
Abstract

Line Integral Convolution (LIC), introduced by Cabral
and Leedom in Siggraph '93, is a powerful technique for
imaging and animating vector fields. We extend the LIC
paradigm in three ways:

1. The existing technique is limited to vector fields over
a regular Cartesian grid. We extend it to vector fields over
parametric surfaces, specifically those found in curvilinear
grids, used in computational fluid dynamics simulations.

2. Periodic motion filters can be used to animate the flow
visualization. When the flow lies on a parametric surface,
however, the motion appears misleading. We explain why
this problem arises and show how to adjust the LIC
algorithm to handle it.

3. We introduce a technique to visualize vector
magnitude as well as vector direction. Cabral and Leedom
have suggested a method for variable-speed animation,
which is based on varying the frequency of the filter
function. We develop a different technique based on kernel
phase shifts which we have found to show substantially
better results.

Our implementation of these algorithms utilizes texture-
mapping hardware to run in real time, which allows them to
be included in interactive applications.

1. Introduction

Providing an effective visualization of a vector field is
a challenging problem. Large vector fields, vector fields
with wide dynamic ranges in magnitude, and vector fields
representing turbulent flows can be difficult to visualize
effectively using common techniques such as drawing
arrows or other icons at each data point, or drawing
streamlines[2]. Drawing arrows of length proportional to
vector magnitude at every data point can produce cluttered
and confusing images. In areas of turbulence, arrows and
streamlines can be difficult to interpret.

Various techniques have been developed which attempt
to address some of these problems. Max, Becker, and
Crawfis[13], Ma and Smith[12], and Max, Crawfis, and
Williams[14] have implemented systems which advect
clouds, smoke, and flow volumes. These techniques show
the flow on a coarse level but do not highlight finer details.
Hin and Post[11] and van Wijk[16] have visualized flows

with particle-based techniques, which show local aspects of
the flow. Bryson and Levit [4] have used an immersive
virtual environment for the exploration of flows. Helman
and Hesselink[10] have generated representations of the
vector field topology, which use glyphs to show critical
points in the flow.

In this paper we discuss a new technique for visualizing
vector fields which provides an attractive alternative to
existing techniques. Our technique makes use of Line
Integral Convolution (LIC)[5], which is a powerful
technique for imaging and animating vector fields. The
image of a vector field produced with LIC is a dense display
of information, and flow features on the surface are clearly
evident.

The LIC algorithm as presented by Cabral and Leedom
in [5] is applicable only to vector fields over regular 2-
dimensional Cartesian grids. However, the grids used in
computational fluid dynamics simulations are often
curvilinear. In this paper we show how to extend the LIC
algorithm to visualize vector fields over parametric surfaces.
Thus, for example, our extended algorithm allows us to
visualize the flow over the surface of an aircraft or turbine.

In the original work on LIC, a technique for animation
of vector field visualizations is presented. Our work extends
this animation technique to apply to the parametric surfaces
found in curvilinear grids as well.

Lastly, we present a new technique for displaying
vector magnitude which can be applied to both 2-
dimensional regular grids and parametric surfaces. Our
method varies the speed of the flow animation to give an
intuitive representation of vector magnitude.

In the next section we discuss the basic LIC algorithm.
In section 3 we describe our extension to curvilinear
surfaces. In section 4, we discuss the implementation of
animation for curvilinear grid surfaces. In section 5, we
introduce our technique for displaying vector magnitude. In
section 6, we describe our implementation of all the
algorithms in the paper. We conclude with a brief discussion
of directions for further applications of the LIC algorithm in
vector field visualization.
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2. Background

The Line Integral Convolution (LIC) algorithm takes as
input a vector field lying on a Cartesian grid and a texture
bitmap of the same dimensions as the grid, and outputs an
image wherein the texture has been “locally blurred”
according to the vector field. There is a one-to-one
correspondence between grid cells in the vector field, and
pixels in the input and output image. Each pixel in the output
image is determined by the one-dimensional convolution of
a filter kernel and the texture pixels along the local
streamline indicated by the vector field, according to the
following formula:

where
τ = the set of grid cells along the streamline within a set

distance 0.5 l from the point (i, j), shown as the shaded cells
in Figure 1.

l = the length of the convolution kernel
Cin(p) = input texture pixel at grid cell p

where
α = the arclength of the streamline from the point (i, j) to where

the streamline enters cell p
β = the arclength of the streamline from the point (i,j) to where

the streamline exits cell p
k(w) = the convolution filter function

Thus each pixel of the output image is a weighted aver-
age of all the pixels corresponding to grid cells along the
streamline which passes through that pixel’s cell. Section 4
of [5] provides the complete details of the algorithm. When
this algorithm is applied at every pixel, the resulting image
appears as if the texture were “smeared” in the direction of
the vector field.
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Figure 1.A vector field where the streamline through point (i,j)
is shaded.

i,j

3. Curvilinear Grid Surfaces

Because of the one-to-one correspondence between grid
cells and pixels in the input/output images, the algorithm
described above requires that the vector field lie on a
regular, Cartesian grid. Here we show how to use the
algorithm on 2-dimensional slices of structured curvilinear
grids, which describe parametric surfaces.

We denote the curvilinear space coordinates of a point as
 and the physical space coordinates as

. The vector which describes the velocity of
the flow at each point is

We transform the vector field to the coordinate system of
the curvilinear grid, hereafter called “computational space.”
The transformation from physical space to computational
space is performed by multiplying the physical-space
velocity vectors by the inverse Jacobian matrix s.t.

The computational-space vectors give velocity in grid-
cells per unit time. Because the data points are given for
integer coordinates in computational space, this constitutes
a regular Cartesian grid.

We can compute a LIC-image of any 2-dimensional

Figure 2.The input white noise bitmap on left is smeared using
LIC on a circular vector field to produce the output image on
the right.
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slice of the grid by projecting the vector field onto it. For
example, if we want to examine the k=1 plane of the
computational grid, which in many CFD data formats
usually lies on the surface of the object about which the flow
is being simulated, we drop the (∂ζ/∂t) term and use the 2-
dimensional vector [∂ξ/∂ t, ∂η/∂t]T in the LIC algorithm.

The resulting image, which is a visualization of the
vector field in computational space (see Figure 3) is then
mapped onto the surface in physical space using a standard
inverse mapping algorithm, such as that described in [9].
The inverse mapping converts the vector field
representation back into physical space (Figure 3). The final
result is a visualization of the flow which is dense, easily
interpreted, and effectively handles the complicated areas of
the flow.

Figure 3. Top: a LIC image of the computational-space velocity
field over the surface of the space shuttle. The input texture is white
noise, and the convolution kernel is a simple box filter. Below: the
LIC image above texture mapped over the space shuttle in physical
space. Note the separation apparent on the fuselage and the vortices
at the wingtip.

4. Animation

While the image described above and shown in Figure
3 correctly shows the streamline direction of the vector field,
the visualization is ambiguous in regards to whether the flow
is moving forward or backward along the lines indicated. To
disambiguate the direction of flow, animation is useful.
Also, animating a flow visualization is physically
meaningful.

As Cabral and Leedom discuss in [5], periodic motion
filters [6] can be used together with LIC to create the
impression of motion, such that a flow appears to be moving
in the direction of the vector field. A small number n of LIC
images are computed, where in frame i the filter kernel is
phase shifted by is/n, where s is the period of the filter
function. When played back, these images cause the
appearance of ripples moving in the direction of the vector
field. Because the filter kernel is periodic, the n frames can
be cycled through continually for smooth motion.

On a parametric surface, the images are ‘played’ by
texture mapping each in turn onto the surface. However,
additional steps must be taken to ensure that the animation
does not introduce misleading information into the
visualization. The conversion from computational space to
physical space maps square grid cells into quadrilaterals of
varying dimensions. Therefore, the length of the
convolution filter, which is measured in computational
space units, is mapped to varying lengths in physical space.
The length of the periodic filter determines the size and
speed of the “ripples” in the animation. The speed is given
by the amount of phase shift in physical space per unit time.
Thus, if the period of one filter function is longer in physical
space than another, that ripple appears to move faster than a
shorter filter.

As a result of the warping that occurs in the mapping
from computational to physical space, the animation appears
uneven and erratic. In areas where the grid is sparse, the flow
appears as little ripples moving fast, because the convolution
kernel has been compressed, and in areas where the grid is
dense, the flow appears as large ripples moving slowly.
Since there is no correlation between apparent speed and
actual speed of the flow, this motion is highly misleading.

The situation can be corrected by varying the length of
the convolution filter while computing the LIC image. The
length of the convolution filter must vary inversely with the
grid density in the direction of the flow. Where the grid is
sparse in physical space, we want to use a narrow
convolution filter in computational space, as it will be
stretched out when mapped. Likewise, where the grid is
dense in physical space, we want to use a wide filter in
computational space, as it will be compressed when
mapped. See figure 4, next page.



We compute frames where the length of the convolution
kernel used in the LIC algorithm at each grid cell p is given
by

where

a is the minimum length of the kernel, measured in grid
cells

b controls the range of possible kernel lengths, and
r is the grid density at grid cell p in the direction of the

flow.

a must greater than 1; if the length of the filter is 1 or less,
the LIC algorithm simply returns the input texture pixel,
unaffected by the vector field.

b must be set to a finite length which will vary with the
particular grid.

r(p) for each grid cell is given by

r(p) for the entire grid is computed by the following steps:

1) Normalize the vector field to unity in physical space.
2) Convert to computational space using the inverse
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Figure 4. A convolution filter function in physical space and
computational space. The goal is for the filter to be of uniform length in
physical space, regardless of grid density. Therefore we stretch the filter in
computational space in areas where the grid is dense, and compress the
filter in computational space in areas where the grid is sparse.

l p( ) a
b

r p( )
+=

ξ∂
∂x

η∂
∂x

ζ∂
∂x

ξ∂
∂y

η∂
∂y

ζ∂
∂y

ξ∂
∂z

η∂
∂z

ζ∂
∂z

1−

td
dx

td
dx

•

Jacobian as described in section 3.
3) Take the magnitude of the computational-space

vectors.

Figure 5 shows a single texture frame of an animation
sequence computed in this way. When the 10 texture
frames are played back, the flow appears smooth and even
everywhere on the surface, rather than uneven and erratic.
Thus we are able to use periodic motion filters even on
parametric surfaces from curvilinear grids.

5. Variable Speed

The next step in flow animation, whether on a regular
grid or on a parametric surface, is to give a visualization of
vector magnitude as well as vector direction. Thus, in a CFD
flow visualization, the periodic motion should be slow
where the flow has low velocity and quick where the flow
has high velocity. Cabral and Leedom [5] suggest achieving
this effect by varying the frequency of the filter function,
while keeping its length constant. However, the limited
dynamic range (experimentation shows only between 2 and
4 ripples per kernel are interpretable) and the artifacts
caused by changing the shape of the filter make it difficult to

Figure 5a. A single texture frame from an animated sequence computed
using the LIC algorithm with a raised cosine filter. The length of the filter
varies inversely with the grid density in the direction of the flow. There-
fore the ripples appear stretched in some areas and compressed in others.

5b. Close-up of the texture frame from above mapped onto the curvilinear
grid, used to simulate flow around a post. The bottom edge of the texture
maps around the post. When mapped onto the grid, the ripples are of uni-
form size. When animated, the ripples give the impression of smooth flow.

Details in section 4.



use this approach for meaningful results. We have found that
a better solution is to vary the amount of filter function phase
shift at each grid cell in proportion to the physical-space
vector magnitude.

The amount of phase shift is what determines the
apparent speed, given a uniform-length filter kernel. An
infinitesimally small phase shift will appear not to move at
all. Likewise, a 90-degree phase shift in every frame will
produce a full cycle in four frames, which appears to move
very quickly. (At anything greater than 180 degrees,
temporal aliasing occurs.) Phase shifts ranging from 0 to 90
degrees can be mapped to the actual range of physical vector
magnitude for a convincing variable-speed animation.

In a frame from a variable-speed animation sequence,
each pixel will be computed with a convolution kernel that
has a phase shift proportional to the corresponding grid
cell’s physical vector magnitude. Therefore the period of the
filter function is different at each pixel, and there is no fixed
number of frames that can be used in a cyclic animation.
Therefore, we adopt the following strategy of sampling the
“real” solution and interpolating to find the pixel values
which we will display.

In practice, the texture frames are computed as follows:

1) First compute N LIC images, such that in image i,
where θi is the amount of filter phase shift, θι= is/N.
As in section 4 s is the period of the filter function.
The larger N, the more accurate the visualization. The
intensity of pixel p in image i is defined as T(i, p).

2) For each grid cell p , let

where y denotes physical vector magnitude at grid
cell p. q is a real number in [0,1] that gives the vector
magnitude in cell p relative to the magnitudes in the
whole grid.

3) The intensity of pixel p in frame j of the displayed
image, I(j,p), is found by interpolating linearly
between the two LIC images from step (1) closest to
it:
Let

at cell p. Then
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6. Implementation

We use the texture-mapping capabilities of a high-end
workstation [8] to display surfaces with LIC-images
mapped onto them in an interactive program. All LIC
images are computed prior to running the interactive
program, since the LIC algorithm is fairly compute-
intensive (images take on the order of several seconds to
minutes to compute). The hardware is capable of switching
between pre-loaded textures quickly enough that we are able
to run animation in real time, while the user manipulates the
surface.

For single-speed periodic motion, we find that 5 - 12
texture frames is sufficient for smooth animation.

For variable-speed animation, we are no longer able to
precompute a finite number of frames and cycle through
them, because the amount of phase shift varies at every grid
cell. However, steps 2 and 3 of the algorithm described in
section 5 are not compute intensive, once the N LIC-images
of step 1 have been precomputed. This implies that a real
time implementation of variable-speed animation should be
possible. Unfortunately, we have not been able to achieve
this with our hardware, an SGI Reality Engine, because the
time required to load a new texture into the texture cache is
too long to permit good frame rates. However, we expect
that within the foreseeable future texture-mapping hardware
will allow fast texture definition and this feature will be
possible.

In the meantime, we have experimented with two
alternative solutions.

(1) Calculate and store a large number of texture frames
using a real phase shift at every grid cell which is a linear
function of the physical vector magnitude in that grid cell.
The number of frames required for anything more than a few
seconds of animation using this solution is so large that
storage requirements quickly exceed the memory
capabilities of a workstation. Therefore either (a) the short
sequence of animation must be continually restarted, which
causes the flow to appear to “jump” every few seconds, or
(b) the animation must be stored on video or another digital
playback device, and the real time interactivity possible with
all other techniques described in this paper are forfeited. We
show an implementation of (a). The animation is smooth in
spurts of 5 seconds, and the speed of the flow is clearly
varying across the surface (see video).

(2) Approximate the continuous solution by choosing a
minimum phase shift, φ, and quantizing all phase shifts as
integer multiples of φ. In this solution, only M = s/φ frames
need to be precomputed, because the M frames will form a
complete cycle. The drawback of this solution is that it is
susceptible to aliasing and rasterization caused by the
sampling and quantization of phase shifts. The advantage is



that it can be played continually in real time on a
workstation, without the jumps of solution (1).

To compute the frames for this discretized solution, we
follow the same steps as described for the continuous
solution in section 5, but round q to the nearest multiple of
1/M. In this case there is no interpolation and M frames
suffice to form a cycle of animation.

In our implementation of solution (2), we see that while
the speed of the flow is clearly varying, aliasing and
rasterization artifacts do appear.

7. Future Work

There are several promising directions for future work.
First, in order for this technique to become useful for practi-
cal applications, a number of extensions must be imple-
mented. Foremost among these are multigrid solutions,
unsteady flows, and unstructured grids.

Also, we hope to extend this technique to the visualiza-
tion of 3-dimensional vector fields. While the LIC algo-
rithm in itself extends easily to a 3-dimensional Cartesian
grid, the output image data requires additional processing
before a useful image is produced. Cutting planes, isosur-
faces, or volume rendering techniques will be necessary for
this extension. Experimentation with input textures and
convolution filters will be needed to achieve effective im-
ages. Furthermore, new algorithms will be required to han-
dle curvilinear grids in this situation as well.

8. Summary

We have presented several extensions to Line Integral
Convolution. First, we have described how to use the LIC
algorithm on curvilinear grid surfaces. We have shown how
to solve the problems that arise when using periodic motion
filters in LIC on a curvilinear surface. Lastly, we have in-
troduced a method of incorporating visualization of vector
magnitude into the LIC algorithm, by showing the anima-
tion at variable speeds. All algorithms are designed such
that with modern graphics hardware the surfaces can be dis-
played, animated, and manipulated in real time.

Our visualization technique provides intuitive and accu-
rate information about the vector field, and thus is a useful
complement to other visualization techniques.
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1b. The flow over the surface of the space shuttle visualized using
Line Integral Convolution on the computational space vector field
and texture mapped onto the shuttle surface.

2b. Detail of the top of the fuselage of the space shuttle, visualized
using LIC for curvilinear surfaces.

3b. Detail of the wing of the shuttle.

1a. The flow over the surface of the space shuttle visualized in
FAST with arrow icons for velocity vectors and glyphs for critical
points in the topology.

2a. Detail of the top of the fuselage of the space shuttle, visualized
in FAST.

3a. Detail of the wing of the shuttle.


