
A Simple GPU-based Approach for 3D Voronoi Diagram

Construction and Visualization

Hsien-Hsi Hsieh and Wen-Kai Tai*
Department of Computer Science and Information Engineering

National Dong Hwa University
Tel: +886-3-8634023
Fax: +886-3-8634010

E-mail: wktai@mail.ndhu.edu.tw

Abstract

In the paper we propose a simple GPU-based
approach for discrete incremental approximation
of 3D Voronoi diagram. By constructing region
maps via GPU. Nearest sites, space clustering, and
shortest distance query can be quickly answered by
lookup the region map. In addition, we proposed
another representation of the 3D Voronoi diagram
for visualization.

Keywords: Voronoi diagram, Visualization,

GPU, Distance transform, Voxelization.

1 Introduction

The Voronoi diagram is a natural and fundamen-
tal concept related to geometric proximity that has
important applications in many fields of science.
Given a set of primitives called Voronoi sites, the
Voronoi diagram partitions the space into convex
regions so that all of the subspaces belonging to a
region have the same closest site under a give dis-
tance function. There are many modified Voronoi
diagrams by taking sites as different shapes or na-
ture, applying different distance function, associat-
ing weights, or changing metrics. Voronoi diagram
is also used in many fundamental problems such
as nearest neighbor query, clustering, triangulation,
and minimum spanning tree.

Construction of Voronoi diagram in 2D and 3D is
a fundamental problem and there exist efficient and
optimal algorithms running on CPU for calculating
Voronoi vertices which are the intersections of the
boundaries of domains. Voronoi diagram is struc-
tured by a connected segments of edges or curves
in 2D or connected polygons or paraboloids in 3D.
However, it needs additional computation to han-

dle queries for nearest sites or shortest distance to
sites. Therefore, we propose a discrete incremental
approximation of 3D Voronoi diagram by construct-
ing region maps by GPU. Nearest sites and shortest
distance query can be quickly answered by look up
the region map. In addition, we can visualize the
Voronoi diagram in a different representation.

In this paper, we introduce a simple but flexi-
ble approximate construction of 3D Voronoi dia-
gram using GPU for visualization. It could gen-
erate a map for visualization or generate a region
map for query of nearest neighbor, space clustering,
and shortest distance. The Voronoi diagram con-
struction in GPU is simple. At first, we subdivide
the space into subspaces by GPU. Then for each
Voronoi site, distance between a subspace, called a
voxel, and the site is calculated and compared with
the shortest distance stored in the voxel. Each voxel
keeps the shortest distance and the region ID it be-
longs. In current implementation, we use color as
region ID and z-buffer for storing shortest distance
of each voxel.

The rest of paper is organized as follows. Some
related works are surveyed in the section 2. In sec-
tion 3, we present the rendering framework. The
experimental results are illustrated in section 4. Fi-
nally, we conclude the proposed approach and point
out some future works.

2 Related Works

For computing Voronoi diagrams of points in 2D,
3D, and higher dimensions, Shamos and Hoey [14]
proposed a divide-and-conquer algorithm; and For-
tune [4] proposed a sweepline algorithm. Gold
[6] et al. proposed a simple method to construct
Voronoi diagram of line segments sites by incremen-

1

tally expanding line segments and using kinematic
Voronoi diagram methods to maintain the Voronoi
diagram. Besides, numerically robust algorithms
for constructing topologically consistent Voronoi di-
agrams have been proposed by [8] and [16].

In Voronoi diagram approximation, Lavender et
al. [9] proposed a hierarchical approach to compute
an approximate Voronoi diagram of a set of general
sites in arbitrary dimension. Sites are represented
by an octree and the cells of the approximate di-
agram are obtained by considering the distance to
the sites. Vleugels et al. [20, 21] have presented an
approach that adaptively subdivides space into reg-
ular cells and computes the Voronoi diagram up to
a given precision. Teichmann et al. [18] proposed a
technique that subdivides the space into tetrahedral
cells for triangle sites. Sites are inserted into a stan-
dard octree and the Voronoi diagram is computed
by a wavefront propagation strategy and visualized
in polygonal approximation. However, these algo-
rithms take considerable time and memory for large
models composed of tens of thousands of triangles,
and cannot easily be extended to directly handle dy-
namic environments. Hoff et al. [7] presented an ef-
ficient method for constructing generalized Voronoi
diagram in graphics hardware. They use geome-
try such as con and tent to approximate distance
propagation of Voronoi sites. However, the preci-
sion highly depends on the quality of rendered 3D
polygonal mesh that would take high cost for nu-
merous sites in high resolution. Boada et al. [2]
proposed a technique that approximate general 3D
Voronoi diagrams by Voronoi-Octree and visualize
the Voronoi diagram via polyhedral approximation.
In constructing Voronoi diagrams of higher order
sites, two broad approaches based on incremental
and divide-and-conquer techniques have been sum-
marized in [12]. Fischer and Gotsman [3] presented
a GPU based approach for approximate high or-
der Voronoi diagram and distance transform. They
implemented tangent-plane algorithm for computng
k-th order Voronoi diagram of a set of sites in image
space.

Voronoi diagram is widely used in many applica-
tions. For example, Takahashi et al. [17] proposed
moving along Voronoi boundaries to avoid obsta-
cles. Lengyel et al. [10] also addressed the more
general motion planning problem and proposed an
algorithm which employs the graphics hardware for
path planning computations. Vona and Rus [22]
used the Voronoi diagram to perform geometric
computations associated with toolpath planning for
mechanical etch of printed-circuit boards.

Highly relative to Voronoi diagram, distance field

can also be used for voxelization and representation
of objects which are difficult to model. Frisken et
al. [5] generated signed distance on grid structure
by computing the minimum signed distance from
the grid points to object to represent an object.
Varadhan [19] used Max-Norm distance computa-
tion algorithm with hardware accelerated Voronoi
diagram generation [7] to determine whether a voxel
intersects a polygon for voxelization. But the model
is designed for convex case, so it needs extra work to
convert concave object into convex primitives. Sigg
et al. [15] improved and implemented a hardware-
accelerated version of the work of Mauchs [11] to
generate signed distance field using bounded local
distance fields and bounding polyhedrons of meshes.

A comprehensive overview of numerous works
and variants of Voronoi diagrams may be found in
the excellent survey by Aurenhammer [1] and book
by Okabe et al. [12].

3 The Proposed GPU Frame-

work

3.1 Basic Definition

Let S = {s1, s2...} denotes a set of point sites in
3D. For two distinct sites sp, sq ∈ S, the space can
be partitioned into two half spaces or domains. Do-
main of sp over sq can be formed by

Dom(sp, sq) = {v ∈ R3|σ(v, sp) ≤ σ(v, sq)}, (1)

where σ is a distance function. Here we use squared
Euclidean distance function for lower computation
cost. Then the Voronoi region of sp can be formed
by

R(sp) =
⋂

sq∈S−{sp}

Dom(sp, sq). (2)

Therefor each region R(sp) will cluster the subspace
nearest to the site sp by a given distance function.

In our approach, we use distance function to gen-
erate individual distance field for each Voronoi site.
The space is then partitioned into regions by com-
paring domains of Voronoi sites. Due to help of
advanced programming graphics hardware, Voronoi
diagram can be generated by discrete approxima-
tion as region maps incrementally and visualized in
different representation.

3.2 Rendering Framework

Figure 1 shows the rendering process for generating
the distance field and domain region for a Voronoi

2

Figure 1: Rendering Pipeline for generating the dis-
tance field and Voronoi colored region of a Voronoi
site. A quad including data of the Voronoi site is
rendered as a computation query. Five channels
of each vertex of a quad (position, normal, and 4
texture coordinates) is filled with position of quad,
position of voxel, and information of a Voronoi site
such as ID color and parametric coefficients of ge-
ometry of the Voronoi site.

site. A general rendering framework for distance
field computation and Voronoi region construction
consists three steps: Voronoi sites collection and
geometry generation, space voxelization and query
of distance field computation, and color rendering
with distance field.

At first, Voronoi sites are classified into three
groups: point site, edge sites, and triangle sites. For
each site, a full-filled quad geometry is constructed
as a distance computation query to submit to GPU.
Channels of texture coordinates for each quad is
filled by information depending on different types
of site. For example, associated data of a quad for
a point site is the ID color and position of the point,
for a edge site the ID color and parametric coeffi-
cients of the line segment (a point and a vector) are
included, and for a triangle sites the ID color and
parametric coefficients of the triangle (a point and
two vectors) are associated.

Space voxelization is processed slice by slice due
to limit storage of graphics hardware. As shown in
Figure 1, for each Voronoi site si,

si = {Pi = (x, y, z)},

or {Ei(t)|v0 + t ~e0, 0 ≤ t ≤ 1},

or {Ti(s, t)|B + s ~e0 + t ~e1, s ≥ 0, t ≥ 0, s + t ≤ 1},

a full-filled quad Qi = {qi0 , qi1 , qi2 , qi3} is rendered
and rasterized to generate the distance field from
voxels on a slice to the site. Voronoi site data and
voxel positions are associated within vertices of the
rendering quads. Voxel positions are stored in the
channel of vertex normal, the site data are sepa-
rately stored in channels of texture coordinates and
transmitted to GPU. Voxel positions are linearly

interpolated in rasterization of rendering pipeline
and pairs of site data and voxel positions are sent
to pixel processors for distance computation. Af-
ter distance computation, the shortest distance be-
tween a Voronoi site and a voxel is stored in the
pixel depth and the pixel color is used for visualiza-
tion according to the representation of Voronoi di-
agram. For example, ID color rendering is used for
generating region map for nearest neighbor site or
cluster query; assigning distance intensity to color
is used for visualization of the distance field.

The rendering pseudo code can be abstracted as
follows:

for each Voronoi site s on slice i {
Create a quad Q for the site s
for k = 0 to 3 {

// assign a full-filled quad
// q is end vertices of quad
Q.q[k].position = ScreenBoundary.q[k];
// assign voxel position, and Voronoi site data
Q.q[k].normal = Slice[i].q[k];
Q.q[k].tex0 = s.colorID;
if (s is a point Voronoi site) Q.q[k].tex1 = s.position;
if (s is an edge Voronoi site) {

Q.q[k].tex1 = s.v0; Q.q[k].tex2 = s.e0;}
if (s is a triangle Voronoi site) { Q.q[k].tex1 = s.B;

Q.q[k].tex2 = s.e0; Q.q[k].tex3 = s.e1}
}

RenderQuad(Q);
}

Voronoi diagram is constructed incrementally by
rendering quads of Voronoi sites. Unless Voronoi
diagram is recalculated on different slice or a ren-
dered Voronoi site moves, rendered quads have no
need to be re-rendered again even new Voronoi sites
are added in the set. There are three types of frag-
ment programs to generate the distance field for
point, edge and triangle Voronoi sites. Detail of
distance computation on GPU is described in the
next subsection.

3.3 Distance Function on Voronoi

Sites

Different Voronoi site generates different distance
field. For example, a point Voronoi site generates
iso-diatnace as a sphere, and an edge Voronoi site
generates iso-distance as the outer surface of the
union of two balls and a cylinder. However, most
geometry can be decomposite into points, lines and
faces(triangles). We present distance function cal-
culation on fragment program for the three cases as
follows.

3.3.1 Distance Function on Points

For a given point Voronoi site P (x, y, z), distance
function σ(v, P) is a simple squared euclidean dis-

3

tance between two points as follows:

σ(v, P) = ||x−P ||2 = (vx−Px)2+(vy−Py)2+(vz−Pz)
2
.

(3)

While using cones to approximate the distance field
of points [7] has high cost for high precision, the
distance field is simply generated by fragment pro-
gram.

3.3.2 Distance Function on Edges

For a given edge Voronoi site E(t) = {v0 + t ~e0, 0 ≤
t ≤ 1}, distance function σ(v,E(t)) calculates min-
imum distance between point v and points on edge
E(t). Shortest distance point on line E(t) to point
v can be easily found by solving d(||v−E(t)||2)/dt.
And then the coefficient t of minimum distance is:

tmin = −
(v0 − v) · ~e0

||~e0||2
.

By constraint t, σ(v,E(t)) is formed as:

σ(v,E(t)) = at2 + 2bt + c, t = clamp(tmin) (4)

where function clamp(t) truncates value t in range
[0,1], and

a = ~e0 · ~e0

b = ~e0 · (v0 − v)

c = (v0 − v) · (v0 − v)

3.3.3 Distance Function on Triangles

For a given 3D point v(x, y, z) and a triangle
T (V0, V1, V2), Hausdoff-distance is the shortest dis-
tance between the point v and any point p on the
triangle. A point on triangle T can be paramet-
rically defined by two linearly independent vector
with two weights (s, t) by

T (s, t) = B + s~e0 + ~te1,

where (s, t) ∈ D = {(s, t) : s ∈ [0, 1], t ∈ [0, 1], s +
t ≤ 1}, and B = V0, ~e0 = V1 − V0 and ~e1 = V2 − V0.

For any point on triangle T , the distance from T
to v is

‖T (s, t) − v‖ ,

or we can instead use the squared-distance function

Q(s, t) = ‖T (s, t) − v‖
2
,

where exists a point p′ = (s̄, t̄) which makes Q(s̄, t̄)
minimum.

Therefore, the computation of distance can be re-
duced into a minimization problem. For an efficient
computation, we can expand Q(s, t) as

Q(s, t) = as2 + 2bst + ct2 + 2ds + 2et + f,

Figure 2: Six regions in s, t coordinate. Space is
partitioned by range of parameters s and t for effi-
cient shortest position classification and calculation.

where

a = ~e0 · ~e0

b = ~e0 · ~e1

c = ~e1 · ~e1

d = ~e0 · (B − v)

e = ~e1 · (B − v)

f = (B − v) · (B − v)

From analyzing the gradient of Q(s, t), the mini-
mum s̄ and t̄ happens only when ∇Q is zero, where

s̄ =
be − cd

ac − b2
t̄ =

bd − ae

ac − b2

If (s̄, t̄) ∈ D, the minimum distance is the distance
between p′ and v; otherwise, according to the sign
of s̄ and t̄, there are six possible regions that the
shortest distance point p′′ may lie on triangle T ,
as shown in Figure 2. Efficient solutions are well
addressed on the book [13] for CPU computation
with simple calculation with logic classification.

However, in GPU, there is no efficient dynamic
flow control to determine the shortest point on a
triangle. Therefore, instead of directly computing
the point of shortest distance on a triangle, we com-
pute the distance from the 3D point to four possible
points which may be inside the triangle or on the
three boundaries and then the minimum scalar is
the shortest distance. These four points are

(s0, t0) = (
be − cd

ac − b2
,
bd − ae

ac − b2
)

(s1, t1) = (0,−
e

c
)

(s2, t2) = (−
d

a
, 0)

(s3, t3) = (
c + e − b − d

a − 2b + c
,
a + d − b − e

a − 2b + c
),

where position (s0, t0) assumes point p′ is inside
the triangle, positions (s1, t1), (s2, t2) and (s3, t3)
assume point p′′ is on boundaries of s = 0, t = 0,
and s+t = 1. All calculated points are truncated to

4

make (s, t) ∈ D so that three end vertices of the tri-
angle T are also in consideration and it guarantees
these points are on the triangle for distance com-
putation. Therefore, the minimum distance is the
shortest distance from the point v to the triangle T .
Then distance function σ(v, T (s, t)) is formed by

σ(v, T (s, t)) = min{Q0(s
′
0
, t′

0
), Q1(s

′
1
, t′

1
),

Q2(s
′
2
, t′

2
), Q3(s

′
3
, t′

3
)} (5)

where (s′i, t
′
i) = clamp((si, ti)), and

Q0(s, t) = V (s + t)(as2 + 2bst + ct2 + 2ds + 2et) + f

Q1(s, t) = ct2 + 2et + f

Q2(s, t) = as2 + 2ds + f

Q3(s, t) = as2 + 2bst + ct2 + 2ds + 2et + f

where function V (x) returns 1 if x ≤ 1, otherwise
it returns 0.

3.4 Visualization of Voronoi Dia-

gram

Generally a region map is constructed by assign-
ing ID color of the Voronoi site to region color. It
is enough to answer the query of nearest Voronoi
site site or the cluster of neighborhood by look up
the region map. However, there is no enough in-
formation about the geometry of Voronoi sites and
the distance from the Voronoi sites to their regions.
Directly visualize the distance field of the Voronoi
sites will lose the information of distinct regions.
Therefore, for visualizing the Voronoi diagram with
information about the regions, distance, and geom-
etry of Voronoi sites, we combine ID color and the
distance field of a Voronoi site as the new color of
its region, by the following function:

Colornew = f ∗ ColorID + (1 − f) ∗ ColorDF

ColorDF .Red = clamp(D ∗ wR − CR)

ColorDF .Green = clamp(CG − D ∗ wG)

ColorDF .Blue = clamp(D ∗ wB − CB)

f = clamp(CG − D ∗ wG) + D ∗ wC

where color in display Colornew is blended by the
ColorID of the Voronoi site and the colored distance
field ColorDF with a weight f . D is the distance
value of a voxel. wR, wG, wB and wC are scale
factors to scale distance value to a noticeable range.
CR, CG, and CB are three parameters to modify the
mapping from distance to color. In our experiment,
(CR, CG, CB) and (wR, wG, wB , wC) are (0.2, 1.0,
0.5) and (24, 64, 16, 6) respectively so that regions
of distance from low to high will be shaded into four
levels: green blending ID color of sites, red, blue,
and ID color of sites. Geometry of Voronoi sites and
the propagation of distance field of Voronoi sites can
be easily seen from the regions in ID color. Figure
3 shows the visualization of 3D Voronoi region on a
slice for two distinct points, edges, and triangles.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Visualization on simple Voronoi diagram
and the distance field. (a) A Voronoi diagram con-
structed by 2 points. (b) Distance field of 2 points.
(c) Visualization of (a). (d) A Voronoi diagram con-
structed by 2 edges. (e) Distance field of 2 edges.
(f) Visualization of (d). (g) A Voronoi diagram con-
structed by 2 triangles. (h) Distance field of 2 tri-
angles. (i) Visualization of (g).

4 Experimental Results

We implement our fragment program using HLSL
on a Pentium 4 3.0 MHz PC with 1G RAM with
a nVidia Geforce FX5800 graphics card running on
Windows XP with DirectX 9.0c. We use Vertex
Shader 1.1 and Pixel Shader 2.0 to implement frag-
ment program in scattering pairs of voxel positions
and Voronoi site data and in distance calculation
and Voronoi diagram visualization.

3D Voronoi diagrams in the experiment are cal-
culated on a slice under voxel resolution of 5122.
All Voronoi sites are randomly assigned. Figure 4
shows 3D Voronoi diagrams constructed by union
of 2 vertices, 2 edges, and 2 triangles. In Figure
4f, a light green line Voronoi region appears on a
dark green triangle Voronoi region especially inside
the low distance region of the triangle Voronoi re-
gion. It happens when the line intersects the tri-
angle. However, in Figure 4c, it is difficult to real-
ize the situation. Figure 5 shows 3D Voronoi dia-
grams of 50, 2000, and 10000 point Voronoi sites.
When many Voronoi sites contribute their distance
fields to a slice, individual Voronoi region becomes

5

(a) (b) (c)

Figure 6: Effectiveness comparison on the same Voronoi diagram constructed by 10k point Voronoi sites
on proportional slices under voxel resolution of (a) 1282,(b) 2562 and (c) 5122.

(a) (b) (c)

(d) (e) (f)

Figure 4: Visualization on Voronoi diagrams con-
structed by Voronoi sites in different shapes. (a)
A Voronoi diagram constructed by 2 points and 2
triangles. (b) A Voronoi diagram constructed by 2
points, 2 edges and 2 triangles. (c) The same 3D
Voronoi diagram as (b) but on a different slice. (d)
Visualization of (a). (e) Visualization of (b). (f)
Visualization of (c).

small and the stored distance value in each voxel is
small too. Thus the image resulted by our visualiza-
tion method is almost identical to visualization by
ID color, which is better in visualizing many small
Voronoi regions.

Performance of Voronoi diagram construction de-
pends on both voxel resolution and the number of
Voronoi sites. 3D Voronoi diagram can be visu-
alized in real time or interactively with hundreds
of Voronoi sites. While visualizing 3D Voronoi di-
gram of 10000 point Voronoi site, construction of
Voronoi diagram on a slice is processed in a second
under voxel resolution of 1282. However, it still pro-

(a) (b) (c)

(d) (e) (f)

Figure 5: Visualization on Voronoi diagrams con-
structed by point Voronoi sites. (a), (b) and (c)
are Voronoi diagrams constructed by 50, 2000, and
10000 points respectively. (d), (e) and (f) are visu-
alization of (a), (b) and (c) respectively.

duces a reliable map of Voronoi diagram because it
is based on pixel-wise distance computation. Fig-
ure 6 shows a Voronoi diagram of 10k point sites on
proportional slices under voxel resolution of 1282,
2562 and 5122.

5 Conclusion

In this paper, we introduce a GPU-based approach
for 3D Voronoi diagram construction and visual-
ization. We calculate minimum distance between
pairs of sampled voxels and Voronoi sites in dif-
ferent shapes for guarantee of Hausdorff distance.
With programmable hardware vertex/pixel proces-
sors, Voronoi diagram can be incrementally con-
structed by rendering simple quad geometry with

6

associated data of Voronoi site and visualized with
different representation.

However, in current implementation, perfor-
mance of pixel shader is the bottleneck in overall
processing speed. Area of rasterization also has a
significant influence on the loading of pixel shader.
Therefore, in the near feature, searching a better
computational methodology for GPU is a way to
improve performance of construction of Voronoi di-
agram. In addition, a sophisticated Voronoi sites
culling for reduce the number of computation query
of the distance field on Voronoi sites will also be
a solution in demand. We would also like to ex-
tend our work for more types of Voronoi diagrams
and find better or more meaningful visualization on
Voronoi diagram for applications.

References

[1] F. Aurenhammer. Voronoi diagrams: A survey of a
fundamental geometric data structure. ACM Com-
puter Surveys, 23(3):686–695, 1991.

[2] I. Boada, N. Coll, N. Madern, and J. A. Sell-
areś. Approximations of 3d generalized voronoi
diagrams. In Proc. European Workshop on Com-
putational Geometry, pages 163–166, 2005.

[3] I. Fischer and C. Gotsman. Fast approximation
of high order voronoi diagrams and distance trans-
forms on the GPU. Technical Report TR-07-05,
2005. Computer Science Group, Harvard Univer-
sity.

[4] S. Fortune. A sweepline algorithm for voronoi dia-
grams. In Proc. 2nd Annual ACM Symp. on Com-
putational Geometry, pages 313–322, 1986.

[5] S. F. Frisken, R. N. Perry, A. P. Rockwood, and
T. R. Jones. Adaptively sampled distance fields:
a general representation of shape for computer
graphics. In Proceedings of ACM SIGGRAPH ’00,
pages 249–254, 2000.

[6] C. M. Gold, P. R. Remmele, and T. Roos. Voronoi
diagrams of line segments made easy. In Proc.
Canadian Conference on Computational Geome-
try, pages 223–228, 1995.

[7] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and
T. Culver. Fast computation of generalized voronoi
diagrams using graphics hardware. In Proceedings
of ACM SIGGRAPH ’99, pages 277–286, 1999.

[8] H. Inagaki, K. Sugihara, and N. Sugie. Numeri-
cally robust incremental algorithm for construct-
ing three-dimensional voronoi diagrams. In Proc.
Canadian Conference on Computational Geome-
try, pages 334–339, 1992.

[9] D. Lavender, A. Bowyer, J. Davenport, A. Wallis,
and J. Woodwark. Voronoi diagrams of set-thoretic

solid models. IEEE Computer Graphics and Appli-
cations, 12(5):69–77, 1992.

[10] J. Lengyel, M. Reichert, B. R. Donald, and D. P.
Greenberg. Real-time robot motion planning using
rasterizing computer graphics hardware. In Proc.
17th annual conference on Computer graphics and
interactive techniques, pages 327–335, 1990.

[11] S. Mauchs. Effcient algorithms for solving static
hamilton-jacobi equations. Ph.D. Ihesii, California
Inst. of Tech, 2003.

[12] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu.
Spatial Tessellations: Concepts and Application of
Voronoi Diagrams. John Wiley & Sons, 2000. 2nd

Ed.

[13] P. Schneider and D. H. Eberly. Geometry Tools for
Computer Graphics. Morgan Kaufmann, 2003.

[14] M.I. Shamos and D. Hoey. Closest-point problems.
In Proc. 16th Annual IEEE Symp. on Foundations
of Computational Science, pages 151–162, 1975.

[15] C. Sigg, R. Peikert, and M. Gross. Signed distance
transform using graphics hardware. In Proceedings
of IEEE Visualization, pages 19–24, 2003.

[16] K. Sugihara and M. Iri. A robust topology-oriented
incremental algorithm for voronoi diagrams. Int. J.
Computational Geometry and Applications, 4:179–
228, 1994.

[17] O. Takahashi and R. J. Schilling. Motion plan-
ning in a plane using generalized voronoi diagrams.
IEEE Transactions on Robotics and Automation,
5(2):143–150, 1989.

[18] M. Teichmann and S. Teller. Polygonal approx-
imation of voronoi diagrams of a set of triangles
in three dimensions. Technical Report 766, 1997.
Laboratory of Computer science, MIT.

[19] G. Varadhan, S. Krishnan, Y. J. Kim, S. Diggavi,
and D. Manocha. Efficient max-norm distance
computation and reliable voxelization. In Proceed-
ings of the 2003 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 116–
126, 2003.

[20] J. Vleugels, V. Ferrucci, M. Overmars, and A. Rao.
Hunting voronoi vertices. Int. J. Computational
Geometry and Applications, 6:329–354, 1996.

[21] J. Vleugels and M. Overmars. Approximating gen-
eralized voronoi diagrams in any dimension. Int. J.
Computational Geometry and Applications, 8:201–
221, 1998.

[22] M. A. Vona and D. Rus. Voronoi toolpaths for pcb
mechanical etch: Simple and intuitive algorithms
with the 3d GPU. In Proc. International Confer-
ence on Robotics and Automation, 2005.

7

