Fragment shaders for agent animation using
Finite State Machines

[saac Rudomin, Erik Millan and Benjamin Hernandez

Instituto Tecnoldgico y de Estudios Superiores Monterrey,
Campus Estado de Mézico

Abstract

In a previous paper we generated animated agents and their behavior using a com-
bination of XML and Images. The behavior of agents was specified as a finite state
machine (FSM) in XML. We used images to determine properties of the world that
agents react to. While this is very flexible, it can be made much faster by using the
power available in modern GPUs. In this paper we implement FSMs as fragment
shaders using three kinds of images: world space images, agent space images and
FSM table images. We show a simple example and compare performance of CPU
and GPU implementations. Then we examine a more complex example involving
more maps and two types of agents (predator-prey). Furthermore we explore how
to render agents in 3D more efficiently by using a variation on pseudoinstancing.

Key words: virtual characters, GPU, shader, maps, crowds
PACS:

1 Introduction

In virtual environments and video games, it is common to find different an-
imated characters that interact with the user, with other virtual characters,
and with their surrounding environment. The behavior of these characters has
been defined in many different ways: One first approach is emergent behavior
(boids, by Reynolds [1]. A very common and simple way to specify behavior

Email addresses: rudomin@itesm.mx, emillan@itesm.mx, hbenjamin@itesm.mx
(Isaac Rudomin, Erik Millan and Benjamin Hernandez).

URL: http://rudomin.cem.itesm.mx/ rudomin (Isaac Rudomin, Erik
Milldn and Benjamin Hernandez).

Preprint submitted to Elsevier Science 17 May 2005

for virtual characters is by using finite state machines (FSMs). For instance,
as done by Cremer [2], behavior is controlled through communicating, hierar-
chical and concurrent state machines. Work by Musse [3], has a hierarchical
FSM architecture is used that models the behavior of crowds of characters.
Devillers [4], develops a scenario language, similar to structured programming
languages. This uses FSMs to specify most of the instructions. Becheiraz [5]
includes more complex behaviors involving emotions in the FSMs.

In previous work [6], we created a system that specified behavior of by using
XML scripting and images. While our approach proved useful for defining
simple behaviors for semi-autonomous characters, we decided that, since it
used images extensively, it could be useful, and deliver better performance, if
we would implement agent behavior based on finite state machines as fragment
shaders. Not much has happened in A.I. simulation in the GPU. There is some
very interesting preliminary work for a class in UNC [7] that seems to take an
approach similar to ours, based on Swarm Intelligence [8], but implemented
in the GPU by using a modification of coupled map lattices [9] implemented
as shaders. It is difficult to judge how far this effort has progressed.

2 FSM shaders

Modern GPUs allow using several textures and dependent texture lookups.
Based on this idea, we implement a very simple system involving three kinds
of maps:

(1) world space maps
(2) agent space maps
(3) FSM maps

World space maps are what we normally consider maps. They codify some
value for each location (pixel) in the map. This would cover many types of
maps: texture maps, height maps, normal maps, collision maps, interest area
maps, action maps. In general, all such maps can be considered maps labeled
with some color on each pixel. The information represented by the colors in the
maps, as well as the number of such maps that one could use in a particular
simulation is up to the application designer.

Agent maps, on the other hand, have a pixel for each agent. They can be used
to codify the state of the agent, the type of agent, the x,y position of the
agent in the world map, the agent’s velocity in said world map, or any other
information of the agent.

A finite state machine can be represented as a table where given a certain state
of the agent and a certain input, one can obtain a new state (and position)
of the agent. This table can also be considered a map. Maps can be built for
deterministic state machines. If there are several types of agents, there could
be a portion of the table devoted to each type of agent. In a similar way one
could describe probabilistic FSMs, hierarchical FSMs or layered FSMs. For
the moment we consider a simple system.

(1) A single labeled color texture represents the world where the agents will
move. Suppose the image is size X x Y and there are L possible color
labels.

(2) Another texture represents our agents (with N agents represented as a a
RGB N x 1 pixel image (R is state, G and B the xy position of the agent
in the world). Each agent can have up to S different states.

(3) Finally, there is a FSM image of size S x L, indexed by state and input,
as one can see in figure 1 a.

World Map

label=world[a[i].x,a[i].y]

..................... J

new afil.s=FSM[alil.s label] |
Similar for x, y L»FSN ,,

Agent State array
f<

Agent map|

Fig. 1. a) FSM map indexed by state and input, b) Basic mechanism involving
agent, world and FSM maps

All we must do then, is to consult the FSM map to update the agent map, and
then render the world map with the agents overlayed. There is another step,
however, since the FSM map is indexed by state, that can be obtained from
the agent map, but also by input (or label color), that must be obtained from
the agent’s position in the world. Therefore, the basic mechanism, expressed
as pseudocode, is extremely simple:

given agent i
s=agent[i] .s; x=agent[i].x; y=agent[i].y;
1=world[x,y];
agent[i] .s=fsm[s,1];
draw agent[i];

One would update the positions of the agent in a similar fashion. As you can
see all we are doing are texture lookups. The basic mechanism can be seen in
figure 1 b.

‘ Is in green zone?
1.Goto 2.Goto
FSM Green zone red zone

Labels Isin red zone?

_ E—— — — —
S=State 1 St1,1,0

AgentS S=State 2 St2,-1,0

Fig. 2. a) Example agent, label and FSM maps b) Building the FSM map,
3 Results

The system has been implemented as fragment shaders using GLSL and runs
on a PC with a 6800 Nvidia card. We will discuss two examples. A simple
example that we will compare with a software implementation. Then we will
discuss a more complex predator-prey example.

3.1 Simple example

The first example is extremely simple. Agents are generated at random po-
sitions. A very simple labeled world map is constructed with three vertical
strips: an agent will consult the color of the labeled world map and follow a
very simple FSM that causes it to move right until it reaches a the strip in
the right, at which point the agent changes state and starts moving left until
it gets to the strip in the left. The FSM map in this example was hand crafted
from the table asociated with the diagram in figure figure 2 b. We have chosen
the appropriate color for the table by using different R values for the states,
different GB values for representing dx, dy. The resulting FSM map as well as
the label and agent maps used for this example can be seen in figure 2 a.

Building the FSM map by hand seems simple enough for diagrams such as
the one shown here, but one can see that it is probably not the best way to
construct the maps for more complex FSMs. This is a problem that we will
try to solve in the future.

To implement the basic mechanism in the case of this simple example is the
following fragment shader in GLSL:

uniform sampler2DRect fsm;
uniform sampler2DRect agentsPos;
uniform sampler2DRect soilLabels;

Fig. 3. Frames from simple example

void main ()
{ vec3 agentLookUp = texture2DRect (agentsPos, gl_TexCoord[0].st).rgb;
vec2 agentPos = agentLookUp.rg;
float agentState = agentLookUp.b;

float soillabelsLookUp = texture2DRect (soillabels, agentPos).r;

vec3 fsmOut = texture2DRect

(fsm, vec2(soillLabelsLookUp.r, agentState)).rgb;
gl_FragColor = vec4 (agentPos.x +
(fsmOut.r-1), agentPos.y + fsmOut.g, fsmOut.b, 1);

}

Frames from a sample run of this example (for easier visualization a small
number of agents was used) can be seen in figure 3. To do this, once we have
applied the FSM using the fragment program shown above, we have to render
these results so users could see the agents behavior. For testing purposes we
have decided to render these agents as a points.

As we have mentioned, the FSM results are stored in a color texture or more
precisely in a Pixel Buffer Object (PBO) for the GPU implementation. We
take advantage of the fact that the PBO is resident in video memory so we can
use the technique called "render to vertex array”, were the color information
of the PBO is directly converted to vertex position information using a shader
program and Vertex Buffers Object (VBO).

For the CPU case, since the FSM results are stored in main memory, i.e. an
array, we cannot use the same technique used in the GPU case. Nevertheless we
still are using the Vertex Buffers Object. These VBOs are loaded with the array
information so render performance is just affected by the intrinsic transfer of
information from main memory to video memory. This makes the rendering
in both implementations basically the same, and so simulation results we will
see shortly, comparable.

If we run the simulation the simulation runs at interactive rates even with a
large number of agents. We compare with a software FSM implementation.
Frames per second resulting with different numbers of agents can be seen in
the following table and in figure 4 (the same rendering algorithm is used in
both cases).

It is clear from these numbers that even for larger numbers of agents (a mil-

FPS vs #agents
agents CPU | GPU
800 -

16384 428 | 713 50D =

& 4o . i

65536 85 | 356 . = gpu
200

262144 | 118 | 137 o s

16384 65536 262144 1048576 I
1048576 3 33.9 ZAgents

Fig. 4. CPU vs GPU fps

lion), using the GPU can give us a significant advantage. Using the GPU stays
within the interactive range above 30 fps while the same algorithm running
entirely on the CPU is now down to 3 fps.

3.2 Predator-prey example

GPU agent animation is not restricted only to the generation of the sim-
ple character behaviors in our first example. More complex behaviors can be
achieved through the use of static and dynamic maps that can modify the
outcome of the FSM. One example to illustrate this point is a predator-prey
simulation.

The general idea of the simulation of a predator is described in Figure 5. Fig-
ure 5.a, contains a general description of the FSM: the predator is wandering
within its environment until it locates a nearby prey. When this happens, it
starts following its prey until it escapes, and then goes on wandering.

This FSM is encoded in the map shown in Figure 5.b. Here, the red component
is used, as in the first example, to encode the current state of the automata.
However, rather than containing the actual motion for the agent, the FSM
contains a reference for this motion in its green component. According to the
current state, the agent will decide either to stay in its own location or to
check the most appropriate direction of motion.

In the wandering state, there is no clear hint on where to locate a prey. In
this case, the agent uses a couple of static maps, shown in Figure 5.c as
wander maps. The agent selects a pixel from each map according to its current
location. The values from these pixels are added to the current location of the
agent.

The maps used for the hunt state are used in a similar way to those used in
the wandering state, but they are calculated dinamically; after each simulation
step, these maps should be recalculated to produce dynamic behavior.

a) b)

Prey close?
(Prey map not white)

1. Search: 2. Hunt:
wander follow prey

Prey away? R: State, G: Map to check (0 none, 0.5 w, 1 p)
(Prey map white)

c)
F
i

wx: Wander x map wy: Wander y map p: Prey map px: Prey x map py: Prey y map

f(p,S):(S,dx,dy)

St2,0,0 St 1, wx, wy

St1,0,0

Fig. 5. Maps and FSM for predator-prey example

Initially, the location of all prey is marked in a collision map similar to the
one used in [6], where each agent corresponds to one pixel according to its
location in the map. A gaussian blur filter is applied to this collision map in
order to obtain the prey map. In this way, a predator can locate only prey
within its vision range. When a predator is located on a white pixel, no prey
can be seen; but in a darker pixel, prey are seen and predators may follow
them.

Another advantage of using the gaussian blur filter to obtain the visibility
regions is that it is simple to infer the direction in which one would follow
this prey. By applying horizontal and vertical sobel filters to the prey map
we obtain the direction to follow prey, shown in Prey x and Prey y maps in
Figure 5.c. These maps are interpreted just as wander maps are, simplifying
the behavior implemented in the shader.

Back in the shader, transitions are selected according to the value of the prey
map. If a predator is over a white area of the map, no prey is near, so the
wander maps are used to obtain agent displacement. When prey are close, prey
maps are used to select agent displacement. This modifies slightly the script
from the simple example by querying a different map for the displacement
instead of obtaining it from the FSM map, but the basic algorithm remains
very similar and simple.

The results are similar to the ones in the simple example.

3.8 Optimizing 3D Render

If we render each 3D agent in the scene in the usual fashion, the frame rate
decreases, but remains interactive for a reduced, but still significant, number of
agents. Techniques such as pseudoinstancing allow us to increase this number
back up significantly. This technique consists of

(1) generating a vertex buffer with the agent positions
(2) animating the vertex positions with a shader

To do this, then, we use the character position in the agent map to display
a set of more complex virtual animated characters (instead of points as we
did above). Our technique is similar to that used in [10]. First, we update the
animation of a virtual character. While we used the same animated character
for all agents, different animation instances could be used to increase diversity
in character appearance.

The current frame of this animated character is sent to the graphics hardware
as a set of vertex arrays and compiled into a display list. Then, for each
agent instance, current and previous agent positions are sent as parameters
for a vertex shader as color values. Using this vertex shader, the display list is
rendered. This vertex shader uses the color value, which is the agent position,
to translate the character to the position of the agent, and the difference
between the current and the old agent position to rotate the character to
follow its current motion direction. See the vertex shader next:

void main(void){
vec2 delta = normalize(vec2(gl_Color.rg - gl_Color.ba));
float cosine = delta.x;

float sine = delta.y;

mat4 rot = mat4 (cosine, 0, -sine, O,
0, 1, 0, 0,
sine, 0, cosine, O,
0, 0, 0, 1);

vecd pos = rot*x(gl_Vertex);
gl_Vertex.x = pos.x + gl_Color.r;
gl_Vertex.z = pos.z - gl_Color.g;
gl_TexCoord[0] = gl_MultiTexCoord0Q;
gl_Position = ftransform();

The simple simulation discussed previously, with 3D rendering using pseudoin-
stancing and 16384 agents (512 x 512)runs at 5.45 frames per second without
any further optimization.A frame from this simulation with the above men-
tioned pseudoinstancing, with 16384 agents, can be seen in figure 6 a.

A different and more efficient option could be reading the agent position di-
rectly from the texture where this information is stored, avoiding unnecesary
traffic from the GPU to the CPU. While texture lookups within vertex shaders
are not particularly efficient in current graphics hardware, at least from GLSL,
next generation graphic cars will privilege this option. Another option is to
use the instancing facilities provided by DirectX.

Fig. 6. 3D Frame from examples

A frame from the predator-prey simulation with 3D rendering can be seen in
figure 6 b.

4 Conclusions

We have presented a simple approach to generating agent behavior imple-
menteding Finite State Machines on the GPU . The basic idea is to use de-
pendent texture lookups of three kinds of maps: agent space, world space and
FSM maps within a fragment shader. This works at interactive rates for even
a large number of agents in current generation GPUs. We have tried a simple
and a more complex example. In the future we will attempt even more complex
situations using several maps and more FSMs (probabilistic, layered, hierar-
chical).We are also working on a simpler, better way for users to construct
FSM maps.

We have also implemented pseudoinstancing. While interesting, the perfor-
mance es not yet good enough or general enough for waht is needed. Further
optimizations (culling, for example) will be attempted. While simple culling
is viable, we are working on a version within the map and shader paradigm.

References

[1] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
Computer Graphics, 21(4):25-34, 1987.

[2] James Cremer, Joseph Kearney, and Yiannis E. Papelis. HCSM: A framework
for behavior and scenario in virtual environments. Modeling and Computer
Simulation, 5.(3):242-267, 1995.

[3] Soraia Raupp Musse and Daniel Thalmann. Hierarchical model for real time
simulation of virtual human crowds. IEEE Transactions on Visualization and

Computer Graphics, 7(2):152-164, 2001.

Frédéric Devillers and Stéphane Donikian. A scenario language to orchestrate
virtual world evolution. In SCA ’03: Proceedings of the 2008 ACM
SIGGRAPH /Eurographics Symposium on Computer animation, pages 265-275.
Eurographics Association, 2003.

Pascal Becheiraz and Daniel Thalmann. A behavioral animation system for
autonomous actors personified by emotions. In Proc. First Workshop on
Embodied Conversational Characters (WECC 98), pages 57-65, 1998.

Isaac Rudomin and Erik Millan. Xml scripting and images for specyfying
behavior of virtual characters and crowds. In proceedings CASA 200/, pages
121-128. University Press, 2004.

Hantak, Chad. Comparison of Parallel Hardware Based and Graphics
Hardware Based Platforms for Swarm Intelligence Simulations. Class report:
http://www.cs.unc.edu/ hantak/ip.html

Theraulaz, G. and Deneubourg, J. On Formal Constraints in Swarm Dynamics.
Proceedings of the 1992 IEEE International Symposium on Intelligent Control,
IEEE Computer Society Press, 225-233. 1992.

Harris, M., Coombe, G., Scheuermann, T. and Lastra A. Physically-Based
Visual Simulation on Graphics Hardware. Proceedings of the ACM SIGGRAPH
/ EUROGRAPHICS Conference on Graphics Hardware, September 01-02, 2002,
Saarbucken, Germany.

[10] Jeremy Zelsnack GLSL Pseudo-Instancing. Technical Report, NVIDIA

Corporation, 2004.

10

