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Abstract 
Our group has employed the use of modern graphics processor units (GPUs) for the 
acceleration of finite-difference based computational electromagnetics (CEM) codes.  In 
particular, we accelerated the well-known Finite-Difference Time-Domain (FDTD) 
method, which is commonly used for the analysis of electromagnetic phenomena.  This 
algorithm uses difference-based approximations for Maxwell’s Equations to simulate the 
propagation of electromagnetic fields through space and materials.  The method is very 
general and is applicable to a wide array of problems, but runtimes are long enough that 
acceleration is highly desired. 
 

Introduction 
 
A recent trend in scientific computing is harnessing the immense power of commodity 
graphics processing hardware to accelerate numerical algorithms.  A current graphics 
processing unit (GPU) costs roughly the same amount as a high-end CPU, but is capable 
of significantly higher floating-point performance for many numerical applications.  The 
reason for this disparity is that the GPU needs only to perform specialized calculations, 
such as those required to render graphics to screen, while the CPU must offer a complete 
set of functions.  The boon for scientific computing is that GPUs are high-powered 
computation engines, while also providing hardware support for many common linear 
algebra and trigonometric functions.  As this is precisely what many numerical 
algorithms require, there has been considerable effort lately focused on achieving large 
performance improvements by adapting codes to these platforms. 
 
To date, many algorithms have been implemented on GPUs.  Each expands the toolset of 
techniques required to map general purpose computing to GPUs.  Both high-level 
algorithms and low-level fundamental mathematical techniques have been demonstrated.  



The list of low-level techniques includes the FFT [1], and linear algebra operations on 
dense [2], banded [3], and sparse [4] matrices.  High-level examples are full-fledged 
algorithms and include computational fluid dynamics [5], ray tracers [6], and tone 
mapping of images [7].    
 
This paper presents one of one of the high-level class of algorithms, with a complete 
GPU-based implementation of a popular computational electromagnetics (CEM) method.  
The Finite-Difference Time-Domain (FDTD) algorithm is commonly used for the 
analysis of electromagnetic phenomena [8], sound, and heat transfer.  For 
electromagnetics, this method applies the definition of the derivative to the spatial terms 
of the differential form of Maxwell’s Equations at discrete points in space, called 
“nodes.”  The temporal derivatives are handled by updating the nodes at discrete time 
intervals, referred to as “timesteps.”  The working set of data is composed of electric (E) 
and magnetic (H) fields, and each timestep includes an update of the E fields followed by 
an update of the H fields.  Each timestep also includes the introduction of the 
electromagnetic source field, which may be a plane wave, point source, or any of a 
number of different types.  Lastly, an absorbing boundary condition is used in order to 
give the illusion of infinite space surrounding the region being simulated. 
 
The FDTD method has been formulated in one-, two-, and three-dimensional variations.  
While 3D is the most flexible in terms of the range of problems to which it can be 
applied, it significantly increases the time required per simulation.  Our group has already 
approached the 3D problem in other work, utilizing fully-custom hardware on a 
reconfigurable hardware platform to realize an enormous speed increase [9].  Full 3D 
implementations of the FDTD method are very resource-intensive in terms of both 
floating-point operations and memory, and clusters of computers or supercomputers are 
often required to alleviate the long runtimes.  Fortunately, many problems can be cast 
into forms that can be analyzed using 2D methods, which significantly reduce the 
computational resources required to produce accurate results.  Because of its advantages 
and applicability to a wide range of problems, we pursued a 2D implementation of the 
FDTD method on the GPU. 
 

Related Work 
The work contained in this paper is an extension of the only other known published 
implementation of FDTD on the GPU, carried out at the University of Calgary [10].  In 
their paper, they presented a solver using 8-bit fixed precision arithmetic, and with 
perfect-electric conductor (PEC) boundary conditions.  While they did show a 
considerable speedup over a standard PC, such a solver has little practical value.  Our 
implementation manages a greater speedup with considerably more features and 
flexibility.  The PEC boundaries are the most troubling feature of the Calgary work, as 
they produce perfect reflections rather than absorptions at the edge of the solution space, 
which is the desired mode of behavior so that the boundaries do not affect the solution.  
Additionally, the 8-bit fixed-point arithmetic they describe will introduce numerical 
errors that are unacceptable in the FDTD algorithm.   
 



In the interest of developing a useable tool, we chose to make a fully capable solver 
based on their original idea.  The features we claim unique to our GPU-FDTD 
implementation are as follows: 

• 32-bit floating-point arithmetic 
• Perfectly Matched Layer (PML), with PEC boundary conditions as an option 
• Isotropic or anisotropic materials 
• Support for plane waves and point sources 
• Support for a connecting boundary 
• Support for nonsquare matrices 
• Use of a modern high-level shader language, instead of shader assembly. 

 

Our Implementation 
 
Our implementation of the FDTD method on the GPU was carried out with the following 
design parameters.  The target GPU was a NVIDIA GeForce 5 or 6 series, and our solver 
was shown to work on both a GeForce 5700 and GeForce 6800 Ultra with 256 MB 
onboard RAM.  The host platform was Windows XP, with a 3.0 GHz Pentium 4 
processor.  The software framework consisted of OpenGL 1.5.3 with GLUT and GLEW, 
and the Cg shader language.  The NVIDIA driver version was 71.89 on all test machines, 
and thus Framebuffer Objects were not yet available. 
 
Algorithm implementations for GPU platforms differ from implementations targeted at a 
microprocessor environment, due to the differences in the architectures of these 
platforms.  For instance, moving data to and from the GPU is an asymmetric process, as 
downloading data is much more efficient than uploading it.  Fortunately, the FDTD 
algorithm is well-suited for this, as the mesh is downloaded once at the beginning and 
only uploaded back to the main processor a few times during a run with many thousands 
of iterations.  This paper will focus on the areas that make GPU implementations unique, 
as they are the most pertinent.  We will discuss the following topics:  data structures and 
how they are stored in texture memory; render-to-texture (RTT); vertex and fragment 
programs; and displaying the resulting data on screen. 
 

Texture memory 
The fundamental data type in GPU programs is a matrix stored in texture memory.  
Normally, this memory is used to store power-of-two (POT) sized arrays, with each 
element holding a clamped (in the range [0,1]) fixed-point red-green-blue-alpha (RGBA) 
vector.  Recent extensions allow much finer control over this memory, with non-power-
of-two (NPOT) textures available that hold many types of data.  Extensions also enable 
what is possibly the most important feature to general-purpose computing on GPUs: the 
use of 16- and 32-bit floating-point values. 
 
The FDTD method requires storage for field components at each point in the mesh.  We 
chose to implement a non-adaptive, uniformly sampled mesh for simplicity – this results 



in a regular 2D array of values, with each entry representing a single point in space.  For 
our 2D transverse electric (TE) formulation, each node requires the storage of four field 
components: Ezx, Ezy, Hx, and Hy, where Ez=Ezx+Ezy.  The separation of the Ez field 
components allow for implementation of the PML boundary conditions. 
 
The requirement of our mesh to store four field values at each point is a perfect mapping 
to the GPU.  For this, we allocate a 32-bit floating-point 2D texture of size Height x 
Width, and map the RGBA components of the texture to the Ezx, Ezy, Hx, and Hy fields, 
respectively.  This array is the only read/write memory required to perform the FDTD 
method, and all fields are updated each iteration.  A typical texture is read-only, so our 
data must be handled in a special manner. 
 
Currently, the standard method for creating a writable texture is through the use of 
“pbuffers”, exposed by the extension WGL_ARB_pbuffer.  This extension supplies the 
ability to render to an off-screen target, which, when combined with the 
WGL_ARB_render_texture extension, enables the creation of read/write textures.  One 
caveat is that a texture cannot reliably be used for reading and writing in one rendering 
pass. 
 
As the FDTD algorithm continually updates the same data set, feedback is required.  
There are two methods for handling this in GPUs: copy-to-texture (CTT) and render-to-
texture (RTT).  CTT mode renders to an off-screen target and then copies the results back 
to texture memory.  This uses a considerable amount of texture memory bandwidth, thus 
producing sub-optimal results.  It should be noted that this is currently the only method to 
produce texture feedback on a Linux platform, due to a limitation of the NVIDIA drivers.  
The preferred method is RTT, which allows rendering directly to the texture memory and 
requires no texture copy to produce feedback. 
 
In order to use a pbuffer with RTT, we employed the RenderTexture class by Mark 
Harris [11].  We allocate a single RenderTexture to hold all fields, and perform 
computations in a “ping-pong” fashion.  The FDTD method allows for all E fields to be 
updated simultaneously, as there are no dependences among these fields.  The same 
applies for H fields, which can also all be updated independently of one another.  
However, E and H fields depend on each other, and thus all E fields must be updated 
before moving on to update the H fields, and vice versa.  To do this on the GPU, we do 
each timestep in two passes.  The first pass updates the E fields and the H fields are 
passed through the shader without an update.  On the second pass, the H fields are 
updated and the E fields are passed through.  The shader programs are detailed in the 
following sections. 
 
The FDTD algorithm also requires many constant values that describe the propagation of 
fields between cells.  The exact nature and formulation of these constants is dependant on 
the functionality required, and we will therefore discuss these in a manner that can be 
used for many different formulations.  For our purposes, we used two 32-bit floating-
point RGBA textures to describe the field propagation constants, one for use when 
updating E fields, and one for H field updates.  The red and green channels were used to 



describe the coefficients for one update equation, and the blue and alpha channels were 
used for the other equation.  Since we have chosen to store the coefficients at each node 
rather than using a lookup table method, we have a virtually limitless degree to which we 
can customize the mesh.  As these only need to be read, they were stored as conventional 
read-only textures, albeit using the nonstandard floating-point number format.  Both are 
downloaded once at the beginning of the analysis and are thereafter used as constants. 
 
These two textures were sufficient to implement our chosen boundary condition, 
“perfectly matched layers” (PML).  PMLs function by providing impedance-matched 
layers that are made of lossy material.  The effect is that the energy from the outgoing 
fields is absorbed without reflections.  This method is straightforward to implement, as it 
requires manipulating the propagation coefficients on the edges of the mesh.  Thus, the 
boundary conditions were transparently handled by the main shaders, without additional 
or conditional processing, a key advantage of our formulation.  Supporting PMLs is the 
reason that the Ez fields were split into their Ezx and Ezy components. 
 
Texture memory was also instrumental in implementing our source fields, of which two 
FDTD source types were implemented: point-sources and plane waves.  For point 
sources, a single extra 2D read-only texture was used to add in the source field at the 
point.  The texture was used as a 2D mask, with zeros everywhere except the source 
point, which was assigned a one.  While this may seem a waste of memory, it actually 
allows a good deal of flexibility and generality.  With this technique, many copies of the 
source can be included with varying amplitudes, and there is also no need to hard-code 
the location of the source in the shader program. 
 
To implement plane waves, we built directly on the foundation of the point source.  Plane 
waves require the application of both electric and magnetic fields, so a second texture 
was allocated to hold the magnetic field source coefficients.  Additionally, our plane 
wave source method employs lookups in a 1D table to fetch source values before 
multiplying by the coefficient which controls how the source is introduced to that 
particular node.  The values in this table are precomputed by the host PC and are 
downloaded each timestep into the texture memory on the card.  The values in the 1D 
table represent a plane wave propagating through free space, and these are then projected 
into the 2D mesh via the values in the source coefficient texture. 
 

Fragment Programs 
When performing computations on the GPU, most of the work is performed by shader 
programs.  These are executed per-pixel, which the programmer generally forces to 
correspond to a matrix on a 1:1 basis.  In our application, this condition was ensured by 
drawing a single polygon the exact size of our computation space.  In total, three 
fragment programs were created for this project.  The first two are the most important, as 
they are used for the field update calculations. 
 
FDTD uses central differences instead of evaluating Maxwell’s Equations in their direct 
differential form.  However, due to the locations of the fields in the Yee cell, the E fields 



behave as more of a backwards difference and the H fields behave as a forward 
difference [12].  For instance, updating the field Hx(i,j) requires Ez(i,j) and Ez(i,j+1).  
This and other small algorithmic differences in the two updates made it sensible to have 
two separate shader programs. 
 
The two shaders follow a very similar flow, beginning with a texture fetch from the 
appropriate coefficient texture at the current (x,y) coordinates.  A second fetch is 
performed immediately to obtain the field values of the current node.  The fields being 
updated (E or H) are multiplied by their propagation constants using Cg syntax sufficient 
to ensure SIMD operation.   
 
The shader then performs several more texture fetches, the first two of which are for the 
fields from the neighbor nodes, used to calculate the central differences.  The offset 
coordinates for these are generated by a vertex program and are passed via the 
TEXCOORD0 binding semantic, discussed later.  Each node requires the fields from a 
horizontal and vertical neighbor, meaning that there should be many cache hits for these 
fetches.  At this point, the formulations for point sources and plane waves diverge, and 
for performance reasons are stored in different shader programs.  For point sources, a 
simple lookup is performed into the source coefficient texture at the current coordinates 
and the resulting value is multiplied by a single floating-point number representing the 
value of the source at that particular timestep.  This value is updated by the CPU once per 
timestep and is downloaded with negligible performance implications.  For plane waves, 
two lookups are required.  The first is the same as point sources, as it is a lookup into the 
source coefficient texture.  This texture contains a value that is used for a lookup into a 
small 1D table that is downloaded by the CPU once per timestep and a second value that 
is used as a multiplicative coefficient for the first. 
 
With all of the texture fetches complete, the shaders can perform the actual FDTD field 
update equations.  Part of this has already been completed earlier with the multiplication 
of the fields to be updated by their propagation coefficients.  The remainder of the 
operation is to add in the contribution from the partial differences and source terms.  
These operations were all performed with vectorized syntax when possible.  The 
procedure is as follows:  required fields from the neighbor nodes are added together and 
then multiplied by coefficients, and then this and the value of the source field are added 
to attain the value of the updated field.  Finally, the updated fields are packed into an 
RGBA vector and returned.  
 
A third fragment program was used in order to exercise one of the graphics card’s unique 
abilities, rendering results to screen.  As intermediate results are always located on-card, 
it is a simple matter to occasionally update a box on screen with the current state of the 
fields as the algorithm progresses.  One of the unique advantages of FDTD over other 
CEM methods is that time-domain calculations allow the viewing of transient fields – 
other methods can only access results that show the state of the system as if the source 
had been active for an infinite amount of time.  Therefore, we wrote a small shader to 
convert the intermediate field values to colors in the displayable range, which is [0,1).  
The shader adds the two E field components of our algorithm (as their splitting is done 



for mathematical purposes, and not physical), scales either linearly or logarithmically 
depending on user input, and shows positive values in the red channel and negative 
values in the blue, as shown in Figure 1.  On other platforms, displaying graphical results 
to screen can be difficult due to the amount of data involved, but on GPUs it is easy.  
Because of the nature of graphics processing hardware, displaying the results to screen 
resulted in less than a 5% performance penalty. 
 

 
Figure 1: Transient results displayed with a fragment program.  This shows the relative strength of 

the electric fields from a plane wave striking a dielectric cylinder in free space. 

 

The Vertex Program 
As the fragment shaders are often the bottleneck in general-purpose computing on GPUs, 
it makes sense to move as much work as possible to the vertex units.  Vertex programs 
are executed on a per-vertex basis, rather than a per-pixel basis.  Results of these 
programs are passed through the rasterizer where they are linearly interpolated to per-
pixel values.  This operation can be extremely useful when data is required to vary 
linearly over a data set.  For the purposes of FDTD, this is exactly the behavior required 
to calculate the locations for nearest-neighbor lookups.  Consequently, we offloaded this 
work from the fragment shaders to the vertex units as originally described in [13], using 
the TEXCOORD0 binding semantic to pass the results to the fragment shaders.  The 
improvements from this operation were minimal, indicating that our method is memory-
bound.  At a later date, we hope harness more of the power of the GPU by shifting the 
bottleneck back towards the shader units.  When this occurs, the vertex program 
described above will be incredibly useful in increasing the overall system performance. 



Results 
Our preliminary results for this work are very encouraging.  On a NVIDIA GeForce 6800 
Ultra card, our benchmarking results show a speedup of approximately 5x over a 3.0 GHz 
Pentium 4 processor.  The percentage error is on the order of 10-5 compared to a 
software-only implementation.  This amount of error occurs naturally when working with 
floating-point numbers on different platforms due to compiler differences, rounding 
modes, and order of operations.  As stated earlier, our program is extremely memory 
bandwidth intensive, and early optimization work points towards a memory bottleneck.  
We are looking at several possibilities for reducing the bandwidth requirement, though 
most have tradeoffs that must be considered.  An often-used GPU optimization is to use 
16-bit floating-point storage instead of 32-bit, which adds an unacceptable amount of 
error when analyzing large problems.  Our best option is to use 8-bit storage for all values 
except fields, and then use 8-bit values to perform lookups into arrays storing 32-bit 
coefficients.  This is a common FDTD technique, but we will have to study its effects in 
the GPU environment.   We expect this to greatly relieve our memory bottleneck, 
enabling a speedup greater than our current 5x. 
 

Future Work 
 
While our implementation is fairly capable and fast, there are several avenues of future 
research we are planning to explore.  For enhancing performance even further, we will 
use several techniques.  The new Framebuffer Object extension to appear in coming 
NVIDIA drivers allows for faster rendering context switches.  Additionally, we will 
switch from storing 32-bit floating-point coefficients to using a lookup table method.  
While our current method is more flexible, most simulations only require a few dozen 
materials.  The lookup table will allow us to store only an 8-bit index value at each node, 
rather than four 32-bit numbers.  This will significantly ease our memory bottleneck, and 
should improve performance. 
 
We will also look to add several feature enhancements.  The first is off-axis plane waves, 
which are especially useful when analyzing lenses and gratings.  These can be 
implemented very effectively in GPUs as they require sin/cos operations and linear 
interpolation, which are all supported natively on GPUs.  Second, we will support 
periodic and other specialized boundary conditions.  This change will require some re-
work of the underlying algorithm and will most likely use different shaders built around 
the same concepts we have already demonstrated.  Third, we would like to calculate 
steady-state results without requiring readbacks to the CPU.  This can be implemented by 
allocating extra storage on-board for the required mesh snapshots, and using an extra 
shader to combine them into the final results.  Last, we will support transverse magnetic 
(TM) mode FDTD, which will be straightforward as it only differs from our current 
transverse electric (TE) mode by a small amount and is no more computationally 
complex. 
 



Difficulties in Implementing 3D FDTD 
As stated earlier, a 2D FDTD implementation is not capable of analyzing all problems of 
interest, and a 3D implementation is required.  Our group has particular expertise in the 
acceleration of the 3D method with special-purpose hardware, and we foresee difficulties 
in performing 3D FDTD on the GPU. 
 
The foremost difficulty is the lack of onboard memory for storing the mesh.  Graphics 
cards with 512 MB onboard memory are only just becoming available as of this writing, 
and cards with more than that are not expected in the foreseeable future.  The 3D FDTD 
method is notorious for requiring vast amounts of memory, and is often implemented on 
computer clusters to gain access to extremely large pools of memory.  Analyzing larger 
problems would require constantly swapping data from main memory to the graphics 
card, resulting in a significant loss of performance.  Further analysis must be performed 
to find an acceptable approach to overcome this limitation if 3D FDTD is ever to be 
practical on a GPU. 
 

Summary 
 
The work in this paper shows that modern GPUs are capable of large speedups over 
standard processors for finite-difference applications.  Our embodiment was the CEM 
FDTD method for the analysis of electromagnetic interactions.  However, finite-
difference formulations have been applied to the analysis of many physical phenomena 
such as heat and sound.  The CEM formulation is significantly more complex than most 
other methods because it deals with the analysis of transverse waves, where the other 
methods deal with longitudinal waves.  Thus, the calculations of these can be built by 
simplifying the implementation described in this paper.  Accordingly, the speedups for 
those methods should be at least as good as ours, if not better. 
 
In some places, our work was limited by the capabilities of the graphics hardware 
languages and drivers.  We used the FP30 fragment profile for the majority of our 
computations.  The FP40 profile was available, but did not offer any additional desired 
features.  In future releases, the ability to arbitrarily index constant arrays would be 
extremely useful.  These would enable the creation of flexible lookup tables, whereas we 
now need to use 1D arrays stored in texture memory.  This can be inefficient, as it must 
contend for texture cache and bandwidth.  Besides this, the language is reasonably easy to 
work with and provides a good deal of syntactical power for numerical computing. 
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