physically accurate results, we should perform a ray-tracing with
all the objects in the scene, but this can hardly be done in real-time. The
fact that we use only one texture for all the raindrops introduces a small
approximation to physics laws, which implies a tremendous increase in the
rendering speed. As it is not generated at the exact location of the drops,
the texture does not contain what the drop really ”sees”. This can result in
seldom cases in undetected occlusions, or in additional distortion in the texture
mapping. In rain simulation, drops are very small and move very fast, and this
approximation is not a major drawback.

5 Retinal persistence

Fig. 8. The pixel indicated in red receives a contribution from all the successive
positions of the raindrop.

We defined a general-purpose model for rain simulation, which doesn’t take
into account perception from an observer. Because of retinal persistence, a
human eye or camera often perceives raindrops like streaks. Two slightly dif-
ferent phenomena can be observed: a camera captures its picture in discrete
time, while human eye operates in continuous time.
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In a photography or a motion picture, raindrops appear like streaks due to
the shutter speed of the camera. While the shutter is opened, a drop falls
down a few centimeters, and impresses the film on a short vertical distance.
This effect is usually called ”motion blur”. It would not be visible for an ideal
camera using an infinitesimal shutter speed.

The eye observing real rain behaves differently, for the same result. An eye
does not have a shutter, but when an image forms on the retina, it takes 60
to 90 milliseconds to fade away. During this time lapse, the drop keeps falling,
and all its different positions compose a continuous sequence of images on the
retina, producing this persistence effect.

Human eye is not used to seeing almost spherical drops; our model, although
it is physically correct, seems to lack realism. We extended our model to take
into account retinal persistence, and generate streaks based upon our accurate
raindrop model.

To simulate this effect, our rain particles are reshaped into vertical streaks.
Each pixel of a streak receives the contribution of the successive positions of
the drop, as illustrated in Figure 8. The fragment shader we use is modified
in the following way: for each pixel;

• Compute the refracted pixel of a few sample positions of the drop
• Perform a mean of those values.
• Lower alpha value, since each streak is the result of one moving drop.

6 Results

Fig. 9. Two images generated with our method.

The main bottleneck in our application is the handling of the particle system.
On a PC with a 2600+ AMD CPU and an nVidia Geforce 6800 GT video
card, our method generates more than 100 frames per second, when using
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Fig. 10. Two images generated using our retinal persistence extension.

5000 particles. Increasing the particle count to 20 000, reduces this frame-rate
to 25 images per second. This bottleneck should be removed using a hardware
implementation of the particle system, as proposed by Kolb et al. [KLRS04].

5000 particles are sufficient to provide a realistic rain impression for large
raindrops or streaks. When using very small raindrops (below a radius of
1mm), 10000 particles are required for a realistic rain impression.

Figure 9 shows a scene including 5000 raindrops of radius 4.5 mm, animated
at a frame-rate of 100 Hz.

Figure 10 shows results obtained with our retinal persistence extension. 5000
raindrops of radius 1.5 mm are animated at 70 Hz. This extension implies a
higher computing cost (depending on the number of samples used), but needs
less particles to produce a realistic effect.

Since rain is an animated phenomenon, it is better observed on videos than
on static images. Videos of our method in action can be downloaded from
http://msi.unilim.fr/∼rousseau/rain.html.

7 Extension: light/raindrop interaction

When rain falls near street lights or head lights, real raindrops present reflects
of the color of the light sources.

The optical laws presented in section 3.2 still apply when a light source is
positioned in the scene. When the observer is close to a light source, the
rays coming from this source have a far greater intensity than rays coming
from anywhere else in the scene. Using the method described above, a light
source positioned behind the observer would not have any influence on the
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Fig. 11. A light source modifies the color of the raindrops. Left: Without the
light/raindrop extension. Right: With the extension activated.

Fig. 12. Left: Light/raindrop extension, with a white colored light. Right: Using the
retinal persistence extension.

generated raindrops, because our model does not handle reflection (which most
of the time, is negligible, see section 4.1). In the case of a close light source,
reflection and internal reflection or refraction cannot be ignored, since they
have an important participation to the appearance of the drop (considering
the intensity of rays coming from the light source.)

Computing all the internal reflections of light rays would be the best way to
generate physically satisfying images, but it cannot be done in real-time. We
simulate this effect by modifying the color of the raindrops pixels, based on
the distance between the raindrop and the light source, using the following
empiric formula:

Cf = (Co ∗ Camb) + (Co ∗ Cdiff ∗

−−−−−−−→

VlightToP ixel ·
−−−−−−−→

VpixelNormal

DlightToDrop

) (2)

Where:
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• Cf is the final color of the pixel,
• Co is the color extracted from the texture,
• Camb is the ambient light color of the scene,
• Cdiff is the diffuse color of the light source,

•

−−−−−−−→

VlightToP ixel is the direction of the ray going from the light source to the
considered pixel,

•

−−−−−−−→

VpixelNormal is the direction of the normal to the drop at the considered pixel,
• DlightToDrop is the distance between the light source and the considered pixel.

This formula gives visually satisfying results, as illustrated in Figure 11; Fig-
ure 12 shows images generated with a white light source, using our retinal
persistence extension in the right image. In our implementation of this tech-
nique, we can handle two point light sources at the same time, without any
significant performance loss.

8 Conclusion and future works

We have developed a physically based real-time model for rendering raindrops.
We extended this model to handle retinal persistence and light sources. Our
model produces better results than the usual particle systems using static tex-
tures which are often used in video-games. It achieves a much faster rendering
speed than the existing physical based models.

We believe that our model can be widely used in video-games or driving sim-
ulators as it generates visually convincing results at a high frame-rate.

For perfectly accurate results, the two possible techniques are either a complete
ray-tracing on each object of the scene, or a dynamic generation of a cubic
environment map for every single raindrop. Both of these methods cannot run
in real-time, at least with current graphics hardware. Our model introduces
some approximations to these methods. Consequently, it is not physically com-
pletely accurate but allows a real-time high frame-rate execution, and is a good
approximation of the images which would be obtained by other methods.

In future works, we will try to add reflection to our model in order to generate
even more realistic raindrops viewed from a close distance. The equation we
use to take into account light sources is subject to further improvements.
Finally, we will also develop an alternate simpler model, to be used for farther
raindrops, whose size on screen falls below a pixel.
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