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Abstract

Fluid flow can be realistically simulated by physical models. We present a method
for simplifying the Navier-Stokes equations by relaxing the incompressibility con-
straint. Our method allows for low-cost real-time simulation of two-dimensional
fluid flow with enough accuracy for computer graphics. The implementation takes
advantage of recent programmable floating-point graphics hardware that performs
all the necessary computations.
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1 Introduction

Fluid behaviour is an intriguing phenomenon which has captured the atten-
tion of researchers for years. Due to its universal presence in various forms, e.g.
smoke, fire, wind, cloud formation, weather, water movement, ocean waves,
any graphics system designed to produce realistic images and/or animation
requires a good fluid solver. It plays also important role in other fields, like real-
istic texture synthesis, paint programs emulating traditional painting methods
(such as watercolour) as well as scientific simulations and engineering. How-
ever simple and ordinary these phenomena may seem their realistic simulation
presents a complex and challenging task. The reason behind this is the coex-
istence of many physical processes such as advection, diffusion, gravitation,
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turbulence and surface tension. Computational Fluid Dynamics (CED), de-
spite its long history, is still an active field of development.

Usually fluid simulation is conducted off-line and then visualised as a post-
process. However, real-time graphics application developers would also like to
take advantage of these phenomena. This is why numerous approaches have
been taken to create simplified and less accurate models yet still producing
realistic and visually compelling outputs. Most techniques are based on direct
simulation of the incompressible Navier-Stokes equation or, recently, by means
of a semi-Lagrangian treatment introduced by Stam [5]. Although steps have
been taken to animate full 3D fluid behaviour these methods are restricted
to small-scale environments and usually require full processor time. Further
animation cost reduction can be accomplished by restricting the class of prob-
lems to 2D fluid flow only, while still producing full three dimensional graphics.
The idea behind this is to utilize pressure field to generate fluid surface [1].
An alternative approach has been proposed by Klein et al. [7] where water
flow is coupled with a shallow-water equation [3] to produce fluid surface. In
this paper we present a low-cost approximate method for simulating 2D fluid
flow, with emphasis on real-time computation, which then may be used to
produce fluid surface. We utilize the power of graphics hardware to perform
the necessary calculations.

The Graphics Processing Unit (GPU) is a low-cost off-the-shelf 3D graph-
ics card designed to be extremely fast at processing polygons and pixels for
rendering. In the past decade we have witnessed constant improvement in
performance (on average it doubled every twelve months), much faster than
that of traditional CPUs. With the recent introduction of floating-point cal-
culations and high-level programming languages it has become a standalone
processing unit able to perform arbitrary computational task, not limited to
computer graphics, and has drawn much attention in various fields, e.g. simu-
lations [10], global illumination [11], database operations [9] and linear algebra
[18]. Because of its highly parallel architecture and stream processing model
GPUs are well suited for fluid simulation where data (velocity and pressure) is
stored in textures located in video memory and computations are performed
by fragment shaders. Our method takes full advantage of graphics hardware
to achieve real-time 2D simulation of incompressible fluid flow.

2 Approximate Navier-Stokes

The fundamental equations in fluid mechanics are the Navier-Stokes equations,
which describe the dynamic behaviour of a viscous fluid. In this section we
assume that fluid density and temperature are constant in space and time
thus it can be completely described by its velocity u and pressure field p. By
imposing that the fluid conserves both mass and momentum we obtain the



incompressible form of the Navier-Stokes equations:

aal::—(u-V)u—;Vp+VV2u+f (1)
V-u=0 (2)

Where v is the kinematic viscosity of the fluid, p is its density and f is the
external force. V is the vector of spatial derivatives; V = (9/dx,d/dy) in two
dimensions. For a detailed derivation of this equations we refer the reader to
any of the standard text books on fluid mechanics e.g. [13]. In general there
is no analytic solution so numerical methods have to be employed.

The solution to the Navier-Stokes equations is computed in two alternating
steps. We begin with equation (1) solved by means of central differences on
a staggered marker and cell grid. Although there are more advanced methods
of solving partial differential equations (PDEs) this approach has proved ade-
quate for the needs of our simulation; its simplicity allows for straightforward
and efficient implementation on a resource-limited architecture, like the GPU.
Secondly, the Poisson equation is derived for the pressure field. By comput-
ing gradient of equation (1) and applying mass conservation condition (2) we
obtain:

V?p= -V (u-Vu) (3)

This equation, when spatially discretized, becomes a sparse linear system.
Solving this system of equations can become a bottleneck for real-time applica-
tions; most efficient methods, like the multigrid solver, offer linear complexity.
Furthermore these are iterative methods where the number of steps may vary,
being faster when the field is close to divergent free. Chen et al. [1] proposed
an alternative approach to enforcing mass conservation. Instead of solving the
sparse linear system resulting from Poisson equation, they approximated it
with a penalty method (for a survey of pseudo-compressibility methods refer
to [16]), replacing equation (2) with:

ep+Vu=0 (4)

Temam [14] proved, that equations (1) and (4) with € — 0, € > 0 tend to-
wards the solution of Navier-Stokes equations for incompressible fluids. In this
method the incompressibility constraint is lifted and the computed values of u
and p are approximations of the original values. Moreover p can be eliminated
completely from equation (1).

Chen used the above equation to compute fluid pressure and then generate a
height field representing fluid surface. The downside of this approach is that
it slowly converges to the incompressible form when not in stationary state,



resulting in unnatural fluid behaviour. Producing good results requires small
time step dt and penalty parameter €, Chen’s values were 0.001s and 0.005
respectively; larger values may lead to numerical instability.

We propose a different method of approximating the Navier-Stokes equation,
relaxing slightly the incompressibility condition with:

p=(1-7)p- > (V-u) o)

Where p is the pressure field from previous simulation step, gamma is the
damping factor, v > 0, v — 0 and eps is penalty parameter, ¢ > 0, ¢ — 0.
The damping factor gamma is required because of precision of numerical cal-
culation - for turbulent flow where v = 0 the computations may ’explode’; for
v — 1 the simulation converges slowly. Tuning v and ¢ may be an challenging
task, which depends on the flow parameters and environment condition.
Equation (5) is similar to what Temam proposed in [15]:
dp

Which, when finite difference method is applied, becomes:

=i (Vud (7

However our equation, when solved numerically, possesses greater stability and
faster convergence, even for larger time steps. It can be shown, that equations
(1) and (5) tend towards the solution of Navier-Stokes equation for ¢ — 0.
When gamma equals 0 or 1 equation (5) becomes equation (7) or (4) respec-
tively. The former and the latter equations have been proven by Temam.

The system (1) and (5) should be supplemented with initial conditions for
velocity uy and pressure py and appropriate boundary conditions. In this pa-
per, for the sake of simplicity, we consider only fixed boundary conditions
0N for a fluid laying in some bounded domain 2. The boundary conditions
should be such, that there should be no flow through the walls i.e. the normal
component of flow velocity should be zero at boundaries. The stability of our
method has been empirically tested on various initial and boundary condi-
tions, simulating a spectrum of different flows, including flow in a pipe, flow
through a dam, flow around a block. In each case the simulation was run for
minutes observing numerical stability and measuring the largest possible time
step. A simulations is considered unstable when small variations on the initial
conditions cause the numerical solution to expose high variations after some
time t. Our simulation proved to be stable, provided that the parameters are
chosen appropriately. In general for smaller time step, flow speed, Reynolds
number and larger penalty parameters the solution is stable. The accuracy of



the computed flow is sufficient for real-time applications, it appears natural
and emulates many natural phenomena e.g. vortices.

To solve the Navier-Stokes equations we apply explicit time integration meth-
ods. The major disadvantage of such method is the severe restriction imposed
on the time step size. However the simplicity of these methods, as well as the
low computation cost of the pseudo-compressibility approximation, allow for
efficient implementation. This results in multiple simulation steps per second
making a good trade-off for the small time step.

In the next section we give a through account of the GPU implementation.

3 GPU implementation

We have successfully implemented our method on an ATI Radeon 9700 and
nVidia GeForce 6 graphics cards. All numerical calculation of our fluid solver
are performed on the programmable, floating-point graphics hardware uti-
lizing the rendering pipeline. Simulation data is stored in high speed video
memory. Developing general purpose programs for GPU requires knowledge
of the specific field as well as the details of computer graphics which are ex-
plained briefly hereunder.

Rendering a 3D scene involves a fixed sequence of steps, some of which may
be executed in parallel. These are known as the graphics pipeline. In the first
stage user supplied data representing a polygonal mesh is transformed from
abstract 3D world-space coordinates to 2D screen coordinates and a depth
value, indicating the distance between a virtual camera and a graphical prim-
itive. This is known as the vertex processing stage. Beside position, a vertex
may have other properties, like texture coordinates and colour or even arbi-
trary data, which are also transformed by the vertex shading unit. Groups of
vertices form rendering primitives, e.g. triangles.

Screen space converted primitives are then rasterized during the second step
producing a set of fragments. Data from vertices are interpolated to provide
fragments with the necessary information to update pixels. Each fragment is
processed according to a set of rules either fixed or programmable. This step
is know as fragment processing. In this stage textures are sampled and the
resulting texels are fetched into the fragment processor. The input data is
transformed, including various operations, to produce the resulting colour. At
the end of the pipeline each fragment is tested against some values, e.g. the
current depth of fragments in the frame buffer, to decide whether or not a
fragment is updated. Programmability can be introduced at two stages, ver-
tex and fragment processing, by uploading user defined programs, either in
assembly language or high-level graphics programming language. The latter is
represented by OpenGL Shading Language. Most non-graphic applications of
GPU take advantage of fragment pipeline ignoring the vertex processor. The



reason behind this is the vertex processing unit possesses knowledge only of
the one vertex being processed. The fragment shader has no such limitations,
on the contrary, it can access arbitrary texels or even performing dependent
texture reads. In order to process large number of primitives the graphics
hardware exposes a highly parallel architecture. Vertices and fragments are
stream processed by one of multiple units in SIMD model. The graphics hard-
ware enforces independent processing of each primitive resulting in stall-less
processing.

We employed a stream programming model in our application making a dis-
tinction between simulation data and computational kernels. The former are
stored in video memory as floating point textures. As our simulation has been
performed only in two dimensions there is a direct mapping between texels
and grid cells. The values of u, v and p were stored in different channels of
a single texture, representing a staggered grid where pressure is defined at
the centre of cells while velocity is defined at cells faces. Fragment programs
serve the purpose of computation kernels, performing computations by means
of rendering to texture. A single quadrilateral covering the whole viewport
is drawn to update the state texture, which in turn may be used to stream
data to the next fragment program. In our method the equations (1) and (5)
described in previous section are implemented as fragment programs.

The overall algorithm can be divided into the following steps:

(1) Set initial conditions.

(2) Apply boundary conditions.

(3) Compute u and v by eqn. (1) (store in red and green channel)
(4) Copy computed u and v to previous texture

(5) Compute p by eqn. (5) (store in alpha channel)

(6) Repeat steps 2 to 5

Two textures are used to represent the current and previous step of simulation.
Step 4 is necessary because on current hardware reading and writing to the
same texture in a single fragment shader may result in undefined behaviour.
This restriction may be lifted in the future.

In our implementation we used OpenGL for graphics rendering with vari-
ous extensions: ARB_shading_language_100 for fragment program compilation
and linking, ARB_render_texture and ARB_pbuffer for rendering to off-screen
buffers. To access floating point textures we employed the ATI _texture_float
extension which is more versatile than NV _float_buffer and is available on both
ATT and nVidia hardware (staring with GeForce series 6).

Our research focused on computing fluid flow with application in real-time
which could be used to generate a fluid surface. However, due to the relax-
ation of incompressibility constrain, a way of enforcing mass conservation had
to be found. Instead one could adopt Klein et al. [7] proposition of handling
fluid flow and surface independently. They employed the so-called shallow wa-
ter equation to generate the surface, where the results of the computed flow



are affecting wave generation. The latest hardware supports texture fetching in
the vertex program which could be used when generating polygonal mesh for
fluid surface. This would result in GPU-only implementation of fluid surface,
avoiding the huge costs of copying data between system and video memory.
For testing purposes a traditional CPU based application has also been de-
veloped. The next section describes a direct GPU-CPU comparison as well as
the results from various graphic cards.

4 Results and analysis

Here we present the results of our technique and its effectiveness. For the
CPU implementation we used a Dell computer system with 2.8 GHz Intel
Pentium processor and 1GB of memory. The graphics chips were the ATI
FireGL V3100 with core frequency of 400 MHz and 128 MB of video memory.
For comparison we also made the experiment with an nVidia GeForce 6600GT
with 500 MHz core frequency and also 128 MB of video memory. The time
values account only for simulation time and do no include rendering time nor
the time required for copying data between the system and graphics processor
in CPU version.

Table 1 gives the speed comparison between the CPU-Pentium and the GPU-
FireGL implementation for various grid sizes.

Table 1

Time of a single simulation frame in ms

Grid scale FireGL ~ CPU  FireGL/CPU Speedup GeForce

64 1.11 1.92 1.74 0.65
128 1.13 7.08 6.26 1.17
256 3.34 32.29 9.66 4.41
512 12.7 225.89 17.76 17.06
1024 31.94 1015.57 31.79 67.80

As one can see the performance of the GPU is superior over that of the CPU
by a factor of up to 32. Due to its architecture performance gain on graphics
hardware is even bigger for larger grids. In our implementations all compu-
tations were done on the graphics chip and the results are stored in video
memory and then rendered right to the frame buffer. One could even use a
fragment program to generate vertex data for 3D fluid surface. With OpenGL
it is possible to copy data between texture memory and vertex buffers. This
way we can avoid copying data between graphics and system memory which
is know as the biggest bottleneck for many graphics applications.

It has been observed that the impact of various boundary conditions as well



as simulation parameters on simulation time can be neglected. For simulation
cases where only a part of the grid has to be updated one could employ early-z
culling [8] or similar method. However this improvement for our setup would
be of minor benefit.

The rightmost column of table 1 shows the results from nVidia GeForce
6600GT graphics card. Strangely the results are much worse than those from
FireGL board. The former has higher theoretical memory bandwidth as well
as a 25% higher processor clock rate. Unfortunately we have not been able
to point out the exact cause of such low performance. Both graphics cards
run the same version of our application including the fragment programs. We
believe that it may be connected with the use of ATI floating point render
target OpenGL extension on nVidia hardware.

a) b) C) d)

Fig. 1. Comparision of results of simulation for a) 32-bit nVidia b) 32-bit ATI c)
16-bit nVidia d) 16-bit ATI

It is important to note that the fragment programs are compiled and processed
by the graphics hardware and display drivers. For faster graphics processing
a 24bit floating-point precision may replace the full IEEE 32-bit precision.
Moreover fragment program compiler may decide to introduce optimizations
changing the behaviour of the given program. This statement can be extended
on other elements of the graphics pipeline as well.

Table 2
Simulation frame rate

FP precision nVidia ATI

32bit 814 1002
16bit 1698 1058

Figure 1 shows the comparison of results from simulation on nVidia and ATI
hardware. The images show the actual simulation data stored in texture, veloc-
ity is packed into red and green channels for horizontal and vertical component
respectively (the values are biased by 0.5). Results after 50000 time steps dif-
fer significantly (a and b). We conducted another experiment this time using
16bit floating-point simulation data (figure 1 ¢ and d). Interestingly the out-
puts differ only slightly. We believe that this is because of the optimizations
mentioned before. Table 2 shows frame rates of those experiments which seem



to prove this statement.

Figure 2 shows a few frames from our real-time simulation, showing fluid flow-
ing in a pipe with an obstacle. These images show the vorticity of fluid flow,
w =V x u (biased so, that the grey colour represents zero vorticity).

Fig. 2. Two subsequent snapshots from the simulation on a 256x1024 grid

5 Conclusions and future work

In this paper we have shown a way to simulate fluid flow totally on the graphics
hardware, which in recent years have become a fully functional processing
unit. The whole computations and data is stored on the video memory so
no CPU-to-GPU computation is required. Additionally we have presented a
approximate method which may be used in real-time graphical applications.

For now we have only considered 2D fluid dynamics problems which we would
like to extend to the 3D domain. Another problem was the small time step
(1/30s) which had to be employed. We would like to implement the semi-
Lagrangian method, as in [5], to make this method more versatile and stable.
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