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Abstract

The use of stream surfaces and streamlines is well established in
vector visualization. However, the proper placement of starting
points is critical for these constructs to clearly illustrate the flow
topology. In this paper, we present the principal stream surface al-
gorithm, which automatically generates stream surfaces that prop-
erly depict the topology of an irrotational flow. For each velocity
point in the fluid field, construct normal to the principal stream sur-
face through the point. The set of all such normal vectors is used
to construct the principal stream function, which is a scalar field
describing the direction of velocity in the fluid field. Volume ren-
dering can then be used to visualize the principal stream function,
which is directly related to flow topology. Thus, topology in a fluid
field can be easily modeled and rendered.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image gener-
ation; 1.4.3 [Image Processing]: Enhancement.

Keywords: flow field, visualization, volume rendering, filtering

1 Introduction

The generation of stream surface [7] and streamline [4], as well
as particle tracing [17] and probes [15] are well known techniques
for vector visualization, and there are many papers devoted to the
subject (see, for example,[1, 9]). A drawback of using stream sur-
faces and lines is that starting points need to be selected carefully;
only certain starting points will trace out stream surfaces that prop-
erly describe flow topology. Determining such starting points is
very difficult, particularly when dealing with unknown fluid fields.
A recent paper[12] discusses an effective method (using an energy
function) for addressing this problem in two dimensions.

Several methods have been proposed to visualize the flow topol-
ogy without tracking stream surfaces from starting points, to avoid
the selection of starting points placements. Helman and Hesslink[6]
attempted to extract the topology of the fluid field directly using
‘separation surfaces’, modeled with stream surfaces tracked from
critical points. But the construction of such surfaces is neither easy
nor fully automatic. Another way to view flow topology is using
texture mapping, including the linear integral convolution (LIC)
method of Cabral and Leedom[2] and the spot noise[13] method of
van Wijk. Applying textures to depict flow orientation is very use-
ful in 2D fields, but not nearly as successful in three dimensions.
We have attempted to expand the texture method to 3D fluid fields
using 3D linear integral convolutions and volume rendering, but as
shown in Figure 1, the results are not very good; too many details
obscure the flow topology.

The concept of a stream function[16] is a fundamental concept
in computational fluid dynamics (CFD). In a 2D fluid field, stream-
lines correspond to lines of constant C = ¥(X), where ¥ is the
stream function. In a 3D fluid field, the constant C corresponds to
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Figure 1: 3D Linear Integral Convolution

a set of stream surfaces and a streamline corresponds to the inter-
section of two stream surfaces (C1 = ¥q,C> = ¥,). Kenwright
and Mallinson[8] first applied stream function to streamline track-
ing, and Van Wijk followed with an “‘implicit stream surface’ way
to calculate stream function distributions by simulating the process
of placing ‘ink’ on the inlet of the fluid field. All points in the fluid
field are tracked backward to the inlet and the value at the corre-
sponding inlet point is assigned to the tracked point. But the eval-
uation of a stream function on the inlet boundary and the detection
of the inlet boundary are very difficult especially for unknown fluid
field. Thus, the difficult problem with implicit stream surfaces is
similar to the placement of starting points, due to the fact that it re-
lies on tracking in preprocessing. However, the implicit stream sur-
face introduces a new method to model stream surface and a general
way to visualize flow topology directly, using the stream function
and volume rendering instead of tracking. Fruhauf[5] proposes a
raycasting method for direct rendering of vector fields; his work
focused on streamline shading. He proposed a view-dependent
stream-line computing method for illuminating streamlines. The
rendering result is sensitive to view direction and light direction.

There is only one streamline passing through any particular ve-
locity point in a fluid field, but infinitely stream surfaces that con-
tain it. How may we determine which ones provide the most useful
information about flow topology? As illustrated in Figure 2 about a
cylindrical flow along the Z axis, we intuitively prefer certain sur-
faces to others. For example, most people would choose Surfacel
over Surface2 or Surface3, to indicate the flow past point P. We
would like to depict the flow topology using stream surfaces that
show the flow motion to the greatest extent, that is, we care about
the changing of velocity more than the velocity itself. Surfacel is,
in fact, tangent to rectifying planes in the Frenet frame at all passing
points. We refer to this kind of stream surface as a principal stream



surface.
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Figure 2: Different stream surfaces passing Point P around a cylin-
drical flow

The following section describes a way to automatically model
the principal stream surface, in order to view flow topology. Briefly,
the principal normal vectors in the Frenet frame are used to calcu-
late the principal stream function (the stream function of the princi-
pal stream surface). Since these normal vectors constitute, by def-
inition, the gradient of the principal stream function, it is straight-
forward to construct the scalar field of the principal stream function
from them. The process is similar to the reconstruction of a po-
tential field and only a single reference point is required. After the
principal stream function is generated, the flow topology can be vi-
sualized directly with volume rendering[10, 3] or other iso-surface
extraction methods[11].

The next section talks about concepts related to principal stream
surfaces and functions. We follow with an algorithm to calculate
the principal stream function, and finally a discussion of the imple-
mentation and experiments.

2 Related Concepts

In a Frenet frame, two tangent planes passing point P are chosen:
the osculating plane and the rectifying plane (Figure 3). These two
planes form a basis (via linear combination) for any other tangent
plane. The normals of the osculating plane and rectifying plane are,
respectively, B and N
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Figure 3: Frenet Frame
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where V is the first-order derivative of curve L at point P, and A is
the second-order derivative. If L is thought of as an integral curve
in the velocity field, that is, the unique streamline passing point P,
then V' is the velocity vector and A is the acceleration.

The osculating and rectifying planes are tangent to different
stream surfaces at point P. The osculating plane is the nearest tan-
gent plane to L, and the rectifying plane is the farthest (where near-
est and farthest refer to the high order infinitesimal distance). These
two planes show different attributes of the velocity at that point; the
osculating plane depicts the velocity itself whereas the rectifying
plane depicts more information about the changing of the velocity
nearby. Other stream surfaces passing through P can be expressed
as linear combinations of these two extreme cases.

The placement of stream surfaces passing through P is deter-
mined by their starting points. The most meaningful stream surface
is the one that depicts the local topology, that is, the primary direc-
tion of velocity and its nearby rate of change. The integral curve
L lies within the osculating plane, the tangent line to L lies within
the intersection of these two planes, and the normal vector to L
lies along the direction of curvature of the streamline which is the
direction of the changing of the velocity.

As shown in Figure 2, plane XY™ based on the origin gives no
hint about the 3D flow topology although it is a stream surface,
since no fluid flows across the XY plane. Plane XY is therefore
a typical osculating plane. Surfaces similar to Surfacel are more
helpful in viewing the flow topology, because it depicts the flow
topology more clearly than other stream surfaces.

Definition 1 A principal stream surface is a stream surface
whose tangent planes are the rectifying planes of the streamlines
within it. The normal of each point on the principal stream surface
has the same direction as the streamline’s principal normal vector,
and its magnitude is defined to be the magnitude of velocity at that
point.

In a 3D fluid field, a stream surface is defined as the set of all
points for which a particular stream function is a constant. The
velocity at any point is the crossproduct of two stream functions
(generated by the intersection of two stream surfaces): see[16, 8,
14]. In the Frenet frame,

V=NxB @)

Definition 2  The principal stream function is the stream function
of the principal stream surface, and its gradient is the normal of the
principal stream surface.

Existence of Principal Stream Function The relationship
between the velocity field V' (u, v, w) and two stream functions f, g
at a point is[16]:

pV =vfxvy

where p is the density value at that point. For an incompressible
flow, p is a constant. According to the conservation of mass,

veV)=v(vfxvy) =0
f and g must satisfy

va = uf:c+'l)fy+’w.fz:0
V.-vg = ugs+vgy+wg.=0

The constant surfaces of f and g are stream surfaces in the field.
There exist a global f and a global g in the whole velocity field,



but normally it is difficult to represent f and g as some elementary
functions.

The principal stream function field can also be expressed as a
function of f and g. Since f and g exist globally, the total dif-
ferential of rectifying planes of the field can be expressed as the
composite function of 57 f and 7g. Thus, the principal field is in-
tegrable.

3 Principal Stream Surface

In order to model the principal stream surface, we must first com-
pute its normals, the gradients of the corresponding principal stream
function. Based on the gradient and a reference point, the principal
stream function (a scalar field) can be constructed.

3.1 Normal of a Principal Stream Surface

According to Def. (1) and Eq. (1), the second-order derivative of
streamline at point P is:

AV _ V(Py) = V(P.)

A== Al

©)

where Py, P_ are, respectively, the previous and next discretized
points on the streamline, parametrically separated from P by dis-
tance At.

Using the fixed Euler algorithm for ordinary differential equa-
tions, we specify:

P, = P+ v 2V+ - At

P = P- V‘;V At

Vi = V(P+V-Ab),

V. = V(P-V-At) @)
B
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Figure 4: Normal of Principal Stream Surface

We define Al as the absolute distance between P, and P_ along
the streamline, and approximate it as:

V+Ve

Al = NP A EyW
2 2
= V-At+¥-At 5)

3.2 Construction of a Principal Stream Function

By finding a normal to the principal stream surface, we find (up to a
scalar multiplier field) the gradient of the principal stream function.
Since the stream function is a scalar field, calculating the principal

stream function is similar to reconstructing a potential field from its
gradients at grid points.

The gradient of the principal stream function is assigned, by
definition, the same magnitude as the fluid velocity at any point
(see [16] for a similar process in 2D). Similarly, the magnitude of
second-order derivatives of the principal stream function equals the
second-order derivatives of the velocity field.

The Taylor expansion of the stream function around point P
along a line is (this line is not the streamline, but a step along the
construction direction):

1

F(P+AP)=F(P)+F'(P)AP+ 5 F"(P) AP +--- (6)

where F'(P) is the gradient of the stream function at point P, and
F"(P) is its Hessian matrix.

Equation (6) allows us to calculate the principal stream function:
the only problem is finding a reference point for the fluid field. For
simplicity, we select the first point (¢ = 0) of the principal stream
function as the reference point, and set it equal to (0, 0, 0) in Carte-
sian coordinates.

3.3 Outline of the Algorithm

We use only Cartesian coordinates in this paper. Each element of
the fluid field is a cube with edges parallel to the three coordinate
axes. The algorithm scans the whole fluid field and constructs the
distribution of the principal stream function, thus generate a 3D
scalar field (scan volume).

The outline of the algorithm is,

for k = Zp to Z,, do
forj =Yot0o Y, do
for i = Xy to X, do
C = Cube(i, j, k);
reconstruct velocity Vy in C:
for kk = 0 to ScaleZ do
for jj = 0 to ScaleY do
for 4¢ = 0 to Scale X do
P = (i+1ii/ScaleX,j+ jj/ScaleY, k + kk/ScaleZ)
PP = previous point of P
V = V¢ (PP) calculate velocity by interpolation
calculate A according to Eq.(3,4,5)
calculate B and N according to Eq.(1)
assign F'(PP) = |V|, F"(PP) = |4]
calculate F'(P) according to Eq.(6)
Volumelk # ScaleZ + kk][j * ScaleY + jj]
[¢ * ScaleX + i5] = F(P)
END
normalize(Volume)

The reconstruction of the velocity across all the cubic elements
can use 3D linear interpolation or any other accurate interpolation
scheme that conforms to CFD. For the purpose of reconstruction
from Eq. (6), we define the previous point PP as:

F(PP)=0 (i=0,j=0,k=0)

.. _ (anak_l) (1207.7207]‘7760)
PPEER=N 0i-1b) G=0i#0) "

(i—1,j,k) otherwise

Recall that F is the stream function around point P. It is important
to normalize F'(P), thus ensuring that the principal stream function
lies in the range [0.0, 1.0], for the sake of volume rendering. On the
other side, normalization is necessary for cancelling the effect of
the selection of reference point and its initial value.



Note that the binormal B to the osculating plane can be approx-
imated by finding the normal to the plane defined by P, Py, and
P_ . Equivalently,

B=V+XV_ (8)

4 Experiments and Discussion

The goal of our experiments is twofold, to demonstrate the principal
stream surface and the principal stream function, and to develop
a direct volume rendering method to display flow topology rather
than using tracking.

We implemented the principal stream function construction al-
gorithm described above, as well as a ray tracing volume renderer,
and performed two experiments with steady irrotational flow: past
a circular cylinder, and between two vortices. Volume rendering is
done similarly to [10].

4.1 Stream past a Circular Cylinder

We set the center of the circular cylinder to be the line (5,5, z),
with radius @ = 2, and define r as the distance between (z, y, 2)
and (5, 5, z), 8 is the angle between r and X axis. Then the velocity
data is generated by Eq. 9 at the grid points (see Figure 2).

a2
Vo = U (—2cos29—1>
r
2
a” .
V;! = UOT—2$1n29
V. = 0.0 9)

Figure 5 shows the results of two volume renderings. The stream
is flowing from left to right in both cases. Figure 5a shows the
distribution of the principal stream function; color is mapped as a
rainbow from [0..255]. Different principal stream surfaces have dif-
ferent colors, due to the different principal stream function values.
Noted that this method is fully automatic, as opposed to the implicit
stream surface method in [14], in which the inlet boundary should
first be detected then different source functions are assigned to all
different inlets. Figure 5b shows the result of iso-surface rendering,
with several surfaces generated from corresponding iso-values. The
colors of these values are mapped to their stream surfaces in Figure
5c.

This simple experiment demonstrates the correctness of the prin-
cipal stream surface and the construction of principal stream func-
tion. It also shows the effectiveness of using principal stream sur-
face to display the flow topology.

4.2 Stream between two Vortices
The velocity of this fluid field are calculated according to the fol-
lowing equations:
Ve = %[Vortexw(x,y,z, —5.5,—5.5, —5.5) +
Vortex. (z, y, z, 15.0, 15.0, 15.0)]
Vy = %[Vortexy (z,y,2,—5.5,—5.5,—5.5) +
vortex, (z, y, z, 15.0, 15.0, 15.0)]
V. = %[Vortexz (z,y,2,—5.5,—5.5, —5.5) +
\ortex. (z, y, z, 15.0, 15.0, 15.0)]

Vortex, (z,y, 2, To, Yo, 20) = sym (2 — 2o) -

(_i z— 20 )
27 (x — 20)? + (y — 0)? + (2 — 20)?

V@ =20 + (y— yo)2>

where Vortex, (z, y, z, o, Yo, 20) = sym(z — zo) -

(2 o |
27 (x — 20)? + (¥ — ¥0)? + (2 — 20)?

Y=o >
V(@ —0)? + (y — 40)°

Vortex. (z, y, 2, Zo, Yo, 20) = sym(z — 2o) -

(A V(@ —20)* + (y — 10)? )

27 (£ — 20)? + (¥ — y0)? + (2 — 20)?

sym(zx) = { 1_1 ﬁ § 8 (10)

where A = 720,z = (1..10),y = (1..10), z = (1..10)

This equation is applied to a 10x10x10 regular grid. Figure
6 shows the volume-rendered result, using the same rainbow color
mapping as in Figure 5. Transparency is set to 0.9 at all points. The
value range of the principal stream function is mapped to [0. . . 255]
for the sake of volume rendering and image processing. It is easy
to perform volume cutting to view the inner topology of the flow.
Figure 7 shows several different value ranges of principal stream
function (generated from their corresponding stream function val-
ues). This is useful for visualization; the user may adjust the value
range of the principal stream function until satisfied with the topol-
ogy thus generated. Figure 8 shows the stream surfaces directly
modeled by iso-surface modeling, with two iso-values used. After
a high-pass filter is applied to the principal stream function data set
before volume rendering, implicit stream surfaces are enhanced as
shown in Figure 9. The flow topology of the fluid field is displayed
more clearly.

4.3 Discussion

A particular principal stream function possesses not only one sur-
face, but a collection of level sets, which may have more than one
connected component. Physically, these stream surface compo-
nents will often meet at some places outside the current domain.
In Figure 5, the separation stream surfaces located at the lower part
of the box will meet just below the bottom of the box, which we
can directly detect from the trend of its neighbors. In Figure 7,
since the two vortices belong to two different streams and their in-
ner parts will not meet together, these results are due to the spread
of stream function from their intersection region, that is, a saddle
point. This phenomenon can be avoided by defining a ranking
direction of stream surfaces, if the normal vector of the principal
stream surface is opposite to the ranking direction we simply re-
verse it. Actually, in Figure 5 of the first experiment, the ranking
direction is used to attain the different stream surfaces along Y axis.
In Figure 7, we notice some isolated stream surfaces in Figure 7(g)
and 7(h), which is the result of the saddle point in the middle of the
field.

Just as in the construction of a potential field, the position of
reference point and its initial value have no effect on the final dis-
tribution of the stream function after normalization. Changing the



reference point and its initial value has no effect on the final dis-
tribution. Changing the reference point affects only the absolute
value of the principal stream function. Normalization requires that
we know the minimum and maximum values of the principal stream
function, and so normalization is not done until volume rendering
begins.

The magnitude of the principal normal vector equals the mag-
nitude of the velocity at any particular point, and so the length of
the principal normal vector is proportional to the rate of change
of the principal stream function. A region of large velocity values
will possess a large range of the stream function. This means that
the volume rendering must display more stream surfaces (corre-
sponding to iso-surfaces) and thus more colors in the areas of large
velocity, supplying another way to visualize velocity magnitudes
from the distribution of principal stream surfaces. This is shown,
for example, in the upper-right and lower-left corners of the cube in
Figure 7.

Although we can construct iso-surfaces easily, as shown in Fig-
ure 8, color mapping is important in viewing the flow topology.
Changing the stream function value range will change the mapping
density, as specified by the user. In addition, selecting different
normalization value ranges also allows the user to view dense dis-
tribution in the volume.

5 Conclusions and future work

The generation of principal stream surface is a new and general
method for visualization of the topology of irrotational 3D flow. Its
advantages include:

o Flow topology is represented by principal stream surfaces.

o Modeling of principal stream surfaces does not require careful
placement of starting points.

e The principal stream function is constructed automatically,
with no user interaction.

o \olume rendering can be applied directly to the visualization
of flow topology.

e Modeling and rendering can be implemented in an efficient
and simple fashion.

The following aspects need further work:

e Extending the PSS to numerically simulated data sets, such as
bluntfin vector data, to construct the PSS directly from a CFP
irregular grid instead of the present regular grid.

e Using a multi-neighbor construction method instead of the
present single-neighbor scheme, to increase the stability of
construction.

e Determining to what extent high order terms of the Taylor
expansion affect the accuracy of the principal stream function,
especially near the critical point.

e A more effective volume rendering method to render the
topology of stream motions, including segmentation rather
than thresholding to extract flow topology from the PSS.

e Currently, the local velocity orientation is not as clear as the
result using the linear integral convolution method.

Acknowledgements

We are grateful to Prof. Tim Poston of Institute of Systems Science,
National University of Singapore and Mr. Zeba Kimmel for their
careful proofreading and helpful suggestions. Thanks also to the
reviewers for their valuable suggestions and careful review. This
work was supported by the CUHK UGC Research Grant Direct Al-
location Program.

References

[1] P. Buning. Sources of Error In The Graphical Analysis Of
CFD Results. Journal of Scientific Computing, 3(2), 1988.

[2] B. Cabral and L. Leedom. Imaging Vector Fields Using Line
Integral Convolution. In Steve Cunningham, editor, SIG-
GRAPH 93, pages 263-270. ACM SIGGRAPH, 1993. ISSN
no. 1069-529X.

[3] R. Drebin, L. Carpenter, and P. Hanaran. Volume Rendering.
In Computer Graphics (SIGGRAPH 88 Conference Proceed-
ings), pages 65-74. ACM SIGGRAPH, 1988.

[4] P. Eliasson, J. Oppelstrup, and etc. Stream3D:Computer
Graphics Programs For Streamline Visualization. Advanced
Engineering Software, 11(4):162-168, 1989.

[5] T. Fruhauf. Raycasting Vector Fields. In IEEE Visualization
’96, pages 115-120. IEEE, October 1996.

[6] J. Hemman and L. Hesslink. Visualization Of Vector Field
Topology In Fluid Flows. IEEE Computer Graphics and Ap-
plication, 11(3):36-46, 1991.

[7] J. Hultquist. Constructing Stream Surfaces In Steady 3D Vec-
tor Fields. In Arie E. Kaufman and Gregory M. Nielson, ed-
itors, IEEE Visualization *92, pages 171-177. IEEE, October
1992. ISBN 0-8186-2897-9.

[8] D. Kenwright and G. Mallinson. A 3D Streamline Tracking
Algorithm Using Dual Stream Function. In Arie E. Kauf-
man and Gregory M. Nielson, editors, IEEE Visualization 92,
pages 62—69. IEEE, October 1992. ISBN 0-8186-2897-9.

[9] B. P. Leonard. Stable And Accurate Convective Modeling
Procedure Based On A Quadratic Upstream Interpolation.
Computer Methods in Applied Mechanics and Engineering,
19, 1979.

[10] M. Levoy. Display Of Surface From Volume Data. |IEEE
Computer Graphics and Application, 8(3):29-37, 1988.

[11] W. Lorensen and H. Cline. Marching Cubes: A High Res-
olution 3D Surface Construction Algorithm. In Maureen C.
Stone, editor, Computer Graphics (SIGGRAPH 87 Confer-
ence Proceedings), pages 163-169. ACM SIGGRAPH, 1987.
ISSN No. 0097-8930.

[12] G. Turk and D. Bank. Imaged-Guided Streamline Placement.
In Holly Rushmeier, editor, SIGGRAPH 96, pages 453-460.
ACM SIGGRAPH, 1996. ISBN 0-201-94800-1.

[13] J. van Wijk. Spot Noise Texture Synthesis For Data Visual-
ization. In Thomas W. Sederberg, editor, Computer Graphics
(SIGGRAPH 91 Conference Proceedings), pages 309-318.
ACM SIGGRAPH, 1991. ISBN 0-201-56291-X.



[14] J. van Wijk. Implicit Stream Surface. In Greory M. Niel-
son and Dan Bergeron, editors, IEEE Visualization '93, pages
245-252. |EEE, October 1993. ISBN 0-8186-3940-7.

[15] J. van Wijk, A. Hin, W. de Leeuw, and F. Post. Three Ways
To Show 3D Fluid Flow. IEEE Computer Graphics and Ap-
plication, 14(5):33-39, September 1994.

[16] C. S.Yih. Fluid Mechanism. New York McGraw-Hill, 1969.

[17] P.Yueng and S. Pope. An Algorithm For Tracking Fluid Par-
ticles In Numerical Simulation Of Homogenous Turbulence.
Journal of Computer Physics, 79, 1988.



Figure 5: A flow field passing through a circular cylinder. (a) Figure 6: Volume rendering of the Principal Stream Function of
Principal Stream Function (b) Principal Stream Surfaces (c) Eq.(10) (a) rotate X = 15, Y = 60 (b)rotate 15, Y = -120 (c, d)
Color mapped of (b) volume cutting of (a,b) respectively.

Figure 7: The Principal Stream Function distribution in different value range
(a) [165, 255] (b) [100, 165] (c) [90, 100] (d) [80, 90] (e) [50, 60] (f) [40, 50] (g) [30, 40] (h) [0, 30]

Figure 8: Principal Stream Surfaces, yellow surface iso value = Figure 9: Application of high-pass filter to enhance the principal
78, red surface iso value = 95 stream function



