Mapping Irregular Computation onto the
Graphics Pipeline

Manuel Ujaldon *

Computer Architecture Department, University of Malaga, Spain

Joel Saltz

Biomedical Informatics Department, Ohio State University, U.S.A.

Abstract

The paper describes a set of strategies for mapping irregular codes onto commodity
graphics hardware for its efficient execution. We start identifying the resources that
current GPUs contain for solving indirect array accesses entirely on hardware, like
vertices, textures and color tables. We then show how multiple indirections can be
mapped onto the graphics pipeline, basically taking advantage of its streaming ar-
chitecture for sequencing the indirections through subsequent pipeline stages. Our
techniques are applied over typical irregular kernels like the sparse matrix-vector
multiply and the Euler solver. Execution times on the GeForce FX and 6800 con-
sistently outperform the Pentium 4 and Athlon 64 processors even by a 400% gain.
We also analyze the impact that floating-point precision has over performance, by
taking advantage of 16-bit floating-point color channel representation recently in-
troduced by Nvidia in its GeForce 6 Series.

Key words: Computer Graphics, Graphics Processors (GPUs), General-Purpose
GPU (GPGPU), Graphics data structures, methodology and techniques.

* Corresponding author. Address: Computer Architecture Dept. Complejo Tec-
noldgico, Campus Teatinos. Boulevard Louis Pasteur, s/n. 29071 Malaga, Spain

Email addresses: ujaldon@ac.uma.es (Manuel Ujaldon), saltz@bmi.osu.edu
(Joel Saltz).

Preprint submitted to Elsevier Science 17 May 2005

1 Introduction

The programmability and performance of modern graphics processors (GPUs)
has increased at such a rapid pace that they are already capable of out-
performing CPUs in some compute intensive applications. Since the perfor-
mance difference is expected to increase in the future [KDR*03,SIA03], re-
searchers are adapting computationally intensive general-purpose algorithms
to run on GPUs [GPGPU], sometimes with outstanding speed-up versus their
CPU counterparts. Among them, we find volume segmentation (10-20 times
faster) [SHNO3], surfaces deformation (10-15x) [LKH*03|, multigrid solvers
(3x) [GWL*03], linear algebra (2x) [BFG*03,KW03,FSH04] and database op-
erations [GLW*04,US05].

This work focuses on irregular problems, a broad superset of codes charac-
terized by indirect array accessing (i.e., A[B[C[i]]]) which have proven to be
particularly tough for high-performance: On CPUs, for the lack of locality in
memory references; on multiprocessors, for the challenging data partitioning.
We have found GPUs very compelling for dealing with such applications, since
its streaming execution model reverses the bottleneck inherent to memory ac-
cess: Data are the axis flowing through the graphics pipeline, and instructions
are those who come to meet them, maximizing throughput with extraordinary
performance and scalability.

Our preliminary studies in 2004 revealed that the graphics bus was the actual
bottleneck for the GPU. We already showed how to overcome this by overlap-
ping computation and communication using recent OpenGL extensions such
as NV_fence, NV_vertex_array range and NV_pixel_data_range, and later
combining this with the enhanced features provided by PCI-Express. In 2005,
major constraints that general-purpose computing faces using the GPU in-
volves more to the data values. First, inaccuracy of the computation due to
poor floating-point precision; second, clamping final results to the (0,1) range.
These two issues were improved in the GeForce 6800 family from Nvidia, and
both are explored here along with performance/cost ratio versus the CPU.

2 Using the GPU for general-purpose applications

In general, a GPU accepts an input stream (vertex attributes), transforms it
through a sequence of kernels or shaders (vertex program, fragment program,
texture operators), and returns an output stream (rasterized pixels), which is
written into the frame buffer. Using GPUs for general-purpose computation
entails disguising input data as vertex attributes, large data structures as
textures, instructions as kernels, and final results as portions of video memory.

Graphics processing Conventional programming || Graphics processing Conventional programming ||

Texture memory Arrays in main memory Geometry (T & L) N-ary arithmetic operators

List of vertices Inner loop(s) of a computational block Blending functions Reduction operators

Rendering passes Outer loop of a computational block Clipping the scene IF within the inner loop

Vertex indexing First (inner) level of indirection Active window IF within intermediate loops

Textures lookup Intermediate levels of indirection Color index mask IF within the outer loop

Color tables Last (outer) level of indirection Multipass rendering Kernel programming
Table 1

The GPU abstraction basics for a general-purpose programmer. Restrictions apply
depending on the features of a particular graphics architecture.

To overcome such limitations, we have to set aside the traditional program-
ming paradigm and focus on the data flow (the stream). Each building block of
a program constitutes a stream of vertices, whose geometry is defined accord-
ing to existing loops and conditionals in the block for the kernels to compute
only the desired elements. Multipass rendering executes the blocks sequen-
tially, with the frame buffer and textures allocated in video memory to be
used for communicating consecutive blocks.

Table 1 shows a list of GPU-CPU equivalencies extracted from our experience
when implementing codes on the GPU. Overall, graphics units are used for
different purposes they are intended to, and our goal is to identify those pro-
gram elements leading to a performance gain on the GPU. Code excerpts that
execute better on the CPU may remain there, and executeAsync() calls can
be used to exploit task parallelism between the couple. This way, the GPU is
no longer a rival for the GPU, but a co-processor reducing its workload.

3 Streaming over the GPU

Typical GPUs nowadays surpass 200 million transistors running around 400
MHz. They consist of two programmable processors (vertex and pixel shaders),
enhanced to contain a chain of texture shaders, each accepting as texture
coordinates the output of a previous shader. This transforms the GPU into
an indirection engine which can solve entirely in hardware accesses a great
number of nested indirect arrays: One for vertices lookup, dozens for textures
lookup, and a final indexed access to the color table.

3.1 Data locality

In order for the streaming model to achieve a strong data locality, each element
X passing through the stream has to be accompanied by those data required
to compute such an instruction. To fulfill this, we consider a memory hierarchy
which stores each data at the appropiate level

(1)
(2)

3.2

Input scalars: They are defined as part of the common geometry for the
graphics problem, being generated directly from hardware.

Input vectors: We classify arrays into two types: (a) All vectors sharing
a common access pattern are defined as vertex attributes, which guaran-
tees they travel together along the stream and will always be available
for computation at any stage of the graphics pipeline. (b) Those arrays
having a different access pattern are stored on 1D/2D/3D textures, with
the pattern being sent in the stream architecture as texture coordinates.
This enforces data of these vectors to be accessed in the final stages of
the pipeline.

Output results: The frame buffer stores the values computed for each
vertex as final results, just the same way vertices contribute to compose
the graphics scene on screen. Other areas from video memory may be used
as well, and the whole data sent back to main memory when necessary.

Operators available

The GPU architecture is devoted to those operators typically involved in
graphics computing. Those of particular interests for our purposes are:

(1)
(2)

(3)

On the vertex shader: Simple vector-vector and matrix-vector linear alge-
bra operators, as required by translations/rotations in coordinates space.
On the pixel shader: Product of up to four elements are directly performed
on hardware between the RGBA components for the input color attribute
and the corresponding output coming from a texture. All the product
operators in our codes were carried out using such facilities.

Blending functions: Accumulative sum/subtraction, min/max for all in-
put vertices matching the same pixel on screen are performed over the
frame buffer, also for RGBA components as specified in OpenGL 2.0.

When an algorithm is more demanding with operators, shaders can always be
programmed to extend the GPU functionality and satisfy our needs.

4 Solving indirections on the GPU

Irregular applications are mainly characterized for accessing data through indi-
rections, that is, at least one array is being used as index to the one containing
the actual value, namely Value(Index(I)). Codes containing indirections pose
challenging issues for high-performance: On a single processor, they lack of
data locality and cache memory is underused. On multiprocessors, it is diffi-
cult to partition code and data so that they match onto the same processor.

In contrast, we have found the GPU as a very appropiate platform for ef-
ficiently dealing with those elements. We solve indirect array accessing by
transforming complex access patterns into series of direct references which
flatten array acceses (the first indirection as vertex indices, intermediate indi-
rections as texture coordinates, and even a final indirection as color indices).
This way, all data are locally referenced and directly mapped onto the GPU
hardware, without suffering any memory stall. As result, the code executes
with a performance boost.

From now on, we focus on two clusters of problems typically dealing with
indirections: linear algebra operators for sparse matrices and partial different
equation solvers on unstructured meshes.

4.1 Sparse matrixz algorithms: Indirections on the right hand side

The Sparse Matrix-Vector Multiply (SpMxV - see Figure 1.a) is a kernel used
in a wide variety of iterative methods for solving linear systems [BBC*94],
where indirections arise on data structures storing nonzeros in compressed
formats like CRS (Compressed Row Storage), the method we use here for not
imposing any restriction on nonzeros placement.

> .
Access pattern: \'&Qé\’“cf,@ N y 05\4@ IR
. £ S
Algorithm: y=A *x < é°%$§5m‘b“\o &.yé;oQ
N

first level of indirection

orj=1 i nrow pi
Y[i] = Y[i] + Data[Rowl[i]+j] * X[Column[Rowl[i]+j]]

second level of indirection

Data structures:

Row | 11212]4]5]|9]|11 vertex
coordinates:

y

|
v
£

felements on St ey, \
Data |5319[47]76/44]17[27]33[19]93|
Cotumn 2| 1]5]6]2]4]5[6]1]3]

J0109A)

c[umo A
Q‘
[

X

SJUBUO
~

i
¥
A
%,
-f,(/ Q.
%
N

(suwnjod JAJynq Swey
UO PAjeI0]

2D
screen
7 0&\'\ space

/
Vector X |28]12(95|13(72|10

Fig. 1. The Sparse Matrix Vector Multiply (SpMxV) algorithm, y = A*x, where A
is stored in CRS format. (a) Access patterns and data structures. (b) The way we
define the problem geometry to perform partial products using textures and a SUM
reduction operator using blending functions on the frame buffer.

Figure 1.a shows how the matrix A is stored in CRS using three vectors:
Data, with the nonzero values of the matrix in a row-major order, Column,
for the column index for each nonzero, and Row, which marks the beginning
of each row in the previous two vectors. The matrix can thus be traversed in
our SpMxV code using two loops: The inner one iterating over the nonzero
elements within a row, and the outer sweeping over the matrix rows. This way,
Row and Column are both index arrays involved for composing access patterns

with one or two levels of indirection, say X[Column[Row[i]+j]] for accessing
a vector X to multiply with the j-th nonzero on i-th matrix row.

We mapped these vectors onto the GPU as follows:

X. We load X as a texture. 1D, 2D or 3D might be chosen, and we tried all
three in our experiments, deciding in favour of a 2D texture, which was slightly
faster (manufacturers claim they perform certain internal optimizations in 2D
tectures, since these are by far the most common ones).

Y. We reserve a chunk of the frame buffer for the output vector, Y, where we
will get the results at the end of the streaming execution (see Figure 1.b).

Data. Each nonzero is a vertex with the Data value in its color attribute to
be multiplied by the X values accessed through (s,r) texture coordinates.

Row. It is implicit within the vertex locations defined to merge results onto
the frame buffer. Let us initially assume that Y matches the first column of
pixels on the screen. The vertex (nonzero) located on the matrix as the j-th
element in i-th row then defines its position vector (x,y,z,w) as (0,i,j,0). If we
set up a projection matrix so that the 3D vertex space be projected over the
2D image space, all vertices with the same y coordinate (that is, 1) target the
same pixel when rendered, located in screen coordinates (0,i) (see Figure 1.b).
After passing the X texture stage, the actual vertex contribution is Data * X,
and the blending function accumulates all different j contributions for the
final result in the frame buffer to be Y+ = Data x X. When the size of Y
is larger than a screen column, we just have to redefine the vertex positions
to include additional columns in the y coordinates that where all zeroed in
the previous scheme, till we fill the whole screen. Should the vector exceeds
this size, we allocate it partially on a texture and program the pixel shader
to act as an artificial blender. Note that geometry has implemented an access
pattern in which Row is used as an indirection itself. In general, all indirections
that are created with an index array being referenced in loop boundaries can
be addressed this way.

Column. This is our actual indirection in the SpMxV problem, which is
solved using three different methods: (1) Vertex indices. Column values are
indices to the vertices whose texture coordinates point to the X texture. (2)
Texture lookup. Column values are directly used as texture coordinates in
the attributes for each vertex. This replicates coordinates for each vertex ac-
cessing the same X element, but benefits from a straightforward processing.
(3) Color table. X values are placed into the color table, indexed by color
indices travelling through the pipeline as Column[j].

Section 5 discusses each of these methods from the experimental viewpoint
when applied to the SpMxV.

4.2 Euler solvers: Indirections on both sides

Unstructured meshes provide a great deal of flexibility in discretizing complex
domains and offer the possibility of an adaptive meshing. A typical exam-
ple is the 3D Euler solver showed on Figure 2 [MAV91], which traverses the
whole mesh calculating electrostatic forces between all pair of nodes connected
through defined edges. The main differences with respect to the SpMxV lies in
(1) the presence of indirections on the left hand side of assignments and (2) the
vector type for the statements, which are replicated for the three components
that each force (or velocity) has in the 3D space.

edgeData edgel*,1] edge[*2]
force (or other .

5.7|3.918.7(| 2 particle features 2 e[i,1],1]+ edgeDatali,1]* (x[edgeli,1],1] + yledgei,2],1]);
— i 1 such as velocity, 1 i.11,2] + edgeDatali,2] * (x[edgeli,1].2] + y[edge[i,2].2]);
3.14.0|7.5 L X ! delta, ...) ! Y 5 . 11.3] + edgeData[i.3] * (x[edge[i.1].3] + y[edge[i.2].3]);
. : : 1] — edgeDatali,1] * (x[edgel[i,1],1] + y[edge[i,2],1]);
2.4/6.5/4.6 i 33|26 33 ‘ ‘ 1.52.3|5.1 L force[edge[i,2].2] = force[edge[i,2].2] — edgeData[i,2] * (x[edge[i.1].2] + y[edge[i,2].2]);
0.7!5.4l96|| 2 35| 41| 91]; 12.716.7]3.2 4 force[edge[i,2],3] = force[edge[i,2],3] — edgeData[i.3] * (x[edge[i,1].3] + yledge[i,2].3]);
39(7.5|7.8|| 6 38| 77|85 11.3]8.4|2.7 3| 5%
] | | 1 % % T oo
42|4.1/5.6|| 3 64| 20| 44 42|72]1.2 2| 2 2 el 11
8.83.5/4.3|| 4 21| 83|65 15.1]2.5|3.5 6 n2 = edgeli.2J;
L \ ; ; Lo .)
6.4/2.1|2.8|| 6 17 24| 39| 13.7/6.8[9.3 3 s *
2.3]5.7]5.6|| 2 N ‘ i ’ﬁ’ i
[5.4]4.6/16.0|| 6 5 _/
R (rgb) ‘

Input Mesh - Output .. Input Mesh |
nput Mesl = Quipt nput Mesh ——— e

Fig. 2. Data structures (left) and access patterns (right) for the 3D Euler kernel.

The average connectivity of each mesh node is between 6 and 10, hence the
number of duplicate data references is low (input workload in Table 4 shows
roughly five times more edges than nodes). This connectivity is particularly
low when compared to other irregular problems such as molecular dynamics
or particle dynamics. Once computed, the forces for each (i,j) edge are added
to the total force associated with node i, and subtracted from the total force
associated with node j. The main challenge this algorithm poses for high-
performance computing is the data partitioning.

In distributed-memory multiprocessors, a block distribution for both data and
indirection arrays results in a huge off-processor data, while a spectral bisec-
tion based on the connectivity of the mesh produces low volumes of commu-
nication between neighboring processors at the expense of a complex global
to local index translation. Our GPU version does not require index calcula-
tion nor data fetching. All data are accessed locally taking advantage of the
streaming model: The contribution of each i-node is entirely calculated on the
first rendering pass, and the corresponding part for each j-node is added sim-
ilarly on the second rendering pass. This straightforward strategy is possible
because the loop does not contain any data dependencies. When dependencies
arise, the GPU implementation is still possible, but requires to use additional
elements of the graphics hardware and a more complex geometry definition
for the problem.

|| Year || Central Processor (CPU) | Main Memory || Graphics Processor (GPU) | Video Memory

2003 Pentium 4 @Q 2.4 GHz 1 Gb @ 4.2 Gb/s GeForce FX 5900 @ 450 MHz 128 Mb @ 27.2 Gb/s

2004 Athlon 64 @ 2.0 GHz 2 Gb @ 6.3 Gb/s GeForce FX 5950U @ 475 MHz 256 Mb @ 30.4 Gb/s

2005 Pentium 4 @ 3.2 GHz 1 Gb. @ 8.4 Gb/s. GeForce 6800 GT @ 350 MHz 256 Mb @ 35.2 Gb/s
Table 2

Hardware features for our CPU-GPU comparison.

| sparse matrix | Bosstkis | BossTkeo | BOssTK3o ||
Rows 3948 13992 28924
Nonzeros 60882 316740 1036208
Fill rate 0.39 % 0.16 % 012 %
File Size (Kb) 1568 2680 8628
Vertex Buffer Size (Kb) 1894 9892 32378
Texture Size (Kb) 32 128 128

Table 3
Our input data set for the SpMxV algorithm. Matrices were taken from the Harwell-
Boeing collection, where they are represented in CRS format.

5 Experimental results

To demonstrate the effectiveness of our techniques, we have conducted a num-
ber of experiments on regular PCs. See Table 2 for hardware features. All
GPUs belong to the GeForce family from Nvidia.

On the software side, we use OpenGL to map the graphics elements onto the
GPU. Two recent OpenGL extensions were used for optimization purposes:
ARB_vertex buffer object on the vertex shader (February 2003) allowed us
an efficient use of video memory for vertices and colors, and NV_texture_shader
(July, 2003) made it possible to tune the four texture shaders to our particu-
lar needs. For the codes on the CPU, we use Visual C++ 7.0 running under
Windows XP. We disable vertical sync as well as antialiasing and anisotropic
on the GeForces. OpenGL interleaved arrays were used for sending vertex
attributes to the GPU, vertex positions were precisely calculated according
to screen resolution to skip the interpolation phase, and GL_POINTS was se-
lected as drawing primitive to keep computations strictly over the input list
of vertices.

5.1 The Sparse Matriz- Vector Multiply

We run the SpMxV algorithm for three different sparse matrices coming from
the Harwell-Boeing data set (see Table 3) [DGL92|, roughly corresponding to
a small, medium and large data set.

CPU versus GPU. Execution times are shown in Table 5. GPU time con-
sistently outperforms CPU by roughly 50%.

|| Input mesh || 2k | 10k | 50k ||
Nodes 2800 9428 53961
Edges 17367 59863 353476
File Size (Kb) 576 1810 11524
Vertex Buffer Size (Kb) 1085 3922 23163
Texture Size (Kb) 32 128 512

(b)
Table 4

(a) An unstructured mesh is composed of edges and nodes, with an average connec-
tivity of about six. (b) The input data set used for our Euler solver.

Hardware Year 2003 2004 2005

Input sparse matrix (BCSSTK#) 15 | 29 | 30 15 | 29 | 30 15 | 29 | 30
CPU time (msc.) 0.71 4.07 13.12 0.79 4.28 13.81 0.92 3.54 14.24
GPU time (msc.) 0.67 3.20 10.38 0.56 2.70 8.78 0.58 2.77 8.90
GPU Speed-up 1.05x 1.27x 1.26x 1.41 1.58 1.57 1.58 1.27 1.60
GPU Frames/sc. 1480 314 96 1785 370 113 1724 361 112
Total loading time 16.47 68.70 233.77 12.32 59.10 212.88 11.10 43.02 139.29
Iters. to amortize 499 78 85 53 37 42 32 55 26

Table 5

Performance numbers for the SpMxV running on the GPU under different sparse
matrices.

Loading time. Loading time include the communication time for vertices
and textures and also the task of filling the sending buffer to the GPU with
the corresponding CPU data structures in an interleaved way. The size of this
buffer is eight times the number of floating-point nonzeros, since we have (s,r)
texture coordinates, (r,g,b) colors and (x,y,z) positions for each vertex. 2003
are raw numbers on the AGP bus. 2004 numbers were optimized overlapping
communication with computation and using data prefetching (OpenGL ex-
tensions NV _vertex_array range and NV_fence by Nvidia were needed - see
[SEO01]). 2005 loading numbers, benefit, in addition, from the PCI-Express
enhanced features, reducing the I/O overhead roughly by 40%.

Indirection schemes. The Column indirection was implemented on the GPU
using three different schemes: (1) Color table. Lookup time is almost negli-
gible (0.01 msecs), since it is tightly coupled with the real-time constraints
associated to the frame buffer. On the negative side, the fact the color table
is right at the end of the graphics pipeline limits its application to the last
indirection when nested. (2) Textures. Lookup spends 0.65 msecs. This is the
most versatile scheme, hosting very large vectors and being capable of solv-
ing up to four nested indirections. In order to fairly compare GPU and CPU
execution times, this has been the method selected in the GPU. (3) Vertex in-
dexing. This is the slowest mechanism (2.40 msecs) barely useful for reducing
the bandwidth requirements during the definition of geometries with strong
data redundancy.

Type of memory. Before using the OpenGL extension ARB_vertex_buffer_object,
we run our SpMxV code using main memory (DRAM) for allocating the GPU

Hardware Year 2003 2004 2005

Input data mesh 2k [10k [s0k 2k | 10k | s0k 2k [10k [s0k
CPU time (msc.) 190 | 711 | 59.70 137 | 476 | 43.86 170 | 576 | 32.44
GPU time (mSC.) 0.79 2.40 14.14 0.62 2.04 11.96 0.63 2.08 12.12
GPU Speed-up 2.51x 3.00x 4.25% 2.20x 2.33x 3.66x 2.69x 2.76x 2.67x
GPU Frames/sc. 1308 415 71 || 1612 490 83 || 1587 480 82
Total loading time 18.13 56.96 323.86 17.53 55.54 315.25 13.10 38.28 215.19
Iters. to amortize 15 12 7 23 20 9 12 10 10
Table 6

Performance numbers for the Euler kernel using several input meshes.

data structures. Execution times skyrocketed to four times those given in Ta-
ble 5, suggesting that current GPUs are severely limited by bandwidth. Once
data reach video memory, computation is faster than in the CPU.

Packaging strategies. For the SpMxV to benefit from GPU vector capabil-
ities, some kind of data packaging can also be applied. One possibility is to
use the OpenGL extension ARB_multitexture, loading four textures in such
a way that X elements are placed on the R, G, B and A color component,
respectively; then apply all four textures together (padding four nonzeros on
a single color attribute), each with its own indexing, to give the result. Such
computation is fast, but the loading time required for texture coordinates
would hurt performance.

5.2 The Buler kernel

The input data set for the Euler solver consisted of three meshes obtained
from real problems at NASA ICASE (see Table 4), again characterizing low,
medium and high workload for computing. GPU improvement when compared
to the CPU time is much higher than in the SpMxV case, with cases over 4x
factor and an average gain of 270%.

Vector processing. We have found the major culprit for this outstanding
results to be the GPU vector processing, which exploits the natural fact that
every force in the Euler kernel possesses three components. The cost for com-
puting four color components at a time within the GPU is just the same, but
for the CPU the execution time multiplies by such 4x factor.

Loading time. It can be quickly amortized (barely 10 iterations in 2005)
thanks to the low vertex attributes / actual operands ratio. A single (x,y,z)
position and (s,r) texture coordinate is shared among the three components
of the force, X and Y arrays, thus describing the geometry for the problem in
a very compact manner.

GPU performance on floating-point arithmetic

16.0001"

14.142 B Small data set

14.0001° 11.962 B Medium data set
12,0001 = 12128 Dlarge dalaset |-
gy pu— 10.384
10.000+" 8.780 8.901
1 .

8.0001"
6.0001"
4.0001"
2.0004790

Execution time (microsecs)

Fig. 3. Comparison in the GPU execution time depending on the floating-point
arithmetic available in the final stages of the graphics pipeline.

6 Fidelity of the results

The use of GPUs for general-purpose computing is becoming increasingly pop-
ular with a wide number of examples outperforming CPUs [GPGPU]. Some
of these comparisons have been criticized for being unrealistic and/or unfair
due to clamping values and floating-point inaccuracy. Fortunately GPUs are
evolving fast in resolving such shortcomings.

6.1 Clamping values

In the GeForce FX family, rasterization stage was clamping vertex attributes
to the (0,1) range unless you use programmable shaders to bypass the stage.
Later on, RGBA color was also clamped to (-1,1) or (0,1) depending on the
data type to be declared as signed or unsigned, respectively. The GeForce 6
Series platform gave us the opportunity for overcoming those effects, since
color components are no longer clamped as long as the data type is declared
as FLOAT in OpenGL [KILO04].

6.2 Floating-point precision

After clamping colors in the GeForce FX models, a formula for converting the
value into an internal data type was applied. Since 16-bit floating-point color
representation was not available, results were converted into 8-bit integers per
R,G,B,A component, which ended the computation with unrealistic values
Texture values, on the other hand, are usually 8 bits long. 16 and 32 bits
per color channel are provided under the ATI _texture _float OpenGL exten-
sion, and only certain drivers and hardware support it (in our equipment, only
GeForce 6800 passed this test) The ATI Radeon family, uses a 24-bit floating-

10

point representation for attributes and textures in its X300/600/700/800 mod-
els, as well as 16-bit floating-point representation per R,G,B color component.

Our first experiment concerning precision was to measure execution times
using textures with 8, 16 and 32 bits textures per color channel. The GPU
performance shown unaffected by this texture resolution, so accuracy may be
improved in this stage without hurting efficiency.

Our second experiment enhances the floating-point precision using the High
Dynamic Range 16 bit color OpenEXR representation available in our GeForce
6800. Execution times in Figure 3 (left for Euler, right for SpMxV) indicate
that none of our codes was slowed down when ported to 16-bit floating-point
precision. Even though we don’t expect this feature to evolve on GPUs in
the near term, performance on the GPU does not seem to be affected when
increasing floating-point precision. Since we rely on blending functions for
implementing reduction operators and the frame buffer for obtaining the re-
sults, our GPU implementation will not slow down in the future when 32-bit
floating-point become available through the entire graphics pipeline.

7 Related Work

The first linear algebra implementation on a GPU was developed by Larsen
et al [LMO1] on a GeForce 3 (2001), where they run a dense 1024x1024 MxM
in 546 msecs. Further improvementes followed [FSHO04], but a limited number
of efforts have targeted irregular computation. Two of the most recent cases
came out simultaneously in SIGGRAPH’03:

Kruger et al. [KW03] implemented dense and banded matrices using textures
and programming shaders. Execution times on banded matrices (no indirect
addressing) with 10 diagonals of 4096 nonzeros were 0.72 msec., roughly the
same we got with a sparse matrix (BCSSTK15) containing 50% more nonzeros
without imposing any placement restriction. Also, their reduction operators
required logN rendering passes using textures for storing intermediate results.
Our reductions are accumulated on the frame buffer and performed on a single
rendering pass, without worrying about the problem partitioning.

Bolz et al [BFG*03] solve the SpMxV on a GeForce FX storing all data on
textures and programming the pixel shader with 33 instructions per matrix
row, which enforces additional render passes every 200 nonzeros. They separate
the main diagonal from the rest of the elements, and impose matrix rows to
be sorted by the number of nonzeros per row, which is unrealistic in sparse
applications. They perform 120 SpMxV operations per second over 37k vertices
(8.33 msec. per SpMxV), 10 times slower than Kruger’s for a similar workload.

11

Programming shaders force both approaches to decompose the problem using
multirendering. This means computing the access indices at run-time, a ma-
jor burden when indirections predominate. Where the access pattern remain
constant through iterations, we set up the geometry to act as a tag for guiding
the streaming computation, which extracts the entire index calculation out of
the execution loops and amortizes the loading time through iterations.

Several general-purpose applications on GPUs dropped performance to levels
comparable to CPUs when applied to 32-bit floating-point computations. In
contrast, our codes consistently maintain improvement factors for both 8-bit
and 16-bit color precision, given all remaining stages at 32-bit arithmetic.
Benchmarking the NV30 fragment processor with simple vector operations
revealed performance of 7 GFLOPS, which is 44% of its top performance.
Tomov et al. [TMBO03] also confirm this drop in their analysis, mainly due to
bus and memory bandwidth, an issue recently improved using PCI-Express.

8 Conclusions

In this paper, we describe new methods for mapping irregular computation
onto the graphics pipeline, showing how general-purpose applications can ben-
efit from a streaming execution model to outperform current CPUs. Our meth-
ods avoid programming the shaders to overcome their current limitations so
that the whole task can be performed on a single rendering pass.

Our work emphasizes the efficient resolution of indirect array accessing by
transforming complex access patterns into series of direct or flattened refer-
ences where all data are directly mapped into the GPU hardware. Average
speed-up factor was 1.5x for SpMxV and 2.7x for Euler versus a CPU with
five times higher frequency. Vector processing was proven to be very valuable
and the graphics bus was identified as a bottleneck in the GPU. By overlap-
ping communication with computation in 2004 and exploiting PCI-Express
features in 2005 we were able to cut the I/O overhead almost by half.

Should we prioritize GPU hardware features for general computing according
to performance/cost ratio, we enumerate: First graphics bus bandwidth, then
video memory size and latency, and finally GPU frequency.

In the two year period we have based our survey, computed values were no
longer clamped to the (0,1) range and color processing succeeded into a 16-bit
floating-point representation for improving accuracy without hurting perfor-
mance. Driven by the game industry, one can imagine GPUs continuing its
fast evolutionary pace in functionality and performance so that virtually any
application can be efficiently mapped onto the graphics pipeline.

12

References

[GPGPU] A Web page dedicated to the latest developments in general-purpose on
the GPU. http://www.gpgpu.org.

[BBC*94] R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V.
Eijkhout, R. Pozo, C. Romine, and H. var der Vorst. Templates for the solution
of linear systems: Building blocks for iterative methods. Ed. STAM, 1994.

[BFG*03] Bolz, J., Farmer, 1., Grinspun, E., Schroder, P. Sparse Matriz Solvers
on the GPU: Conjugate Gradients and Multigrid. Proceedings of the
ACM 30th Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH’03), July, 2003. San Diego (California). Also available in ACM
Transactions on Graphics, Vol. 22, n. 3, pages 917-924, 2003.

[DGLY92] Duff 1.S., Grimes R.G., and Lewis, J.G. User’s guide for the Harwell-
Boeing sparse matriz collection (Release I). Technical Report TR/PA/92/86,
CERFACS, Toulouse, 1992.

[FSHO4] K. Fatahalian, J. Sugerman, P. Hanrahan. Understanding the Efficiency
of GPU Algorithms for Matriz-Matriz Multiplication. Proceedings of the
ACM SIGGRAPH - EUROGRAPHICS Workshop on Graphics Hardware
(HWWS’04). Grenoble (France), August, 2004.

[GWL*03] Goodnight, N., Woolley, C., Lewin, G., Luebke, D., and Humphreys,
G. A multigrid solver for boundary value problems using programmable graphics
hardware. Proceedings of the ACM SIGGRAPH - EUROGRAPHICS Workshop
on Graphics Hardware (HWWS’03). San Diego (California), pp.102-111, July,
2003.

[GLW*04] Govindaraju, N. K., Lloyd, B., Wang, W., Lin, M., Manocha, D. Fast
computation of database operations using graphics processors. Proceedings 2004
ACM SIGMOD Int’l Conf. on Management of data, pages 215-226. Paris,
France, 2004.

[KDR*03] Khailany, B., Dally, W., Rixner, S., Kapasi, U., Owens, J. and
Towles, B. Exploring the VLSI Scalability of Stream Processors. Proceedings
9th Symposium on High Performance Computer Architecture. Anaheim
(California), February, 2003, pp. 153-164.

[KIL04] Kilgard, M. NVIDIA OpenGL Eztension Specifications for the CineFX 3.0
Architecture (NV4z). Nvidia Corporation, Mark J. Kilgard editor. May, 2004.

[KW03] Kruger, J., Westermann, R. Linear Algebra
Operators for GPU Implementation of Numerical Algorithms. Proceedings of
the ACM 30th Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH’03), July, 2003. San Diego (California).

[LMO1] Larsen, E. and McAllister, D. Fast Matriz Multiplies using Graphics
Hardware. Proceedings Supercomputing 2001. Denver (Colorado), November,
2001.

13

[LKH*03] Lefohn, A., Kniss, J., Hansen, C., and Whitaker, R. Interactive
Deformation and Visualization of Level Set Surfaces Using Graphics Hardware.
Proceedings 14th IEEE Visualization Conference, Seattle (Washington),
October, 2003, pp. 75-82.

[MAV91] D.J. Mavriplis. Three dimensional multigrid for the Euler equations.
Journal ATAA, paper 91-1549CP, pages 824-832. June 1991.

[SIA03] Semiconductor Industry Association. The International Technology
Roadmap for Semiconductors. Edition 2003.

[SHNO3] Sherbondy, A., Houston, M., Napel, S. Fast Volume Segmentation
With Simultaneous Visualization Using Programmable Graphics Hardware.
Proceedings 14th IEEE Visualization Conference, Seattle (Washington),
October, 2003.

[SE01] Spitzer, J. and Everitt, C. GL_NV_vertex_array range and GL_NV_fence
on GeForce Products and beyond. NVIDIA Corporation. August, 2001.
"http:/ /www.developer.nvidia.com/object/Using-.GL_NV _fence.html”.

[TMBO03] S. Tomow, M. McGuigan, R. Bennett, G. Smith, J. Spiletic. Benchmarking
and Implementation of Probability-Based Simulations on Programmable GPUs.
Proceedings ACM Graphics Hardware Workshop, (W. Mark and A. Schilling
editors). July, 2003. San Diego (California).

[USO05] M. Ujaldon, J. Saltz. The GPU as an indirection engine for a fast
information retrieval. Intl J. Electronic Business, 2005.

14

