
Efficient implementation of the FFT on a

stream-programmed GPU 1

José G. Marichal-Hernández, 2 Fernando Rosa,
José M. Rodŕıguez-Ramos

Depto. F́ısica Fund. y Exp., Electrónica y Sistemas, University of La Laguna,
Avda. Francisco Sánchez s/n, 38200 La Laguna, Tenerife, Canary Islands, Spain

Abstract

In this article, the different variants of the fast Fourier transform algorithm are revis-
ited and analysed in terms of the cost of implementing them on graphics processing
units. We describe the key factors in the selection of an efficient algorithm that
takes advantage of this hardware and, with the stream model language BrookGPU,
we implement efficient versions of unidimensional and bidimensional FFT. These
implementations allow the computation of unidimensional transform sequences of
262k real numbers under 25 ms and bidimensional transforms on sequences of size
512 × 512 under 30 ms on an nv35 GPU.

Key words: FFT, Graphics processing units, Stream computing, Signal processing

1 Introduction

The fast Fourier transform (FFT) is a computational tool of capital impor-
tance in almost every field of science and engineering, where the faster the
FFT is computed, the better. A good fraction of simulation software spends
part of its time performing domain transforms to operate on data in the do-
main with the least computational complexity. It can be also interesting to

Email addresses: jmariher@ull.es (José G. Marichal-Hernández,),
frosa@ull.es (Fernando Rosa), jmramos@ull.es (José M. Rodŕıguez-Ramos).
1 This work has been partially supported by “Programa Nacional de Diseño y
Producción Industrial” (Project DPI 2003-09726) of the “Ministerio de Ciencia y
Tecnoloǵıa” of the spanish government. We thank Terry Mahoney for a critical
reading of the original version of the paper.
2 Supported by “Becas doctorandos convenio ULL–CajaCanarias 2005”.

Preprint submitted to Elsevier Science 24 May 2005

reduce computation time when managing large sequences of data to make the
FFT applicable in time-critical computational problems. Of course, the FFT
is a key issue in digital signal processing.

In this context, almost every computational resource implements the FFT, and
its efficiency gives an accurate idea of the computational power that each par-
ticular computational resource exhibits. Graphics processing units (hereafter,
GPUs) have appeared in the last four years and, because of their computa-
tional capabilities and because their advertised and measured performance is
several times greater than that of high-end CPUs, have quickly evolved to
become considered as a generic computation platform, thereby taking them
beyond their original exclusively graphical purposes. A developer’s meeting
point where the history and evolution of the GPU applied to generic compu-
tations can be found in the GPGPU forum [1].

This article briefly reviews the implementations of the FFT on GPUs to date
and describes FFT variants in an intuitive way that allows a choice to be
made of the most apropriate one to the stream processing model. We analyse
stream manipulation performance to achieve an efficient mapping of the chosen
FFT and then we give implementation details of 1D and 2D FFTs on a stream
language for GPUs. Finally, the performance of our implementation is analysed
and the future work is outlined.

1.1 Previous work

Several works have appeared over the last two years proposing FFT imple-
mentations on GPUs the first of these by Moreland and Angel [2]. Despite the
proven computational power of GPUs, this implementation did not succeed
beating the performance of the de facto standard implementation of the FFT
on the PC platform, FFTW [3].

Successive implementations [4], [5] have improved the performance of More-
land’s, but even in the best cases they were merely equivalent to FFTW and
implemented the original FFT variant from Cooley & Tukey [6] in addition to
that of Moreland.

The implementation proposed by Schiwietz and Westermann [7] improves the
performance by formulating the discrete Fourier transform, DFT, problem
as a matrix multiplication, and the FFT as a process for decomposing and
factorizing the matrix in order to obtain sparse matrices. Detailed explanations
of this approach are to be found in [8]. An alternative unifying theory of
FFT variants is based on tensor products, as is well documented in [9]. These
notations are especially powerful in performing automatic search engines of
the best algorithm for a specific machine, as in SPIRAL[10]. Another way of

2

expressing FFT variants consists in decomposing the indices that appear in
the DFT summations and reducing the number of operations on the basis of
discrete complex exponential properties and a divide and conquer approach.
An overview on this technique can be found in [11].

The most efficient implementation (for GPUs) to date is due to Jansen et
al. [12], whose gain in performance relies on the named Split-stream-FFT,
although the algorithm is equivalent to that originally developed by Pease
[13].

2 The DFT and FFT variants

The discrete Fourier transform of a 1D complex sequence, x(n), of size N is
computed as

X(k) =
N−1∑

n=0

x(n)W kn
N , 0 ≤ k < N (1)

W kn
N = e−i2π kn

N

If N = 2r then indices n and k can be expressed in binary using the index
function I :

n = I(nr−1, nr−2, . . . , n1, n0) = 2r−1nr−1 + 2r−2nr−2 + · · · + 2n1 + n0 (2)

k = I(kr−1, kr−2, . . . , k1, k0) = 2r−1kr−1 + 2r−2kr−2 + · · · + 2k1 + k0 (3)

Substituting these indices into eq. 1 gives

X(kr−1, . . . , k0) =
1∑

nr−1=0

. . .
1∑

n1=0

1∑

n0=0

x(nr−1, . . . , n0)W
kn
N (4)

W kn
N ≡ W

(2r−1kr−1+2r−2kr−2+···+2k1+k0)(2r−1nr−1+2r−2nr−2+···+2n1+n0)
2r

Note that discrete complex exponentials verify that W zN
N ≡ 1, that z ∈ Z,

and that thus every combination (ki, nj) with i + j ≥ r is cancelled out. The
process of reducing operations will be described for a problem involving a size
N = 8, r = 3:

1∑

n2=0

1∑

n1=0

1∑

n0=0

x(n2, n1, n0)W
(22k2+21k1+20k0)(4n2+2n1+n0)
8

3

1∑

n2,n1,n0=0

x(n2, n1, n0)W
4k2(©©4n2+©©2n1+n0)+2k1(©©4n2+2n1+n0)+k0(4n2+2n1+n0)
8

1∑

n0=0

1∑

n1=0

1∑

n2=0

x(n2, n1, n0)W
k2n0
2 W

k1(2n1+n0)
4 W

k0(4n2+2n1+n0)
8

In this way, the most inner summation, with index n2, can be collapsed and
gives rise to a new arrangement of the data sequence, X (1), expressed in terms
of the remaining ni indices in the time domain and the new frequency index
k0:

1∑

n0=0

1∑

n1=0

1∑

n2=0

x(n2, n1, n0)W
n2k0
2

︸ ︷︷ ︸

X(1)(k0,n1,n0)

W
n1(2k1+k0)
4 W

n0(4k2+2k1+k0)
8

To accomplish the computation of X(k) this operation is repeated r times. At
stage l, “index substitution” nr−l +3 kl is performed:

1∑

n0=0

1∑

n1=0

X(1)(k0, n1, n0)W
n1(2k1+k0)
4

︸ ︷︷ ︸

X(2)(k0,k1,n0)

W
n0(4k2+2k1+k0)
8

1∑

n0=0

X(2)(k0, k1, n0)W
n0(4k2+2k1+k0)
8

︸ ︷︷ ︸

X(3)(k0,k1,k2)

In fact, what has been done is a reformulation of the problem as a multidi-
mensional transform, each dimension being transformed at a different stage.
The obtained sequence X (3) is the bit-reversed index discrete transform of the
input sequence:

X(k) = X(k2, k1, k0) = bitReversedIndex(X (3)(k0, k1, k2)) (5)

The algorithm described corresponds to that proposed by Cooley and Tukey
for a size N = 2r (radix-2). The final bit reversal on the indices on the
transformed domain is also called decimation-in-frequency (DIF).

The order of the index substitution is fixed: nr−1 +3 k0 , . . . , n0 +3 kr−1 .

But playing with the positions in sequence X (l−1), where nr−l “disappears”,
and the position in X (l), where kl “appears”, creates variants of the FFT.
Figure 1 shows in an intuitive way the FFT variants due to Stockham [14]
and Pease [13], as well as DIT and DIF versions of C&T [6] for a size 8
sequence.

4

a)

n2
®¶

n1 n0

k0 n1
®¶

n0

k0 k1 n0
®¶

k0

((QQQQQQQ k1
²²

k2

vvmmmmmmm

k2 k1 k0

b)

n2

))SSSSSS n1
²²

n0

uukkkkkk

n0 n1 n2
®¶

n0 n1
®¶

k0

n0
®¶

k1 k0

k2 k1 k0

c)

n2
®¶

n1 n0

k0 n1
y¢ ||||

n0

k1 k0 n0

rz mmmmmm

mmmmmm

k2 k1 k0

d)

n2

))SSSSSS n1
²²

n0

uukkkkkk

n0 n1 n2

rz llllll
llllll

k0 n0 n1

rz mmmmmm

mmmmmm

k1 k0 n0

rz mmmmmm

mmmmmm

k2 k1 k0

Fig. 1. FFT variants. From left to right: a) Cooley & Tukey radix-2 decima-
tion-in-frequency, and b) decimation-in-time. Cooley and Tukey variants performs
in-place index substitution with bit-reversed input and ordered output if DIF. c)
shows the Stockham variant. The index substitution is out of place, but no scramble
on the data is necessary. d) corresponds to Pease. Index substitution is the same
at every stage: time indices disappear from the least significant position and their
frequency counterpart appears at the most significant one.

We now consider the computational consequences of following one or other of
these schemes. Two elements from X (l−1) are needed to compute one element
of X(l). In fact, two output elements can be computed with the same two
input elements, this is called a butterfly operation. The distance in memory,
stride, between the two input elements involved in the butterfly is given by
the significance of the binary index that disappears. The stride of the com-
puted elements in the resulting sequence is given by the significance with
which the new frequency index appears. For example, substitution n2 +3 k0

in the C&T DIF scheme, in which both indices appear in and disappear from
the most significant index position can be thought as retrieving pairs of data
with distance N/2 (the weight of the index position in the index function I),
combining them with the appropriate discrete complex exponential, W n2k0

2 ,
and leaving new data in the same sequence positions, therefore equally dis-
tanced N/2. Nevertheless, a substitution like those in the Pease variant, where
indices disappear from the least significant position and appear in the most
significant one, implies retrieving data with unitary stride but depositing them
with maximum stride. The Stockham variant distributes the decimation step
among the stages.

Only in the Pease variant are the input and output strides independent of
the stage being performed. The out-of-place condition of Pease and Stockham
variants can be partly avoided by performing an in-place computation and
then a suitable output recombination.

5

3 Computational framework

Because GPUs were usually found in the context of computer graphics, the
programming languages and techniques involved have been inherently graphics-
related. Knowledge of graphics APIs such as OpenGL and fragment program-
ming languages such as Cg were needed. In order to get maximum perfor-
mance, an extensive knowledge of state-of-the-art extensions was also required.

BrookGPU [15] is a subset of the brook language [16] developed in the Imagine
processor [17] project. One big contribution of a language like brookGPU
is to propose an abstract computing model, the stream processing model,
that can effectively retain and emphasize GPU main characteristics but at
a more conceptual level than used to be the case. In this way, not only is
GPU programming detached from graphics concerns but also developers can
concentrate on choosing a meaningful stream algorithm yielding the gap from
generality to efficiency to brookGPU developers.

The main capabilities of GPUs are inherited by brookGPU streams, the data
structures in brookGPU, and by kernels, the programs that operate on them.
BrookGPU’s maximum performance is achieved when an algorithm takes full
advantage of the GPU resources. In this sense, the GPU’s computational power
is based on its ability to operate in four component registers, each with 32
bit floating point precision. The GPU instruction set operates in a 4-wide
SIMD parallel manner, and it is oriented to perform 4-vector and 4×4-matrix
operations. Nevertheless, bit operations are not available. On the older GPUs,
dynamic branching is forbidden and one kernel is restricted to giving one
stream as output, whereas newer GPUs are able to contain loops and to output
up to four streams at the same time. We will make no use of these advanced
features in our implementation.

Kernels generate each element of the output stream combining the element
from each input stream that maps on the position being computed. That is,
when generating the stream element (strel from now on, for simplicity) that
occupies position i at the output stream, the kernel operates exclusively with
input strels at position i.

Kernel inputs, as well as streams, can be constants and addressable streams.
Addressable streams violate the preceding statement and allow strels to be
fetched from any position. Nevertheless, their use is not recommended be-
cause they rely upon texture-dependent fetches that are slower than direct
stream mapping. A special type of kernel that equally violates the preced-
ing enunciation are known as reductions. In reductions output streams have
fewer elements than input streams so they combine several strels from each
input stream. They are conceptually powerful, but their use is also inadvisable

6

because their poor performance.

Streams can be 1D and 2D, and soon 3D, and the strels can hold 1 to 4 floats.
A typical maximum allowable size for a 2D stream nowadays is 4096 × 4096.

Some rules applied by brookGPU to fit streams of different sizes participating
in a kernel are essential for understanding the mapping between input and
output strels. These are:

• The dimensionality in which a kernel operates is that of the output stream.
Input streams must have the same number of dimensions as the kernel.

• The size of a kernel is that of its output stream.
• For every input stream, and for every dimension individually, the following

rules are applied to fit input stream sizes to kernel size:
· if the stream size is bigger than the kernel size by an integer factor N ,

just 1 from every N strels participates in the kernel. This is called implicit
striding; e.g. stride(N=2){abcd} → {ac}

· if the kernel size is bigger than the stream size by an integer factor N ,
each strel is repeated N times. This is called implicit repetition; e.g.
repeat(N=2){abcd} → {aabbccdd}

Before applying the above rules, the streams participating in a kernel can
be passed through the domain operator. This operator allows the selection
of a region of the whole stream, indicating a beginning and an end; e.g.
domain(start=2,end=3){abcd} → {cd}. The domain operator modifies the way
that an affected stream maps on to a kernel without additional cost. Moreover,
its use in output streams allows kernel sizes to be decreased.

The domain operator can be thought of as the explicit user side counterpart
of the stride and repeats implicit rules. By making suitable use of both, a
somewhat more complicated mapping pattern can be achieved. The example,

kernel(domainstart=(1,0),end=(N+1,M){X}, domains=(0,0),e=(N/2,M){Y })

maps the odd rows of a 2D input stream X of size N × M , on to the first
vertical half of the output stream Y.

4 Efficient stream implementation

In order to obtain an efficient stream implementation of FFT, an adequate
variant must be chosen that takes into account the advantages of GPUs, while
avoiding those aspects that are known to give a poor performance. This im-
plies making an effort to move and operate data in a 4-wide fashion, which

7

Fig. 2. FFT on multiple 1D sequences of data arranged across rows of a 2D stream.
a) Distance in a row of the stream for least and most significat bits. b) Complex
butterfly operation performed on a 4-wide SIMD within 1 stream element. c) Redis-
tribution of elements in a row of the stream: lsb neighbours A, B finish at distance
MSB. C and D, which started in an odd column, finish in second slot of a strel.
d) Pease FFT in terms of streams and kernels. ec and oc stand for the domain
operators that select just even or odd columns. Similarly, fhh and shh stand for
f irst and second horizontal half.

in terms of brookGPU means operating on float4 streams, employing domain
and implicit size reaccommodation whenever they can replace the expensive
addressable streams, avoiding the reductions, yielding to CPU those compu-
tations that are impossible or too hard to carry out on the GPU, and making
kernel executions as regular as possible.

The FFT variants in Fig. 1 can be now analysed in terms of stream costs. The
data strides in the Stockham and C&T variants depend on the stage being
performed. To implement these strides exclusively as a stream mapping is
impossible or much too expensive. An alternative is to make use of addressable
streams and dependent fetches. In contrast to this approach, the Pease variant
has a remarkable property; the butterfly input strides are unitary and stage-
independent. This allows us to perform the butterfly operation within a strel,
beacuse two complex numbers can be stored within a float4 strel. To compute
butterfly on them only the appropriate complex exponential is needed, and
no other element in data stream is involved. Hence, if the results are stored
in-place, direct mapping can be applied from the input to the output stream.
This takes full advantage of the GPU memory bandwidth. The disadvantage
is that a recombination step must be performed after butterfly computations.
See the Fig. 2.a and Fig. 2.b.

Butterfly computation, once appropriate data are available in a kernel, is triv-
ial and can be efficiently performed in a 4-wide SIMD manner.

Determining complex exponentials W
nk(l)
N(l) involves not only operating with

8

trigonometric functions but also performing stage-dependent bit level manip-
ulations on the strel positions. A better performance is obtained precomputing
these values in CPU.

Another technique that should be analysed in terms of stream costs is the
index bit reversal. Explaining it in actual brookGPU code exemplifies several
of the previously described ideas about stream operations. In this example, it
is assumed that one strel holds two complex data that in the original sequence
are least significant bit (lsb) adjacents.

First, split a sequence of size N on 2 sequences of size N/2, which differ
only in the most significant bit (MSB). Both N/2 sequences can be index bit
reversed separately using the same bit-reversal pattern. In order to obtain the
bit reversed complete sequence, both half sequences must then be merged with
a unit stride:

0123 4567 →
0
0 123|

4
0 123 →

0
0 213|

4
0 213 → 04 26 15 37

The idea consists in performing MSB ↔ lsb interchange separately, based
more upon stream operations than that of the rest of the bits, based on a
precalculated interchange pattern.

In the following code, the 2D stream of float2 elements X is bit reversed and
packed into float4 stream Xr with half of the elements in horizontal. The
stream br holds the bit-reversal pattern. Note the mechanism to load data to
the streams, and the way brookGPU sentences are inserted into C code:

float2 X<N,M>, br<N, M/2>;

float4 Xr<N, M/2>;

float2 data_br[N][M/2], data_X[N][M];

for (i=0; i < N; i++)

for (j=0; j < M/2; j++) {

br[i][j].x = bitReverse(j);

br[i][j].y = bitReverse(i);

}

dataRead(br, data_br);

dataRead(X, data_X);

The kernel declaration that performs the bit-reversal and the packing of the
two sequences is very simple. The first two inputs to the kernel are addressable
streams. The appropriate position from which those inputs must be fetched
were precomputed and passed through the third input, a (non-addressable)
stream. The kernel code itself just forwards complex numbers fetched from
first and second half of the original stream to the appropriate slot (.xy or .zw)

9

in the output strel:

kernel void reverseKernel(float2 X_0_M2[][], float2 X_M2_M[][],

float2 br<>, out float4 result<>) {

result.xy = X_0_M2[br];

result.zw = X_M2_M[br];

}

The domain operators, applied in the kernel call, split horizontally the X
stream:

reverseKernel(X.domain(int2(0,0), int2(M/2,N)),

X.domain(int2(M/2,0), int2(M,N)),

br, Xr);

The gain obtained by the unitary input stride of the Pease algorithm has its
counterpart in an additional recombination step to leave lsb adjacent data
in the MSB stride (see Fig. 2.c). However, that recombination can be ac-
complished using the same techniques explained above for bit-reversal. The
splitting is achieved by a suitable use of the domain operator, and the merging
is done via a data-forwarding kernel.

The Pease variant therefore has several advantages over other FFT variants,
and its disadvantages can be partially overcome using domain operations and
data-forwarding kernels.

4.1 The FFT of multiple regular sized 1D sequences

Implementing small (less than 1× 2048) FFTs on GPUs has limited benefits.
GPU FFTs are more valuable when faced with bigger problems.

The techniques previously outlined in this section when applied to a stream
of size 1×M perform a 1D FFT, but when applied to a stream of size N ×M
solves in parallel N 1D FFTs of size M .

Figure 2.d shows the relationship between the streams and kernels that per-
form one of the log2(M) required stages. The X stream has size N × M/2
after the complex input data have been index bit reversed and packed into
float4 elements.

When X is split horizontally into Xec and Xoc, the resulting streams are
of size N × M/4. Having two butterfly kernels allows to store two complex
exponentials in each element of the W stream. The code in both kernels differs
only in the W slot being used (.xy for even columns). The W stream has size
1 × M/4. The replication along the N rows is free.

10

After Xec and Xoc are computed, they must be recombined. From the Fig. 2.c,
it can be seen that each strel in the first horizontal half of Y gets its first slot
from the first slot in Xec and the second slot from the first slot in Xoc. This is
done by kernel combineXY(). Kernel combineZW() combines the second slots
from Xec and Xoc in the second horizontal half of Y .

Stream W is stage-dependent. However, the W stream in one stage is com-
posed of a half of the values in the previous stage. Only the initial W must
be computed in CPU, while the following ones can be efficiently updated in
GPU via a modulus operation. The decreasing diversity of W values allows
us to make use of simplified butterfly kernels in the last two stages.

4.2 2D FFT as 2 consecutive 1D FFT

An FFT on a 2D sequence of size N × M can be performed by consecutively
applying N 1D transforms along the rows and then M 1D transforms along
the columns.

To apply exactly the same stream approach as in previous subsection, two ad-
ditional transpositions of data are necessary, the first being applied after com-
puting the N 1D FFT’s of size M along the rows. The transposition reshapes
the data sequence into an M ×N stream with data already transformed along
the columns. Again, the same multiple 1D FFTs can be performed along rows,
simply changing the size of transforms, now N . These size differences only im-
ply subtle changes to stream W , which now must be of size 1 × max(N,M).
A final transposition is required to recover the original shape.

The algorithm could be reformulated to perform directly along columns, but in
that case lsb adjacency falls outside the strel boundaries and the performance
drops.

The difficulty in transposing the stream is that along horizontal dimension
one the strel holds two complex data, while on the other the relation is 1 : 1.
If both relations were the same, the transposition would be completed with a
dependent reading of the original data with the indices of the current kernel
position interchanged (xy → yx): XT = X[indexOf(XT).yx]

To take this asymmetry into account, the old x index must be multiplied and
y index divided by 2. As long as one output must contain two complex data
placed in consecutive columns, two fetches, from 2x and 2x + 1, are required.
This renders 4 complex numbers, two of which are discarded depending on
the remainder y/2.

11

Fig. 3. The FFT on a 1D sequence of data arranged across a 2D stream in row-wise
order. a) The MSB divides the data vertically. The elements starting from positions
with lsb = 0, such as A, C, K and M, fall on first vertical half of the stream. The
elements starting in even rows, such as A, B, C and D, fall in the first horizontal
half of the stream. These two combinations give up the four quarters of the output
stream. b) Kernels and streams involved in the recombination step. The results
from butterfly kernels, stored in Xec and Xoc streams, are recombined into the four
quarters of the output allowing for the possibilities lsb=0/1 and even/odd rows.

4.3 FFT of large 1D sequences

A 1D sequence can be arranged in a 2D stream by storing it in a row-wise
manner. In this way, a sequence of 262k elements can fit into a 512 × 512 2D
stream. The Pease algorithm is still applicable, but the new arrangement of
data must be taken into account when precomputing W and on the recombi-
nation steps.

Figure 3.a shows the implications for lsb and MSB adjacency from such an
arrangement, and the Fig. 3.b contains the stream operations to perform the
proper recombination.

The number of different values of the W stream halves at each stage, but the
modulus operation across the two dimensions requires more time than binding
a suitable one from an array of precomputed streams,W[l].

5 Performance and conclusion

The following results were obtained using brookGPU (brcc version 0.2, Mar
2005) on a GNU/Linux Debian platform with kernel 2.6 and OpenGL 1.5.

12

Real sequen- Transfer times (ms) Computation time (ms)

ces size: N C→ G G → C N 1D N 1D N
2 2D N × N

64 0.02 0.16 0.96 1.71 1.85

128 0.07 0.58 1.2 2.0 2.9

256 0.37 1.6 2.8 4.5 6.5

512 1.7 5.8 9.2 17.9 22.6

1024 7.2 23.2 39 99 121

Table 1
Times to perform an FFT on sequences of real numbers. The first two columns
contain the times to transfer data to and from the GPU. The second block of
columns contains the computation times for: N 1D FFTs of size N , 1D FFTs of
size N

2 and 2D FFTs of size N × N .

The graphics board was a GeForce FX 5900 XT (with an nvidia nv35 GPU)
and was connected to the host machine through an AGP 8x slot. The nVidia
Linux driver version was 71.67 (updated in March 2005).

This board has been overtaken by the new Geforce 6 series (nv4x), and the
results must be interpreted while bearing this circumstance in mind. Drivers
in the linux platform suffer from bad performance in feeding back streams
from one kernel to another.

Table 1 shows the times required for computing the FFT on the GPU for sev-
eral problem sizes. Data upload and download times are isolated from compu-
tation times. The differences between them are due to the directional asym-
metry in AGP transfer rates. Computation times include the time consumed
by stream copies between kernels, but those times cannot be broken down.

The performance obtained is similarly independent of the organization of the
data. The time to perform 1D FFT of size N 2, doubles that of performing N
1D FFTs of size N because twice the stages must be performed. The difference
between 1D N 2 and 2D N × N is due to the transpositions.

5.1 Conclusion

Even running our implementation on a suboptimal hardware system, its per-
formance is remarkable and within the range of the fastest implementation
(by Jansen et al).

Additionally, a comprehensive framework in which FFT variants and the
stream model meet has been discussed. The proposal and development of
new implementations can now be undertaken along the lines suggested in this

13

article.

For the future, we shall implement 2D transforms that collapse the indices in
two dimensions at a time. We think these methods could be especially valuable
when working on GPUs that allow multiple outputs per kernel.

References

[1] General purpose computation using graphics hardware. Developer’s forum.
URL http://www.gpgpu.com/

[2] K. Moreland, E. Angel, The FFT on a GPU, in: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
Eurographics Association, 2003, pp. 112–119.

[3] M. Frigo, S.G.Johnson, The design and implementation of FFTW3, in:
Proceedings of the IEEE, Vol. 93, 2005, pp. 216– 231.
URL http://www.fftw.org

[4] M. M. Wloka, Implementing a GPU-efficient FFT, SIGGRAPH course slides
(2003).

[5] I. Viola, A. Kanitsar, M. E. Gröller, Gpu-based frequency domain volume
rendering, in: Proceedings of SCCG 2004, 2004, pp. 49–58.
URL http://www.cg.tuwien.ac.at/research/publications/2004/Viola-

2004-GPU/

[6] J. W. Cooley, J. W. Tukey, An algorithm for the machine calculation of complex
fourier series, Mathematics of Computation 19 (1965) 297–301.

[7] T. Schiwietz, R. Westermann, GPU-PIV, in: Proceedings of the Vision,
Modeling and Visualization Workshop VMV’04, IOS Press BV, 2004, pp. 151–
158.

[8] H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms, 2nd
Edition, Springer-Verlag, 1982.

[9] C. V. Loan, Computational frameworks for the fast Fourier transform, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.

[10] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer,
J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson,
N. Rizzolo, SPIRAL: Code generation for DSP transforms, Proceedings of the
IEEE, special issue on ”Program Generation, Optimization, and Adaptation”
93 (2).

[11] P. N. Swarztrauber, Multiprocessor FFTs, Parallel computing 5 (1–2) (1987)
197–210.

14

[12] T. Jansen, B. von Rymon-Lipinski, N. Hanssen, E. Keeve, Fourier volume
rendering on the GPU using a Split-Stream-FFT, in: Proceedings of the Vision,
Modeling and Visualization Workshop VMV’04, IOS Press BV, 2004, pp. 395–
403.

[13] M. C. Pease, An adaptation of the fast fourier transform for parallel processing,
J. ACM 15 (2) (1968) 252–264.

[14] T. Stockham, High speed convolution and correlation, in: AFIPS Proceedings,
Vol. 28, Spring Joint Computer Conference, 1966, pp. 229–233.

[15] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
P. Hanrahan, Brook for GPUs: stream computing on graphics hardware, ACM
Trans. Graph. 23 (3) (2004) 777–786.
URL http://graphics.stanford.edu/projects/brookgpu/

[16] I. Buck, Brook specification v.0.2, tech. Rep. CSTR 2003-04 10/31/03 12/5/03,
Stanford University (2004).
URL http://brook.sourceforge.net

[17] B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens,
B. Towles, A. Chang, S. Rixner, Imagine: Media processing with streams, IEEE
Micro 21 (2) (2001) 35–46.
URL http://cva.stanford.edu/imagine/

15

