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Abstract

In recent years the value of direct volume rendering techniques for the visualization of 3D
scalar fields has become evident in many application areas ranging from medicine to nat-
ural science and engineering. The applicability of high quality volume rendering, however,
was mainly restricted to expensive special purpose hardware or dedicated workstations
with high-end graphics subsystem and high-speed memory bus. To these ends this thesis
introduces methods for interactive high-quality volume visualization on general purpose
hardware such as commodity desktop computers with graphics cards designed for com-
puter games and multimedia. The aim of this work is to achieve a high image quality
comparable to traditional ray-casting solutions at interactive frame rates on inexpensive
hardware platforms. In this context the benefits and drawbacks of traditional texture based
implementations are analyzed with respect to image quality and rendering performance.
Based on this analysis, efficient volume rendering techniques are developed targeting the
advanced features of modern PC graphics boards such as multi-stage rasterization, pixel
shaders and dependent texture lookup.

In the context of direct volume rendering, transfer functions are used to specify the
emission and absorption values which are required for ray integration. Several implemen-
tations of transfer functions for pre- and post-classification are presented and analyzed.
Automatic image- and data-driven techniques for transfer function design are examined
and adapted to different application problems. Advanced features of the graphics hardware
are used to include local illumination effects into direct volume rendering and techniques for
non-polygonal isosurface display. The lighting effects are achieved as per-pixel illumination
with dynamic light sources or as reflection maps, which cache the incident illumination at
one point. The analysis of texture based algorithm is completed by a detailed performance
measurement on different hardware architectures.

As supplements to the 3D-texture based method, volumetric deformation models are in-
troduced which allow the intuitive modeling of volume objects as well as the automatic op-
timization of deformation parameters for registration purposes. The presented approaches
comprise an efficient algorithm for slice decomposition of arbitrary deformed polygonal
surfaces and a deformation model based on regular hexahedra structures.

A major goal of this work was the improvement of the availability of direct volume
rendering for specific visualization problems in medicine and natural science. The applica-
tion of different techniques in clinical environments are documented in several case studies
including the visualization of the inner ear, the examination of tiny vascular structures as
well as the functional analysis of the vertebral column.

iii



Revision 1.0
c©2001, Copyright by Christof Rezk-Salama

All Rights Reserved
Alle Rechte vorbehalten

iv



Contents

Abstract iii

Table of Contents viii

List of Figures xii

List of Tables xiii

Listings xiv

Acknowledgements xv

Preface xvii

I Introduction 1

1 Volume Rendering 2
1.1 Physical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Volume Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Indirect Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Graphics Hardware 14
2.1 The Graphics Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Geometry Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Rasterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Per-Fragment Operations . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 OpenGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Direct3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



2.3 Volume Rendering Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 21

II Volume Rendering 24

3 Texture Based Volume Rendering 25
3.1 The 2D-Texture Based Approach . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Compositing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 The 3D-Texture Based Approach . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Viewport-Aligned Slices . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Bricking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 2D-Multi-Texture Based Methods 38
4.1 Rasterization Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Multi-Textures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Pixel Shaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Interpolation of Arbitrary Slices . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Transfer Functions 48
5.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 Pre-Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.2 Post-Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.1 Pre-Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Post-Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Multi-Dimensional Transfer Functions . . . . . . . . . . . . . . . . . . . . . 58

5.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Local Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Transfer Function Design 67
6.1 Interactive Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Image-Driven Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Data-Driven Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3.1 Automatic Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vi



7 Local Illumination 75
7.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Non-Polygonal Isosurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 Per-Pixel Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3.1 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.4 Reflection Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8 Performance Measurement 88
8.1 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1.1 Consumer PC Hardware . . . . . . . . . . . . . . . . . . . . . . . . 89
8.1.2 SGI Graphics Workstations and Servers . . . . . . . . . . . . . . . . 91

8.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9 Extensions 101
9.1 Multi-Texture Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.2 Stencil Buffer Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.3 Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.3.1 Line Integral Convolution . . . . . . . . . . . . . . . . . . . . . . . 110
9.3.2 Animated 3D LIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10 Deformation 114
10.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.2 Volumetric Free-Form Deformation . . . . . . . . . . . . . . . . . . . . . . 115

10.2.1 Shape and Appearance . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.2.2 Intersection Calculation . . . . . . . . . . . . . . . . . . . . . . . . 116
10.2.3 Shape Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
10.2.4 Appearance Deformation . . . . . . . . . . . . . . . . . . . . . . . . 119
10.2.5 Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10.3 Hexahedra Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
10.3.1 Deformation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
10.3.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.3.3 Adaptive Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . 124
10.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.3.5 Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.5 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

III Applications in Medicine 134

11 Introduction 135

vii



11.1 Medical Image Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.1.1 Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . . 136
11.1.2 Magnet Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . 136
11.1.3 Partial Volume Effects . . . . . . . . . . . . . . . . . . . . . . . . . 136

12 The Inner Ear 138
12.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
12.2 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.3 Direct Volume Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
12.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

13 Intracranial Aneurysms 144
13.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
13.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
13.3 Semi-transparent Isosurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 146
13.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

14 Dural Arteriovenous Fistulae 150
14.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
14.2 The MR-CISS Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
14.3 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
14.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

15 The Vertebral Column 157
15.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
15.3 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
15.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

IV Conclusion 165

16 Summary 166
16.1 Future Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A Data Sets 169

Bibliography 184

viii



List of Figures

1.1 Reconstruction filters for one-dimensional signals . . . . . . . . . . . . . . 4

1.2 Voxel model of a volumetric object . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The visualization pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 The visualization pipeline for indirect volume rendering . . . . . . . . . . . 7

1.5 Cell configurations of the Marching-Cubes-algorithm . . . . . . . . . . . . . 8

1.6 The visualization pipeline for reconstruction of surfaces from segmentation 9

1.7 The visualization pipeline for volume ray casting . . . . . . . . . . . . . . . 11

1.8 Principles of the shear-warp-algorithm for parallel projection . . . . . . . . 12

1.9 Principles of the shear-warp-algorithm for perspective projection . . . . . . 12

1.10 Decomposition of a volume into object-aligned slices . . . . . . . . . . . . . 13

2.1 The standard graphics pipeline for display traversal . . . . . . . . . . . . . 15

2.2 Geometry processing as part of the standard graphics pipeline . . . . . . . 15

2.3 Rasterization as part of the standard graphics pipeline . . . . . . . . . . . 16

2.4 Per-fragment operations as part of the standard graphics pipeline . . . . . 17

3.1 Decomposition of the volume object into object-aligned polygon slices . . . 26

3.2 CT: Comparison between alpha blending and MIP . . . . . . . . . . . . . . 29

3.3 Distance between adjacent sampling points depending on the viewing angle 30

3.4 Aliasing artifacts become visible at the edges of the slice polygons . . . . . 30

3.5 Sampling artifacts are caused by changing to a different slice stack . . . . . 31

3.6 Decomposition of the volume object into viewport-aligned polygon slices . 33

3.7 Sampling illustrated for viewport-aligned slices . . . . . . . . . . . . . . . . 33

3.8 Sorting of edge intersection points to form a valid polygon . . . . . . . . . 34

3.9 Interpolation at the brick boundaries illustrated for the 1D case . . . . . . 35

4.1 Multi-textures as a strict sequence of texturing operations . . . . . . . . . 39

4.2 NVidia’s register combiners bypass the standard texture application unit . 40

4.3 NVidia’s general register combiner . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 NVidia’s final register combiner . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Register combiner setup for interpolation of intermediate slices . . . . . . . 43

4.6 Rendering procedure for interpolating slice images in arbitrary direction. . 45

4.7 Register combiner setup for interpolation of arbitrary slice images. . . . . . 45

ix



5.1 Transfer functions for pre- and post-classification . . . . . . . . . . . . . . 49
5.2 Dependent texture lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Reconstruction of an arbitrary set of discrete values. . . . . . . . . . . . . . 59
5.4 Comparison of pre- and post-classification of a CTA data set . . . . . . . . 60
5.5 Register combiner setup for opacity weighting with gradient magnitude . . 61
5.6 Pre-classified transfer function with linear gradient weighted opacity . . . . 62
5.7 Texture shader and register combiner setup for multi-dimensional transfer

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.8 The 3D anatomical atlas VoxelMan . . . . . . . . . . . . . . . . . . . . . . 64
5.9 Principles of local transfer function application . . . . . . . . . . . . . . . . 65
5.10 Local transfer function for pre-classification during pixel transfer . . . . . . 65
5.11 CT scan of a frog with local transfer functions . . . . . . . . . . . . . . . . 66

6.1 User interfaces for editing transfer functions . . . . . . . . . . . . . . . . . 68
6.2 Monotonously increasing function and its first and second order derivatives 70
6.3 Averaged derivatives and position function . . . . . . . . . . . . . . . . . . 71
6.4 Position functions and histograms for different CTA data sets . . . . . . . 73
6.5 Automatic adaptation of transfer function templates . . . . . . . . . . . . 74

7.1 The Phong illumination model . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Non-polygonal isosurface with different illumination effects . . . . . . . . . 77
7.3 Combiner setup for fast rendering of shaded isosurfaces using 3D-textures. 80
7.4 Combiner setup for fast rendering of shaded isosurfaces. . . . . . . . . . . . 80
7.5 Combiner setup for rendering semi-transparent volumes with local diffuse

illumination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.6 Examples of illumination effects for non-polygonal isosurfaces and semi-

transparent volume data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.7 Example of a spherical environment map . . . . . . . . . . . . . . . . . . . 83
7.8 Example of an environment cube map . . . . . . . . . . . . . . . . . . . . . 84
7.9 Non-polygonal isosurface with diffuse and specular lightmaps . . . . . . . . 85

8.1 Modern Consumer PC architecture with Accelerated Graphics Port (AGP). 89
8.2 The Unified Memory Architecture (UMA) as implemented in the SGI O2. . 91
8.3 Performance of 2D-texture based volume rendering . . . . . . . . . . . . . 93
8.4 Performance of 3D-texture based volume rendering . . . . . . . . . . . . . 94
8.5 Comparison of 2D- and 3D-texture based volume rendering . . . . . . . . . 95
8.6 Performance of 2D-multi-texture based volume rendering . . . . . . . . . . 96
8.7 Supersampling with 2D-multi-texture based volume rendering . . . . . . . 97
8.8 The influence of the transfer functions on the overall performance . . . . . 98
8.9 Performance of illumination techniques for texture based volume rendering 100

9.1 Rendering two slices with a single slice polygon . . . . . . . . . . . . . . . 102
9.2 Combiner setup for correct blending of two slices with one polygon . . . . 103
9.3 Clipping a volume against an arbitrary polygonal object. . . . . . . . . . . 105

x



9.4 The idea of stencil buffer clipping . . . . . . . . . . . . . . . . . . . . . . . 105
9.5 Efficient implementation of stencil buffer clipping. . . . . . . . . . . . . . . 107
9.6 Voxelization of a polygonal mesh . . . . . . . . . . . . . . . . . . . . . . . 109
9.7 2D noise texture and resulting LIC image . . . . . . . . . . . . . . . . . . . 110
9.8 CFD simulation of turbulent flow inside the wheel casing of a car. . . . . . 111
9.9 Time surfaces inside a simple cavity flow field. . . . . . . . . . . . . . . . . 112
9.10 Animation sequence of a data set from numerical CFD simulation generated

with the stencil buffer clipping approach. . . . . . . . . . . . . . . . . . . . 112
9.11 CFD simulation of turbulent flow inside the wheel casing of a car. Animation

sequence generated with the stencil buffer clipping approach. . . . . . . . . 113

10.1 Example of direct volume rendering using the free-form deformation model 116
10.2 Separation of shape from appearance in the volumetric case . . . . . . . . 117
10.3 The active edge data structure . . . . . . . . . . . . . . . . . . . . . . . . . 117
10.4 The influence of the tessellation on the visible deformation . . . . . . . . . 118
10.5 The displacement volume specifies the extent of a local deformation . . . . 119
10.6 Volumetric free-form deformation with different levels of subdivision for the

displacement volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.7 Register combiner setup for the computation of forward differences . . . . . 121
10.8 Example of volumetric free form deformation with diffuse illumination . . . 121
10.9 Deformation model based on hexahedra structures . . . . . . . . . . . . . . 123
10.10 Inconsistent subdivision leads to gaps in texture space . . . . . . . . . . . . 124
10.11 Edge and face constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.12 Object-aligned slices are extracted at low computational cost. . . . . . . . 126
10.13 Interpolation problems within slice polygons of the deformed volume . . . . 127
10.14 Illumination artifacts for piecewise linear patches . . . . . . . . . . . . . . 128
10.15 Realistic illumination of the animated tail fin of a carp . . . . . . . . . . . 129
10.16 Iterative procedure for image registration . . . . . . . . . . . . . . . . . . . 131
10.17 2D compound histograms for mono- and multi-modal data sets . . . . . . . 132

11.1 Partial volume effects in CT and MRI data . . . . . . . . . . . . . . . . . . 137

12.1 The inner ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.2 High-resolution CT slice images of the temporal bone . . . . . . . . . . . . 140
12.3 Surface reconstruction process for the inner ear. . . . . . . . . . . . . . . . 141
12.4 CT data set of the temporal bone . . . . . . . . . . . . . . . . . . . . . . . 142
12.5 Comparison of pre- and post-classification of a high-resolution CT data set 143

13.1 Intracranial arteries and its relation to the cerebral nerves . . . . . . . . . 145
13.2 Dual-pass rendering for semi-transparent isosurfaces . . . . . . . . . . . . . 147
13.3 Example of semi-transparent isosurface rendering of CTA data I . . . . . . 148
13.4 Example of semi-transparent isosurface rendering of CTA data II . . . . . 149

14.1 The MR-CISS sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xi



14.2 MR-CISS images of the spinal column . . . . . . . . . . . . . . . . . . . . 152
14.3 Sequence of image processing operations for the coarse segmentation of MR-

CISS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
14.4 Intricate vascular structure in the area of the brain stem . . . . . . . . . . 155
14.5 Dural arteriovenous fistula in the area of the thoracic spine . . . . . . . . . 155
14.6 Distention of venous vessels caused by a dural arteriovenous fistula . . . . 156

15.1 Anatomical structures related to the vertebral column . . . . . . . . . . . . 158
15.2 Slice image of an MR-MEDIC sequence of the vertebral column . . . . . . 159
15.3 Sequence of image processing operations for the segmentation of the MR-

MEDIC data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
15.4 Comparison of x-ray myelography to volume rendering of MR-MEDIC data

in inclination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
15.5 Comparison of x-ray myelography to volume rendering of MR-MEDIC data

in reclination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
15.6 Volume rendering of MR-MEDIC data with local transfer functions . . . . 163
15.7 Functional MR-MEDIC data of a patient with spinal stenosis and spondy-

lolisthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

xii



List of Tables

2.1 Comparison between OpenGL and Direct3D graphics APIs . . . . . . . . . 20
2.2 Hardware architectures for volume rendering . . . . . . . . . . . . . . . . . 22

3.1 Summary of 2D-texture based volume rendering. . . . . . . . . . . . . . . . 32
3.2 Summary of 3D-texture based volume rendering. . . . . . . . . . . . . . . . 36

4.1 Summary of 2D-multi-texture based volume rendering. . . . . . . . . . . . 46

5.1 Overview of different implementations of transfer function lookup . . . . . 57

8.1 Specifications of the PC systems used for the experiments . . . . . . . . . . 91

xiii



Listings

3.1 OpenGL sample code for selecting the slice direction . . . . . . . . . . . . 27
3.2 OpenGL compositing setup for alpha blending . . . . . . . . . . . . . . . . 28
3.3 OpenGL compositing setup for maximum intensity projection . . . . . . . 29
5.1 OpenGL setup for color mapping during the pixel transfer from main mem-

ory to the local texture memory. . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 OpenGL setup for the paletted texture extension. . . . . . . . . . . . . . . 52
5.3 OpenGL setup for post-interpolative color table lookup . . . . . . . . . . . 53
5.4 OpenGL setup for the dependent texture lookup. . . . . . . . . . . . . . . 55
5.5 DirectX 8.0 pixel shader setup for post-classification via dependent texture

lookup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.1 OpenGL setup for the alpha test. . . . . . . . . . . . . . . . . . . . . . . . 78
7.2 OpenGL setup for the the dot product extension. . . . . . . . . . . . . . . 79
7.3 OpenGL setup for the reflection mapping using diffuse and reflective cube

maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.1 OpenGL setup for rendering one textured slice polygon using stencil buffer

clipping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xiv



Acknowledgements

First of all, I would like to express my gratitude to my supervisors, Prof. G. Greiner
and Prof. T. Ertl, for their friendship and for the incredible support that finally lead
to the success of this work. Prof. Ertl and his group have made it easy to bridge the
geographical distance to Stuttgart and to successfully work on common scientific problems.
For all his duties, Prof. Greiner has always taken the time to explain complex topics in an
understandable way. The benefit of this collaboration is invaluable.

I am very much obliged to the staff of the Division of Neuroradiology of the university
hospital in Erlangen, especially to Dr. habil. K. E. W. Eberhardt and Dr. B. F. Tomandl
for allowing me crucial insight into clinical matters. Throughout the years of my doctorate,
I have learned that such a fruitful and unbureaucratic cooperation must not be taken for
granted.

Prof. R. Westermann from the Scientific Computing and Visualization Group at the
University of Aachen is held in high esteem for his fellowship and for sharing his profound
knowledge of all aspects of volume rendering. I’m also grateful to my colleagues at the Vi-
sualization and Interactive Systems Group of the University of Stuttgart, namely Matthias
Hopf, Martin Schulz, especially Klaus Engel for sharing his ideas, Sabine Iserhardt-Bauer
for joint development, and Ove Sommer for his unequalled programming skills.

I would like to extend a very special thank you to Jörg Scherer, who discussed and
implemented some ideas on transfer function design. Above all, I want to express my
appreciation to Michael Bauer for his invaluable contribution to texture-based volume
rendering and registration, that he developed within the scope of his pre-diploma and
master thesis.

My deep respect is due to Dr. C. Teitzel for the constructive discussions on flow visu-
alization and also to Dr. P. Hastreiter for laying the groundwork for medical visualization
in Erlangen and for arranging and managing so many projects.

Over and above that, I’m much obliged to David Kirk from NVidia, USA, to Michael
Doggett, Rex Sikora and Steve Morein from ATI, Canada and to Eckehard Traber from
the ELSA AG, Germany for making the latest graphics boards available to me.

I also wish to thank the members of the Graduate Research Center 3D Image Analysis
and Synthesis and all my gifted colleagues at the Computer Graphics Group, namely our

xv



secretary Maria Baroti, the researchers Kai Hormann, Frank Reck, Grzegorz Soza, Gerd
Sussner, especially Christian Vogelgsang, Peter Kipfer and Roman Sturm for uncompro-
mising system administration, my office mate Ulf Labsik and my true follower Michael
Scheuering.

Finally, and most of all, I’d like to express my love and gratitude to my family, especially
to my parents and my girlfriend Iris for helping me over many difficulties, for supporting
my career both ideologically and financially and for tolerating my occasionally obsessive
behavior.

Christof Rezk-Salama

xvi



Preface

Information is not knowledge,
Knowledge is not wisdom,
Wisdom is not truth . . .

Frank Zappa (1940–1993)
Joe’s Garage

Visual artists portray their perception of reality in pictures which reflect their individual
impressions and emotions. The beholder observes and draws conclusions consciously as well
as unconsciously. Similar to visual arts, scientific visualization communicates information
which is still in need of interpretation. Instead of subjective impressions, the underlying
information here is scientific data, as it arises from measurement or simulation. However,
in both cases aesthetical requirements are never neglected.

Visualization in general denotes the transformation of symbolic information into in-
tuitive geometric representations, which are both effective and expressive. Compared to
traditional rendering, preciseness and comprehensibility are of greater importance than
photorealism. Human vision enables us to grasp a large amount of information and under-
stand the connectivity within the twinkling of an eye. The generation of synthetic images
which enable the analysis and interpretation of abstract scientific data is an important aid
in science and engineering. Although computer graphics in the early years has often been
called “a solution in search of a problem” , it has rapidly evolved to a renowned scientific
discipline and to an integral part of computer science.

Nowadays, as a consequence of the fast evolution of technology, typical scientific data
sets usually contain much more information than it is possible to communicate in a static
image. Scientific visualization has become a creative and explorative process which reveals
structures and their connectivity. This requires an interaction between the user and the
visual representation of his data. The development of real-time algorithms to classify
and display the steadily increasing amount of data is still a great challenge for computer
graphics.

The major goal of the research described in this thesis was to investigate and improve
the applicability of volume visualization for specific problems in medical data analysis. An
enjoyable side effect was the extension of volume rendering to a larger variety of scientific
disciplines apart of medicine. When I started my research activity three years ago, inter-
active high-quality visualization of volumetric data was restricted to expensive graphics
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hardware, that was unaffordable for most research facilities. Volume rendering systems
were usually operated by experts in computer graphics, who exactly knew the underlying
rendering algorithm. However, these experts usually were unable to interpret the infor-
mation contained in the data, which belonged to a completely different scientific area.
The conclusion from this dilemma was that scientific visualization must be a cooperative
task, that involves both profound knowledge in computer graphics as well as the ability to
interpret the data according to its specific scientific origin.

With the development of general purpose graphics hardware for the mass market, today
volume visualization is available on multiple platforms in a variety of different implemen-
tations. As an effect of this technical progress, inexpensive visualization systems are now
operated by scientists, physicians and engineers with only marginal knowledge of the un-
derlying technology. Although the images generated by volume rendering algorithms are
purely virtual, for the interpretation of the data it is still important to exactly know how
the original information is visually represented. In this context, the relevant parameters
to evaluate the image quality of volume visualization are still not clear. In consequence,
there is an increasing demand for a standardized work flow to produce high-quality results,
which are reproducible on multiple systems and thus reliable for documentation purposes.
Especially for an application in medicine, there is also a clear trend towards an automation
of repetitive tasks, such as clipping and coloring.

The thesis is organized into three parts. The introductory part gives an overview of
volume visualization in general. As a prerequisite for successive chapters this part deals
with the mathematical and physical basis, with general problems of volume rendering,
possible solutions and their approximations. In this context an outline of related work is
presented, as well as an introduction to basic concepts of graphics hardware. The second
part is a detailed description of the developed volume rendering methods based on general
purpose hardware. Starting with the basic algorithms, supplements and enhancements such
as classification and illumination are successively introduced. The subsequent chapters
discuss strategies for transfer function design and models for volumetric deformation. The
third part of this thesis describes the practical aspects of this work. The application of
volume rendering to several problems in clinical practise and research is presented. A
study of the inner ear using high-resolution CT data exemplifies the comparison between
direct and indirect visualization methods. Tissue classification via transfer functions is
demonstrated by examination of tiny vascular structures, followed by advanced clinical
visualization problems of high complexity.
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Introduction



Chapter 1

Volume Rendering

In the context of this thesis the term volume rendering refers to the visualization of static
3D scalar fields. The interpretation of such data fields is considerably difficult because of
their intrinsic complexity. A variety of different approaches have been developed in the
past. This chapter tries to draw an overall picture of significant concepts and ideas. In
Section 1.1 the physical basis for image synthesis is explained. Section 1.2 takes a closer
look at volumetric data with respect to signal processing theory. In Section 1.3 the basic
algorithms for volume visualization are outlined.

1.1 Physical Background

The fundamental concept of all physically based rendering methods is the transport theory
of light. The equation of radiative transfer completely describes the radiation field in a
participating medium, which involves emission, absorption and scattering of light [68].

The intensity radiated from a given point ~x in direction ~n is determined by the radiance
I(~x, ~n, ν), which is dependent on the frequency ν. Radiance is directly proportional to the
photon density. Absorption χ of light consists of two terms,

χ(~x, ~n, ν) = κ(~x, ~n, ν) + σ(~x, ~n, ν). (1.1)

True absorption κ transforms radiant energy from the visual spectrum into thermal energy.
Scattering σ causes a change in direction ~n of the radiation. Analogously, the emission of
light η also consists of a source term q and a scattering part j,

η(~x, ~n, ν) = q(~x, ~n, ν) + j(~x, ~n, ν). (1.2)

The equation of radiative transfer can be written as a differential equation,

∂

∂s
I(~x, ~n, ν) = −χ(~x, ~n, ν) I(~x, ~n, ν) + η(~x, ~n, ν). (1.3)
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Scattering of light is a complex process which changes both frequency ν and direction
~n of the radiant energy. Integrating radiance I along rays is only valid if scattering can
be completely neglected. Thus, volume rendering approaches in general use an emission-
absorption model, that leaves scattering out of account. As a consequence, frequency
dependance (variable ν) can also be safely ignored. The analytic solution of differential
equation 1.3 is then given by

I(s) = I(s0) e−τ(s0,s) +

∫ s

s0

q(s̃) e−τ(s̃,s) ds̃ (1.4)

with the optical depth

τ(s1, s2) =

∫ s2

s1

κ(s) ds. (1.5)

The numerical solution of this equation requires a discretization along the ray. The
integration range is divided into n intervals. Radiance I at a discrete position sk can then
be computed iteratively according to

I(sk) = I(sk−1) e−τ(sk−1,sk) +

∫ sk

sk−1

q(s) e−τ(s,sk)ds. (1.6)

The term
ϑk = e−τ(sk−1,sk) (1.7)

is called the transparency of the medium. The emission term

bk =

∫ sk

sk−1

q(s) e−τ(s,sk)ds. (1.8)

describes the increase in radiant energy that is caused by active emission within the range
[sk−1, sk] along the ray. According to the density-emitter model [144] a volumetric object
can be understood as a space filled with light emitting particles, which are described by
means of a density function ρ(s). The source term q and the true absorption coefficients κ
are then proportional to the particle density, according to

κ(s) = κ0 · ρ(s) and q(s) = q0 · ρ(s) (1.9)

with κ0 and q0 being constants. Substituting this into the emission term in Equation 1.8
results in

bk = · · · = q0

κ0

(1− e−τ(sk−1,sk)) =
q0

κ0

(1− ϑk). (1.10)

Using these abbreviations, the iterative solution to the equation of transfer in Equation 1.6
reads

I(sk) = I(sk−1) · ϑk + bk = I(sk−1) · ϑk +
q0

κ0

(1− ϑk). (1.11)

This iterative approach to solving the emission-absorption-model is the fundamental equa-
tion for almost all methods of direct volume rendering. Before we examine volume rendering
algorithms in detail, we will have a closer look at volumetric data and its representations.
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1.2 Volume Data

Compared to surface data which solely determines the outer shell of an object, volume
data is used to describe the internal structures of a solid object. Volume data also allows
the modeling of fluid and gaseous objects as well as natural phenomena, such as clouds,
fog, fire or water.

A scalar volume can be interpreted as a continuous three-dimensional signal

f(~x) ∈ IR with ~x ∈ IR3. (1.12)

Provided that the original signal is band-limited with a cut-off-frequency νs, sampling
theory allows the exact reconstruction, if the signal is evenly sampled at more than twice
the cut-off-frequency (Nyquist rate). However, there are two problems which prohibit the
ideal reconstruction of sampled volume data in practise.

• Ideal reconstruction according to sampling theory requires the convolution of the
sample points with a sinc function (Figure 1.1a) in the spacial domain. For the
one-dimensional case, the sinc function reads

sinc(x) =
sin(πx)

πx
. (1.13)

Note that this function has infinite extent. Thus, for an exact reconstruction of the
original signal at an arbitrary position all the sampling points must be considered, not
only those in a local neighborhood. This turns out to be computationally intractable.

• Real-life data in general does not represent a band-limited signal. Any sharp bound-
ary between different materials represents a step function which has infinite extent
in the frequency domain. Sampling and reconstruction of a signal which is not band-
limited will produce aliasing artifacts.

0 1½-1

A CB

0 0-1

1

-½

1

2 31

1

-2-3

Figure 1.1: Reconstruction filters for one-dimensional signals. Ideal sinc-Filter(A), box
filter(B) and tent filter(C). The 3D versions of these filters are simply obtained by tensor
product.
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Discrete volume data sets differ in the structure of the underlying sampling grid. Mea-
sured data sets as they arise from computed tomography (CT), magnet resonance imaging
(MRI) or ultrasound (US) are usually acquired on a uniform rectilinear grid. In contrast,
grid generation algorithms for finite element simulation (FEM) usually produce unstruc-
tured grids based on tetrahedra and prisms. With respect to the fact that the vast majority
of volume data sets arise from measurement, we will focus our interest on algorithms for
uniform rectilinear grid.

Figure 1.2: Voxel model of a volumetric object.

In this case, a discrete volume data set is simply a three-dimensional array of cubic ele-
ments (voxels) [79], each representing a unit of space (Figure 1.2). In order to reconstruct
a continuous signal from this array in practise the ideal 3D sinc filter is usually replaced
by either a box filter (Figure 1.1b) or a tent filter (Figure 1.1c). The box filter calculates
nearest-neighbor interpolation, which results in sharp discontinuities between neighbor-
ing cells and a rather blocky appearance. Trilinear interpolation, which is achieved by
convolution with a 3D tent filter, represents a good trade-off between computational cost
and smoothness of the output signal. A more detailed overview of different reconstruction
filters for volume data can be found in [119].

A variety of different data sets are generated from tomographic measurement. Whether
tomographic data sets represent adequately sampled signals according to signal processing
theory strongly depends on the acquisition and reconstruction process. Up until now for
computed tomography (CT) in general it is not always possible to guarantee proper band-
limitation. For magnet resonance tomography (MRT) some techniques are available that
ensure band-limitation. However, in clinical practise these acquisition techniques are rarely
used. As a consequence, aliasing artifacts are visible in the images which do not result from
the rendering algorithm, but from inadequate data acquisition.
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prepared
data

Figure 1.3: The visualization pipeline.

1.3 Algorithms

In literature, the general process of image generation is often described as a visualization
pipeline [148, 53]. The most elementary version of this pipeline consists of three tiers as
displayed in Figure 1.3. The input of such a system is a field of raw data. In most cases
not the entire information contained in the original data field is relevant. Usually only
a subset or a partial aspect is interesting. The initial filtering step selects the data to
be analyzed and extracts it from a possibly huge amount of raw data. We assume, that
validation and error-correction is performed as pre-processing step and is not part of this
filtering step. The main purpose of this tier is resampling and interpolation as well as data
reduction according to internal or user-specified selection criteria. The mapping stage is
the core of every visualization system. This step comprises the detection of structures and
their correlation within the data. This can be as simple as a color table lookup, but also as
complex as tracing a particle in a vector field. The aim of the mapping step is to convert the
abstract information into renderable shapes, which are further decomposed into geometric
primitives (points, lines, triangles) and their visual attributes (size, color, transparency
etc.). The rendering step finally uses the generated primitives to synthesize virtual images.
This requires the scan conversion (rasterization) and the compositing of each geometric
primitive. Parts of this process can be accelerated by the graphics hardware. For efficient
visualization, all stages of this pipeline must be carefully adapted to the specific problem.

From the experience in real application scenarios, a basic set of requirements has been
derived in order to compare different volume rendering solutions:

• Interactivity: Interactivity is required in every aspect of volume rendering. Al-
though real-time performance (frame rate >30 Hz) is desirable, in some cases a min-
imum frame rate of 1 Hz or more might be sufficient depending on the application
area. For traditional (non-stereoscopic) 2D displays interactivity also considerably
contributes to the perception of depth.

• Image Quality: In order to evaluate the image quality of a volume rendering appli-
cation two aspects must be considered. On the one hand the information contained
in the data set must be represented accurately according to the underlying voxel
model. On the other hand, visual artifacts caused by the individual rendering al-
gorithm must be avoided. Some applications provide a mechanism to trade image
quality for speed. While a user interaction takes place, e.g. a rotation, the volume
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Figure 1.4: The visualization pipeline for indirect volume rendering.

object is displayed at lower resolution. When the interaction has finished, the object
is again displayed at its original high resolution. Although this might an be option
for enhancing the usability, in many applications this trade-off is not desirable. Aug-
mented reality applications in medicine that have a permanent user interaction are
a prominent example.

• Availability: A few years ago, interactive direct volume rendering was restricted
to expensive graphics workstations and special purpose hardware. Today availabil-
ity has become one of the main issues in volume visualization. A general solution
for increasing the availability of very expensive graphics computers are client-server
frameworks [37, 39] in which multiple clients communicate with a single high-end
volume rendering server via local or global area networks. In contrast, the aim of the
work presented in this thesis is to increase the acceptance of direct volume rendering
by bringing it to inexpensive hardware platforms.

Keeping these basic concepts in mind, we will have a closer look at different algorithms
in the following sections. According to the way the information content is represented
geometrically, volume rendering algorithms can be roughly categorized into direct and
indirect approaches. Indirect methods in general compute level surfaces from the data,
while direct methods display the volume as a three-dimensional semi-transparent medium.

1.3.1 Indirect Methods

Indirect methods extract homogenous regions of equal or similar attributes and display the
boundary surface of such regions. This category comprises all approaches that transform
the voxel data into surface representations in a pre-processing step. The resulting surface is
finally displayed by the use of traditional polygon rendering techniques. Thus, with respect
to the visualization pipeline the major part of the computation of indirect approaches takes
place in the mapping step (see Figure 1.4). The complex task of converting volume data into
polygonal surfaces is completely performed prior to the rendering step. Indirect methods
differ mainly in the way this surface extraction is achieved.
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1.3.1.1 Isosurface Extraction

The most popular indirect method is the Marching-Cubes-algorithm, developed by Lorensen
et al. [96]. This algorithm constructs the level surface of a given iso-value by collecting
the contribution of all grid cells of eight neighboring voxels. For each of these cubic
cells a binary classification of the eight corner vertices is computed, which results in one of
28 = 256 possible cell configurations, four of which are displayed in Figure 1.5. The number
of possible configurations can be reduced by eliminating symmetric cases. The remaining
configurations are stored in a lookup table for efficiency. This table also guarantees that
faces from neighboring cells exactly fit together and form a consistent compound surface.
The exact position of the triangle vertex on an edge of a grid cell is computed by linear
interpolation of the voxel values.

The original Marching-Cubes-algorithm usually results in a large number of very small
and narrow triangles. In practice such triangles can be completely removed without sig-
nificant loss in accuracy by merging vertices from different cells which lie very close to a
shared grid point into a single vertex. As a result, very narrow triangles are collapsed into
a single edge and very small triangles into a single vertex. This supplement was first intro-
duced by Moore and Warren [110] and is known as Compact-Cubes-algorithm. Compared
to the original Marching-Cubes-algorithm, Compact-Cubes is known to reduce the number
of triangles by approximately 40 percent.

Further supplements to the Marching-Cubes algorithm have been introduced in recent
years, including a client-server framework for remote visualization [40] and a method for
feature detection [85]. However, in many cases—especially in medicine—the desired sur-
face cannot be extracted from volume data by a simple iso-value threshold. Usually more
complex segmentation procedures must be applied in order to determine the target ob-
ject. In consequence the surface generation process must be adapted to these internal
representations.

1.3.1.2 Surface Reconstruction From Segmentation

Segmentation denotes the process of object classification on a per-voxel basis. Each voxel
is assigned to an unambiguous structural entity. Explicit segmentation of volumetric data

+
+

+

+

+

+
+

+

+ +

+
+

+ +

+
+

+

+

+

Figure 1.5: Four of the 256 cases of cell configurations used by the Marching-Cubes-
algorithm.
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is a highly complex task, going far beyond the scope of this thesis. Recently developed
segmentation techniques range from manual approaches, semi-automatic tools such as ac-
tive contour models (Snakes [78], Live Wire [111], Intelligent Scissors [112, 113]) and
threshold-based methods (e.g. volume growing [183, 157], watershed transformation [151])
to model-based segmentation [42, 26, 48].

Exact segmentation is definitely the most time-consuming procedure. It is either per-
formed within the filtering step of the visualization pipeline (see Figure 1.6) or as a separate
pre-processing step. The mapping step subsequently computes the boundary surface of the
segmented objects and the results are again displayed by traditional rendering techniques.

classification
segmentation

polygon
rendering

volume data polygons

FILTERING MAPPING RENDERING

boundary
extraction
tesselation

regions image

Figure 1.6: The visualization pipeline for reconstruction of surfaces from segmentation.

Many segmentation procedures work on 2D slice images instead of the entire volume.
The segmentation result in this case is a stack of polygonal contour lines, which must
be adequately joined to form the segmented object. Possible solutions for the specific
problems of triangulating contours from neighboring slices are manifold. A detailed survey
of surface reconstruction techniques has been prepared by Hastreiter [59].

The polygonal surfaces generated by indirect volume rendering approaches can be dis-
played in real-time by exploiting the capabilities of modern graphics hardware. This allows
interactive exploration of the objects, changing the camera position and zooming in and out
on features of interest. As surface generation is usually performed in a time-consuming pre-
processing step, the adjustment of an iso-value or any other surface parameter is extremely
difficult. Due to the fact that important interior structures might be completely hidden by
the generated surfaces, indirect volume rendering always comes with a significant loss of in-
formation, that further increases the demand for interactive surface generation. Although
many applications for modeling and simulation still require explicit surface descriptions,
in recent years indirect methods have been more and more replaced by interactive direct
methods that do not require the extraction of surfaces.



10 CHAPTER 1. VOLUME RENDERING

1.3.2 Direct Methods

In comparison to the indirect methods presented in the previous section, direct methods
display the voxel data by solving the equation of radiative transfer for the entire volumetric
object. In direct volume rendering, the scalar value given at a sample point is virtually
mapped to physical quantities that describe the emission and absorption of light at that
point. This mapping is also often termed classification. It is usually performed by means
of a transfer function that maps data values to color (emission) and opacity (absorption).
These quantities are then used for a physically based synthesis of virtual images.

Similar to a divide-and-conquer-strategy, algorithms for direct volume rendering dif-
fer in the way the complex problem of image generation is split up into several subtasks.
A common classification scheme differentiates between image-order and object-order algo-
rithms.

Image-order techniques consider each pixel of the resulting image separately. For each
pixel, the contribution of the entire volume to this pixels’s final color is computed. Ray
casting is a typical image-order algorithm and will be explained in the following section.
Images generated by ray casting represent the reference results in terms of image quality.

Object-order algorithms start with a single voxel and compute its contribution to the
final image. This task is iteratively performed for all voxels of the data set. The first
object-order algorithm reported in literature was a rendering method presented by Upson
and Keeler [165], which processed all voxels in front-to-back order and accumulated the
values for the pixels iteratively. Further development of this idea lead to Splatting [179,
178, 177, 115], an algorithm which combines efficient volume projection with a sparse data
representation. In splatting each voxel is represented as a radially symmetric interpolation
kernel, equivalent to a sphere with a fuzzy boundary. Projecting such a structure generates
a so-called footprint or splat on the screen. Splatting traditionally classifies and shades the
voxels prior to projection. Mueller et al. have also introduced a method that allows
classification and shading to be performed after projection [114]. Object-order approaches
also comprise cell projection [180] and 3D-texture mapping (see Section 3.2).

A third category, fourier-space techniques, has been introduced to also include algo-
rithms which work in the frequency domain [101, 173]. The basic idea of these algorithms
is to compute the 3D fourier transformation of the entire volume in a pre-processing step.
A projection image of the volume in the spatial domain is then computed by extraction of
a slice image in frequency domain. This image is transformed back into the spatial domain
by the use of the 2D inverse fourier transformation, resulting in the desired projection.
The main advantage of fourier-space techniques is their computational complexity o(n2),
disregarding the 3D fourier transformation which is computed once in a pre-processing
step. The major drawback of fourier-space techniques however is that they do not allow
an interactive modification of any display parameter other than the viewing direction.
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1.3.2.1 Ray Casting

Ray casting denotes the process of integrating the radiative energy which is emitted and
absorbed along rays of sight. In the mapping step of the visualization pipeline (see Fig-
ure 1.7) the data set is therefore resampled at equidistant positions along a viewing ray.
Each interpolated discrete sample value is then mapped to emission and absorption coef-
ficients. According to the equation of radiative transfer and its approximation outlined in
Section 1.1, in the rendering step the discrete emission and absorption values are integrated
to obtain the final pixel color.

The first volume rendering method based on a ray casting mechanism was developed
by Kajiya [77]. Color and opacity values are accumulated for each ray from the eye-point
through an image pixel as it passes through the volume data. This accumulation is aborted
when the opacity reaches a value of one, which is a concept known as early-ray termina-
tion. A related approach has been developed by Paolo Sabella [144], who introduced the
density-emitter-model mentioned in Section 1.1. Marc Levoy [93, 94] examined classifica-
tion functions for ray casting based on the data value and its gradient magnitude. We
will focus our interest on such ideas in Chapter 5. Drebin, Carpenter and Hanrahan [31]
introduced material percentage volumes as a means of differentiation between several ma-
terials contained in the data set. The value at a grid point of a material percentage volume
describes the percentage of one material present in the corresponding voxel of the orig-
inal data set. The material percentage volumes are used to display separate structures
differently during ray casting.

Since ray casting accurately models the physical transport of light, the generated im-
ages represent the reference results in terms of image quality for comparison with other
algorithms. A detailed comparison between ray casting and the Marching Cubes algorithm
(see Section 1.3.1.1) can be found in [6]. The most significant contribution to the compu-
tational cost of ray casting is caused by the huge number of interpolation operations which
is required to resample the data along the viewing rays. The most popular software imple-
mentation that tries to reduce this problem is the shear-warp-algorithm, which represents
a hybrid form of image-order and object-order algorithms.

prepared
data

image

resampling
color/opacity
assignment

integration

volume data voxels with
color/opacity

FILTERING MAPPING RENDERING

Figure 1.7: The visualization pipeline for volume ray casting.
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Figure 1.8: Principles of the shear-warp-algorithm for parallel projection.

1.3.2.2 The Shear-Warp Algorithm

The aim of the shear-warp-algorithm is to facilitate interpolation by cleverly placing the
sample points along the viewing rays. Figure 1.8 illustrates this idea for the case of parallel
projection. In order to substitute trilinear by bilinear interpolation, the sampling points (A)
are placed exactly onto the slice images (B). For parallel projection the distance between
adjacent sampling points changes. Note that the distance is not constant, but dependant
on the viewing direction, and this must be considered in the integration step. The basic
idea of the shear-warp algorithm is to decompose the viewing transformation into a 3D
shear parallel to the slice images, a projection that computes a distorted intermediate
image and a 2D warp that generates the final undistorted image (C).

To account for foreshortening in perspective projection an additional scaling must be
applied to the slice images as displayed in Figure 1.9. In this case the distance between
sampling points along a ray is not only dependent on the eye position, but also on the
angle between the viewing rays and the image plane.

The main benefit of this factorization is that rows of voxels are exactly aligned with rows
of pixels in the intermediate image, which greatly facilitates the interpolation computation.
In combination with run-length encoding, empty space leaping and a data structure that
accounts for spatial coherence, this algorithm currently represents the fastest pure software
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Figure 1.9: Principles of the shear-warp-algorithm for perspective projection.
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solution for direct volume rendering. To enable an interactive rotation of the data set,
however, three copies of the volume must be kept in main memory, one stack of slices for
each slicing direction. With respect to the current position of the image plane relative
to the object, the slicing direction must be chosen that minimizes the angle between the
slice normal and the viewing ray. Figure 1.10 illustrates this concept by showing a gradual
rotation of the volume object. With an angle between viewing direction and slice normal
of 45◦ (D) in this 2D example, the slicing direction becomes ambiguous and can be chosen
arbitrarily. Selecting the stack of slices with the minimal angle circumvents the problem
that viewing rays may pass between two slices without intersecting one of them. As a
result however, the intense memory requirement is one drawback of the algorithm.

image planeimage planeimage planeimage plane image plane

B EA C D

Figure 1.10: Decomposition of a volume into object-aligned slices.

The original shear-warp algorithm was introduced by Lacroute and Levoy [91] in 1994 as
a pure software renderer. The basic idea of substituting bilinear by trilinear interpolation
however has been adapted for 2D-texture based volume rendering (see Section 3.1). The
concept of a shear-warp factorization in turn has lead to the development of special volume
rendering hardware as will be outlined in Section 2.3.

In a scientific work flow, modern volume rendering applications claim to be interactive
in every aspect. Apart from real-time manipulation of the viewing parameters, this must
also include the ability to change iso-values, classification functions and color mappings
quickly and easily. For a higher performance,the capabilities of modern graphics hard-
ware architectures can be exploited. An introduction to the general concepts of graphics
hardware is presented in the following chapter.



Chapter 2

Graphics Hardware

Nowadays, a 3D graphics acceleration board is included in almost every consumer PC.
Since this inexpensive hardware is mainly used for multimedia applications, computer
games and entertainment software, this thesis refers to it as general purpose hardware. The
basic concept of such hardware is outlined in the following sections. Section 2.2 describes
available software interfaces that are necessary to efficiently access the hardware using
high-level programming languages. In comparison to commodity hardware, Section 2.3
gives a coarse overview of custom architectures which have been especially designed to
accelerate direct volume rendering.

2.1 The Graphics Pipeline

For hardware accelerated rendering, a virtual scene is modeled by the use of planar poly-
gons. The process of converting such a set of polygon into a raster image is called display
traversal. The majority of 3D graphics hardware implement the display traversal as a
fixed sequence of processing stages [45]. The ordering of operations is usually described
as a graphics pipeline displayed in Figure 2.1. The input of such a pipeline is a stream of
vertices, which are initially generated from the description of a virtual scene by decompos-
ing complex objects into planar polygons (tessellation). The output is the raster image of
the virtual scene, that can be displayed on the screen. For a coarse overview the graphics
pipeline can be divided into three basic tiers.

Geometry Processing computes linear transformations of the incoming vertices in the
3D spacial domain such as rotation, translation and scaling. Groups of vertices from
the stream are finally joined together to form geometric primitives (points, lines,
triangles and polygons).

Rasterization decomposes the geometric primitives into fragments. Each fragment cor-
responds to a single pixel on the screen. Rasterization also comprises the application
of texture mapping.
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Figure 2.1: The standard graphics pipeline for display traversal.

Per-Fragment Operations are performed subsequently to modify the fragment’s at-
tributes, such as color and transparency. Several tests are applied that finally decide
whether the incoming fragment is discarded or displayed on the screen.

For the understanding of the new algorithms that have been developed within the scope
of this thesis, it is important to exactly know the ordering of operations in this graphics
pipeline. In the following sections, we will have a closer look at the different stages.

2.1.1 Geometry Processing

The geometry processing unit performs so-called per-vertex operations, i.e operations that
modify the incoming stream of vertices. The geometry engine computes linear transfor-
mations, such as translation, rotation and projection of the vertices. Local illumination
models are also evaluated on a per-vertex basis at this stage of the pipeline. This is the
reason why geometry processing is often referred to as transform & light unit (T&L). For
a detailed description the geometry engine can be further divided into several subunits, as
displayed in Figure 2.2.

GEOMETRY PROCESSING

Primitive
Assembly

Clipping/
Projective

Transformation

Modeling-/
Viewing-

Transformation
Lighting

PRIMITIVESVERTICES

Figure 2.2: Geometry processing as part of the standard graphics pipeline.
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Modeling Transformation: Transformations which are used to arrange objects and
specify their placement within the virtual scene are called modeling transformations.
They are specified as a 4× 4 matrix using homogenous coordinates.

Viewing Transformation: A transformation that is used to specify the camera position
and viewing direction is termed viewing transformation. This transformation is also
specified as a 4× 4 matrix. Modeling and viewing matrices can be pre-multiplied to
form a single modelview matrix.

Lighting: After the vertices are correctly placed within the virtual scene, the Phong
model [127] for local illumination is calculated for each vertex. Since this requires in-
formation about normal vectors and the final viewing direction, it must be performed
after modeling and viewing transformation.

Primitive Assembly: Rendering primitives are generated from the incoming vertex
stream. Vertices are connected to lines, lines are joined together to form polygons.
Arbitrary polygons are usually tessellated into triangles to ensure planarity and to
enable interpolation in barycentric coordinates.

Clipping: Polygon and line clipping is applied after primitive assembly to remove those
portions of geometry which are is not displayed on the screen.

Perspective Transformation: Perspective transformation computes the projection of
the geometric primitive onto the image plane.

Perspective transformation is the final step of the geometry processing stage. All oper-
ations that are located after the projection step are performed within the two-dimensional
space of the image plane.

2.1.2 Rasterization

Rasterization is the conversion of geometric data into fragments. Each fragment corre-
sponds to a square pixel in the resulting image. The process of rasterization can be further
divided into three different subtasks as displayed in Figure 2.3.

RASTERIZATION

FRAGMENTSPRIMITIVES

Polygon
Rasterization

Texture
Generation

Texture
Application

Figure 2.3: Rasterization as part of the standard graphics pipeline.
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Polygon rasterization: In order to display filled polygons, rasterization determines the
set of pixels that lie in the interior of the polygon. This also comprises the interpo-
lation of visual attributes such as color, illumination terms and texture coordinates
given at the vertices.

Texture Generation: Textures are two-dimensional raster images, that are mapped onto
the polygon according to texture coordinates specified at the vertices. For each frag-
ment these texture coordinates must be interpolated and a texture lookup is per-
formed at the resulting coordinate. This process generates a so-called texel, which
refers to an interpolated color value sampled from the texture map. For maximum ef-
ficiency it is also important to take into account that most hardware implementations
maintain a texture cache.

Texture Application: If texture mapping is enabled, the obtained texel is combined
with the interpolated primary color of the fragment in a user-specified way. After
the texture application step the color and opacity values of a fragment are final.

2.1.3 Per-Fragment Operations

The fragments produced by rasterization are written into the frame buffer, which is a set
of pixels arranged as a two-dimensional array. The frame buffer also contains the portion
of memory that is finally displayed on the screen. When a fragment is written, it modifies
the values already contained in the frame buffer according to a number of parameters and
conditions. The sequence of tests and modifications is termed per-fragment operations and
is displayed in Figure 2.4.

Alpha Test: The alpha test allows the discarding of a fragment conditional on the out-
come of a comparison between the fragments opacity α and a specified reference
value.

Stencil Test: The stencil test allows the application of a pixel stencil to the visible frame
buffer. This pixel stencil is contained in a so-called stencil-buffer, which is also a part

PER-FRAGMENT OPERATIONS

FRAGMENTS

Alpha
Test

Stencil
Test

Alpha
Blending

Depth
Test

Figure 2.4: Per-fragment operations as part of the standard graphics pipeline.
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of the frame buffer. The stencil test conditionally discards a fragment, if the stencil
buffer is set for the corresponding pixel.

Depth Test: Since primitives are generated in arbitrary sequence, the depth test provides
a mechanism for correct depth ordering of partially occluded objects. The depth value
of a fragment is therefore stored in a so-called depth buffer. The depth test decides
whether an incoming fragment is occluded by a fragment that has been previously
written by comparing the incoming depth value to the value in the depth buffer. This
allows the discarding of occluded fragments.

Alpha Blending: To allow for semi-transparent objects, alpha blending combines the
color of the incoming fragment with the color of the corresponding pixel currently
stored in the frame buffer.

After the scene description has completely passed through the graphics pipeline, the
resulting raster image contained in the frame buffer can be displayed on the screen or
written to a file. Further details on the rendering pipeline can be found in [150, 45].
Different hardware architectures ranging from expensive high-end workstations to consumer
PC graphics boards provide different implementations of this graphics pipeline. Thus,
consistent access to multiple hardware architectures requires a level of abstraction, that is
provided by an additional software layer called application programming interface (API).

2.2 APIs

The programming of graphics applications which take advantage of specific hardware fea-
tures requires the insertion of a standardized software layer acting as an interface between
the high-level programming language (C, C++, Java etc.) and the specific device driver
that ships with the hardware. This application programming interface (API) allows the
graphics hardware of different manufacturers to be accessed in a consistent and efficient
way. The API takes away the necessity of writing your own low-level, device-specific code
to access hardware such as the display adapter, making it much easier for the programmer
to write applications that take full advantage of the computer’s graphics capabilities. Ad-
ditionally, a good API also makes it easier for hardware developers to produce new devices
that work well in the environment of a specific operating system. The two most impor-
tant graphics APIs currently available are OpenGL and Direct3D. Both implementation
use the same concept of a graphics pipeline as outlined in Section 2.1. In the following
both APIs will be briefly described. From the scientific point of view the following set
of criteria should be kept in mind. Programmers of entertainment software might apply
another standard.

Efficiency: The API should enable the programming of high performance applications.
The computational overhead introduced by providing the required software level of
abstraction should be as small as possible.
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Extensibility: A good API should be able to rapidly adapt to forthcoming technologies
and new hardware features, which have not been available at the time the standard
was defined.

Compatibility: Applications which are based on the API should be both forward and
backward compatible. Programs written for an early release of the API should also
run on future hardware and vice versa.

Platform Independence: For scientific research it is undesirable to restrict applications
to a single hardware platform or operating system. This is especially true for pro-
totype applications which are used to evaluate the performance in different environ-
ments.

2.2.1 OpenGL

OpenGL [123] is a software interface to graphics hardware which consists of about 200
distinct commands at its core, supplemented by multiple custom extensions. Since its
introduction in 1992, OpenGL has become the industry’s most widely used and supported
2D and 3D graphics API.

OpenGL is an open, vendor-neutral, multi-platform graphics standard. The specifi-
cation of the OpenGL standard is guided by an independent consortium, the OpenGL
Architecture Review Board (ARB), which also ensures backward compatibility. Language
bindings are available for C, C++, Fortran, Ada, Python, Perl and Java. All licensed
OpenGL implementations are derived from a single specification document and are re-
quired to pass a set of conformance tests. OpenGL runs on multiple operating system
including Mac OS, OS/2, UNIX, Windows 95/98, Windows NT/2000, Linux, and BeOS.

Although the fundamental specification of OpenGL is based on the graphics pipeline
described in Section 2.1, new technological innovations can be made accessible via the
OpenGL extension mechanism. Hardware developers are free to adapt and expand their
OpenGL implementation to a specific architectural design. OpenGL extensions allow in-
dividual routines to be executed on dedicated hardware. A number of particular OpenGL
extensions will be used and explained in following chapters. The OpenGL Extension Reg-
istry is maintained by Silicon Graphics Industries (SGI) and contains specifications for all
known extensions, written as modifications to the original specification document. While
OpenGL is widely spread in the industrial and scientific community, Direct3D is an API
which is mainly used for game programming and the development of multimedia applica-
tions.

2.2.2 Direct3D

Direct3D [161, 88] is a graphics API that is part of DirectX [5], a technology developed
by Microsoft for programming computer games and entertainment applications. DirectX
consists of several components that form two integrated software layers. The foundation
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OpenGL Direct3D

Operating UNIX, Linux, Windows 95/98/ME
systems MacOs, OS/2, Windows 2000

Windows 95/98/ME
Windows NT/2000

Programming C, C++, Fortran, Ada all languages that support
languages Perl, Python, Java Microsoft’s COM

Open standard yes no (Microsoft proprietary)

Extendable yes (OpenGL extensions) no

Pros and cons ⊕ platform independent ⊕ fast evolution
⊕ independent standard ⊕ reference rasterizer
⊕ open source reference ª Microsoft proprietary
⊕ extensions ª restricted to Windows
ª rather slow standardization

Table 2.1: Comparison between OpenGL and Direct3D graphics APIs.

layer provides general functions that manages the support of hardware devices. The media
layer is build on top of the foundation layer and provides services for multimedia streaming
and animation.

Direct3D originally consisted of two separate modes, retained mode, which was part of
the media layer, and immediate mode, which belongs to the foundation layer. Retained
mode provided a library of high-level, easy-to-use commands for multimedia and virtual
reality applications. The development for retained mode however has been cancelled by
Microsoft with the release of DirectX 6.0. Immediate mode represents a more efficient
lowlevel API, that many game developers have adopted for their professional games and
engines.

In contrast to the open standard OpenGL, DirectX is property of the Microsoft cor-
poration. The DirectX API is based on Microsoft’s component object model (COM) [143]
and is thus accessible by all programming languages that support COM. This, however,
restricts the DirectX API to Windows platforms.

A comparison between OpenGL and DirectX is outlined in Table 2.1. The difference
in the core functionality provided by both APIs is only marginal. The main difference
between both APIs is the way they are extended to allow for technological innovations.
OpenGL follows the concept of defining a common set of standardized features and leaving
special functionality to be implemented as extensions. If after some time a proposed
extension turns out to be useful and is adopted by multiple implementations, it will finally
be included into the OpenGL standard specification.

In contrast to this, DirectX does not allow such hardware-specific extensions. The
feature set defined by the DirectX standard, however, is larger than the functionality
implemented by current hardware. Functions that are not supported by the underlying
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hardware devices are delegated to software emulation. This allows DirectX to include
specifications for future functionality into the API. The Direct3D software development
kit (SDK) also ships with a reference rasterizer, which is a virtual device that implements
the complete Direct3D specification as software emulation. This might enable graphics
programmers to develop software for future hardware. However, there is no guarantee
for the programmer that the functionality specified by DirectX will ever be implemented
in hardware. An additional drawback of this strategy is that technological innovation is
restricted to implementing the features already specified by DirectX. Although this seems
to be a severe limitation, critics must admit that DirectX currently is the force that ensures
standardization throughout the fast evolution of hardware features that we are currently
experiencing.

The implementation of the algorithms and ideas described in this thesis was done in
OpenGL, as it was important to have a common code basis for the comparison of different
approaches on multiple platforms and hardware architectures. The source code examples
in this thesis are written in C++ using OpenGL 1.2 and its extensions. However, in most
cases the algorithms can be adapted to the Direct3D API without major modification.

Apart from the general purpose hardware we have examined in the previous section,
there are several special purpose volume rendering architectures, that may require special
APIs, such as the Volume Library Interface [133] that ships with the popular VolumePro
board. An overview of specialized hardware architectures for direct volume rendering is
given in the following section.

2.3 Volume Rendering Hardware

Special purpose hardware for direct volume rendering has been proposed my various re-
searchers. In [131] an overview of such hardware is presented, including a metric that allows
the comparison of different designs by quantifying how efficiently data is being accessed
and processed.

The VIRIM [57] architecture has been developed and assembled in 1994 at the Uni-
versity of Mannheim, Germany, to generate high-quality images of volume data sets of
moderate size. VIRIM consists of a geometry unit for interpolation and gradient esti-
mation and a ray casting unit. Including perspective projection and shadows, VIRIM is
capable of displaying a volume of size 2562 × 128 at a frame rate of 2.5 Hz. Multiple ren-
dering modules can be combined to achieve interactive frame rates. This however requires
the duplication of the volume data set.

In 1995, Michael Doggett introduced a hardware architecture [30, 29] for array-based
ray casting that also contained a shading subsystem with a pipeline for gradient estimation.
The architecture consists of a rotation array, responsible for rotating the data set and a
ray array for intersecting rays with voxels. However, the system only supports parallel
projection and nearest-neighbor interpolation. Simulations of this hardware design result
in an estimated performance of about 15 Hz for a data set of size 2563.

VIZARD-II [108] is the second generation of a volume rendering system developed at
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the University of Tübingen, Germany. This architecture reduces memory bandwidth re-
quirements by the use of data compression, pre-classification, pre-shading and a lookup
table for quantized gradients. VIZARD-II consists of a control unit for intersection cal-
culation, a memory unit, which stores the data set, an interpolation unit that performs
trilinear interpolation and a shading/compositing unit that calculates illumination and
classification via lookup tables. The architecture is expected to sustain a frame rate of
10 Hz in the average case.

The Cube-4 [126] architecture developed at the State University of New York at Stony
Brook in 1996 implements parallel ray-casting. Based on the original Cube-4 architec-
ture, EMCube1 [124] has been implemented as a highly optimized system that improves
memory and bandwidth limitations. This architecture finally lead to the most popular
implementation of volume rendering hardware, the VolumePro [125] board for consumer
PCs, that was commercially produced and distributed by Mitsubishi Electric’s Real Time
Visualization Group. The VolumePro architecture takes advantage of a factorization of
the viewing matrix similar to the shear-warp algorithm (see Section 1.3.2.2). The main
advantage of this architecture is that volume data can be read in planes of voxels. Volume-
Pro has hardware for gradient estimation using central differences, classification via 36 bit
lookup table (24 bit for RGB, 12 bit for A) and Phong illumination using a pre-computed
reflectance map for the diffuse and specular term. Modulation of a voxel’s opacity with its
gradient magnitude can be additionally used in order to emphasize boundaries. With the
VolumePro architecture a frame rate of 30 Hz has been achieved for a volume data set of
size 2563.

At the Graphics Hardware Workshop in 2000, Frank Dachille presented GI-Cube [24], a
hardware architecture for acceleration of several ray-based sampling algorithms including
global illumination. Harvey Ray also presented the RACE II Engine [132], that reduces
the huge memory throughput required to render large data sets.

VIRIM VIZARD-II VolumePro

Algorithm object-order image-order hybrid order

Interpolation programmable trilinear trilinear

Illumination programmable Phong Phong

Projection perspective perspective parallel

Performance 2.5 Hz (fps) 10 Hz (fps) 30 Hz (fps)

Table 2.2: Hardware architectures for volume rendering.

Most of the architectural designs described in this section have never been implemented
in hardware. Exceptions are VIRIM, VIZARD II and VolumePro which are summarized
in Table 2.2. Due to the considerable cost of special purpose hardware, its application
is restricted to larger research facilities and hospitals. The approaches developed within
the scope of this thesis, however, target consumer PC platforms and commodity laptop

1 enhanced memory Cube-4
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computers. The aim of this strategy is to make direct volume rendering available to a wide
community.



Part II

Volume Rendering



Chapter 3

Texture Based Volume Rendering

In search for solutions of direct volume rendering that meet all the requirements specified
in Section 1.3, it is necessary to analyze the computational problem in detail. As a first
step, we put down a note that the efficiency of a volume rendering algorithms is mainly
influenced by two independent factors.

• As pointed out in the introductory part, a significant contribution to the computa-
tional cost is caused by the huge number of interpolation operations per frame,
that is required to resample the data along the viewing rays.

• The minimum size of a real data set is 2563 voxels. Smaller data sets are purely of
academic interest. CT data sets in common use have a dimension of 5123. Data sets
with a slice resolution of 10242 are not unusual. The scalar value of each voxel is
represented by an 8 or 16 bit integer. As a result, a data set of size 5123 requires
128 MB of main memory. With the increasing size of data sets the available memory
bandwidth becomes a limiting factor, as in the worst case the complete data set
must be accessed for generating one single frame.

The latter problem is subject of active research among hardware manufacturers as well
as developers of hierarchical data structures and compression techniques. Apart from
software approaches that exploit spatial coherence (see Section 1.3), the first problem is
mainly attacked by exploiting the interpolation capabilities of the texturing subsystem
available on current graphics hardware. In the following chapters we are going to examine
these texture-based methods in detail.

3.1 The 2D-Texture Based Approach

Interpolation is performed within the rasterization unit of the graphics pipeline. However,
the graphics pipeline only supports polygonal rendering primitives. Volumetric objects
cannot be passed directly to the hardware as primitive objects. In consequence direct
volume rendering requires a mechanism to decompose volumetric objects into planar poly-
gons, which serve as a proxy geometry. There are several methods to adapt direct volume
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rendering to the rasterization hardware, which differ mainly in the way this decomposition
is computed. We will examine some of them within the scope of this thesis.

Nowadays, every consumer graphics board provides hardware support for 2D-texture
mapping. The texturing subsystem of these boards allows bilinear interpolation of texture
samples. Since interpolation contributes a significant part to the computational cost of
volume rendering, it is desirable to exploit the available hardware features for acceleration.
In comparison to 3D-textures with full support for trilinear interpolation (see Section 3.2),
in this chapter we are going to examine a method that manages with 2D-textures and
bilinear interpolation only. This approach represents a texture-based implementation of
the concepts introduced with the shear-warp algorithm described in Section 1.3.2.2.

3.1.1 Principles

Analogous to the shear-warp algorithm, the volume object is decomposed into a stack
of object aligned polygons with respect to the current viewing direction (see again Fig-
ure 1.10). For a 2D-texture based implementation, however, there is no need to explicitly
decompose the viewing matrix into a shear and a warp step. The rasterization subsystem
allows the polygonal slices to be rendered directly, as displayed in Figure 3.1.

The slicing direction is again chosen with respect to the minimal angle between the
viewing ray and the slice normal. To allow a modification of the camera position as well as
a transformation of the volume object, both the modeling and the viewing matrix must be
taken into account. A code fragment for selecting the correct stack of slices in OpenGL is
given in Listing 3.1. To compute the viewing direction relative to the volume object, the
modelview matrix must be obtained from the current OpenGL state (line 4). This matrix
represents the transformation from camera space into the local coordinate system of the
volume. The rotation is extracted from the matrix (line 7) and the viewing direction (the

Polygon Slices Final Image2D Textures

Figure 3.1: Decomposition of the volume object into object-aligned slices.



3.1. THE 2D-TEXTURE BASED APPROACH 27

negative z-axis in OpenGL) is transformed. According to the maximum component of the
transformed viewing vector (line 14), the appropriate stack of slices is chosen.

0 GLfloat pModelViewMatrix[16];
1 GLfloat pModelViewRotationMatrix[16];
2
3 // obtain the current modeling/viewing matrix from the OpenGL state
4 glGet(GL_MODELVIEW_MATRIX, pModelViewMatrix);
5
6 // extract the rotation from the matrix
7 GetRotation(pModelViewMatrix, pModelViewRotationMatrix);
8
9 // rotate the initial viewing direction
10 GLfloat pViewVector[3] = {0.0f, 0.0f, -1.0f};
11 MatVecMultiply(pModelViewRotationMatrix, pViewVector);
12
13 // find the maximal vector component
14 int nMax = FindAbsMaximum(pViewVector);
15
16 switch(nMax) {
17 case X:
18 if (pViewVector[X] > 0.0f) {
19 DrawSliceStack_PositiveX();
20 } else {
21 DrawSliceStack_NegativeX();
22 }
23 break;
24 case Y:
25 if (pViewVector[Y] > 0.0f) {
26 DrawSliceStack_PositiveY();
27 } else {
28 DrawSliceStack_NegativeY();
29 }
30 break;
31 case Z:
32 if (pViewVector[Z] > 0.0f) {
33 DrawSliceStack_PositiveZ();
34 } else {
35 DrawSliceStack_NegativeZ();
36 }
37 break;
38 }
39

Listing 3.1: OpenGL sample code for selecting the slice direction.
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The selected stack of object aligned polygons is displayed by transforming each polygon
with the active transformation matrices and by drawing it in back-to-front order. During
rasterization, each polygon is textured with the image information directly obtained from
its corresponding 2D-texture map. Bilinear interpolation within the texture image is ac-
celerated by the texturing subsystem. As in the original shear-warp algorithm, the third
interpolation step for a trilinear interpolation is completely omitted.

3.1.2 Compositing

According to the physical model described in Section 1.1, the equation of radiative transfer
can be iteratively solved by discretization along the viewing ray, according to

I(sk) = I(sk−1) · ϑk + Iemit(sk) · (1− ϑk) with Iemit(sk) =
q(sk)

κ(sk)
. (3.1)

As an initial configuration, 2D-textures are used with an internal format of RGBA, which
means that each texel allocates four fixed-point values, one value for the red (R), green (G)
and blue (B) components respectively, plus one for the opacity (A = Alpha) value. For each
voxel the emission coefficient Iemit is stored as color value (RGB) in the corresponding 2D-
texture map. Additionally, the inverse absorption coefficient (1 − ϑk) is stored as opacity
value A. Using this configuration, the radiance I resulting from an integration along a
viewing ray can be approximated by the use of alpha blending.

As outlined in Section 2.1.3, blending allows the combination of the RGBA quadruplet
of an incoming fragment (source) with the values already contained in the frame buffer
(destination). If blending is disabled, the destination value is replaced by the source value.
With blending enabled, both the source and the destination RGBA quadruplets are combined
to form a new destination value. In order to compute the iterative solution according to
Equation 3.1, the inverse absorption coefficient (1− ϑk) stored in the Alpha component of
the texture map must be used as blending factor. The corresponding setup of the blending
stage is displayed in Listing 3.2. For a color component C ∈ {R, G,B}, the described
configuration results in a blending equation as follows:

C ′
dest = Csrc · Asrc + Cdest (1− Asrc). (3.2)

As can be easily verified, substituting the emission and absorption coefficients

Csrc = Iemit and Asrc = (1− ϑk), (3.3)

0 // enable blending
1 glEnable(GL_BLEND);
2 // setup blending equation
3 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Listing 3.2: OpenGL compositing setup for alpha blending in the per-fragment operations.
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0 #ifdef GL_EXT_blend_minmax
1 // enable blending
2 glEnable(GL_BLEND);
3 // enable maximum selection
4 glBlendEquationEXT(GL_MAX_EXT);
5 // setup arguments for the blending equation
6 glBlendFunc(GL_SRC_COLOR,GL_DST_COLOR);
7 #endif

Listing 3.3: OpenGL compositing setup for maximum intensity projection in the per-
fragment operations.

into this blending equation leads to the iterative solution of Equation 3.1.

3.1.2.1 Maximum Intensity Projection

As an alternative to solving the equation of radiative transfer, maximum intensity pro-
jection (MIP) is a common technique which does not require numerical integration at all.
Instead, the color of a pixel in the final image is determined as the maximum of the all
emission values sampled along the ray, according to

I = max
(
Iemit(sk)

)
. (3.4)

Unfortunately, the computation of a maximum in the alpha blending step is not possible
with standard OpenGL operations. However, implementing MIP is a good example for the

A B

Figure 3.2: CT Angiography: A comparison between alpha blending (A) and maximum
intensity projection (B).
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d2 d4d3d0 d1

Figure 3.3: The distance between adjacent sampling points depends on the viewing angle.

use of an OpenGL extension. The extension EXT blend minmax introduces a new function
glBlendEquationEXT(...) which enables maximum and minimum computation of the
source and destination RGBA quadruplets. The OpenGL alpha blending setup for MIP is
displayed in Listing 3.3.

Maximum intensity projection is mainly used for medical applications in order to vi-
sualize tomographic data with contrast dye of high signal, such as angiography data. A
comparison of MIP and alpha blending is exemplified in Figure 3.2 by means of CTA1

data of blood vessels inside the human head. While for alpha blending (A) a transfer func-
tion must be assigned to extract the vessels (see Chapter 5), the same vascular structures
are immediately displayed in the MIP image (B). Note that in comparison to the alpha
blended image the surface structure of the bone is not visible in the MIP image, since bone
structures have the highest signal intensity in CT data. A major drawback of MIP is the
fact that depth information is completely lost in the output images. This comes with a
certain risk of misinterpreting the spatial correlation of different structures as impressively
demonstrated in [59].

3.1.3 Discussion

The main benefit of the 2D-texture based algorithm presented in this chapter is that all
necessary interpolation operations are performed within the graphics hardware. Since 2D-
texturing capabilities belong to the standard feature set of current graphics boards, the
approach can be implemented on almost every consumer PC. The rendering performance
is high, provided that there is enough local video memory. Due to the high memory

1CTA = computed tomography angiography

Figure 3.4: Aliasing artifacts become visible at the edges of the slice polygons.
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requirements for storing the three texture stacks, the size of the data sets is limited by the
available main memory.

The image quality is equivalent to a software implementation of the shear-warp algo-
rithm, since the same computational mechanisms are applied. Magnification of the images
often results in typical aliasing artifacts, as displayed in Figure 3.4. These artifacts become
visible at the edges of the slice polygons and are caused by an insufficient sampling rate.
Since the fixed number of slices is one of the main characteristics of the algorithm, these
artifacts cannot be removed without significantly changing the algorithm.

In order to improve the image quality of this method, it is necessary to examine how
numerical integration is performed in this case. Let us reconsider the physical model
described in Section 1.1. The emission and absorption coefficients q0/κ0 and ϑk, which
are stored in the 2D-textures are only valid if we assume a fixed distance between the
sampling points for the numerical integration step. However, this is not true for the
described algorithm, since the distance between adjacent sampling points depends on the
viewing angle (see Figure 3.3). Thus, the result of the numerical integration is only exact
for parallel projection and for one particular viewing direction. Considering perspective
projection, the angle between the viewing ray and a slice polygon is not even constant
within one image.

However, throughout the experiments with different approaches, we have observed that
this lack of accuracy is hardly visible and thus does not explain the strong aliasing artifacts
of Figure 3.4. These artifacts in turn can be successfully removed by inserting multiple
intermediate slices, so it becomes evident that we need a mechanism for increasing the
sampling rate in order to enhance the image quality. This idea is followed by the multi-
texture based approach introduced in Chapter 4.

In addition to these sampling artifacts, disturbing visible effects may also occur when
the algorithm switches between different stacks of polygon slices. The reason for such effects
is an abrupt shift of the sampling positions. Figure 3.5 illustrates this problem. Figures (A)
and (B) show the viewing direction at which the slicing direction is ambiguous. If we

CA B

Figure 3.5: Sampling artifacts are caused by changing between different slice stacks (A)
and (B). The superposition (C) shows that the location of the sampling points abruptly
changes, which results in visible switching effects.

.
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2D-Texture-Based Approach

Pros Cons

⊕ very high performance ª high memory requirements
⊕ high availability ª bilinear interpolation only

ª sampling artifacts
ª switching effects
ª inconsistent sampling rate

Table 3.1: Summary of 2D-texture based volume rendering.

examine the location of the sampling points by superimposing both configurations (C), it
becomes clear that the actual position of the sampling points changes abruptly, although
the sampling rate remains the same. According to the sampling theorem, the exact position
of the sampling points should not have any influence on the reconstructed signal, however,
this assumes an ideal reconstruction filter as outlined in Section 1.2 and not a linear
interpolation. These shifting effects are clearly visible and can only be alleviated by the use
of 3D-textures as will be explained in the following section. A summary of the advantages
and the drawbacks of 2D-texture based method is presented in Table 3.1.

3.2 The 3D-Texture Based Approach

Several problems of the 2D-texture based approach described in the previous chapter are
caused by the fixed number of slices and their static alignment within the object’s coor-
dinate system. The reason why we had to put up with these restrictions was that the
hardware did not provide the trilinear interpolation capabilities required for volume ren-
dering. With hardware support of three-dimensional textures [181, 15] the situation is
completely different.

The support of 3D-textures does not remove the necessity of decomposing the volume
object into planar polygons. Although volumetric texture objects are now available in
hardware, the graphics pipeline still does not support volumetric rendering primitives.
However, compared to the 2D-texture based approach, we now have greater flexibility on
how to compute the decomposition. As we have seen in the previous section, one drawback
of using object-aligned slices is the inconsistent sampling rate that results from the static
proxy geometry. Since 3D-textures allow the slice polygons to be positioned arbitrarily, a
consistent sampling rate for different viewing directions could be achieved by adapting the
distance of the object aligned slices to the current viewing angle. This is actually done in
the 2D-multi-texture based approach described in Chapter 4. Adjusting the slice distance,
however, does not remove the shifting artifacts that occur when the algorithm switches
between different slice stacks.

Both problems are efficiently solved by the use of viewport aligned slices as displayed
in Figure 3.6. The proxy geometry, however, must be recomputed whenever the viewing
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Polygon Slices Final Image3D Texture

Figure 3.6: Decomposition of the volume object into viewport-aligned polygon slices.

direction changes. In case of parallel projection, the decomposition into viewport-aligned
slices ensures a consistent sampling rate for all viewing rays as illustrated in Figure 3.7 A.
In the perspective case, the sampling rate is still not consistent for all rays (Figure 3.7 B).
The distance of sampling points varies with the angle between the slice polygon and the
viewing ray. Depending on the field-of-view angle, these effects are more or less noticeable.

The compositing process in case of 3D-texture based volume rendering is exactly the
same as for the 2D-texture based algorithm described in Section 3.1.2. The intersection
calculation for viewport-aligned slices algorithm however requires a more detailed descrip-
tion.
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Figure 3.7: Sampling illustrated for viewport-aligned slices in the case of parallel (A) and
perspective projection (B).
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3.2.1 Viewport-Aligned Slices

In comparison to the object-aligned slices used in the previous chapter, the procedure of
intersection calculation between the bounding box and a stack of viewport-aligned slices
is of much higher computational complexity. To make matters worse, these slice polygons
must be recomputed whenever the viewing direction changes. Since the whole computation
must be performed several times per second to achieve an interactive frame rate, a very
efficient algorithm is required. The slicing method used in our implementation is based on
a sequence of three steps:

1. Compute the intersection points between the slicing plane and the straight lines that
represent the edges of the bounding box.

2. Eliminate double and invalid intersection points.

3. Sort the remaining intersection points to form a closed polygon.

The intersection between a plane and a straight line in step 1 can easily be solved
analytically. Almost any higher-level API provides some functions which perform such a
calculation very efficiently. To determine whether an intersection point actually lies on
an edge of the bounding box, a simple bounding sphere test is applied in step 2. Points
that are located outside the bounding sphere do not lie on an edge and are thus discarded
from the list of valid intersection points. Additionally, double points which coincide with
a corner vertex of the bounding box are merged together.

In order to facilitate the sorting of the remaining edge intersection points in step 3, a
set of six flags is stored for each edge, one flag for each of the six faces of the bounding
box. As outlined in Figure 3.8 a flag is set if the edge belongs to the corresponding face
and cleared otherwise. The sequence of intersection points that form a valid polygon is
found when the flags of two adjacent edge intersection points have one flag in common.
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Figure 3.8: Sorting of edge intersection points to form a valid polygon: Each edge holds
a set of 6 flags (left), one flag for each face of the bounding box. A flag is set if the edge
belongs to the corresponding face and cleared otherwise. Edges that share a common face
are easily determined by ORing the edge flags. If the result is nonzero, a common face
exists. Four examples for edge flags are displayed (A-D).
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This property can be easily verified by computing a bitwise OR operation of the edge
flags. If the result is nonzero for every pair of adjacent points, the sequence is valid and
the resulting polygon is exactly the cross-section between the plane and the bounding box.
Further optimization of the slicing algorithm can be achieved by computing the intersection
points for the subsequent slice plane incrementally.

3.2.2 Bricking

Compared to the previous approach using 2D-textures, the memory management for a 3D-
texture is more difficult. Since the whole volume is defined as a single 3D-texture, it must
entirely fit into the texture memory at one time. With the increasing size of volume data
sets the available texture memory becomes the limiting factor. A popular idea to tackle
this problem is to subdivide a large data set into smaller chunks (usually called bricks)
that entirely fit into local video memory, one at a time.

The naive approach of simply subdividing the data set into bricks and rendering each
brick separately will introduce additional artifacts at the brick boundaries. To explain
these artifacts, we have to look at how texture interpolation is performed at the transition
between neighboring bricks. Figure 3.9 (left) illustrates this problem. At the boundary
between texture tiles the interpolation is incorrect, since the texture unit does not have
enough information to consistently interpolate across texture boundaries. The solution
to this problem arrives by duplicating a plane of voxels at each brick boundary. If two
neighboring bricks share a common plane of voxels, the texture units can be set up to
deliver the correct interpolation results, as displayed in Figure 3.9 (right).

discard
duplicate

correct interpolationinconsistent interpolation

Figure 3.9: Bricking illustrated for the 1D case: Simply splitting the texture leads to
inconsistent interpolation at the transition (left). Duplicating a voxel at the boundary
between bricks (a plane of voxels in 3D) leads to correct interpolation results (right).
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3.2.3 Discussion

In comparison to the 2D-texture based solution, the 3D-texture based approach has proven
superior in terms of image quality, removing some of the significant drawbacks while pre-
serving almost all the benefits. Hardware support for trilinear interpolation provides us
with a natural means of increasing the sampling rate to obtain images of high quality.
Adjusting the sampling rate is especially important to accurately account for a transfer
function of high frequency as will be explained in Chapter 5. For large volume data sets
the bricking strategy however turns out to be extremely inefficient. As a result, the frame
rate for large data will be significantly lower compared to 2D-textures. We will analyze
the performance of all algorithm in Chapter 8.

The 2D-texture based approach requires three copies of the data set to be stored in
local memory. With 3D-textures this is no longer necessary, since trilinear interpolation
allows the extraction of slices with arbitrary orientation. In this context, viewport-aligned
slices guarantee a sampling distance which is consistent among adjacent frames for parallel
projection. The problem of variable sample rate for perspective projection, however, still
remains. As long as the virtual camera views the volume object from an exterior posi-
tion, the effect of the inconsistent sampling rate is hardly visible. For virtual fly-through
applications the inaccurate sampling rate, however, is clearly noticeable as disturbing vi-
sual artifacts. Since in this case the field-of-view angle is relatively large, the presented
approach is less applicable for navigation within the volume. Constant sampling rate for
perspective projection can only be achieved by the use of spherical rendering primitives
instead of slices [92]. This would in turn significantly degrade the performance due to the
complex intersection calculation and the required tessellation of the spherical sections. As
an aside, an interesting algorithm especially designed for navigation within the volume
has been proposed in [12]. It is based on software ray casting accelerated by 2D-texture
mapping.

The advantages and drawbacks of the 3D-texture based method are again summarized
in Table 3.2. The applicability of the approach described in this chapter greatly depends
on the availability of graphics boards with hardware support for 3D-textures. On the
consumer market there are currently only a few boards available which meet these re-
quirements. 3D-textures now belong to the standard feature set of DirectX 8.0 compliant
boards. In OpenGL 3D-textures have been available for quite a long time as an extension

3D-Texture-Based Approach

Pros Cons

⊕ high performance ª availability still limited
⊕ trilinear interpolation ª inefficient memory management

ª inconsistent sampling rate
for perspective projection

Table 3.2: Summary of 3D-texture based volume rendering.



3.2. THE 3D-TEXTURE BASED APPROACH 37

(EXT texture 3D) provided for example by SGI’s high-end workstations. They have been
recently included into the OpenGL 1.2 standard. The first consumer product with support
for 3D-textures was the Radeon GPU released by ATI in the spring of 2000. A hardware
implementation of 3D-textures has also been provided by NVidia with the final release of
the GeForce 3 GPU.



Chapter 4

2D-Multi-Texture Based Methods

Up until now we have seen two alternative approaches for texture based volume rendering.
The 2D-texture based method was capable of rendering a volume data set at high frame
rate. The mathematical accuracy, the subjective image quality and the memory require-
ments however were still far from being optimal. It is true that the 3D-texture based
approach removes some of these limitations, the bricking strategy, however, is less suitable
for large volume data sets. Let us make a note on the main advantages of 3D-texture based
volume rendering:

• trilinear instead of bilinear interpolation,

• constant instead of variable sampling rate among adjacent frames for ray integration
in case of parallel projection,

• lower memory requirements by removing the necessity to duplicate the volume data
in memory.

On the consumer market the availability of 3D-textures is still restricted to a very limited
number of hardware implementations. In this chapter we will examine a third alterna-
tive approach, which supplements the original 2D-texture based approach by removing at
least two of the above mentioned limitations while preserving the benefit of more efficient
memory management.

4.1 Rasterization Revisited

Although 3D-textures are not yet widely supported on consumer graphics boards, there are
numerous boards which provide very flexible rasterization and texturing units with a high
degree of programmability. The idea of the 2D-multi-texture based approach is to leverage
these new features in order to enhance the accuracy and the image quality of the 2D-texture
based approach, while preserving the benefit of efficient memory management. Before we
have a look at this idea, it is necessary to get accustomed to the way multi-textures are
used to achieve particular texturing effects.
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Figure 4.1: Multi-textures can be implemented by duplicating the conventional texture
unit (left). A number of such units are arranged in sequence, forming a static pipeline
(right).

4.1.1 Multi-Textures

As we have seen in Section 2.1.2, a 2D-texture is a raster image (or bitmap) that is mapped
onto a planar polygon. The color information for each fragment is then determined as a
combination of the polygons’s primary color and the color value of the texture sample
obtained from the texture map (see Figure 4.1 left). In OpenGL a texture value for
example can be used to modulate the primary color, denoted

Cout = Cin · Tin. (4.1)

Cin and Cout are the color values of the incoming fragment before and after texture ap-
plication respectively. Tin is the color value of the interpolated texture sample. It goes
without saying that the equation is calculated component wise for each color channel.

With this concept of a texture unit, it is easy to build a system that support multi-
textures as a strict pipeline by simply connecting multiple units in series (Figure 4.1 right).
The final fragment color in this case amounts to

Cout = T
(n)
in · ( T

(n−1)
in · ( . . . · ( T 0

in · Cin))). (4.2)

The input for each individual texturing unit is determined by the output value of the
previous unit. A typical application example for multi-texturing is found in 3D game
programming [171]. The traditional texture map, which contains the object’s color, is
supplemented by two multi-textures, which store the pre-computed illumination (light
map) and fog density (fog map). The benefit of such a technique is obvious. While the
color texture is constant, the reflection map must be updated by the dynamic light sources
and the fog map is dependent on the camera position. On the other hand the color texture
will be highly detailed, while for the light and the fog map low resolution might be sufficient.
Keeping all these components in separate textures allows illumination and fog density to
be updated interactively while preserving high resolution for the color texture.

The strict pipeline of texturing units provided by the OpenGL specification, however,
turns out to be too limiting for many desired texturing effects. Per-pixel illumination, nor-
mal maps and bump maps require a more flexible texture combination than the one given
in Equation 4.2. For this purpose programmable rasterization and texturing units have
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been developed. These hardware features are referred to as pixel shaders. Unfortunately
there is no standardized way to access pixel shader hardware in OpenGL yet. The two
major manufacturers of 3D graphics boards NVidia and ATI both have proposed different
OpenGL extensions. In general, OpenGL source code written for NVidia’s GeForce family
boards must be modified and adapted to support graphics boards from ATI and vice versa.
The expenditure of porting the code to different OpenGL extensions for similar hardware,
however, is unnecessarily high. A shading language that can be used to access the hard-
ware in a consistent way has been developed at Stanford [129] in combination with the
corresponding compiler [102]. A similar concept of a shading language has been recently
included in the proposal for the new OpenGL 2.0 standard. In the following section the
principles of pixel shaders will be exemplified on the basis of NVidia’s register combiners.
ATI’s architecture is based on similar principles, although in the ATI’s OpenGL extension
the explicit register setup if hidden from the programmer.

4.1.2 Pixel Shaders

Traditional rasterization hardware computes color and illumination only at the polygon
vertices and interpolates the resulting values in the interior of the polygon (Gouraud Shad-
ing [55]). The term pixel shader denotes a mechanism to perform such computations on
a per-pixel basis1. This idea is very similar to Phong Shading [127], although not exactly
the same. In Phong’s shading model the normal vector is interpolated instead of the final
color. Pixel shaders interpolate the color as well as the normal vector and the illumination
terms and allow flexible combination of the interpolated values on a per-fragment basis.

An implementation of pixel shaders modifies the texture generation unit as well as
the texture application unit (see Section 2.1.2). There are separate OpenGL extensions

1more precisely on a per-fragment basis
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Figure 4.2: As traditional texture application turns out to be not flexible enough, NVidia’s
GeForce family GPUs provide register combiners that completely bypass the standard unit
for texture environment application.
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to access both parts of the implementation. The modification to the texture generation
unit supports texture coordinate specification on a per-fragment basis. This mechanism is
called dependent texturing and will be discussed in Chapter 5. NVidia’s modified texture
application unit is known as register combiners and the corresponding OpenGL extension
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Figure 4.3: NVidia’s register combiners: RGBA (top) and Alpha portion (bottom) of the
general combiner.
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is named NV register combiners.

4.1.2.1 NVidia Register Combiners

To provide the programmer with a mechanism to explicitly control the per-fragment infor-
mation, NVidia has introduced the OpenGL extension NV register combiners. With this
extension enabled, the standard OpenGL texturing application unit is completely bypassed
and substituted by a register-based rasterization unit (see Figure 4.2). This rasterization
mechanism is implemented as a pipeline consisting of two or more general combiner stages
arranged in a fixed sequence, followed by a single final combiner stage, which generates the
output. A general combiner stage is again divided into an RGB portion, which computes
the fragment’s color and an Alpha portion, which calculates the opacity value. The name
register combiner is derived from the idea to store per-fragment information in a set of
input registers (see Figure 4.3). The contents of these registers can be arbitrarily mapped
to the four variables A,B, C and D. Multiple input mappings are supported, e.g. signed
or unsigned inversion and expansion of unsigned range [0, 1] to signed range [−1, 1]. Using
the assigned input variables, the RGB portion of the general combiner stage performs three
different computations in parallel:

1. Either a component-wise weighted sum (AB +CD) or a conditional component-wise
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Figure 4.4: The final register combiner computes the final color of the fragment which is
subsequently forwarded to fragment processing.
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product (AB mux CD)2.

2. Either a component-wise product (AB) or a 3D vector dot product (A •B).

3. Either another component-wise product (CD) or another dot product (C •D).

The results of each of these three parallel computations are scaled and biased independently
and written to arbitrary output registers. Depending on the underlying hardware two or
more of these general combiner stages are connected in series. The input values of each
stage are copied from the output registers of the previous stage. At the end of the pipeline
the output values of the last general combiner stage are forwarded to the final register
combiner. As displayed in Figure 4.4, this final stage generates two output values (RGB
and Alpha). Arbitrary input registers are again assigned to the variables A–G. The final
RGB value is determined by the fixed equation AB + (1−A) C + D. The final Alpha value
is simply copied from variable G. Additionally an intermediate component-wise product
(EF ) can be computed and assigned to one of the variables A–D. After the final register
combiner the per-fragment operations are performed as usual. For more details on this
extremely flexible rasterization unit, see the OpenGL extension specification provided by
NVidia [120]. Register combiners are currently supported by the NVidia GeForce 256 and
GeForce2 GTS chips with two general combiner stages and by the NVidia GeForce3 GPU
with a sequence of up to eight general combiner stages.

4.2 Principles

The advantage of 3D-textures over 2D-textures is that trilinear interpolation is directly
supported by the graphics hardware. Trilinear interpolation of a sample value I can be
formulated as a function of the data values Iijk given at the eight surrounding grid points,
denoted

I =
∑

i,j,k∈{0,1}
wijk Iijk; with

∑

i,j,k∈{0,1}
wijk = 1. (4.3)

2see [120] for a description of the mux operation
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The interpolation weights wijk are determined by the position of the sampling point in
relation to the rectilinear grid. Trilinear interpolation can be easily decomposed into two
bilinear interpolation operations,

I(0) =
∑

i,j ∈{0,1}
a0

ij Iij0 and (4.4)

I(1) =
∑

i,j ∈{0,1}
a1

ij Iij1, (4.5)

and one linear interpolation

I = (1− b) · I(0) + b · I(1). (4.6)

The new interpolation weights aij and b can be easily derived from Equation 4.3. Bilin-
ear interpolation is efficiently performed by the 2D-texture unit. The idea to accomplish
trilinear interpolation with 2D-multi-textures is simply to compute the missing linear inter-
polation step directly within the texture application unit. In comparison to the 2D-texture
based approach, this idea will allow intermediate slices to be interpolated on the fly.

Computing an intermediate slice Si+α can be described as a blending operation of two
adjacent fixed slices Si and Si+1:

Si+α = (1− α) · Si + α · Si+1 with α ∈ ] 0, 1 [. (4.7)

As each slice image is stored in a separate 2D-texture, bilinear interpolation is automati-
cally performed by the texture generation unit. The third interpolation step is computed
subsequently by blending the resulting two texels during texture application. As displayed
in Figure 4.5, the blending step can be computed by a single general combiner stage, if the
fixed slices Si and Si+1 are specified as texture0 and texture1 using the multi-texture
extension. The combiner is set up to compute a component-wise weighted sum AB + CD
with the interpolation factor α stored in one of the constant color registers. The contents
of this register is then mapped to input variable A and at the same time inverted and
assigned to variable C. In the RGB-portion, variables B and D are assigned the RGB
components of texture0 and texture1 respectively. Analogously, the Alpha-portion in-
terpolates between the alpha-components. For rendering semi-transparent volumes, the
output of this first combiner stage is directly used for back-to-front alpha blending in the
fragment processing unit without any further modification by the final combiner stage.
Since multi-texture interpolation and combination is performed within one clock cycle of
the graphics CPU, an intermediate slice is rendered at almost the same performance as a
fixed single-textured slice. Of course multiple intermediate slices can be inserted this way
without any additional memory allocation.

4.3 Interpolation of Arbitrary Slices

In addition to direct volume rendering, many applications require the interpolation of slice
images from the volume data set in arbitrary direction. In medicine this procedure is
usually referred to as multi-planar reformatting (MPR).
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Figure 4.6: Rendering procedure for interpolating slice images in arbitrary direction.

An interesting 2D-texture based technique to extract arbitrary slices was introduced in
[36] and is easily adapted to multi-texturing hardware. The basic idea of this algorithm is
displayed in Figure 4.6. At first the cross-section of the slicing plane with the bounding
box of the volume is calculated. The resulting intersection polygon is then cut into a set of
polygon strips at the intersection line with the object-aligned texture slices. Subsequently
for each of these polygon strips the image information is obtained by interpolating the two
adjacent texture images. This is achieved by specification of alpha values for the polygon
vertices. In this case an alpha value of 0 indicates that the corresponding vertex should
be textured with the image information from the first texture. Accordingly, if a value of 1
is specified the second texture image is applied. Within the polygon, Gouraud shading is
used to interpolate the alpha values. The interpolation between the two texture images is
finally performed by the register combiners as displayed in Figure 4.7. In this setup, general
combiner 0 is programmed to blend both textures (mapped to variables A and C) using
the primary color alpha (mapped to variable B and inverted to variable D). As mentioned
above, primary alpha is interpolated between the values specified at the vertices.
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Figure 4.7: Register combiner setup for interpolation of arbitrary slice images.

4.4 Discussion

The 2D-multi-texture based approach fills the gap between the traditional 2D- and 3D-
texture based methods. With the possibility to trilinearly interpolate intermediate slices
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within the rasterization hardware, two drawbacks of the traditional 2D-texture based ap-
proach have been removed as promised at the beginning of this chapter.

• Trilinear interpolation can performed by multi-texture blending. This allows the
extraction of axis-aligned slices at arbitrary positions.

• Consistent sampling rate in parallel projection can be achieved by adjusting the
distance between the slice images to the viewing angle.

The third critical point was the high memory footprint that arises from the need to keep
three copies of the data set in memory. With the approach to interpolating arbitrary slices
discussed in Section 4.3, this drawback can also be removed, however at the expense of an
increased CPU load. Although the described technique is usually applied to interpolate
single slice images, it is potentially applicable for volume rendering with viewport-aligned
slices. The significant computational overhead for intersection calculation in combination
with the large number of texture binding operations results in a poor rendering perfor-
mance. Using viewport aligned slices only 5—8 frames per seconds were achieved for a
very small data set of size 643 on a GeForce 256. The interpolation of axis aligned slices,
however, is also possible with this approach and can be efficiently pre-computed. Since a
slice image which is exactly orthogonal to the stored slice stack is tessellated into stripes
that have the width of a single texel, visual artifacts will occur, if multiple texels are
mapped to a single pixel. As this will be the case especially for large data sets, this idea
becomes less attractive.

Besides the different memory requirement, there are some considerable differences be-
tween the 3D-texture and the 2D-multi-texture based approaches:

• The switching artifacts that have been observed when the 2D-texture based algorithm
switches between orthogonal slice stacks are still evident in the 2D-multi-texture
based method. However due to the ability to adapt the slice distance arbitrarily, the
effect appears less disturbing.

• The multi-texture based interpolation allocates two texturing units to interpolate
one slice. These texturing units cannot be used for classification and illumination
calculations, as we will see in the following chapters.

2D-Multi-Texture Approach

Pros Cons

⊕ high performance ª switching effects
⊕ trilinear interpolation ª inconsistent sampling rate
⊕ available on low cost hardware for perspective projection
⊕ efficient memory management [ª high memory requirements ]

Table 4.1: Summary of 2D-multi-texture based volume rendering.
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• The main advantage of the 2D-multi-texture approach over 3D-textures is the more
efficient memory management. The bricking mechanism which must be applied for
volumes that do not fit entirely into texture memory is extremely inefficient, since
a huge part of the video memory must be swapped at a time. Using 2D-textures
to represent the volume is advantageous, since the video memory is partitioned into
small portions which can be replaced more efficiently.

As all described texture based approaches decompose the volume into planar slice im-
ages, the integration along the rays is not accurate in case of perspective projection, because
the variable distance between sampling points is not taken into account. The advantages
and drawbacks of the 2D-multi-texture based approach are summarized in Table 4.1. Refer
to Chapter 8 for a detailed comparison of the performance of the different solutions. Suc-
cessful application of the techniques described in this chapter have been reported in [138]
for the visualization of medical image data in general. An adaptation of this approach in
an augmented reality application for computer-assisted intervention was described in [147].

Up until now we have tacitly assumed that the texture images we used already contained
the emission and absorption coefficients required for the ray integration. In the following
chapter, we will have a closer look at how these coefficients are generated from the original
sampling values by means of a transfer function.



Chapter 5

Transfer Functions

The physically based integration of radiant energy along viewing rays as explained in
Section 1.1 requires the specification of emission and absorption coefficients. However,
given a volumetric data set as they arise from measurement or simulation, there is no
natural way to obtain these emission and absorption coefficients. In practise the user
assigns emission and absorption coefficients to sample values v in an arbitrary way. This
assignment process is referred to as classification and can be described by means of transfer
functions

Iemit = Temission(v) and ϑk = Tabsorption(v). (5.1)

Although a few approaches have been developed to automatically generate transfer
functions by some image- or data-driven mechanisms (see Chapter 6), the design of a
transfer function in general is a manual, tedious and time-consuming procedure, which
requires detailed knowledge of the spatial structures that are represented by the data set.
In order to facilitate this classification process, it is crucial for the user to be provided with
some direct visual feedback of his operations. In consequence, a mechanism is required
that allows the transfer functions to be modified interactively while rendering the volume.

5.1 Principles

Although analytic continuous functions are thinkable, in practise the transfer function is
realized as a lookup table of fixed size. The emitted radiance Iemit is usually represented
as an RGB value to allow for the emission of colored light. The absorption coefficient is
represented by a scalar value between 0 and 1. Both coefficients can be combined into an
RGBA value.

As we have seen in Section 1.2, volume data is represented by a 3D array of sample
points. According to sampling theory, a continuous signal can be reconstructed from these
sampling points by convolution with an appropriate filter kernel. The transfer function now
can either be applied directly to the discrete sampling points before the reconstruction or
alternatively to the continuous signal after the reconstruction. Both methods lead to dif-
ferent visual results. Accordingly, there are two possible ways to perform the assignment in
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hardware, which differ in the positioning of the table lookup within the sequence of process-
ing steps of the graphics pipeline. Implementations of color table lookups strongly depend
on the underlying hardware architecture. Multiple different hardware implementations are
described in Section 5.2.

5.1.1 Pre-Classification

Pre-classification denotes the application of a transfer function to the discrete sample points
before the data interpolation. The reconstruction of the continuous signal is performed
subsequently based on the emission and absorption values. Figure 5.1 (left) outlines this
concept. The transfer function is here represented as the graph of a one-dimensional
function. In practice, several of these curves would be used to describe individual transfer
functions for each of the RGBA components separately. The original sampling values on
the x-axis are mapped to emission and absorption values on the y-axis. As displayed in the
diagram, the emission and absorption coefficient for a sample point which does not lie on
an exact grid position is determined by interpolating between the emission and absorption
coefficients given at the neighboring grid points.

With respect to the graphics pipeline pre-classification means that the color table
lookup is performed before or during the rasterization step, however in any case before the
texture generation step. The transfer function is applied to every texel before interpolation.
The advantage of this concept is that an efficient implementation of a pre-classification ta-
ble is possible on almost every graphics hardware. Before we examine and evaluate different
implementations, we will have a look at the alternative concept of post-classification.
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Figure 5.1: Transfer functions are used to map data values to physical quantities, which
describe the emission and absorption of light. This mapping can be applied either be-
fore the interpolation (pre-classification) or after the interpolation of data values (post-
classification), leading to different visual results.
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5.1.2 Post-Classification

Post-classification reverses the ordering of operations. Transfer function application is
moved behind the reconstruction process. The classification function is thus applied to
the continuous signal instead of its discrete sampling points. This idea is illustrated in
Figure 5.1 (right). For a sample point which does not lie on an exact grid position the
data value itself is interpolated. Subsequently, the emission and absorption values are
determined by using the interpolated data value as index into the color lookup table. It is
easy to see in Figure 5.1, that pre- and post-classification lead to different results. Both
alternatives will be evaluated and discussed in Section 5.3.

The implementation of post-classification is usually more complex than a simple table
lookup. With a graphics pipeline implemented in hardware, it is not possible to extract
intermediate values from the hardware stream, modify them in software and reinsert them
into the pipeline. In consequence, post-interpolative color lookup must be explicitly sup-
ported by the graphics hardware.

5.2 Implementations

In this section we will examine multiple implementations of transfer function lookup that
work with all the texture based approaches described in this thesis. Both pre- and post-
classification approaches are discussed. Our main objective is to implement a fast color
table update, allowing the transfer function to be modified in real-time.

5.2.1 Pre-Classification

As defined above, a transfer function for pre-classification is applied a priori to the texture
images. Although there is no technical restriction that forbids the application of a color
table as a pre-processing step, it is very unlikely that such an implementation will achieve
interactive frame rates while updating the transfer function. The reason for this is twofold:

• A modification of the transfer function would require a reconstruction of the whole
volume in main memory and a reload of the texture image into the local video memory
of the graphics board. This will inevitably result in a memory bandwidth bottleneck,
which significantly degrades performance.

• For storing the emission (color) and absorption (opacity) values directly in the texture
an internal RGBA format is required which allocates four bytes per texel. An index
into a color table however would only require one or two bytes per texel. As a
result, using color indices significantly reduces both the memory footprint and the
bandwidth problem.
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0 // enable and setup pixel transfer
1 glPixelTransferi(GL_MAP_COLOR, GL_TRUE);
2 glPixelMapfv(GL_PIXEL_MAP_I_TO_R, m_nColorTableSize, m_pColorMapRed );
3 glPixelMapfv(GL_PIXEL_MAP_I_TO_G, m_nColorTableSize, m_pColorMapGreen );
4 glPixelMapfv(GL_PIXEL_MAP_I_TO_B, m_nColorTableSize, m_pColorMapBlue );
5 glPixelMapfv(GL_PIXEL_MAP_I_TO_A, m_nColorTableSize, m_pColorMapAlpha );
6
7 // create texture image
8 glTexImage3D(...);
9
10 // disable pixel transfer
11 glPixelTransferi(GL_MAP_COLOR, GL_FALSE);

Listing 5.1: OpenGL setup for color mapping during the pixel transfer from main memory
to the local texture memory.

5.2.1.1 Pixel Transfer

The standard OpenGL specification provides a way to apply a color map during the pixel
transfer from main memory to the graphics board. This is exactly what is done when a
texture image is defined and transferred to the graphics board. Since changing the color
table requires to upload the texture again, this is of course not a very fast way to apply
the transfer function. However, for graphics hardware that does not support some of
the OpenGL extensions described in the following chapters, it represents the only way to
achieve the color mapping. The OpenGL code for setting up the pixel transfer is displayed
in Listing 5.1.

Besides the poor performance, the main drawback of this approach is again the amount
of data that must be allocated in local video memory. Although only the scalar data values
are stored in main memory, the pixel transfer converts every scalar value into an RGBA
quadruplet when writing it into the portion of video memory that is allocated for the
texture image. As a result the size of the data that must be stored increases by a factor
of four in the worst case. To work around this problem many hardware manufacturers
have decided to implemented a mechanism that allows to store color indices in the texture
image together with a separate color table. This concept is known as paletted textures.

5.2.1.2 Paletted Textures

Similar to many 2D image file formats that include a color table, texture palettes can
significantly reduce the memory that must be allocated for storing the texture on the
graphics board. Additionally this feature can be used to implement coloring effects by
modifying the color palette without the necessity of modifying the texture object itself.
Instead of storing the RGBA values for each texel, an index into a color lookup table of
fixed size is used. This color table is stored together with the index texture in local video
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0 #if defined GL_EXT_paletted_texture && defined GL_EXT_shared_texture_palette
1
2 glEnable(GL_SHARED_TEXTURE_PALETTE_EXT);
3
4 glColorTableEXT(
5 GL_SHARED_TEXTURE_PALETTE_EXT, // GLenum target,
6 GL_RGBA, // GLenum internal format
7 m_nColorTableSize, // GLsizei size of the table
8 GL_RGBA, // GLenum external format
9 GL_UNSIGNED_BYTE, // GLenum data type
10 m_pColorTable); // const GLvoid *table
11
12 #endif // GL_EXT_paletted_texture

Listing 5.2: OpenGL setup for the paletted texture extension.

memory. During the texture generation step, the indices are replaced by the respective
color values stored in the texture palette. It is important to notice that the color table
lookup is located before the usual texture generation. The interpolation is performed after
the lookup using the color values obtained from the lookup table, resulting in a transfer
function for pre-classification. The amount of local video memory that must be allocated
for storing an RGBA texture is significantly reduced, since only a single index value must
be stored for each texel, instead of four values for the four color components. Taking into
account the memory that is allocated for the texture palette itself, the required texture
memory is thus reduced almost by a factor of four.

In OpenGL the access to texture palettes is controlled by two separate OpenGL ex-
tensions. The first extension EXT paletted texture enables the use of texture palettes
in general. A paletted texture is created in the same way as a conventional RGBA tex-
ture. The only difference is that during texture specification the internal format of RGBA
(GL RGBA) must be substituted by an indexed format, such as GL COLOR INDEX8 EXT,
GL COLOR INDEX12 EXT or GL COLOR INDEX16 EXT according to the intended size of the
color table (see [121] for details). This extension supports texture palettes with a res-
olution of 1, 2, 4, 8, 12 or 16 bit respectively. In this case a unique texture palette
must be maintained for each texture separately. A second OpenGL extension named
GL EXT shared texture palette additionally allows a texture palette to be shared by
multiple texture objects. This further reduces the memory footprint for a volume data
set, if 2D-textures or 2D-multi-textures are used or if a 3D-texture is split up into several
bricks. The OpenGL code for creating and updating a shared texture palette is displayed
in Listing 5.2.

Compared to the pixel transfer method described in the previous section, the main
advantage of the shared texture palettes is the ability to change the texture palette – and
thus the transfer function – without having to reload the texture itself. In addition, the
palette sizes of 12 or 16 bit enable high precision transfer function for tomographic data.
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As a result the most efficient way to implement pre-classification for texture based volume
rendering is to use paletted textures. Now that we have seen possible implementations
for pre-classification, let us focus our interest on methods to realize transfer functions for
post-classification.

5.2.2 Post-Classification

As mentioned above, post-classification requires a mechanism to realize a color table lookup
after the interpolation of a texel. This color mapping must be applied within the graphics
pipeline between texture generation and texture application. In consequence this cannot
be achieved without any special hardware feature, that allows the modification of the texel
directly within the texture unit. As a result the implementation of a transfer function for
post-classification in texture based approaches strongly depends on the underlying graphics
hardware.

5.2.2.1 Texture Color Tables

A straightforward hardware concept that allows for post-classification is provided by the
high-end workstations developed by Silicon Graphics (SGI). The mechanism to setup
this post-interpolative texture lookup table is very similar to the paletted textures. The
OpenGL extension to access this feature is called SGI texture color table. The exten-
sion must be simply enabled and a color table must be setup as described in Listing 5.3.
Although this code looks very similar to the code presented in Listing 5.2, here the color
table lookup is performed after the texture interpolation. The texture color table, which
is enabled by this extension, is not restricted to a specific texture object, so it can be
efficiently shared among multiple texture images.

0 #if defined GL_SGI_texture_color_table
1
2 glEnable(GL_TEXTURE_COLOR_TABLE_SGI);
3
4 glColorTableSGI(
5 GL_TEXTURE_COLOR_TABLE_SGI, // GLenum target,
6 GL_RGBA, // GLenum internal format,
7 m_nColorTableSize, // GLsizei width,
8 GL_RGBA, // GLenum external format,
9 GL_UNSIGNED_BYTE, // GLenum data type,
10 m_pColorTable); // const GLvoid *table
11
12 #endif // GL_SGI_texture_color_table

Listing 5.3: OpenGL setup for the texture color table extension. Although this code
fragment is very similar to the paletted texture setup in Listing 5.2, in this case the color
table lookup is performed after the interpolation of texture samples.
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Figure 5.2: Dependent texture lookup: The texture coordinates (s, t) are interpolated as
usual from the values given at the polygon vertices. An RGBA quadruplet is obtained
from the first multi-texture. The red (R) and the alpha (A) component of this quadruplet
are used as texture coordinates for the second multi-texture stage. The resulting final texel
value is used to color the fragment.

Up until now, the post-interpolative texture lookup table is only supported by expensive
graphics workstations such as the SGI Onyx (Base Reality and Infinite Reality) and the
SGI Octane and Octane 2 (MXE and V series) [154]. The described OpenGL extension is
also available on the SGI O2, however the hardware-accelerated implementation is replaced
by a software emulation within the driver, which leads to very poor performance on this
architecture. Unfortunately, post-interpolative texture lookup as described here is not
supported by any of the consumer PC graphics boards currently available. The latest PC
graphics processors, such as the ATI Radeon and the NVidia GeForce 3 however support
a different hardware feature called dependent textures, which can be exploited for post-
classification.

5.2.2.2 Dependent Textures

The specification of dependent textures is part of the pixel shader concept outlined in
Section 4.1.2. It was first introduced in 2000, although a similar feature called pixel textures
(SGI pixel texture) has been available before on SGI high-end workstations [150]. The
idea of dependent textures is quite simple. Texture coordinates are usually specified at
the vertices and interpolated in the interior of the polygon. However, for certain visual
effects in computer graphics, such as the combination of an environment map with a bump
map, it is required to specify texture coordinates on a per-fragment basis. At this point
dependent textures come into play. Dependent textures are a supplement to multi-textures,
which allows the texture coordinates for the second texture to be obtained from the first
texture. The mechanism is illustrated in Figure 5.2. The pair of texture coordinates
(s, t) for a fragment in the interior of the triangle is interpolated as usual from the values
given at the three vertices. These texture coordinates are in turn used to interpolate an
RGBA quadruplet at the first multi-texture stage. The red and the alpha component (or
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0 #if defined GL_NV_texture_shader
1
2 // enable the texture shader extension
3 glEnable(GL_TEXTURE_SHADER_NV);
4
5 // activate and setup the first texture stage (3D-texture)
6 glActiveTextureARB(GL_TEXTURE0_ARB);
7 glEnable(GL_TEXTURE_3D_EXT);
8 glBindTexture(GL_TEXTURE_3D_EXT, m_nVolumeTextureName);
9 glTexEnvi(GL_TEXTURE_SHADER_NV,
10 GL_SHADER_OPERATION_NV, GL_TEXTURE_3D_EXT);
11
12 //activate and setup the second (dependent) texture stage (2D-texture)
13 glActiveTextureARB(GL_TEXTURE1_ARB);
14 glEnable(GL_TEXTURE_2D);
15 glBindTexture(GL_TEXTURE_2D, m_nColorTableTextureName);
16 glTexEnvi(GL_TEXTURE_SHADER_NV,
17 GL_SHADER_OPERATION_NV, GL_DEPENDENT_AR_TEXTURE_2D_NV );
18 glTexEnvi(GL_TEXTURE_SHADER_NV,
19 GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB);
20
21 #endif // GL_NV_texture_shader

Listing 5.4: OpenGL setup for the dependent texture lookup.

alternatively the green and the blue component) are interpreted as texture coordinates at
the second multi-texture stage. This is possible because both texture coordinates and color
components have a valid range between 0 and 1. The RGBA quadruplet interpolated from
this second texture stage is then used as final texel value for the fragment.

The dependent texture mechanism can efficiently be used to implement a post-
interpolative texture color table. To achieve this, the color indices of the voxels are stored
in the red component of the first multi-texture (which can be a 3D-texture as well). The
second multi-texture is defined as a one-dimensional texture, which has the same resolution
as the color table1. During rasterization the red and the alpha component obtained from
the first texture are used as texture coordinates for the second texture which contains the
color table. The value of the alpha component is of course irrelevant. The resulting RGBA
quadruplet now represents a color value obtained via post-interpolative index lookup.

In OpenGL dependent textures can be set up via an extension called
NV texture shader, defined by NVidia for the GeForce 3 hardware. The code for ac-
tivating the dependent texture lookup is displayed in Listing 5.4. At first the texture
shader extension is enabled (line 3). Multi-texture stage 0 is activated and the 3D-texture
that stores the color indices is bound to this unit (lines 6–8). The texture shader for

1Since one-dimensional textures are not supported by this extension, we actually use a two-dimensional
texture with one dimension set to one.
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this stage is configured for normal texture lookup (line 9–10). Subsequently, multi-texture
stage 1 is selected and activated (lines 13–14). The 2D-texture which contains the color
table is bound to this unit (line 15). The texture shader for this second stage is configured
to perform a dependent texture lookup with the red and alpha component (line 16–17)
obtained from texture unit 0 (line 18–19).

0 //DirectX8 Pixel shader 1.0
1 ps1.0;
2 //sample volume texture
3 tex t0
4 //use alpha and red of t0 as
5 //texture coordinate for t1
6 texreg2ar t1,t0
7 //write pixel
8 mov r0, t1

Listing 5.5: DirectX 8.0 pixel shader setup for post-classification via dependent texture
lookup.

The same results can also be achieved on ATI Radeon family boards using a different
OpenGL extension provided by ATI. Due to these different extensions, it is not possible to
access the dependent texture capabilities of both the GeForce 3 and the Radeon hardware
with the same OpenGL code. Up until now, consistent implementation for both hard-
ware architectures can only be achieved using DirectX 8.0 (see Section 2.2.2) instead of
OpenGL. DirectX accesses programmable rasterization via pixel shader code, written as
small micro-programs which are directly executed on the GPU. A pixel shader example
that delivers the same results as described above for both hardware architectures is pre-
sented in Listing 5.5. The first command (line 1) simply specifies the software version
of the pixel shader specification. A texture sample t0 is interpolated as usual from the
texture unit 0 (line 3). Texture unit 1 (line 6) interpolates the dependent texture using the
red and alpha components of t0 as texture coordinates. The resulting texel t1 is simply
copied to the output register r0 (line 8). For more details on the DirectX 8.0 pixel shader
specification refer to [109]. Although in terms of programmability the setup of dependent
texture mapping seems to be rather complicated compared to the simple texture color
table provided by SGI, the major benefit of dependent textures is that also two- or four-
dimensional transfer functions can be realized with this concept. We will focus our interest
on multi-dimensional transfer functions in Section 5.4.

5.3 Discussion

We have seen two different ways to apply a transfer function for direct volume rendering,
either before (pre-classification) or after the interpolation (post-classification). A summary
of the different implementations is presented in Table 5.1.
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Pre-Classification

Pixel Transfer ⊕ OpenGL Standard ª high memory requirement
ª texture reload necessary
ª slow

Texture Palette ⊕ very fast ª OpenGL extension required

Post-Classification

Color Table ⊕ very fast ª OpenGL extension required

Pixel Shader ⊕ fast ª OpenGL extension required
⊕ multidimensional ª multiple texture lookups

Table 5.1: Summary of different implementations of pre- and post-classification transfer
function lookup.

A transfer function usually tries to separate different objects inside the volume data set
according to their scalar value. Due to the band-limitation of the voxel data set, however,
sharp boundaries between different object do not exist in the data. Thus, trying to display
objects as isosurfaces with a sharp peak of infinite frequency in the transfer function is
not appropriate to represent the fuzzy boundary. The transfer function of course should
account for this fuzziness and simultaneously be able to separate tiny detail structures. A
good transfer function will be a compromise between a sharp edge and a smooth transition
between different objects.

As we have seen in Section 1.2, the discrete samples of a voxel data set represent a
continuous 3D scalar field. Let us restrict our considerations to the continuous 1D signal
that is obtained by casting a ray through the volume. According to sampling theory, a
continuous signal f(x) can be exactly reconstructed from discrete samples f(k ·τ) according
to

f(x) =
∑

k

f(k · τ) · sinc
(1

τ
(x− kτ)

)
. (5.2)

Obviously the application of a transfer function T to the discrete sampling points instead
of the continuous signal yield different results:

T
(
f(x)

) 6=
∑

k

T
(
f(k · τ)

) · sinc
(1

τ
(x− kτ)

)
. (5.3)

Reconstructing a collection of arbitrary discrete values will not inevitably return a valid
band-limited signal, not even if an ideal reconstruction filter is used. A simple example
is a discrete signal with only one single peak as displayed in Figure 5.3(A). Without loss
of generality, the distance between adjacent sampling points τ is set to 1. Reconstructing
such a signal results in the sinc function (B) which is represented by two peaks at −1

2
and 1

2
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in the frequency domain (C). The sinc function,

f(x) = sinc(x) and F (t) =

∫
f(x) · e−2πixtdx = χ[− 1

2
, 1
2 ]

(5.4)

is band-limited according to

F (t) = 0 for |t| > Fmax =
1

2
. (5.5)

Since the band limit Fmax is equal to and not less than the Nyquist frequency,

τ = 1 6< 1

2 · Fmax

, (5.6)

the sampling theorem is violated. Apparently, if a collection of discrete sample points
represented a valid signal with

τ <
1

2 · Fmax

, (5.7)

the frequency of the sinc filter itself must cancel out during the reconstruction. In conse-
quence, the manipulation of a single sampling point might render the whole signal invalid.
However, this is exactly what is done if a transfer function is applied before the reconstruc-
tion. The caveat is that modifying the sampling points of a given signal in an arbitrary
way before the reconstruction might invalidate the initial assumption of band limitation
and will thus strongly violate the sampling theorem.

If we first reconstruct the continuous signal and apply the transfer function afterwards,
we ensure that the sampling theorem is obeyed. The transfer function will introduce
another high-frequency component to the signal and we will have to adapt the sampling
rate to account for the new frequency spectrum. As long as the transfer function itself is
band-limited, we are on the safe side. The performance might decrease due to the higher
number of slices, but the results are images of high accuracy.

Both pre- and post-interpolative transfer functions change the frequency spectrum of
the original signal. While in case of pre-classification the high frequencies are simply
cut off, post-classification takes them into account. These theoretical considerations are
easily verified in practise. The results of both pre- and post-classification can be compared
in Figure 5.4. Although one might be in doubt about the accuracy of the sharp object
boundaries obtained by post-classification, it is indisputable that the blocky structure
that results from pre-classification appears extremely distracting to the viewer. Another
example that demonstrates the superior image quality of post-classification is shown in
Figure 12.5.

5.4 Multi-Dimensional Transfer Functions

Up until now we have determined color and opacity values for a voxel as function of its
scalar value. Although this is the most common way, it is not the only possibility to derive



5.4. MULTI-DIMENSIONAL TRANSFER FUNCTIONS 59

the physical quantities required for ray integration. In addition to the traditional one-
dimensional transfer function of the voxel intensity, the magnitude of the first and second
order derivatives can be taken into account. In this case the transfer function is defined
on a multi-dimensional parameter domain.

The principles of multi-dimensional transfer functions have been investigated before by
various researchers. Mark Levoy [93] was the first who proposed to use the scalar magnitude
of the gradient vector to weight the opacity value of a voxel. Homogenous regions inside
the volume data are usually less interesting than regions where the intensity value changes
significantly, such as boundaries and fuzzy transitions between different structures. The
gradient vector is the first order derivative for a 3D scalar field I(x, y, z), defined as

∇I = (Ix, Iy, Iz) = (
δ

δx
I,

δ

δy
I,

δ

δz
I), (5.8)

using the partial derivatives of I in x-, y- and z-direction respectively. The scalar magnitude
of the gradient measures the local variation of intensity quantitatively. It is computed as
the absolute value of the vector,

||∇I|| =
√

Ix
2 + Iy

2 + Iz
2. (5.9)

There are several approaches to estimating the directional derivatives for discrete voxel
data. A common technique based on the first terms from a Taylor expansion is the central
differences method. According to this, the directional derivative in x-direction is calculated

-8       -7       -6       -5       -4       -3       -2       -1        0         1        2        3        4        5        6         7        8

-1                                    -0.5                                     0                                     0.5                                      1

-8       -7       -6       -5       -4       -3       -2       -1        0         1        2        3        4        5        6         7        8

A

B

C

Figure 5.3: Discrete signal with only a single peak (A) unequal zero. Reconstruction of
this signal yields the sinc function (B). The frequency distribution (C) of the sinc function
consists of two peaks at −1

2
and 1
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.
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Figure 5.4: Comparison of pre- (left) and post-classification (right) of a CTA data set using
a transfer function of high frequency. Both images were generated with exactly the same
transfer function and with exactly the same number of slice images. Due to the blocky
appearance the pre-classified image is rather disturbing. The volumetric shapes are much
better represent by the high-frequency of the transfer function applied as post-classification.

as
Ix(x, y, z) = I(x + 1, y, z) − I(x− 1, y, z) with x, y, z ∈ IN. (5.10)

The derivatives in other directions are computed analogously. The second order derivative
of a 3D scalar field is described by a matrix called the Hessian, written as

H =




Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


 . (5.11)

Sato et al. [145] used the eigenvalues of the Hessian matrix to classify local intensity
structures such as sheet, line and blob structures. Since these local intensity structures exist
at various scales, multi-scale analysis is performed using convolution with Gaussian filter
kernels of different size. Other approaches use the second order derivative in direction of
the gradient vector instead of the Hessian matrix. The original intensity, the magnitude of
the gradient and the magnitude of the second order derivative in direction of the gradient
can be used as parameter domain for a 3D transfer function as proposed by Joe Kniss et
al. [83]. They also introduced an implementation of multi-dimensional transfer functions
on general purpose hardware together with a framework to adjust them interactively.

A different path was followed by Hladuvka et al. [69] who introduced curvature based
transfer functions. Analogous to surfaces, the local neighborhood of a point can be de-
scribed by two tangent vectors, called the principal directions and two corresponding values
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Figure 5.5: Register combiner setup for opacity weighting with gradient magnitude

of principal curvature κ1 and κ2. According to the signs of these values, we classify the
surface locally as

• plane (κ1 = κ2 = 0),

• parabolic cylinder (0 = κ1 > κ2 or κ1 > κ2 = 0),

• paraboloid (κ1 · κ2 > 0),

• hyperbolic paraboloid (κ1 · κ2 < 0),

A transfer function based on principal curvature classifies voxels according to the local
shape of the corresponding isosurface. The approach is especially useful for the extraction
of turbulent regions from simulation data according to the curvature magnitude and for
the detection of malformations such as vessel strictures (stenosis) in medicine.

From the visualization point of view, scalar data with multidimensional transfer func-
tions are similar to multivariate data, where multiple scalar values are given for each voxel
(such as pressure, density and temperature). In our case, the additional scalar fields are
derived from the original data set e.g. by gradient computation. In consequence, the im-
plementations of multi-dimensional transfer functions described in the following chapter
can be used to display multivariate data sets as well.

5.4.1 Implementation

A multi-dimensional transfer function for pre-classification is very easy to achieve as a
pre-processing step. The implementation of multi-dimensional transfer functions for post-
classification however is a little bit more challenging. As a special case, the opacity value
determined by a traditional one-dimensional transfer function can be weighted linearly by
simply multiplying it with the magnitude of the first order derivative. In this case the
absorption coefficient for a sample value v = I(xi, yi, zi) is given by

ϑk = ||∇I(xi, yi, zi)|| · Tabsorption(v). (5.12)

Gradient weighted opacity can be implemented by the use of multi-textures as outlined
in Figure 5.5. An additional 3D-texture (texture1) stores the pre-computed (and scaled)
magnitude of the gradient vector or any other scalar field that can be used as parameter
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domain for the transfer function. During rasterization the opacity value is obtained as
usual from the original texture via one-dimensional transfer function. The resulting opac-
ity value is then simply multiplied by the scalar weight obtained from the second texture.
Figure 5.6 (left) shows a CT data set with a conventional pre-interpolative one-dimensional
transfer function of the scalar value. Although a low transparency value is assigned for the
soft tissue at the neck of the patient, this region appears completely black and opaque. This
is due to the constant absorption that is accumulated for a ray that passes through this
homogenous region. Linear opacity weighting with the gradient magnitude (middle) ampli-
fies surface-like structures, while the large opaque homogenous regions of the unweighted
data set completely vanish. Linear gradient weighting can also be efficiently combined with
illumination calculations (right) as explained in Chapter 7.

The implementation of real multi-dimensional transfer functions can be achieved us-
ing the concept of dependent texture lookup. In Section 5.2.2.2 we have already seen an
implementation of a post-interpolative transfer function using dependent textures. In this
case the color table was stored in a texture, which was accessed by texture coordinates
obtained from the volume texture. For a one-dimensional transfer function, one of the
texture coordinates was simply discarded. This second texture coordinate can be used
to accomplish a two-dimensional transfer function lookup. Analogously four-dimensional
transfer functions are implemented as a sum or a product of two 2D transfer functions as
outlined in Figure 5.7. Each color component of the original RGBA texture now stores
a different scalar field such as the magnitude of the gradient or the second order deriva-
tive, or alternatively additional information such as pressure, density or temperature if
available. The Red and Alpha component are used as texture coordinates for a dependent
texture that stores a 2D transfer function lookup table. Analogously the Green and Blue

components are interpreted as texture coordinates for a second dependent texture, which
stores a different transfer function. Subsequently the RGBA quadruplets obtained from

Figure 5.6: CT data set visualized with the 2D-multi-texture-based approach. Pre-
interpolative transfer function (left), pre-interpolative transfer function with linear gradient
weighted opacity (middle) and an additional diffuse light source (see Chapter 7) (right)
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tions.

both dependent textures are combined e.g. by component-wise multiplication or addition.
The result is a four-dimensional transfer function,

T (v1, v2, v3, v4) = T12(v1, v2) · T34(v3, v4) or (5.13)

T̃ (v1, v2, v3, v4) = T12(v1, v2) + T34(v3, v4). (5.14)

More complex combinations of the two independent transfer functions T12 and T34 such as
dot product or blending are also possible. The classification procedure however will hardly
be intuitive, if such complicated transfer functions are used.

5.4.2 Fusion

In the context of biomedical imaging, the term fusion refers to the combination of comple-
mentary information obtained from multiple data sets into a final image. In many appli-
cations fusion is not performed during visualization using multi-dimensional transfer func-
tions. Instead, multiple data sets are merged together in an intelligent pre-processing step
which generates a new data set that contains the joint information. Fusion techniques for
multi-modal images in medicine, machine vision and remote sensing applications [1, 20, 98]
are still topics of active research. Li et al. [95] have suggested a fusion algorithm that
performs a sequence of forward and backward wavelet transformations. Matsopoulos et
al. [104] perform hierarchical fusion based on feature extraction from morphological pyra-
mids. Other approaches utilize pixel classification approaches [11] such as the Bayesian
probabilistic method [73] or entropy based fusion [116]. More recently Mukhopadhyay and
Chanda [117] introduced a fusion method based on multi-scale morphology. The advantage
of these techniques over multi-dimensional transfer functions is the low memory require-
ments during visualization and the reduction of the problem of multi-dimensional transfer
function design to the traditional one-dimensional problem. This however comes with a
significant loss in flexibility for interactive exploration of the data. Since the fusion algo-
rithms are usually performed on the voxel data without reconstruction of the continuous
signal, problems similar to pre-classification will arise.
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Figure 5.8: The 3D anatomical atlas VoxelMan [41] allows the interactive exploration of
the human body based on a detailed segmentation.

5.5 Local Transfer Functions

Up until now we have applied one transfer function to the entire volume data set. The
color and opacity values for all the voxels have been determined by a single color lookup
table. In many application areas, such as the one described in Chapter 14, it is desirable to
divide the volume data set into small voxel subsets using explicit segmentation algorithms
and to specify a unique transfer function for every subset. We refer to this concept as local
transfer functions assignment.

The division of the volume into disjoint subsets is performed on a per-voxel basis by
assigning a unique tag number for each subset. A transfer function which is applied locally
to such a voxel subset affects only those voxels that carry the specified tag number. As the
tag numbers usually specify certain attributes, such as functional or anatomical properties,
a tagged volume is also often referred to as an attributed volume [162]. A prominent
example for such an attributed volume is the explicit segmentation of the visible human
data sets [122] that was obtained by Karl-Heinz Höhne and his group. In combination
with interactive video streaming (Quicktime VR [130]) this technique was used to build
an interactive 3D anatomical atlas on CD-ROM, available as a commercial product for
physicians and students of medicine [41].

The integration of local transfer functions into texture based volume rendering raises
again the question whether to apply the color lookup before or after the interpolation.
At the first glance, local transfer functions might appear similar to multi-dimensional
transfer function, with the tag number being an additional scalar field that simply expands
the transfer function domain. However, there is a significant difference. Tag numbers
are used to differentiate between specific structural entities and thus do not represent a
continuous scalar field. The interpolation and the reconstruction of a continuous signal
from discrete tag numbers of course does not make sense. The principle of local transfer
function application is illustrated in Figure 5.9. In addition to the original scalar value,
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Figure 5.9: Local transfer function application: The tag number t selects one of several
transfer function tables. The index value v is used to interpolate an RGBA quadruplet
from the selected table.

every voxel holds an integer value representing the tag number of the subset that it belongs
to. In a first step, the tag number is used to select the transfer function which was generated
for the specific voxel subset. Subsequently the original scalar value is used as index into the
selected transfer function table. The resulting RGBA quadruplet is used for ray integration.

5.5.1 Implementation

Similar to multi-dimensional transfer functions, the implementation of local transfer func-
tions is relatively simple for pre-classification and considerably difficult in case of post-
classification. Pre-interpolative application of local transfer functions are easily imple-
mented using the OpenGL pixel transfer or paletted textures as described in Section 5.2.
The idea here is to partition the existing one-dimensional color lookup table into multiple
sections as illustrated in Figure 5.10. The OpenGL pixel transfer usually supports color
lookup tables with at least 10 bit depth. Such a color table allows the allocation of four
different tag numbers, each with a corresponding local transfer function of 8 bit resolution.
The volume is internally stored with a resolution of 16 bit per voxel. A value of 256 · tag
is added to the original 8 bit intensity value before writing it into the texture buffer and
the pixel transfer finally maps the resulting number to an RGBA quadruplet determined

tag 0                                tag 1                                 tag 2                       tag 3

0 256 512 768

8 bit local transfer function tables for pre-classification

Figure 5.10: Local transfer functions for pre-classification during pixel transfer are imple-
mented by partitioning the available hardware color table into several portions.
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Figure 5.11: CT scan of a frog: Results of a detailed segmentation are displayed using
post-interpolative local transfer functions. Visual artifacts occur at the transition between
different tag regions.

by the corresponding local transfer function.
As we have seen in Section 5.3 the application of post-interpolative transfer function

is favorable with respect to the image quality. Unfortunately, partitioning the color table
does not work in case of post-classification. The problem here is the interpolation between
neighboring voxels, that carry different tag numbers. Interpolating across the boundaries of
tagged regions will result in visible artifacts. However, to completely avoid the interpolation
between tag numbers, the local transfer function selection must take place before the
interpolation while the transfer function should still be applied after the interpolation. This
combination of pre- and post-interpolative color table lookup turns out to be extremely
difficult to implement within the rendering pipeline.

Local transfer functions for two different tags can be implemented using dependent
textures in the same way as multi-dimensional transfer functions. For more than two tag
numbers, visual artifacts occur at the boundary surface between different tags. Figure 5.11
displays the results of an implementation using dependent textures and multiple tags. The
only way to suppress these artifacts is to use multi-pass rendering for each slice. Each
tagged object is drawn in a separate rendering pass with the transfer function for all the
other tags set to fully transparent. Such an implementation, however, would hardly reach
interactive frame rates.



Chapter 6

Transfer Function Design

In the previous chapter various types of transfer functions have been explained. We have
also seen how transfer function tables are applied technically within the graphics pipeline.
From the practical point of view however, probably the most significant challenge with
direct volume rendering is finding an appropriate transfer function for a specific data set.
Especially for tomography data this is a non-trivial task. The only variant of direct volume
rendering which completely circumvents the problem of transfer function adjustment is
maximum intensity projection (MIP) as explained in Section 3.1.2.1. The applicability of
MIP, however, is extremely limited.

Now and in the future, the work of practitioners and researchers would be helped by a
simplified and more intuitive procedure for transfer function adjustment as actually avail-
able. The reason why a good transfer function is difficult to accomplish is its high degree
of freedom. Finding appropriate transfer functions that yield the desired image results
is often a tedious process of manual tweaking of parameters. Besides interactive manual
specification, there are several approaches for automatic and semi-automatic generation
that we will focus our interest upon in this chapter. Apart from the specific problem of
transfer function design, the automatic generation of color maps for other purposes has
been investigated before my various researchers [9, 140, 170].

6.1 Interactive Adjustment

In the majority of scientific applications transfer functions are manually generated using
some type of visual editor or widget, e.g dialog windows as displayed in Figure 6.1. Avail-
able implementations of color table editors vary in the representation and the degrees of
freedom for the transfer function. They allow the composition of a transfer function using
primitive objects such as linear ramps, gaussian curves and splines. Manual adjustment
of transfer function requires interactive frame rates to be provided by the underlying ren-
dering algorithm, as the direct visual feedback within the 3D viewer is indispensable for
goal-directed work. The effects of changes applied in the transfer function domain must be
immediately visible in the volume viewer. Recently, Joe Kniss et al.[83] have introduced
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Figure 6.1: The user interface for transfer function assignment is usually implemented as
a dialog window which allows editing a graphical representation of the color map. Two
examples of such a dialog window are displayed.

direct manipulation widgets, a very useful concept which provides visual feedback in both
directions. Interaction that is performed in the spatial domain of the volume object is used
to select regions in the transfer function domain. Up until now this is the only approach for
interactive assignment that integrates multi-dimensional transfer functions in an intuitive
way.

Manual transfer function design is primarily based on experience, allowing the user
to bring in his knowledge of the specific data as well as his personal taste. In many
cases the assignment procedure is hardly reproducible even for similar data sets. Up until
now manual heuristic methods are the only approaches for transfer function assignment,
that include detailed knowledge about the structures inside the volume data. In order to
speed up manual assignment in practise, application-specific templates are used, which are
manually adapted to the individual data set. As we have seen in the previous chapter,
transfer functions are usually stored and applied as color lookup tables, one-dimensional
arrays of RGBA quadruplets. Templates can also be stored as piecewise linear mappings
or functions of higher order, which will reduce the number of free parameters that must
be adjusted. The flexibility of a transfer function template again depends on its degree of
freedom.

In many application areas adequate techniques to compare examination results are
required. Physicians and engineers are in demand of a reliable method to reproduce the
visualization in order to discuss and re-evaluate their conclusions. As a result, there is
a high demand for automatic methods to generate appropriate transfer functions in a
reproducible way. Various approaches for automatic or semi-automatic assignment have
been proposed recently. These approaches can be categorized into image-driven and data-
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driven techniques as outlined in the following sections.

6.2 Image-Driven Techniques

The major purpose of a transfer function is to create meaningful images. In consequence,
image-driven techniques for automatic transfer function design analyze the information
contained in the images generated with different parameter settings. They derive a quality
metric for finding an optimal setting based on this analysis. Methods for setting visual
parameters reported in literature either explore the parameter space interactively (inter-
active evolution [86, 155, 163]) or search for optimal settings based on an objective quality
measure (inverse design [156, 166, 80, 182]).

A very general concept for setting visual parameters in computer graphics and anima-
tion is the Design Gallery as presented by Marks et al. [103] in 1997. The basic idea of
Design Galleries is to automatically generate and organize the broadest selection of percep-
tually different images that can be produced by varying a given vector of input parameters.
This requires a way of finding a set of the input parameter vectors that optimally disperse
the output values. Additionally, Design Galleries arrange the results and organize them
efficiently for intuitive browsing by the user.

He et al. [67] have developed a technique for semi-automatic transfer function gen-
eration using stochastic search algorithms. In this idea the process of transfer function
generation is interpreted as an optimization problem. An appropriate parameterization of
the transfer function is chosen. Based on this parameterization an initial set of transfer
functions is created, and for each function an image of the volume is rendered. With this
initial set a stochastic search for the optimal parameter setting is started. The search
algorithm is controlled by either manual thumbnail selection [87] of the best results or
by evaluation of an objective metric such as entropy, edge energy or histogram variance.
Possible search strategies that have been applied comprise genetic algorithms [71, 54], hill-
climbing and simulated annealing [82]. Genetic algorithms are optimization techniques
which are modeled on natural evolutionary processes. An initial population of transfer
functions (genotypes) is created. For each of these transfer functions an image (pheno-
type) is generated and a fitness value is evaluated. From the set of transfer functions that
have the highest fitness value, the next generation of transfer functions are created in an
evolutionary process that involves crossbreeding and mutation.

Although the image-driven approaches represent a very helpful aid for unexperienced
users, they are not inevitably faster than manual assignment using a color table editor.
The applicability of the image-based approaches which are based on non-deterministic
concepts in general is very limited since the results are hardly reproducible. Image-based
quality metrics for fully automatic transfer function generation tacitly assume that the
image quality is solely influenced by the parameters of the transfer function. However,
in many cases other parameters during image generation, such as the viewing position,
may also have great influence on the image quality. Important structures in 3D might
be completely occluded for randomly generated viewpoints. A possible solution to this
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problem might be the inclusion of approaches for automatic viewpoint selection, such as
the methods used for image-based rendering [70, 2, 142, 159], but such a strategy has not
yet been investigated.

6.3 Data-Driven Techniques

In contrast to the image-driven methods, data-driven techniques analyze the volume data
itself instead of the generated images. The process of transfer function design is thus
decoupled from the influence of image related parameters such as viewing position and
pixel resolution. However, the data amount to be analyzed significantly increases.

Fang et al. [43] consider the problem of transfer function design from an image process-
ing point of view. In their definition the transfer function transforms a 3D scalar volume
to a 3D RGBA volume and thus can be formulated as a sequence of image processing op-
erations. The major drawback of this method is the high cost in memory that is required
to store intermediate results for the image processing operations. The large memory re-
quirements can be circumvented by adapting the volume rendering procedure to perform
the image processing operations on the fly. A related technique was presented by Sato et
al. [145]. Their approach applies 3D image filters in order to accentuate local intensity
structures. In their concept the transfer function domain is a multi-dimensional feature
space which is based on first and second order directional derivatives. Bajaj et al [3] pro-
pose a data-driven technique which gathers statistical information about the isosurfaces by
evaluating metrics such as surface area, volume and gradient magnitude. The algorithm is
supplemented by a specialized user interface for parameter selection.

The most promising data-driven technique was presented by Kindlmann and
Durkin [81]. They proposed an interesting data-driven method which takes into account
the first and second order directional derivatives of the scalar field. The principle of this
approach is based on some theoretical considerations. If we start at a particular point

f(s)

f '(s)

f ''(s)

Figure 6.2: Monotonously increasing function f(x) and its first and second order derivatives
f ′(x) and f ′′(x).
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inside the volume and move through the scalar field by following the path p that is deter-
mined by its (non-zero) gradient vector, we can parameterize the scalar values f(x, y, z)
as a one-dimensional function of the covered distance s. Since the gradient always points
in direction of the strongest increase, we will obtain a monotonically increasing function
fp(s). Such a function is displayed in Figure 6.2. In image processing, the first and second
order derivatives f ′p(s) and f ′′p (s) are frequently used criteria for boundary detection. Since
fp(s) is invertible, it is possible to express the derivatives f ′p(s) and f ′′p (s) as a function of
the data value v = fp(s) instead of the position s, denoted

f̃p
′
(v) = f ′p(f

−1
p (v)) and f̃p

′′
(v) = f ′′p (f−1

p (v)). (6.1)

As a result we have obtained the first and second order derivatives as function of the scalar
value v. These functions however are only valid for one particular path P through the
volume. To obtain first and second order derivatives for the entire data set, these curves
are simply averaged for all paths p ∈ P through the volume,

g(v) =
1

||P ||
∑
p∈P

f̃p
′
(v) and h(v) =

1

||P ||
∑
p∈P

f̃p
′′
(v). (6.2)

In practice for each voxel of the original data set the first and second order derivatives
in gradient direction are computed. These values are averaged for all voxels with equal
data value v. A boundary in the data set is described by a high magnitude of the first
order derivative and a zero-crossing in the second order derivative. Combining the two
functions g(v) and h(v) results in the position function

p(v) =
−h(v)

g(v)
, (6.3)

which is interpreted as the average distance of a data point with value v from a boundary in
the data set. The position function p(v) is used to compute a transfer function for opacity
by applying a small threshold to determine the zero-crossings. The result is multiplied
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Figure 6.3: Averaged derivatives g(v) and h(v) and position function p(v) according to
the semi-automatic approach to transfer function design presented by Kindlmann and
Durkin [81].
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with a boundary emphasis function which determines the shape of the transfer function.
As an example the averaged derivatives g(v) and h(v) and the position function p(v) for
the engine block data set are displayed in Figure 6.3.

The algorithm proposed by Kindlmann and Durkin is capable of accurately determining
boundaries within a given data sets without any a priori knowledge of the spatial structures
that it contains. It is probably the best method currently available to visualize shapes and
structures in an unknown volume data set.

6.3.1 Automatic Adaptation

There are several different aspects that are important for developing algorithms for auto-
matic transfer function design. Besides the obvious task of designing a transfer function
that yields meaningful images for a specific data set, modern application also require ro-
bustness and reproducibility of the visual results for different data sets. Let us consider the
following application scenario: For a clinical study such as the one described in Chapter 13,
the physician has collected a large number of similar data sets from different patients. He
knows exactly what particular structures are contained in the data set, and he also has
some basic idea on how the resulting images should look like. Based on his profound
knowledge of the anatomy, he decides that some particular structures are important for his
analysis and others are less interesting or in some cases even appear distracting. In order
to compare the anatomical structures of different patients, he wants to obtain exactly the
same visual representation for all his data sets. This task, however, requires the inclusion of
a priori knowledge about the data into the described semi-automatic approach to transfer
function generation. To these ends we propose a method, that utilizes the position function
to automatically adapt existing transfer function templates to new data set. Preliminary
results of this idea have been published in [136].

In the solution that we aim at, the user should assign a transfer function for only one
particular data set, and the resulting template should intelligently be adapted to all the
other data sets in the series. For multiple data sets of equal modality the distribution of the
intensity values vary within a considerable range. In order to account for these effects, the
input parameter axis of transfer function template must be distorted non-linearly during
the adaptation. This again leads to an optimization problem.

For a given series of similar data sets, we select a reference data set Dref , and we initially
design a transfer function Tref (v) once for this specific data set using a manual editor or
any other approach. For a different data set Dstudy from the same series, we search for a
non-linear transformation t(v) of the intensity values v, such that the transfer function

Tstudy (v) = Tref

(
t(v)

)
(6.4)

yields equivalent visual results as in the reference case. Based on an appropriate parameter-
ization of the non-linear distortion t(v), the free parameters are determined by a stochastic
search algorithm. Since the number of parameters for optimization is limited, exhaus-
tive search techniques and enumeration techniques such as dynamic programming [32] are
applicable.
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Figure 6.4: Position functions p(v) and histograms H(v) for six different CTA data sets.

To be able to evaluate the quality of a given transformations objectively, stochastic
search algorithms require an appropriate metric. In our first experiments we used a metric
Mhist that simply calculates the quadratic difference between the normalized histograms,
denoted

Mhist (t) =
∑

v

∣∣∣Hstudy (v)−Href

(
t(v)

)∣∣∣
2

(6.5)

with Href and Hstudy referring to the intensity histograms of the reference and the study
data set. Note that this metric is monotonically increasing in v and thus can be used as
cost function for dynamic programming.

The described optimization procedure is an efficient method to reuse empirical transfer
functions designed for a specific data set and to adjust them to different data sets of the
same type. Using the histogram based metric however turned out to be not accurate enough
in many cases. A metric based on the position function p(v) introduced in Equation 6.3,
denoted

Mpos (t) =
∑

v

∣∣∣pstudy (v)− pref

(
t(v)

)∣∣∣
2

(6.6)

has proved superior to the histogram. Figure 6.4 displays the histogram H(v) and the
position function p(v) for different data sets that belong to a large clinical study using
CTA1 of the human head. CTA is a common imaging technique in medical routine which
involves injection of contrast dye to display vascular structures. The only significant feature
in the histogram is a high peak which is caused by the large amount of soft tissue of the
brain. This characteristic peak however has a very limited extent. In comparison to
this, the position function p(v) shows much more significant features. As we have seen
in the previous section, zero-crossings in the position function indicate boundaries in the

1CTA = computed tomography angiography, angiography = imaging of vascular structures
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A B C

Figure 6.5: Automatic adaptation of transfer function templates: Template without ad-
justment (A), adjustment based on the histogram (B), adjustment based on the position
function (C).

data. The transition between soft tissue and contrast dye is marked by a zero-crossing
in p(v) close to the peak in the histogram. To the left of this peak, there is a significant
local maximum with (usually) negative value which can be interpreted as a zero-crossing
describing the boundary between soft tissue and fluid. Additionally, the boundary to bone
structures is clearly indicated by another zero-crossing on the right side of the peak in
the histogram. Due to the higher number of significant features the position function p(v)
represents a more robust basis for the optimization procedure.

6.4 Conclusion

The most frequently used way of transfer function adjustment implemented in commercial
applications is a dialog window which allows the visual editing of the transfer function
manually. Among the users, however, there is a high demand for more intuitive ways.
Transfer function design based on thumbnail selection is becoming more and more popular
and has finally found its way into commercial applications.

Automatic and semi-automatic data-driven methods are still topics of active research.
The functionality presented in this chapter was evaluated using CTA data of a large number
of patients. The application was tested within the scope of a clinical study of intracranial
aneurysms (see Chapter 13). The automatic adjustment was computed using both the
histogram based approach and the metric based on the position function. As displayed in
Figure 6.5 the approach based on the position function yields significantly better visual
results than the histogram based metric. In very few cases, the results of both approaches
were almost equivalent. The presented automatic method was integrated into a prototype
framework for automated video generation [76] for documentation in clinical practise, which
has been tested as part of an internet visualization service [75] provided by the University
of Stuttgart.



Chapter 7

Local Illumination

In the previous chapters we have assumed that radiant energy is emitted only by the voxels.
Illumination effects caused by external light sources have not yet been taken into account.
In this chapter we want to include a local illumination model into our framework of texture
based volume rendering. Our motivation for this is primarily the fact that lighting greatly
enhances the perception of spatial structures and depth relations. As the terms lighting
and shading are often used as synonyms by mistake, I will refer to the original terminology
given in [45]:

Lighting: The lighting model specifies how the intensity at a given point is determined,
taking into account various illumination effects from different light sources. Lam-
bert’s, Phong’s and Blinn’s illumination models are the most popular lighting equa-
tions.

Shading: The shading model specifies how the lighting model is applied to an object. The
shading rules might decide to evaluate the illumination model only at certain points
of a surface and interpolate between them. The most popular shading models are
flat shading, Gouraud shading and Phong shading.

7.1 Principles

A local illumination model allows the approximation of the light intensity reflected from a
point on the surface of an object. This intensity is evaluated as a function of the (local)
orientation of the surface with respect to the position of a point light source and some
material properties. In comparison to global illumination models indirect light, shadows
and caustics are not taken into account. Local illumination models are simple, easy to
evaluate and do not require the computational complexity of global illumination. The most
popular local illumination model is the Phong model [127], which computes the lighting as
a linear combination of three different terms, an ambient, a diffuse and a specular term,

IPhong = Iambient + Idiffuse + Ispecular. (7.1)
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ambient +diffuse +specular

Figure 7.1: The Phong illumination model consists of an ambient, a diffuse and a specular
component.

The different components of the Phong illumination model are illustrated in Figure 7.1.

Ambient Light: Ambient illumination is modeled by a constant term,

Iambient = ka = const. (7.2)

Without the ambient term parts of the geometry that are not directly lit would be
completely black. In the real world such indirect illumination effects are caused by
light intensity which is reflected from other surfaces.

Diffuse Reflection: Reflecting light with equal intensity in all directions is known as dif-
fuse or Lambertian reflection. The brightness of a dull, matte surface is independent
of the viewing direction and depends only on the angle of incidence ϕ between the
direction ~l of the light source and the surface normal ~n. The diffuse illumination
term is written as

Idiffuse = Ip kd cos ϕ = Ip kd (~l • ~n). (7.3)

Ip is the intensity emitted from the light source. The surface property kd is a constant
between 0 and 1 specifying the amount of diffuse reflection as a material specific
constant.

Specular Reflection: Specular reflection is exhibited by every shiny surface and causes
so-called highlights. The specular lighting term incorporates the vector ~v that runs
from the object to the viewer’s eye into the lighting computation. Light is reflected
in the direction of reflection ~r which is the direction of light ~l mirrored about the
surface normal ~n. For efficiency the reflection vector ~r can be replaced by the halfway
vector ~h, resulting in the Blinn-Phong illumination model [45],

Ispecular = Ip ks cosn α = Ip ks (~h • ~n)n. (7.4)

The material property ks determines the amount of specular reflection. The exponent
n is called the shininess of the surface and is used to control the size of the highlights.
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The Blinn-Phong illumination models uses the normal vector to describe the local shape
of an object and is primarily used for lighting of polygonal surfaces. To include the Blinn-
Phong illumination model into direct volume rendering, the local shape of the volumetric
data set must be described by an appropriate type of vector which substitutes the surface
normal. In our concept of classification a single peak in the transfer function corresponds
to an isosurface in the volume data set. We know that the normal direction of an isosurface
coincides with the direction of the gradient vector of the underlying scalar field. In our
illumination model, the gradient vector is thus an appropriate substitute for the surface
normal. An algorithm for gradient estimation has already been discussed in Section 5.4.

7.2 Non-Polygonal Isosurfaces

As mentioned above, a sharp peak in the transfer function represents an isosurface or
in special cases an isovolume. According to sampling theory, such a peak results in an
infinite extent of the transfer function in the frequency domain. Rendering a volume
with such a transfer function thus requires to considerably increase the sampling rate to
remove slicing artifacts. Without illumination, the resulting image, however, will show
nothing but the silhouette of the object as displayed in Figure 7.2 (left). It is obvious,
that illumination techniques are required to display the surface structures (middle and
right). To accomplish this, we must determine the normal vector of the isosurface for
the dot-product computation. As mentioned above, this normal vector coincides with the
normalized gradient vector. In consequence, we can pre-compute the gradient vector for
every voxel and use it as normal vector in the Blinn-Phong illumination model.

The basic idea of this approach was presented by Westermann and Ertl [174]. In a pre-
processing step the gradient vector is computed for each voxel using the central differences

Figure 7.2: Non-polygonal isosurface without illumination (left), with diffuse illumination
(middle) and with specular light (right)
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0 glDisable(GL_BLEND);
1 // Enable Alpha Test for isosurface
2 glEnable(GL_ALPHA_TEST);
3 glAlphaFunc(GL_EQUAL, fIsoValue);

Listing 7.1: OpenGL setup for the alpha test.

method or any other gradient estimation scheme. The three components of the normalized
gradient vector together with the original scalar value of the data set are stored as RGBA
quadruplet in a 3D-texture:
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(7.5)

The vector components must be normalized, scaled and biased to adjust their signed range
[−1, 1] to the unsigned range [0, 1] of the color components. A post-interpolative transfer
function for opacity with a single peak from 0 to 1 can be efficiently implemented using
the standard OpenGL per-fragment operations. As we have seen in Section 2.1.3, the
alpha test allows the discarding of incoming fragments conditional on the outcome of a
comparison of the incoming alpha value with a user-specified reference value. In our case
the alpha channel contains the scalar intensity value and the alpha test is used to discard
all fragments that do not belong to the isosurface specified by the reference alpha value.
The setup for the OpenGL alpha test is displayed in Listing 7.1. Due to the visual artifacts
caused by the high frequency component of the transfer function, the sampling rate must
be extremely increased to obtain satisfying images. Alternatively the alpha test can be set
up to check for GL GREATER or GL LESS instead of GL EQUAL (line 3), allowing a considerable
reduction of the sampling rate.

After one rendering pass of the volume data set with the alpha test enabled, the frame
buffer contains the correct isosurface with the normal vectors encoded in the RGB compo-
nents. In the original approach, the image contained in the frame buffer is read out and
piped again through the rasterization stage. In this second pass the dot product with the
direction vector of a diffuse directional1 light is computed by exploiting the color matrix
OpenGL extension (SGI color matrix) provided by SGI. This original approach by West-
ermann and Ertl was restricted to diffuse illumination of non-polygonal isosurfaces with a
single directional light source. Based on their implementation, Meißner et al. [107] have
provided a method to include diffuse illumination into semi-transparent volume rendering
with classification. In their approach several passes through the rasterization hardware

1A directional light is a light source, which is sufficiently far away from the illuminated object, so that
the light rays can assumed to be parallel. In this case the direction of light is constant for the whole scene.
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0 #if defined GL_EXT_texture_env_dot3
1 // enable the extension
2 glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);
3 // preserve the alpha value
4 glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE);
5 // enable dot product computation
6 glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_DOT3_RGB_EXT);
7 // first argument: light direction stored in primary color
8 glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_PRIMARY_COLOR_EXT);
9 glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_EXT, GL_SRC_COLOR);
10 // second argument: voxel gradient stored in RGB texture
11 glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_TEXTURE);
12 glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);
13 #endif

Listing 7.2: OpenGL setup for the the dot product extension.

led to a significant loss in the overall rendering performance. Dachille et al.[25] have pro-
posed an approach that uses 3D-texture hardware interpolation and software shading and
classification. In the following chapters we examine illumination techniques based on pixel
shaders for non-polygonal isosurface display as well as for rendering of semi-transparent
volumes. Preliminary results of the described approaches have been published in [134].

7.3 Per-Pixel Illumination

The integration of the Phong illumination model into a single-pass volume rendering pro-
cedure requires a mechanism that allows the computation of dot products and component-
wise products in hardware. As we have seen, this mechanism is provided by the pixel-
shaders functionality of modern consumer graphics boards. In the original algorithm for
rendering non-polygonal isosurfaces the second rendering pass was required to compute
the dot product between the light direction and the local surface normal. To get rid of
this second rendering pass, it is necessary to compute the dot product directly within the
texture unit.

7.3.1 Implementations

Dot product computation does not require to use complex OpenGL extensions such as the
NVidia register combiners. A simple functionality that supports dot product calculation is
provided by the OpenGL extension EXT texture env dot3. This extension to the standard
OpenGL texture environment defines a new way to combine the color and texture values
during texture applications. As displayed in Listing 7.2, the extension is activated by
setting the texture environment mode to GL COMBINE EXT. The dot product computation
must be enabled by selecting GL DOT3 RGB EXT as combination mode (line 7). In the
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Figure 7.3: Combiner setup for fast rendering of shaded isosurfaces using 3D-textures.

sample code the RGBA quadruplets (GL SRC COLOR) of the primary color and the texel
color are used as arguments. The described implementation represents a more efficient
implementation of non-polygonal shaded isosurfaces as the original algorithm. However, it
does neither account for the specular illumination term, nor for multiple light sources.

More flexible illumination with multiple light sources can be achieved using the NVidia
register combiners or similar extensions. The register combiner setup for the diffuse term
is displayed in Figure 7.3. The dot product between the direction of light is computed
at the first general combiner stage. At the final combiner stage the result from the dot
product computation is multiplied with the color of the diffuse light source Ip (including the
diffuse reflection coefficient kd) and the ambient color Iambient is simply added. The result is
passed to the alpha test. In the setup displayed in Figure 7.4, the illumination calculation
is combined with the interpolation of intermediate slices for a 2D-multi-texture based
approach. In this case, the first general combiner is used to interpolate an intermediate
slice images and the dot product computation is performed subsequently by the second
general combiner stage.

If we examine the register combiner setup for the last two configurations, we notice that
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Figure 7.4: Combiner setup for fast rendering of shaded isosurfaces.
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Figure 7.5: Combiner setup for rendering semi-transparent volumes with local diffuse illu-
mination.

the variables C and D have not yet been used at the combiner stage which computes the
dot product. Since a general register combiner is capable of performing two independent
dot product calculations in parallel, the unused portion of the combiner can be utilized to
compute diffuse illumination from another directional light source. If more than two light
sources are required, an additional general combiner stage can be activated. Depending on
the maximum number of general combiner stages provided by the underlying hardware ar-
chitecture, the illumination calculations for multiple independent light sources are possible.

The specular illumination term requires the computation of the n-th power of the
dot product with the halfway vector ~h. Specular illumination can be accomplished using
multiple register combiner stages in a similar way. In this case the direction of light is
simply replaced by the halfway vector. The n-th power of the resulting dot product can
be computed by a sequence of component-wise multiplications performed by succeeding
combiner stages. Provided that there are enough available general combiner stages, the
complete Phong illumination model for multiple light sources can be computed on the
fly during rasterization. Examples of non-polygonal shaded isosurfaces are displayed in
Figure 7.6.

In contrast to the original approach to rendering non-polygonal isosurfaces, the light-
ing techniques presented in this chapter can also be used for the illumination of semi-
transparent volume data. A modification of the register combiner setup is displayed in
Figure 7.5. The alpha test is again replaced by the usual alpha blending setup. A sepa-
rate 3D-texture is now used to store the intensity values. Using pre- or post-classification
as outlined in Chapter 5, these intensity values are mapped to color and opacity values
representing the emission and absorption coefficients. The emission coefficient in this case
specifies the emitted (ambient) light on a per-voxel basis. The absorption coefficient is
used for numerical integration by alpha blending. The diffuse illumination term is simply
added. The specular term is not included in the displayed combiner setup, but can easily
be accomplished as described above. Since for semi-transparent volume rendering the in-
tensity value is stored in a separate texture, the Alpha component of the gradient texture
is free and can be used to store the gradient magnitude for classification with gradient
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weighted opacity as described in Section 5.4.

ig h

ca b

fd e

Figure 7.6: CT data of the human hand bones with examples of different illumination ef-
fects. Non-polygonal isosurface with diffuse illumination(a), with specular illumination(b),
with both diffuse and specular illumination (c) and with two diffuse light sources (d). Semi-
transparent volume data without illumination (e), with diffuse illumination (f) and with
specular illumination (g). Semi-transparent volume data with gradient weighted opacity
and diffuse (h) or specular (i) illumination.
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7.4 Reflection Maps

The examples of shaded semi-transparent volume data displayed in Figure 7.6 demon-
strate the flexibility of per-pixel illumination calculations. However, if the illumination
scenario gets too complex for on-the-fly computation, alternative lighting techniques such
as reflection mapping come into play. The idea of reflection mapping originates from 3D
computer games and represents a method to pre-compute complex illumination scenarios.
The usefulness of this approach derives from its ability to realize local illumination with
an arbitrary number of light sources and different illumination parameters at low compu-
tational cost. Reflection mapping is a two-stage process that involves the construction of
a reflection map as a pre-computation step. In effect a reflection map caches the incident
illumination from all directions at a single point in space.

Closely related to the diffuse and specular terms of the Phong illumination model,
reflection mapping can be performed with either diffuse reflection maps or reflective en-
vironment maps. The indices into a diffuse reflection map are directly computed from
the normal vector, whereas the coordinates for a reflective map are a function of both
the normal vector and the viewing direction. Reflection maps in general assume that the
illuminated object is small with respect to the environment that contains it. Self-reflection
and self-shadowing is not taken into account, resulting in technically wrong reflection maps
for concave objects. The idea of reflection mapping has been first suggested by Blinn [10].
The term environment mapping was coined by Greene [56] in 1986. According to the pa-
rameterization of the normal direction, reflection mapping approaches can be categorized
into longitude-latitude maps, spherical maps and cube maps.

As we have seen in the previous sections, the Phong illumination model uses information
about the local shape of the object by means of normal vectors. Every illumination term
which is a function of a normalized vector can be efficiently pre-computed in a reflection
map. Normalized vectors are fully determined by two angles, longitude (from 0◦ to 360◦)
and latitude (from −90◦ to 90◦). The idea of such a reflection map is to cache the incident
illumination in a 2D-texture with the x and y axes representing the longitude and latitude

Figure 7.7: Example of a spherical environment map.
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Figure 7.8: Example of a environment cube map.

angles, respectively. An alternative parameterization is used for the construction of a
spherical reflection map as displayed in Figure 7.7. A circular texture image is generated
by orthographic projection of the reflection as seen in the surface of a perfect mirror sphere.
In practise, spherical environment maps are obtained by traditional ray-tracing or by taking
photographs of shiny spheres.

A third alternative parameterization of the normal direction is used in order to con-
struct a cube map as displayed in Figure 7.8. In this case the environment is projected
onto the six sides of a surrounding cube. The largest component of the reflection vector
indicates the appropriate side of the cube and the remaining vector components are used
as coordinates for the corresponding texture map. Cubic mapping is popular because the
required reflection maps can easily be constructed using conventional rendering systems
and photography.

The implementation of cubic diffuse and reflective environment maps can be accom-
plished using the OpenGL extension GL NV texture shader. The setup is displayed in
Listing 7.3. Four texture units are involved in this configuration. Texture 0 is a 3D-
texture which contains the pre-computed gradient vectors. In texture unit 0 a normal
vector is interpolated from this texture (line 6). Since the reflection map is generated
in the world coordinate space, accurate application of a normal map requires to account
for the local transformation represented by the current modeling matrix. For reflective
reflection maps the viewing direction must also be taken into account. In the OpenGL
extension, the local 3× 3 modeling matrix and the camera position is specified as texture
coordinates for the texture units 1, 2 and 3. From this information the GPU constructs the
viewing direction and valid normal vectors in world coordinates in texture unit 1 (lines 8–
15). The diffuse and the reflective cube maps are applied in texture unit 2 (lines 18–26)
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and texture unit 3 (lines 29–37), respectively. Since the normal vectors are specified as
color components within the unsigned range [0, 1], they must be expanded internally to a
signed range [−1, 1] (lines 14, 25 and 34). As a result, the texture registers 2 and 3 contain
the appropriately sampled diffuse and reflective environment map. These values are finally
combined to form the final color of the fragment using the register combiner extension.
According to the assigned reflection coefficients kd and ks of the diffuse and the reflective
term, different material properties can be simulated as displayed in Figure 7.9.

diffuse + 60%reflective
lightmap

diffuse lightmap only diffuse + 40%reflective
lightmap

diffuse + 100%reflective
lightmap

Figure 7.9: Non-polygonal isosurface with diffuse and specular lightmaps of the engine
block data set. The reflectivity of the surface increases from ks = 0 at top left to ks = 1
at bottom right.
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0 #if defined GL_NV_texture_shader
1 // texture unit 0 - sample normal vector from 3D-texture
2 glActiveTextureARB(GL_TEXTURE0_ARB);
3 glEnable(GL_TEXTURE_3D_EXT);
4 glEnable(GL_TEXTURE_SHADER_NV);
5 glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_TEXTURE_3D);
6
7 // texture unit 1 - dot product computation
8 glActiveTextureARB( GL_TEXTURE1_ARB );
9 glEnable(GL_TEXTURE_SHADER_NV);
10 glTexEnvi(GL_TEXTURE_SHADER_NV,
11 GL_SHADER_OPERATION_NV, GL_DOT_PRODUCT_NV);
12 glTexEnvi(GL_TEXTURE_SHADER_NV,
13 GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB);
14 glTexEnvi(GL_TEXTURE_SHADER_NV,
15 GL_RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV, GL_EXPAND_NORMAL_NV);
16
17 // texture unit 2 - diffuse cube map
18 glActiveTextureARB( GL_TEXTURE2_ARB );
19 glEnable(GL_TEXTURE_SHADER_NV);
20 glBindTexture(GL_TEXTURE_CUBE_MAP_EXT, m_nDiffuseCubeMapTexName);
21 glTexEnvi(GL_TEXTURE_SHADER_NV,
22 GL_SHADER_OPERATION_NV, GL_DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV);
23 glTexEnvi(GL_TEXTURE_SHADER_NV,
24 GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB);
25 glTexEnvi(GL_TEXTURE_SHADER_NV,
26 GL_RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV, GL_EXPAND_NORMAL_NV);
27
28 // texture unit 3 - reflective cube map
29 glActiveTextureARB( GL_TEXTURE3_ARB );
30 glEnable(GL_TEXTURE_CUBE_MAP_EXT);
31 glBindTexture(GL_TEXTURE_CUBE_MAP_EXT, m_nReflectiveCubeMapTexName);
32 glTexEnvi(GL_TEXTURE_SHADER_NV,
33 GL_SHADER_OPERATION_NV, GL_DOT_PRODUCT_REFLECT_CUBE_MAP_NV);
34 glTexEnvi(GL_TEXTURE_SHADER_NV,
35 GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB);
36 glTexEnvi(GL_TEXTURE_SHADER_NV,
37 GL_RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV, GL_EXPAND_NORMAL_NV);
38 #endif

Listing 7.3: OpenGL setup for the reflection mapping using diffuse and reflective cube
maps.

7.5 Discussion

In this chapter we have seen different approaches to local illumination in direct volume
rendering. A new rendering technique for non-polygonal isosurfaces was introduced using
the OpenGL alpha test to substitute a transfer function with a high peak. Although
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the presented shading methods for rendering semi-transparent volume with classification
can be used in order to obtain equivalent visual results, the approach to non-polygonal
isosurfaces is more efficient since the alpha test does not require the reading of pixel values
from the frame buffer as it is necessary for alpha blending.

The presented techniques for per-pixel illumination are very efficient for a small number
of directional light sources whose direction can be changed interactively. Spot lights and
light source attenuation is not taken into account in this approaches. The linear interpo-
lation between normal vectors, which is performed by the texturing unit does not deliver
properly normalized vectors. This problem is similar to the inaccuracy related to Gouraud
shading in comparison to Phong shading. However, since the distance between neighboring
voxels projected onto the image plane is usually much smaller than the size of triangles
used in Gouraud shading, the effect of this inaccuracy is hardly visible.

For illumination scenarios which are too complex for on-the-fly computation, diffuse and
reflective reflection maps are used. Since the hardware guarantees an internal normalization
of the linearly interpolated normal vectors, reflection mapping also removes the Gouraud
shading problem described above. Reflection maps account for non-directional point light
sources, spot lights and light source attenuation. Spherical maps and longitude-latitude
maps however suffer from nonuniform sampling. These effects are less disturbing for cubic
environment maps. Apart from the high number of texture lookups that must be performed
for diffuse and reflective mapping, the main drawback is that changing the illumination
environment completely invalidates the reflection maps. The re-computation of a reflection
map is rather expensive.

In the presented method for shading of semi-transparent volumes, the pre-computed
gradient vectors may not accurately represent the local shape of the object, if the transfer
function for opacity is not taken into account. For a post-interpolative transfer function,
however, this would require also to perform the gradient estimation in hardware, which
by now is computationally intractable. Gradient estimation after the application of a
classification function can be accomplished with special purpose hardware such as the
VolumePro board.



Chapter 8

Performance Measurement

In this chapter we analyze the performance of several texture-based solutions for volume
rendering described in the previous chapters. We want to examine and compare the results
of this measurement for different implementations on general purpose hardware. The
performance for hardware-accelerated polygon rendering is technically limited by three
independent factors which greatly depend on the underlying hardware architecture.

• The geometry limit is the maximum number of triangles per second that can be
processed by the transform & light unit during geometry processing. Rendering
complex geometric models consisting of a high number of small triangles is usually
a geometry-limited process. Modern graphic boards have a built-in 3D graphics
processor (GPU) which offloads the geometry processing from the central processing
unit (CPU).

• The pixel fill rate is measured by counting the maximum number of fragments per
second that can be piped through the texturing unit. On older PC graphics architec-
tures only rasterization and per-fragment operations are implemented in hardware,
while geometry processing is still performed by the CPU. For textured geometric
models that consist of a small number of large textured polygons, performance is
dominated by the efficiency of the rasterization subsystem. The pixel fill rate is also
influenced by the transfer bandwidth between the GPU and its local video memory.

• The speed at which the GPU can read data from main memory instead of local
video memory is often a performance bottleneck. This is generally referred to as the
memory bandwidth. For rendering virtual scenes which consist of many different
objects and textures it is thus necessary to sort the objects by texture in order to
minimize texture swapping and optimize texture cache coherence.

For direct volume rendering applications the displayed geometry (slice polygons) is rather
simple, so the processing speed of the geometry unit does not have significant influence on
the overall performance. At the beginning of Chapter 3 however, we have put down a note
that the performance of texture-based volume rendering is limited by either the number
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of interpolation operations or the memory bandwidth. The number of interpolations that
can be performed within a second is determined by the pixel fill rate. In consequence the
fill rate is expected to be the limiting factor for volumes that entirely fit into local video
memory. For larger volume data sets, performance is limited by the available memory
bandwidth from main memory to the graphics boards.

8.1 Architectures

The concept of a graphics pipeline, which we used in Chapter 2 to define the term general
purpose hardware, can be found in many different architectures, ranging from low-cost
PC graphics boards to high-end workstations and expensive server architectures. Before
we analyze the results of the performance measurement, we will have a closer look at the
different hardware architectures and its specific capabilities.

8.1.1 Consumer PC Hardware

A personal computer (PC) is defined as a system that is designed for being used by only
one person at a time [128]. PCs usually do not have to share resources, such as storage
devices and processing subsystems with other systems. The most popular examples for
PCs are Intel x86-compatible systems and Apple Macintosh computers. The architectural
design of a typical PC system is outlined in Figure 8.1. One of the main characteristics of a
modern PC is the accelerated graphics port (AGP). The AGP is a platform bus specification
that enables high performance graphics capabilities.

On former PC architectures the graphics board was directly connected to the PCI1

local bus. The main drawback of such systems was that the graphics board must share the
available bus bandwidth with several other devices such as disk drives, audio devices and
ethernet cards. To these ends the AGP interface was introduced as a dedicated high-speed

1PCI = Peripheral Component Interconnect

Local Video�
Memory CPU

GPU
AGP Main�

MemoryMonitor Chipset

PCI Bus

Figure 8.1: Modern Consumer PC architecture with Accelerated Graphics Port (AGP).
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bus directly between the chip set and the graphics controller. As a result, the bandwidth-
intensive traffic to and from the graphics board was removed from the limitations of the
PCI bus.

The graphics processing unit (GPU) is a high-performance 3D processor that integrates
the entire 3D pipeline or parts thereof in hardware. For 3D graphics application the
capabilities of the GPU are decisive for the overall performance in a typical system.

8.1.1.1 NVidia’s GeForce Family GPUs

In August 1999, NVidia released a new GPU chip, the GeForce 256, which was the first
graphics processor for consumer video cards with an integrated geometry processing unit.
The GeForce 256 had a maximum polygon throughput of 15 million triangles per second.
With four pixel pipelines working at a core clock speed of 120 MHz, the theoretical pixel
fill rate of the GeForce 256 was 4.8 · 108 pixels/second. The performance limitation of the
first GeForce boards released was the slow SDRAM2 running at a clock speed of 166 MHz.
This limitation was relieved with the introduction of Double Data Rate (DDR) SDRAM
at 150 MHz resulting in an effective memory bandwidth of 300 MHz. The GeForce 256
GPU was capable of rendering two multi-textures in one rendering pass. It also introduced
the concept of register combiners by providing two general combiner stages.

In April 2000, NVidia released the second generation of the GeForce family GPUs, the
GeForce 2 GTS which was equipped with a second texture unit. The GeForce 2 GTS
running at a clock speed of 200 MHz had a theoretical pixel fill rate of 8 · 108 pixels
per second. The GeForce 2 Ultra is an optimized version of the GeForce 2 GTS running
at a core clock speed of 250 MHz. A modified version for the use in mobile computers
was released with the GeForce 2 Go GPU. As the third generation of the GeForce, the
GeForce 3 was the first NVidia GPU that supported 3D-textures and dependent texture
lookups. The GeForce 3 has a theoretical pixel fill rate of 2.8 · 109 pixels per second.

8.1.1.2 ATI’s Radeon Family GPUs

In October 2000, ATI released the Radeon GPU which was the first consumer graph-
ics processor that supported 3D textures. Some additional features such as depth-buffer
compression (HyperZ) are clearly aimed at the game market. The Radeon chip has two
pixel pipelines running at 183 MHz and supports 3 multi-textures in a single pass. The
Radeon 8500 released in October 2001 is the high-end GPU from the second generation of
the Radeon product line. It has four pixel pipelines running at 275 MHz which results in
a theoretical pixel fill rate of 1.5 · 109 pixels per second.

The detailed configurations of the different PC systems used throughout our experi-
ments are displayed in Table 8.1. For the performance measurement we used systems with
GeForce 256, GeForce 2 Ultra and GeForce 3 hardware as well as a Dell Inspiron notebook
with a GeForce 2 Go processor (PC System F). The performance of 2D and 3D-texture
based volume rendering was also evaluated for the Radeon and Radeon 8500 GPU.

2SDRAM = Synchronized Dynamic Random Access Memory
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CPU clock main GPU video
rate memory memory

PC System A Intel Pentium III 500 MHz 512 MB NVidia GeForce 256 32 MB

PC System B AMD Athlon 1 GHz 512 MB NVidia GeForce 2 Ultra 64 MB

PC System C AMD Athlon 1 GHz 1 GB NVidia GeForce 3 64 MB

PC System D Intel Pentium III 500 MHz 512 MB ATI Radeon 64 MB

PC System E AMD Athlon 1 GHz 1 GB ATI Radeon 8500 64 MB

PC System F Intel Pentium III 1 GHz 256 MB GeForce 2 Go 32 MB

Table 8.1: Specifications of the PC systems used for the experiments

8.1.2 SGI Graphics Workstations and Servers

Apart from the inexpensive PC systems described above, the volume rendering approaches
have also been evaluated on SGI graphics workstations and high-end servers. One of
the main characteristics of such systems compared to a PC is the different memory bus
structure which allows the access of data by different computing subsystems in a more
efficient way. The workstations that were available for the performance measurement
comprise an SGI O2, an SGI Octane 2 visual workstation and an SGI Onyx system.

8.1.2.1 SGI O2

The SGI O2 is a mid-price UNIX graphics workstation based on a unified memory archi-
tecture (UMA). In such a system local memory buffers, such as a separate video memory,
do not exist. A unified memory contains all data, including the frame buffer, depth-buffer,
textures, executables and application data. The UMA architecture as outlined in Figure 8.2
allows all the different subsystems to share data without the necessity to copy buffers from

Unified Main Memory

Memory Controller

Graphics Processor
Image and

Compression
Flat Panel

Display

Monitor

Video IO

CPU

PCI

Figure 8.2: The Unified Memory Architecture (UMA) as implemented in the SGI O2.
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one subsystem to another. The system that we used for the performance measurement was
equipped with a MIPS R10000 micro processor running at 195 MHz and 256 MB of main
memory.

8.1.2.2 SGI Octane 2

The SGI Octane 2 visual workstation is a high end graphics computer especially developed
for scientific computing and engineering. The main characteristic of the SGI Octane 2
architecture is the memory crossbar for high-speed data transfer. A memory crossbar re-
places the conventional system bus architecture and allows direct and dynamic connections
between any two computing subsystems. The VPro graphics Octane 2 has a pixel fill rate
of 425 million pixels per second and delivers 7.4 · 106 triangles per second. The system we
used throughout the performance measurement was equipped with a single MIPS R12000
micro processor running at a clock speed of 400 MHz, a V12 graphics subsystem and 2 GB
of main memory.

8.1.2.3 SGI Onyx

In addition to the high-end workstations, an SGI Onyx deskside server was available for the
performance measurement. The Onyx architecture is based on an SGI EBus architecture, a
256-bit high-speed bus for efficient data sharing. In combination with a 40-bit address bus,
the system enables fast block data transfers between multiple CPUs and memory boards.
The Onyx server used for the performance measurement was equipped with 4 MIPS R10000
processors running at 194 MHz, 896 MB of main memory and a RealityEngine II graphics
subsystem.

8.2 Performance Analysis

Before we start with the performance measurement, we should be aware that the validity
of the results are very limited. This is due to the fast technological progress of consumer
graphics hardware driven by the mass market of computer games and entertainment soft-
ware. Board revisions and driver updates can have significant influence on the measured
frame rate. In this context the registration of general trends and tendencies is more im-
portant than the exact values of the measurement. The different implementations of direct
volume rendering used throughout the performance measurement share a common C++
source code which was recompiled for the different platforms. All measured frame rates
refer to a rendering window of 580 × 427 pixels without decoration. Images of the data
sets used throughout the performance measurement are displayed in Appendix A.

As we have seen in previous chapters, the implementations of texture-based volume
rendering approaches strongly depend on the capabilities of the underlying graphics hard-
ware. The only approach that runs on all the different platforms is the original 2D-texture
based approach described in Chapter 3.1. In order to get a first impression of the general
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efficiency of the different platforms, we start with an examination of the performance for
2D-texture based volume rendering.

Figure 8.3 displays the measured frame rate for the 2D-texture based approach with
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Figure 8.3: Comparison of the performance of 2D-texture based volume rendering for
several data sets on different hardware architectures. The most promising hardware ar-
chitectures are the second generation consumer PC boards. They prove superior to the
high-end graphics workstations SGI Onyx and Octane 2.
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Figure 8.4: Comparison of the performance of different hardware architectures for 3D-
texture based volume rendering. The ATI Radeon 8500 delivers the highest frame rate for
3D-textures. With large volume data sets however (≥ 16MB) the frame rate drops down to
about 1 frame per second an all architectures due to the performance penalty introduced
by inefficient bricking.

different data sets. Obviously, for small data sets the pixel fill rate is the limiting factor.
The influence of the memory bandwidth increases with the size of the data sets. The frame
rate delivered by a GeForce 256 (PC System A) is comparable to the O2 workstation. In
this case, the benefit of the unified memory architecture of the O2 cannot prevail against the
optimized design of the consumer boards. The high end workstations SGI Octane 2 and the
SGI Onyx deliver satisfactory results for small data sets. Although both architectures have
an optimized memory bus, the limited pixel fill rate cannot cope with the increasing size of
the data sets. Excellent results are delivered by the second generation consumer graphics
boards such as the GeForce 2 Ultra (PC System B) and the Radeon. The high pixel fill
rate of the Radeon 8500 delivers impressive frame rates for volume data of moderate size.
For large data sets the performance is dominated by the higher memory bandwidth of the
GeForce 2 Ultra and the GeForce 3.

3D-textures are supported by the GeForce 3 (PC System C), by the Radeon family
boards (PC Systems D and E) as well as by SGI Onyx and Octane 2. Figure 8.4 shows
a comparison of the measured frame rate on these architectures. For small data sets
(≤ 2 MB) the highest frame rate is delivered by the Radeon 8500 (PC System E). With
growing size of the data the Radeon 8500 still dominates in terms of performance, however
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Figure 8.5: Comparison of the performance of 2D- and 3D-texture based volume rendering
for different hardware architectures. Although 2D-texture based methods require to keep
three copies of the data set in memory, they provide higher frame rate due to the more
efficient memory management.

in some cases severe texture errors are visible, apparently due to an early driver release.
For large data sets (≥ 16 MB) bricking of the 3D-textures is required and the performance
breaks down to less than one frame per second. In this case the more efficient memory bus
of the Onyx and Octane 2 leads to a marginally higher frame rate. The bricking of data
sets which do not fit entirely into the local video memory seems to be extremely inefficient.
As can be seen in Figure 8.5, the 2D-texture based method delivers a higher frame rate
in all cases. Note that the performance of the 2D-textures based method is significantly
higher although it requires to keep three copies of the volume in memory. This is mainly
a matter of efficient memory management and load balancing. Obviously, swapping only
small portions of the video memory (e.g. single 2D-textures) is more efficient in terms of
load balancing than swapping the entire texture memory at a time.

In theory, if a rendering process is solely limited by the pixel fill rate, doubling the sam-
pling rate (the number of slices) should result in a decrease of the frame rate by a factor of
one half. On the other hand if the process is completely dominated by the limited memory
bandwidth, increasing the sampling rate should have little effect on the performance. In
typical volume rendering approaches both the fill rate and the memory bandwidth influence
the performance. The main drawback of the 3D-texture based approach in combination
with large data sets is the extremely inefficient memory management. If the data set must
be divided into smaller portions that fit entirely into local texture memory (bricking, see
Section 3.2.2), the GPU is stalled until the whole memory is exchanged. In consequence
methods that use 2D-textures are more efficient, since they allow the exploitation of both
the available memory bandwidth and the pixel fill rate in parallel.

The volume rendering method based on 2D-multi-textures as introduced in Chapter 4
greatly enhances image quality by removing visual artifacts, while preserving the efficient



96 CHAPTER 8. PERFORMANCE MEASUREMENT

PC System C
PC System F

PC System B
PC System A

PC System C
PC System B

PC System C
PC System F

PC System B
PC System A

PC System C
PC System B

PC System C
PC System F

PC System B
PC System A

PC System C

PC System F

PC System B

PC System A

PC System C
PC System F

PC System B
PC System A

PC System C
PC System B

MRI  Head, 8 MB (256 x 256 x 128)CTA Aneurysm Detail, 2 MB  (128 x 128 x 128)

CT Temporal Bone, 32 MB (512 x 521 x 128)CT Head, 16 MB (256 x 256 x 256)

CT Carp, 128 MB (512 x 521 x 512)CTA Intracranial Vessels, 64 MB
(512 x 512 x 256)

CT Inner Ear Detail, 1 MB (128 x 128 x 64)CTA Aneurysm Detail, 256 kB (64 x 64 x 64)

fps

fps

fps

fps

fps

fps

fps

fps

0 10 20 30 40 50 60 0 10 20 30 40 50 60

0 10 155

6 100 8 144 122

20 1.510.5

6 100 8 144 122

0 10 25155 20

20 31 4 5

Figure 8.6: Comparison of the performance of different hardware architectures for 2D-
multi-texture based volume rendering with different data sets. As a result of the more
efficient memory management, the frame rates are significantly higher than 3D-texture
based solutions. Note that considerable frame rates are achieved even by the mobile com-
puter with the GeForce 2 Go (PC System F).

memory management. Figure 8.6 shows the results of the performance measurement for
2D-multi-texture based volume rendering. In the comparison of the different NVidia GPUs
it is no surprise that boards with the GeForce 2 Ultra (PC System B) and the GeForce 3
boards (PC System C) deliver the highest frame rate. These architectures also allow the
rendering of large data sets (128MB, 5123) at 1 – 2 frames per second. Note that for
data sets of moderate size (< 16MB) interactive frame rates are delivered even by the Dell
Notebook with the GeForce 2 Go chip (PC System F). This represents the first solution of
interactive high-quality volume rendering on mobile computers.

As we have seen throughout the discussion of transfer functions in Chapter 5, the
possibility to increase the number of slices is important to allow for a post-interpolative
transfer function of high frequency. Figure 8.7 displays the measured frame rate for different
sampling rates. In this context, a sampling rate of 100% refers to a slice distance of half the
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length of a voxel diagonal. As expected, for very small data sets doubling the sample rate
results in half the frame rate. The performance is thus solely limited by the available pixel
fill rate. With increasing size of the data the performance is more and more influenced by
the memory bandwidth.

The type of transfer function also has some influence on the overall performance. Fig-
ure 8.8 compares three different implementations. The first implementation uses an RGBA
texture in combination with pre-classification based on the OpenGL pixel transfer (Sec-
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Figure 8.7: Comparison of the performance of the 2D-multi-texture based approach for
different levels of supersampling. As expected for a fill rate limited process, doubling the
sample rate while rendering very small data sets results in half the frame rate. With the
increasing size of the data sets, the limited memory bandwidth shows its effect.
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tion 5.2.1.1). The second implementation stores color indices in the texture maps and uses
a dependent texture lookup for post-classification (Section 5.2.2.2). The third implemen-
tation uses two dependent texture lookups from an RGBA texture in order to accomplish
a four-dimensional transfer function (Section 5.4). The measured frame rates refer to an
interactive update of the rendering window without modification of the transfer function.
Depending on the specific implementation modifying the transfer function will add some
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Figure 8.8: Comparison of the different implementations of transfer functions on PC Sys-
tem C. The implementation based on an RGBA texture generated by pre-classification
using pixel transfer delivers higher frame rates compared to (multiple) dependent texture
lookups using color indices. For larger data sets however, the large memory footprint of
the RGBA texture significantly degrades performance.
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amount of computation time. Although the RGBA texture allocates more local video
memory, for a small data set the resulting frame rate is higher compared to the color
index texture. This is due to the additional texture lookup that must be performed to
extract the RGBA value from the dependent texture. This effect is even stronger for the
four-dimensional transfer function with the two dependent texture lookups. For data sets
of moderate size (> 8MB), the large memory footprint of the RGBA texture leads to a
significant loss in performance.

In order to evaluate the performance for volume rendering techniques with local illumi-
nation effects as introduced in Chapter 7, we analyze the resulting frame rates for different
implementations of classified and shaded volumes as well as for non-polygonal isosurfaces.
The results of the measurement are displayed in Figure 8.9. The shading techniques com-
prise a 2D-multi-texture based implementation of per-pixel illumination (see Section 7.3)
using register combiners (RC), a 2D-multi-texture based multi-pass method that renders
the classified slice image and the illumination term in separate rendering passes (MP RC)
and a 3D-texture based implementation using a spherical reflection map. (see Section 7.4).
The techniques for non-polygonal isosurface rendering comprise a 2D-multi-texture based
implementation using register combiners (RC), a 3D-texture based implementation using
the dot product extension (DOT) and a 3D-texture based implementation using a diffuse
and a specular cube map.

Basically, the performance measurement of shading techniques exemplifies one more
time the benefit of more efficient memory management of 2D-textures compared to 3D-
textures. The additional dependent texture lookup for reflection maps results in a sig-
nificant loss in performance. The most efficient illumination technique is the per-pixel
illumination technique based on register combiners. The multi-pass method should only
be used if there are not enough multi-texture stages available.

8.3 Conclusion

In this chapter we have compared the measured frame rates for multiple implementation on
different hardware platforms. The time when interactive high-quality volume visualization
was restricted to expensive graphics workstations such as the SGI Onyx and Octane is def-
initely over. Driven by the mass market of graphics hardware, the technological progress
of PC consumer boards has lead solutions that have proven superior to the high-end work-
stations both in terms of performance and flexibility.

Although the 2D-multi-texture based solution requires three copies of the data set
to be kept in memory, the resulting performance is significantly higher than equivalent
implementation using 3D textures. In spite of the higher memory requirements the 2D-
multi-texture based solution has proven superior for rendering large volume data sets.
This is mainly due to the more efficient memory management and to the optimized load
balancing which allows the available pixel fill rate and the memory bandwidth to be used
in parallel.
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Chapter 9

Extensions

In this chapter I am going to report on a number of supplements and enhancements for
texture based volume rendering that exploit hardware features in efficient ways. A large
number of related algorithms and extensions of texture based volume rendering has been
developed in recent years. Maybe the most remarkable supplement has been proposed
by Klaus Engel et al. [38] who suggested to pre-compute the exact ray integration in a
lookup table and to access this table by the use of dependent textures. In a different
context, Lum et al. [97] have extended texture based volume rendering to time-varying
volume data by using discrete cosine transformation for a temporal encoding and a decoding
algorithm based on texture palettes. Apart from these approaches, a selection of interesting
supplements to texture based volume rendering is presented in the following sections.

9.1 Multi-Texture Speedup

In the volume rendering approach described in Chapter 4, we utilize multi-textures for
trilinear interpolation. As a result the image quality was significantly improved by reducing
interpolation artifacts. In addition to the optimization of image quality, multi-texturing
can be used to enhance the performance of direct volume rendering.

The idea of this approach is to reduce the necessary number of slice polygons by map-
ping the textures of multiple slice images onto a single surface [134]. Depending on the
available number of multi-textures, the rasterization load can be significantly reduced.
If there are n independent multi-textures supported in hardware, only every n-th slice
polygon is drawn and textured with the image information of n consecutive slice images.
During rasterization, the n texture images are combined by the texture application unit.
The resulting fragment is finally blended into the frame buffer. Depending on how many
clock cycles of the GPU are required for the combination of n texture images, rendering
time can theoretically be reduced by a factor of 1/n in the optimal case. In a bandwidth
limited procedure however this benefit will usually not be that significant. However, even
for a bandwidth-limited process, the frame buffer read operations which are required for
back-to-front alpha blending are reduced by the same factor.
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Figure 9.1: Rendering two slices with a single slice polygon: Projection of a slice image i
onto the polygon of slice i + 1.

If we simply map the texture images of the slices 0 to (n− 1) onto the slice polygon of
texture 0, only texture 0 would be drawn at the correct position. The other textures would
be mapped incorrectly due to the projective displacement of the viewing transformation.
In order to compensate this incorrect mapping, we have to shift the texture coordinates of
the textures 1 to (n− 1) to account for the original vertex positions. The correct texture
coordinates are determined by projecting the slices 1 to (n − 1) onto slice plane 0 using
the eye position as center of projection1 as displayed in Figure 9.1 (left). Without loss
of generality, we restrict our further considerations to only two textures. Texture 0 and
texture 1 are mapped onto slice 0 and the rendering of slice 1 is skipped.

As a first step, we increase the width w and the height h of the original slice polygon 0
by adding twice2 the slice distance d as outlined in Figure 9.1 (right). For a field of
view of less than 90◦, this ensures that no slice image will be projected onto an area
outside the polygon. Subsequently, the texture coordinates of both texture units must be
adapted to the modified vertex positions. For the marked vertex of the slice polygon in
Figure 9.1 (right), the texture coordinates (s0, t0) of texture 0 are given by

s0 = 1 +
d

w
and t0 = 1 +

d

h
. (9.1)

The texture coordinates of the slice 1 are determined by projecting the corners of the
texture onto the polygon. A point ~v on slice 1 is mapped to a point ~v ′ on slice 0 using
the eye position ~veye as center of projection. Assuming that the slices are parallel to the

1This of course applies only in case of perspective projection.
2For n multi-textures, 2 · d · (n− 1) is added to the width and height of the polygon.
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z-plane, ~v ′ results in

~v ′ = ~v +
d

pz

~p with ~p =




px

py

pz


 = (~v − ~veye) (9.2)

The texture coordinates (s1, t1) for texture unit 1 are thus given by

s1 = 1 +
d

w′ (1 +
px

pz

) and t1 = 1 +
d

h′
(1 +

py

pz

) (9.3)

with the projected width and height

w′ = (1 +
d

pz

) w and h′ = (1 +
d

pz

) h. (9.4)

Note that this technique requires the correctly handling of texture coordinates less
than zero and greater than one. The opacity of texture samples for coordinates outside the
range of [0,1] should be set to zero. This requires a mechanism that allows the clamping of
textures to a fixed value as provided by the OpenGL extension SGIS texture edge clamp.
If this extension is not available, standard OpenGL texture clamping can be used with the
border of the texture initialized with opacity values of zero.

Apart from the adjustment of texture coordinates, mapping multiple textures onto a
single slice image will only lead to correct visual results, if the multi-texture samples are
combined within the texture application unit in exactly the same way as at the alpha
blending stage of the per-fragment operations.

As we have seen in Section 3.1.2, color values of the incoming fragment (the source) are
combined with the color values at the corresponding frame buffer position (the destina-
tion) according to a function specified in the alpha blending stage. The blending function
glBlendFunc(GL SRC ALPHA,GL ONE MINUS SRC ALPHA) used in Section 3.1.2 for back-to-
front compositing, computes the new frame buffer value C ′

dest as a function of texture color
Ctex0 and opacity Atex0 and the previous frame buffer value Cdest,

C ′
dest = Ctex0 · Atex0 + Cdest (1 − Atex0). (9.5)
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Figure 9.2: Combiner setup for correct blending of two slices with one polygon
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This value C ′
dest is written into the frame buffer replacing the previous value Cdest. In the

next blending step it will be used in turn as the destination value Cdest. The calculation
of two blending steps at the same time can be written as

C ′′
dest = Ctex1 · Atex1 + C ′

dest (1− Atex1) =

= Ctex1 · Atex1 +
(
Ctex0 · Atex0 + Cdest (1− Atex0)

)
(1− Atex1) =

= Ctex1 · Atex1 + Ctex0 · Atex0 (1− Atex1) + Cdest (1− Atex0)(1− Atex1).

For correct blending results of two textures this equation must be computed within the
texture application unit. Figure 9.2 shows a possible solution achieved with the NVidia
register combiners. The RGB-portion of general combiner 0 is programmed to calculate

C(0)
src = (Ctex0 · Atex0) and C(1)

src = (Ctex1 · Atex1). (9.6)

Additionally, the Alpha-portion of this combiner is used to compute

A(0)
src = (1− Atex0)(1− Atex1). (9.7)

The output of the RGB-portion are routed into the final combiner stage, which calculates
the resulting RGB value

Csrc = C(0)
src (1− Atex1) + C(1)

src =

= Ctex0 · Atex0 · (1− Atex1) + Ctex1 · Atex1.

The result of the Alpha-portion is directly used as alpha value

Asrc = A(0)
src = (1− Atex0)(1− Atex1) (9.8)

of the output register. In the per-fragment operations, the alpha blending equation in
Listing 3.2 is modified to

glBlendFunc(GL ONE, GL SRC ALPHA),

resulting in a compositing equation according to

C ′′
dest = Csrc · 1 + Cdest · Asrc =

= Ctex1 · Atex1 + Ctex0 · Atex0 (1− Atex1) + Cdest (1− Atex0)(1− Atex1).

Using this register combiner setup we obtain exactly the same blending results for multi-
texturing as for rendering two separate polygons using single textures. As reported in [134],
the presented method for multi-texture speedup leads to an increase in the frame rate by
a factor of 1.8 for data sets of moderate size on a GeForce 256 with two multi-textures.
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Figure 9.3: Clipping a volume against an arbitrary polygonal object.

9.2 Stencil Buffer Clipping

For the interactive examination of volume data, clipping mechanisms have proven ex-
tremely helpful. A straightforward implementation is the use of multiple clipping planes
provided by OpenGL compliant graphics hardware. Clipping planes, however, only allow
the construction of convex geometries. In many applications more complex clipping objects
are required. Figure 9.3 shows an example of a volume object clipped against an arbitrary
concave polygonal surface.

An efficient way to implement arbitrary polygonal clipping objects in combination with
texture-based volume rendering was introduced by Westermann and Ertl [174]. Their idea
was to exploit the OpenGL stencil buffer, a per-pixel frame buffer locking mechanism.
As outlined in Section 2.1.3, the stencil test allows the discarding of incoming fragments
conditional on the value at the corresponding position in the stencil buffer. The idea of
stencil buffer clipping for volumetric objects is outlined in Figure 9.4. For every slice plane

eye
position

slice
plane

clipping
object

stencil
buffer

Figure 9.4: The idea of stencil buffer clipping is to lock those pixel which are covered by
the cross section between the slice plane and the polygonal object. The stencil buffer must
be updated for every slice plane.
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the portion of the frame buffer, which is covered by the cross section with the polygonal
object, must be marked by setting the respective pixels in the stencil buffer. When the
slice polygon is finally rendered, the stencil test is passed only by voxels that lie inside the
polygonal object. Alternatively, the stencil buffer method also allows inverse clipping by
simply modifying the stencil test.

Calculating the cross section of the polygonal object with the slice plane can efficiently
be realized as a multi-pass rendering method outlined in Figure 9.5. The algorithm works
for multiple closed polygonal surfaces of arbitrary shape and for both viewport and object
aligned slices. The only restriction is that the direction of a normal vector for each polygon
must clearly indicate the inner and the outer region in a way consistent for the whole
surface. The procedure is divided into four steps:

1. A clipping plane is set up with the same position and orientation as the current slice
plane. This clipping planes removes the portion of geometry that faces the camera,
so that the interior of the polygonal object becomes visible (Figure 9.5 top).

2. Every face of the clipping object is classified as either front or back face. The color
buffers are locked, preventing the geometry from being visible in the final image. Only
the back faces are rendered into the stencil buffer as displayed in Figure 9.5 middle.
As a result, the depth buffer is also updated. The cross section contained in the
stencil buffer, however, is not yet correct, since with respect to the camera position
some back faces might be occluded by front faces.

3. In a second rendering pass, the erroneous portions from step 2 are removed by drawing
the front faces. The stencil buffer is cleared whenever an incoming fragment passes
the depth test, as displayed in Figure 9.5 bottom.

4. The stencil buffer now contains the correct cross section of the polygonal clipping
object. Now the color buffers are unlocked and stencil test is setup to restrict the
rendering to either the interior or the exterior of the polygonal object. The textured
slice image is drawn and blended as usual.

OpenGL sample code for rendering one slice image is displayed in Listing 9.1. The
example assumes a stencil buffer resolution of 1 bit only (lines 10–11), which requires
the stencil buffer to be cleared for each slice image (line 12). If a stencil buffer with
n bit resolution is available, we can increment the stencil mask (line 10) by 1 for each
successive slice and clear the stencil buffer only every 2n passes. The OpenGL back face
culling mechanism is exploited in order to determine the front faces (lines 23–24) and the
back faces (line 34). This assumes that the polygonal surface of the clipping object has
a consistent vertex ordering. An important thing to mention is that even for the first
rendering pass the depth test must be activated (line 20). Otherwise the depth buffer
values of one back face might be overwritten by another back face which is occluded by
the first one, as the polygons are drawn in arbitrary sequence.

In comparison to the straightforward approach of computing the cross section of the
polygonal object on the CPU, the presented stencil buffer based approach will lead to a
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Figure 9.5: Multi-pass procedure for stencil buffer clipping: Step 1: A clipping plane is
activated with the same position and orientation as the slice plane (top). Step 2: Only
the back faces of the polygonal object are drawn into the stencil buffer (middle). The
depth buffer is updated. Step 3: Finally the front faces are drawn in a separate rendering
pass (bottom). For fragments who pass the depth test, the stencil buffer is cleared. The
resulting stencil buffer content is exactly the cross section between the polygonal object
and the slice plane as displayed in Figure 9.4. The slice image can now be drawn into the
frame buffer in a fourth step.
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0 // STEP 1: --- Preparations -----------------------------------------------
1 glEnable(GL_CLIP_PLANE0); // clipping plane setup
2 glClipPlane(GL_CLIP_PLANE0, m_pSlicePlaneEquation);
3
4 glEnable(GL_DEPTH_TEST); // activate the depth test
5 glClear(GL_DEPTH_BUFFER_BIT); // clear the depth buffer
6
7 glEnable(GL_STENCIL_TEST); // activate the stencil test
8 glStencilMask(0x1); // use value 1 for writing
9 glClearStencil(0x0); // use value 0 for clearing
10 glClear(GL_STENCIL_BUFFER_BIT); // clear the stencil buffer
11
12 // lock the color buffers
13 glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
14
15 // STEP 2: --- First rendering pass ---------------------------------------
16 glStencilFunc( GL_ALWAYS, 0x1, 0x1); // stencil test always passes
17 glStencilOp(GL_REPLACE, // replace if stencil test fails (never happens)
18 GL_KEEP, // no modification if depth test fails
19 GL_REPLACE); // write to stencil buffer if depth test passes
20
21 glEnable(GL_CULL_FACE); // enable front face culling
22 glCullFace(GL_FRONT);
23
24 drawClipObject(); // draw the clipping object
25
26 // STEP 3: -- Second rendering pass ---------------------------------------
27 glStencilOp(GL_KEEP, // keep the stencil buffer if stencil test fails
28 GL_KEEP, // keep the stencil buffer if depth test fails
29 GL_ZERO); // clear the stencil buffer if depth test passes
30
31 glCullFace(GL_BACK); // enable back face culling
32
33 drawClipObject(); // draw the clipping object
34
35 // STEP 4: -- Render the texture slice image ------------------------------
36 glStencilFunc(GL_EQUAL, 0x1, 0x1); // activate stencil test
37 glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // do not modify the stencil buffer
38
39 // unlock the color buffers
40 glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
41
42 drawTextureSlice(); // draw the textured slice image

Listing 9.1: OpenGL setup for rendering one textured slice polygon using stencil buffer
clipping.
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significant gain in rendering performance for clip objects with a limited size of triangles.
The drawbacks of stencil buffer clipping is the loss of the depth buffer3 so the correct depth
ordering is not ensured, if semi-transparent volume objects are combined with opaque
geometry.

As an aside, the described method for stencil buffer clipping can efficiently be used for
the voxelization [169, 21] of polygonal surfaces. Voxelization refers to the conversion of a
polygonal surface into a volume data set and represents the transformation of a parametric
into an implicit surface description [85]. Such a conversion is often used in multi-scale
analysis or constructive solid geometry. For the purpose of voxelization, the described
algorithm is used with an orthographic projection matrix. The contents of the stencil buffer
is simply read out after the processing of each viewport-aligned slice image. Figure 9.6
displays the result of the voxelization of a polygonal mesh into volume data sets of different
resolution.

512   voxelspolygonal mesh 64   voxels 256   voxels3 33

Figure 9.6: Voxelization of a polygonal mesh into volume data of 643, 2563 and 5123

resolution, respectively.

9.3 Vector Fields

In addition to scalar data, 3D vector fields are frequently used in natural science and en-
gineering. Vector fields usually describe physical quantities such as velocities and forces,
which depend on a certain direction. 3D vector data sets arise from measurement or numer-
ical simulation in fluid mechanics, hydrodynamics, electric engineering and computational
science. In recent years a number of different techniques for the visualization of 3D-flow
phenomena have been developed.

Traditionally, geometric techniques are used, which represent the vector quantities by
some kind of geometric primitives, such as arrows, icons or glyphs. Sophisticated ap-
proaches depict the properties of a vector field by using various techniques of particle trac-
ing and methods like stream lines, streak lines, stream surfaces [72] and volume flow [106].

3For convex clipping object the depth test is not required, so the depth buffer can be preserved.
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Figure 9.7: Line Integral Convolution uses a noise image (left) and a vector field to con-
struct an image that clearly depicts particle paths with high density (right).

The main difficulty with such approaches in practise is their restriction to a rather coarse
spatial resolution. As alternative, texture-based approaches have gained increasing atten-
tion. The introduction of line integral convolution (LIC) [16] significantly improved the
visualization of vector fields for the 2D case. LIC is an efficient technique to depict flow
information in an intuitive way by transforming the vector field into a scalar field. In the
3D case however, difficulties arise in the visualization of the intricate structures inside the
resulting volume data set.

9.3.1 Line Integral Convolution

The idea of LIC is to compute a 1D convolution on the stream lines in the vector field. The
LIC algorithm filters a given input texture along the integral curves of a given vector field
and generates a scalar field as output. For scientific visualization a noise field (Figure 9.7
left) is used as input texture. This ensures that the resulting LIC image is not influenced
by structures in the input texture. The intensity I of a pixel at position x0 = σ(s0) in the
output image is determined by

I(x0) =

s0+L∫

s0−L

k(s− s0) T (σ(s)) ds , (9.9)

with σ(s) referring to the particle path of the vector field that runs through the point x0

parameterized by arc length. T (x) denotes the intensity of the input texture at position x
and k is an appropriate filter kernel such as a Gaussian, a tent or a box filter.

For the box filter the convolution integral can be computed by sampling the input
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texture T at locations xi along the particle path σ(s):

I(x0) = k

n∑
i=−n

T (xi) , (9.10)

with the normalization factor k = 1/(2n + 1). The convolution causes voxel intensities to
be highly correlated along stream lines, but statistically independent in direction perpen-
dicular to the flow. In the resulting images the stream lines are clearly visible as shown in
Figure 9.7 right.

LIC was presented by Cabral and Leedom [16] in 1993, who might have been influ-
enced by an earlier texture-based method called spot noise [167]. A comparison of both
approaches is presented in [27]. In 1995, Hege and Stalling [158] presented an implemen-
tation of LIC that was resolution independent, much faster and more accurate than the
original approach. A variety of optimizations and supplements have been developed in
recent years. Lisa Forssell [46] presented an extension that allows the mapping of LIC
images onto curvilinear surfaces in 3D. Wegenkittl et al. [172] added information of the
orientation of the flow and Risquet [141] presented a significant simplification for accelerat-
ing the imaging process. Many other authors have been working on enhancements by color
coding [152] or animation [8, 47] and by adapting the algorithm to unsteady flows [153].
Victoria Interrante [74] has developed techniques to visualize 3D LIC by the use of fuzzy
clipping objects and sparse noise textures with enhanced perception of depth. Sparse noise
textures can also be simulated using transfer functions as displayed in Figure 9.8 right. In
the following section, an animation technique will be outlined that utilized the approach
for stencil buffer clipping to animate static 3D LIC textures. Results of this method have
been previously published in [137].

.

Figure 9.8: CFD simulation of turbulent flow inside the wheel casing of a car visualized
with 3D LIC and different clipping planes (left and middle). The use of sparse noise texture
can efficiently be simulated using transfer functions (right).
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Figure 9.9: Surfaces of equal time (time surfaces) inside a simple cavity flow field.

9.3.2 Animated 3D LIC

The methods for stencil buffer clipping explained in Section 9.2 allows arbitrary closed
polygonal meshes to be used as clipping objects. The fuzzy boundaries of a LIC texture
suggested in [74] were used as volume of interest (VOI). In this context the shape of the
clipping object should roughly follow the course of the stream lines. A straightforward
approach is to compute stream surfaces which form a closed solid object. This represents
a fast alternative to the computation of LIC on stream surfaces.

For animation purposes it is desirable to specify boundary surfaces which are inter-
sected by the stream lines in an orthogonal angle, unlike the VOI. In consequence, a
straightforward idea is to use time surfaces or time volumes as clipping geometry. In order
to generate an appropriate set of time-dependent clipping objects for animation, an initial
triangle mesh is placed inside the flow field in a way that stream lines intersect the surface
at an angle of preferably 90◦. This initial surface is evolved through time by computing
particle traces for each vertex of the surface. The result is a set of surfaces of equal time
as shown in Figure 9.9. Throughout the computation a simple subdivision scheme ensures
that the resulting surface does not become self-intersecting. An algorithm for mesh dec-
imation [17] is applied in order to limit the overall number of the triangles. If we use a
closed polygonal mesh as initial surface and take care that the topology is not corrupted
by high vorticity or vertices that leave the flow field boundaries, the resulting set of time

Figure 9.10: Animation sequence of a data set from numerical CFD simulation generated
with the stencil buffer clipping approach.
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Figure 9.11: CFD simulation of turbulent flow inside the wheel casing of a car. Animation
sequence generated with the stencil buffer clipping approach.

surfaces can be used as a sequence of clipping objects for the stencil buffer approach. Al-
ternatively, closed polygonal meshes can be constructed from arbitrary time surfaces after
the computation e.g. by joining two adjacent time surfaces to form a closed object.

Flow animation is performed by sequentially switching between different clipping ob-
jects. The animation sequence displayed in Figure 9.10 was generated by placing a flat box
into a turbulent flow field. The box was distorted by the vector field resulting in rather
complex time volumes. Figure 9.8 shows the visualization of a velocity field inside the wheel
casing of a car, which resulted from numerical simulation in computational fluid dynamics
(CFD). The animation sequence generated from this data is displayed in Figure 9.11.



Chapter 10

Deformation

As a consequence of the development of efficient volume rendering techniques, growing
demand for volumetric deformation models has arisen in the last couple of years. Apart
from obvious applications of free-form modeling in visual arts and entertainment, the ability
to accurately model local deformation is extremely important in medicinal application
such as minimal invasive surgery and computer assisted intervention. In a typical clinical
application scenario, tomography data is acquired before the intervention for a detailed
surgery planning. During the intervention, however, the pre-operatively acquired image
data does not match the actual situation due to anatomical shifts and tissue resection. In
consequence the spacial misalignment must be compensated by adapting the volume data
to the non-linear distortion.

The deformation approaches reported in literature do no handle the problem of deform-
ing volumetric objects sufficiently. The traditional free-form modeling tools [149, 23, 99,
19, 7] available in commercial software packages are restricted to polygonal surface descrip-
tions, which do not account for a deformation of the interior of the object. In recent years,
only a few approaches have been developed that try to bridge the gap between free-form
surface deformation tools and volumetric data sets.

10.1 Principles

Kurzion and Yagel have provided the basis for many interesting space deformation al-
gorithms by introducing ray deflectors [89]. Instead of deforming the geometry, they
propose to deform the viewing rays for ray casting applications. Apart from pure software
implementatons, this approach can be realized in hardware with the VIRIM ray casting ar-
chitecture (see Section 2.3). The drawback of this method however is the difficulty to model
different deformed objects that intersect each other. The same authors also presented an
extension of the idea of ray deflectors for 3D-texture based volume rendering [90]. In this
case the interior deformation is taken into account by tessellating the slice polygons into
smaller triangles. Another supplement to 3D-texture based volume rendering was devel-
oped by Shiaofen Fang and his group [44]. In their approach the volumetric deformation is
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computed by decomposing the volume into an octree structure and by slicing and texture
mapping each sub-cube.

Other models for volumetric deformation (such as [36]) tessellate the whole volume into
a set of tetrahedra. For each tetrahedron an affine transformation

Φ(~x) = A~x +~b. (10.1)

is given, which results in a piecewise linear deformation of the overall object. The matrix
A ∈ IR3×3 and the vector ~b ∈ IR3 are fully determined by specifying four translation vectors
at the tetrahedron’s vertices. Although this approach is well-defined from the mathematical
point of view, its implementation suffers from multiple problems. The determination of
the correct depth ordering for large set of tetrahedra contributes a significant part to the
computational complexity of the algorithm. The tessellation of a simple volume cube
requires at least five tetrahedra in order to account for the transformation of the corner
vertices only. With the insertion of additional vertices in the interior, the overall number
of tetrahedra increases rapidly.

In the following sections two different methods for the modeling of volumetric defor-
mation will be described. Both approaches are supplements to 3D-texture based volume
rendering and differ in the application scenario they were designed for. The first technique
provides a mechanism to intuitively model the deformation by utilizing traditional free-
form deformation tools for surface representations. This approach mainly targets modeling
applications in visual arts and entertainment. The second (Section 10.3) approach has been
specially designed for fast automatic deformation procedures in scientific applications such
as registration of medical image data.

10.2 Volumetric Free-Form Deformation

The first approach to volumetric deformation that we will examine is mainly due to Rüdiger
Westermann [175]. The aim of this approach is to adapt existing surface modeling tools
to the deformation of the interior of an object. Possible applications of this approach are
modeling tools as they are used by artists and industrial designers. By means of the pre-
sented deformation model, available volume objects can be manipulated and modified (see
Figure 10.1) but also completely new objects might be created. Based on this algorithm
a prototype deformation tool has been implemented with a simple modeling mechanism.
Sophisticated surface deformation models can easily be inserted, such as free-hand manip-
ulation tools for sculpturing or carving in virtual reality environments.

10.2.1 Shape and Appearance

The separation of shape from appearance is a common paradigm in 3D surface modeling
environments. The shape of an object is usually defined by a parametric or an implicit
surface description, e.g. as a polygonal mesh or a level surface. The appearance of this
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Figure 10.1: Example of direct volume rendering using the free-form deformation model.

object is defined in terms of material properties, such as color, reflection coefficients, a
texture bitmap or a procedural shader.

We note that the texture-based volume rendering approaches that we have seen in the
previous chapters are already based on a separation of shape from appearance in some
sense. The shape of the volumetric object is determined by the polygonal representation
of the bounding box, whereas its appearance is simply defined by the texture images. The
bounding box can now be replaced by a more complex polygonal object as displayed in
Figure 10.2. The visual result is similar to the algorithm for stencil buffer clipping (see
Section 9.2), however in this case the sectional polygons with the slice planes are computed
explicitly on the CPU. The shape of our object is now defined as the surface enclosing the
volume. Without loss of generality, we assume that this surface is represented by a triangle
mesh. As it is not necessary to represent the internal structures by additional geometric
shapes, the interior of our object is exclusively defined in terms of appearance.

10.2.2 Intersection Calculation

The efficient computation of the intersection between a slice plane and the triangle mesh
requires an optimized algorithm. In a previous research paper [176], Westermann et al.
have proposed an active edge data structure to represent the triangle mesh. This data
structure is illustrated in Figure 10.3. It consists of four arrays of elements that represent
a list of vertices, a triangle list, an edge list and an active edge list.

Each vertex of the triangle mesh is represented by an entry in the vertex list. Such an
entry consists of two coordinate triplets, one for the position and one for the 3D-texture
coordinate of the vertex respectively. An element in the triangle list stores three pointers
into this vertex list and also three references into the edge list. An element in the edge
list in turn consists of two pointers into the vertex list and of two backward references
which point to the triangles that share this edge. Although the active edge data structure
contains a considerable amount of redundancy, the cross references allow an efficient search
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Figure 10.2: Separation of shape from appearance: An arbitrary polygonal model replaces
the bounding box of the volume data set.

for the next elements that must be checked for intersection. Starting from an arbitrary
intersection point between the slice plane and an element from the edge list, a sectional
polygon is determined by following the references until an element is found that has already
been visited.

Note that depending on the topology of the mesh, several possibly concave sectional
polygons may exist. To further speed up the intersection calculation a view-dependent
active edge list is maintained to avoid the processing of the entire edge list. In order to
build such an active edge list, the polygonal mesh is partitioned into multiple slabs parallel
to the view plane. Each edge then stores the first and the last slab it intersects. During
back-to-front rendering, the active edge list keeps track of all the edges that may have an
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Figure 10.3: The active edge data structure is used for efficient computation of the sectional
polygons.
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intersection with the current slice plane. Whenever the slice plane enters a new slab, all
edges that do not intersect this slab are removed from the active edge list and new edges
are added.

The intersection of an arbitrary triangle mesh with a plane may yield concave polygons
with holes. In consequence a sectional contour resulting from the described algorithm
might be enclosed by any other one. In this case only the area between the outer contour
and the inner contours must be rendered. For the tessellation of concave polygons with
multiple holes the OpenGL utility library provides appropriate methods, which compute
a trapezoidal decomposition.

Up until now we have not yet applied any local deformation. According to the model-
ing paradigm mentioned above, we separate the local deformation of a volume object into
shape deformation which solely changes the boundary surface of the object and appear-
ance deformation which adapts the 3D texture map to the deformed boundary. For the
shape deformation part we are able to utilize almost every solution for surface deformation
reported in literature, as long as we properly adapt our appearance deformation model.

10.2.3 Shape Deformation

Available free-deformation tools allow the manipulation of the shape in an interactive and
intuitive way. In our case shape deformation is applied by changing the position of the
vertices while the texture coordinates remain the same. We further assume that the applied
free-form deformation approach takes care that the topology of the surface is preserved.

Figure 10.4: Without appropriate consideration of the interior, the deformation depends
on the tessellation of the slice polygons. The same deformation is rendered with varying
tessellation of the slice polygon.
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As we do not change the texture coordinates at the displaced vertices the deformation
is propagated into the interior of the volume. However, since the interpolation of texture
coordinates within a sectional polygon greatly depends on its tessellation, this approach
leads to inconsistent results as displayed in Figure 10.4. In order to obtain a consistent
deformation model, it is obvious that also the deformation of the appearance must be taken
into account.

10.2.4 Appearance Deformation

The modeling of volumetric deformations requires a mechanism to determine how the dis-
placement of a vertex influences the appearance in the interior of the object. A simple way
to describe the extent of a deformation caused by movement of a vertex is displayed in Fig-
ure 10.5. In addition to the translation vector that results from the vertex movement, the
extent of the deformation is defined by a bounding box which is aligned with the direction
of the displacement. Every point inside this volume will be displaced into the direction
specified by the translation vector. The magnitude of this translation is determined by a
function V (u, v, w), which is computed as a 3D tensor product of quadratic B-splines,

V (u, v, w) = Bu(u) ·Bv(v) ·Bw(w). (10.2)

To obtain a smooth transition between the deformed and the undeformed volume out-
side the bounding box, the translation magnitude is set to zero at the boundary of the
displacement volume. Pre-computed lookup tables are used to minimize the computational
cost for evaluating the B-spline functions.

Texture-based volume rendering is now performed by checking for intersection of the
current slice plane with any of the displacement volumes. If an intersection is found,
the resulting sectional contour is included as inner contour into the tessellation procedure

d

d

Figure 10.5: The displacement volume (left) defines the extent of a local volumetric de-
formation. It is specified as a bounding box which is aligned with the local deformation
vector. The sectional drawing (right) outlines how displacement values are propagated
inside the volume.
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4 subdivision steps1 subdivision step

Figure 10.6: Volumetric free-form deformation with different subdivision levels for the dis-
placement volumes. Although the deformation is already visible with only one subdivision
step, the bumps are not correctly rendered. With four recursive subdivision steps the
deformation is modeled with high precision.

described above. The interior of the sectional polygon is also tessellated and uniformly
subdivided by recursively splitting each triangle into four new triangles. At each new
vertex inside the displacement volume, the texture coordinates are shifted in negative
direction according to the specified B-spline function. The subdivision terminates, if a
user defined subdivision level has been reached. As a result, the non-linear deformation is
modeled by an adaptive piecewise linear approximation.

The maximum subdivision level can be used to interactively control the accuracy of the
deformation. For performance enhancement during user interaction a coarse subdivision
level can be chosen, whereas for still images subdivision is performed with the full depth.
Visual results of the deformation approach for different subdivision levels are displayed in
Figure 10.6.

10.2.5 Illumination

In Chapter 7 we have seen several approaches to local illumination for texture based volume
rendering. All of these methods pre-calculate the gradient vectors and store them as a
normal map in an RGB texture. Due to the non-linear deformation, in our case pre-
calculated gradient vectors are no longer valid.

To tackle this problem, we integrate an illumination method, which allows the approx-
imation of gradient vectors on-the-fly during rasterization. As introduced in Section 7.1,
the diffuse term of the Phong illumination model requires the computation of a dot product
between the direction of light ~l and the normalized gradient vector ~n,

Idiffuse = Ip kd (~l • ~n) with ~n =
∇I(~x)

‖∇I(~x)‖ . (10.3)

We know from calculus that the dot product between two normal vectors is equal to the
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Figure 10.7: NVidia register combiner setup for the computation of forward differences.

length of one vector projected onto the axis defined by the other vector. If we take into
consideration the fact that vector ~n is the gradient vector of a scalar field I(~x), we can
compute the dot product by evaluating the directional derivative,

(
~l • ∇I(~x)

)
=

∂I(~x)

∂~l
. (10.4)

The normalization of the gradient vector ~n, however, is missing in this equation. The
directional derivative in turn can be approximated by a forward difference in direction of
the light source,

∂I(~x)

∂~l
≈ I(~x)− I(~x +~l). (10.5)

Figure 10.8: Example of volumetric free form deformation: direct volume rendering (left)
and non-polygonal isosurface (right) with an approximation of the diffuse illumination term
using forward differences.



122 CHAPTER 10. DEFORMATION

This calculation is simple enough to be performed efficiently within the rasterization hard-
ware. The appropriate setup for the NVidia register combiners is displayed in Figure 10.7.
The same texture is specified for the first and the second multi-texture unit. For the sec-
ond unit the texture coordinates are slightly shifted in direction of the light source. The
forward difference is computed in the first general combiner stage. At the second combiner
stage the result is multiplied with the color of diffuse light. Ambient light is added. This
technique allows the inclusion of least the ambient and the diffuse term of the Phong illu-
mination for a single light source model into our deformation model. The specular term is
completely neglected. Visual results of the presented approach for non-polygonal isosurface
rendering are displayed in Figure 10.8.

The described free-form deformation model provides a flexible way of including volu-
metric objects into interactive modeling tools. For an automatic deformation as required
in medical imaging, the described approach is less applicable because the user must specify
a considerable number of parameters. As an alternative approach we propose a different
texture-based deformation model based on hexahedra structures and adaptive subdivision.

10.3 Hexahedra Deformation

The main drawback of tetrahedra based deformation models (Section 10.1) is the high
computational cost for depth sorting and intersection calculation. To work around this
problem we are going to examine a method based on hexahedra structures which has been
especially designed with regard to a hardware accelerated implementation.

10.3.1 Deformation Model

Our deformation model based on hexahedra subdivides the volume object into a set of sub-
cubes (patches) as depicted in Figure 10.9 (left). A piecewise linear deformation is now
specified by translating the texture coordinates of the corner vertices of each hexahedron.
The deformation is propagated into the interior of each patch by trilinear interpolation.
As a result, the translation of the texture coordinate for a given point ~x in the interior of
a patch is determined by

Φ(~x) = ~x +
∑

i,j,k∈{0,1}
aijk(~x) · ~tijk, (10.6)

with ~tijk referring to the texture coordinates of the translation vectors specified at the
corner vertices. The interpolation weights aijk in this equation are obtained from the
position of point ~x with respect to the original (undeformed) grid. An important benefit of
this deformation model is that the rendered geometry is static. The deformation is applied
by modification of the texture coordinates. In combination with an object-aligned slicing
algorithm this approach leads to an efficient implementation, which allows the deformable
model to be manipulated and rendered in real-time.
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Figure 10.9: The volume object is subdivided into a set of sub-cubes (left). The deformation
is modeled by transformation of only the texture coordinates at the vertices. The geometry
which must be rendered is static.

10.3.2 Modeling

As mentioned above, the major application of the described hexahedra model is for auto-
matic deformation techniques. However, for an application in modeling environments the
specification of texture coordinates is neither intuitive nor user-friendly. In order to pro-
vide the user with a mechanism which allows him to specify the local deformation simply
by picking and dragging of vertices, it is necessary to calculate the inverse transformation
Φ−1. The inverse function of a trilinear mapping, however, is not again a trilinear mapping,
but a function of higher complexity. To avoid the evaluation of the exact inverse function,
an approximation can be used for the purpose of modeling. Simply negating the original
translation vectors,

Φ̃−1(~x) = ~x +
∑

i,j,k∈{0,1}
aijk(~x) · (−~tijk), (10.7)

yields a sufficiently good approximation to the original inverse Φ−1. The approximation
error for a maximum deformation magnitude γ amounts to

Φ̃−1(Φ(~x)) = ~x + o(γ2). (10.8)

This approximation turns out to be accurate enough to enable intuitive modeling. High
precision is not necessarily required in sculpturing applications. An intuitive mechanism
to model the deformation similar to specifying control points for a B-spline surface should
suffice.
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Figure 10.10: Constrained vertices are located on edges or faces between patches of different
subdivision levels. Ignoring the constraints will lead to gaps in texture space (B, right).

10.3.3 Adaptive Subdivision

With respect to deformation methods, which automatically search for the best parameter
values according to a specified quality metric, the number of free parameters should be
as small as possible in order to minimize the computational load for the optimization
algorithm. Uniform subdivision of our model into a hierarchical structure of hexahedra,
however, will soon result in a high number of free vertices.

Using the above concept as a basis, it is easy to circumvent this problem by adaptive
subdivision of single patches in regions where higher flexibility is required. Adaptive sub-
division result in a hierarchical octree structure as shown in Figure 10.10 A. Similar to
subdivision surfaces, appropriate measure have to be taken in order to prevent undesired
gaps in texture space as depicted in Figure 10.10 B. In order to maintain a consistent
texture map, constraints have to be specified for all vertices that are shared by patches of
different subdivision levels. In the 3D case two different types of constraints are required
as depicted in Figure 10.11.

Edge Constraints: If two patches of different subdivision level share a common edge, a
constraint has to be specified for the vertex which has been inserted in the middle of
this edge. To prevent gaps the edge must stay collinear. In consequence, the inner
vertex is required to stay on a fixed position relative to the two neighboring vertices
(see Figure 10.11, left). Its position in texture space is determined by

~VC = (1− α) ~V0 + α · ~V1, (10.9)

with α = 1
2

in case of regular subdivision.
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Figure 10.11: Edge (left) and face constraints (right) are necessary to prevent gaps in
texture space.

Face Constraints: A second type of constraint is required to ensure that faces between
patches of different subdivision levels stay coplanar. The vertex in the middle of
such a face must stay at a fixed position relative to the four surrounding vertices (see
Figure 10.11, right). Its position in texture space is determined by

~VC =
∑

i=0...3

ai
~Vi with

∑
i=0...3

ai = 1. (10.10)

In case of uniform subdivision, the interpolation weights ai must be set to 1
4
.

To avoid the additional computational cost for managing recursive constraints, a general
rule is applied which is known from surface subdivision: Two neighboring patches1 must
not differ by more than one subdivision level. This means that any patch can only be
further subdivided if all neighboring patches have an equal or higher subdivision level.

10.3.4 Implementation

As described in Chapter 3, OpenGL hardware rendering requires the decomposition of
the patches into planar polygons. For an efficient implementation, we want to preserve
the benefit of our deformable model being based on a static geometry. In consequence
object-aligned slices are used as displayed in Figure 10.12, allowing the pre-computation
of intersection polygons.

The straightforward approach to render the object by computing the slice polygons for
each sub-cube and assigning texture coordinates at the resulting polygon vertices will not
lead to a correct representation of the trilinear deformation according to Equation 10.6.
The resulting inaccuracy is illustrated in Figure 10.13. Column A shows the correct trilinear
interpolation of the texture coordinates of a slice polygon that we want to achieve. The

1Patches are considered neighboring if they share at least one edge.
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Figure 10.12: Object-aligned slices are extracted at low computational cost.

graphics hardware however internally tessellates polygons into triangles. Letting OpenGL
perform the tessellation will lead to a bad approximation (column B). The grey triangle
is not affected by the transformation. As a more accurate approximation, an additional
vertex can be inserting in the middle of the polygon. In most cases the resulting tessellation
is sufficiently close to the original trilinear mapping. The insertion of such an additional
vertex also represents a correct triangulation of the non-planar texture map, which results
from the 3D deformation in texture space. Possible enhancements and future possibilities
for further optimization of this implementation using advanced feature of the graphics
hardware are described in [139].

10.3.5 Illumination

As we have already seen in the approach for free-form deformation, illumination calculation
based on pre-computed gradient vectors will result in erroneous lighting effects due to the
non-linear deformation. In Section 10.2.5 we have introduced a method for on the fly
gradient estimation using forward differences. Although this approach is well applicable
to our hexahedra based deformation model, let us examine an alternative possibility for
gradient estimation. This idea tries to adapt pre-calculated gradient vectors to the local
deformation in an approximative way.

We know that if an affine transformation matrix is applied to an object, its normal
vectors must be transformed with the transposed inverse of the matrix. The idea to adapt
pre-computed gradient vectors to the non-linear deformation is to approximate the original
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Figure 10.13: In contrast to the required trilinear interpolation (A), internal tessellation
of OpenGL (B) results in linear barycentric interpolation. Inserting an additional vertex
(C) approximates trilinear interpolation sufficiently.

trilinear mapping Φ(~x) by an affine mapping according to Equation 10.1. For simplicity
we write this equation in homogenous coordinates, denoted

Φ(~x) = A~x, with A =

(
A ~b

0 0 0 1

)
∈ IR4×4. (10.11)

The optimal approximation Φ is determined by minimization of the quadratic difference
between the approximative transformation of the eight corner vertices Φ(~xi) and the ideal
transformed positions ~yi = Φ(~xi), according to

∂

∂A

8∑
i=1

‖Φ(~xi)− ~yi‖2 = 0, (10.12)

which leads to
8∑

i=1

(~xi~x
T
i AT − ~xi~y

T
i ) = 0. (10.13)

Solving this equation for AT , results in

AT = M−1

8∑
i=1

~xi~y
T
i , with M =

8∑
i=1

~xi~x
T
i ∈ IR4×4. (10.14)
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It is easy to verify that the inverse of matrix M always exists. Also note that, since the
undeformed corner vertices ~xi are static, matrix M is a constant for each patch, thus
allowing an efficient pre-computation.

In order to achieve realistic illumination results according to the Phong model, the
pre-computed normalized gradient vectors must be adapted to the actual deformation.
According to our affine approximation, the new diffuse term after the transformation is
determined by

Ĩdiffuse = Ip kd

((
(A−1)T~n

) •~l
)
. (10.15)

Note that since the gradients ~n are obtained from a texture, this calculation requires a
per-pixel matrix multiplication, which can be computed using the pixel shaders of modern
graphics boards. As alternative we propose an efficient method, which circumvents these
per-pixel operations. Consider that the dot product in Equation 10.15 can also be written
as (

(A−1)T ~n
) •~l = ~n • (A−1~l ). (10.16)

To our method this means that all the pre-computed normal vectors can be left untouched.
We only have to evaluate a new light vector to obtain an equivalent visual result.

Regardless of whether the normal deformation is exact or approximative, using a light
vector that is constant within each patch, but different for neighboring patches, will in-
evitably result in visible discontinuities as depicted in Figure 10.14 (center). This is due to
the nature of piecewise linear transformations. To solve this problem, we must generate a
smooth transition for the diffuse illumination term of neighboring patches. An idea similar
to Gouraud shading is to specify light vectors per vertex instead of per patch. To each
vertex a light vector is assigned as an average of the light vectors of all the patches that
share this vertex. Analogously to the texture coordinates, the light vectors given at the
vertices are interpolated within a patch. To achieve this during rasterization, the light
vectors are simply assigned as color values to the vertices of each rendered polygon, thus

Figure 10.14: Diffuse illumination of an undeformed sphere (left). Extremely deformed
sphere with discontinuities at the patch boundaries (center). Correct illumination by
smoothing the deformed light vectors (right) at the vertices.



10.4. DISCUSSION 129

Figure 10.15: Animated tail fin of a carp demonstrates realistic illumination effects during
real-time deformation.

allowing the interpolation to be performed by hardware Gouraud shading. As displayed
in Figure 10.14 (right), this method will lead to satisfying illumination effects without any
discontinuities.

The described gradient estimation scheme is highly approximative and should not be
used for anything else than illumination. Since the Phong model does not have a strict the-
oretical background, the approximation error should be tolerable as long as the results are
visually pleasing. An example of changing lighting effects under deformation is displayed
in Figure 10.15.

10.4 Discussion

Literature reports only a few approaches for real-time volumetric deformation. Despite
the increase in computation power, deformation models based on tetrahedra structures are
still problematic. For any object that exhibits a reasonable complexity grid generation and
rendering still cannot be performed interactively. For intuitive modeling the presented free-
form deformation approach as well as the 3D-texture based approach proposed by Kurzion
and Yagel [90] are well applicable and allow deformation and rendering to be performed at
interactive frame rates.

The hexahedra model which has been optimized for general purpose hardware represents
a fast method for automatic deformation, such as soft tissue modeling and multi-modality
registration of tomographic data. The definition of the hexahedra transformation is based
on a well-defined mathematical model. The fast implementation in hardware is an ap-
proximation to this exact mathematical model. A major benefit of the hexahedra model
in comparison to free-form deformation is the possibility for accurate estimation of the
approximation error. The trilinear mapping is approximated using four interpolations in
barycentric coordinates. The resulting error is hardly noticeable for a deformation model
with a reasonable level of subdivision. For patches of low subdivision level inconsistent
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deformation might be visible when switching between orthogonal stacks of object aligned
slices. Increasing the subdivision level will easily fix this problem. The most important
application field of the hexahedra model is medical imaging, especially soft tissue modeling
and registration.

10.5 Registration

In biomedicine, different imaging modalities provide volumetric information which is com-
plementary in many aspects. For a wide variety of situations one individual data set is not
completely sufficient in terms of the respective information content. As an example, com-
puted tomography (CT) is especially sensitive to hard tissue and bone structures, whereas
magnet resonance imaging (MRI) is capable of differentiating between various types of soft
tissue. In certain cases only the combination of both sequences will meet the requirements
for the clinical purpose of diagnosis and treatment.

Two volume data sets of different imaging modalities recorded under different circum-
stances at different points in time are usually not properly aligned with each other in the
spatial domain. In order to provide the user with an image that represents the compound
information obtained from different measurements, it is necessary to reconstruct the spatial
alignment after the data acquisition. More specifically, registration denotes the computa-
tional procedure which determines a (possibly non-linear) transformation from the local
coordinate system of one data set into the other one’s. Registration techniques for volume
data are closely related to volume rendering. The process of image generation which com-
bines the complementary information of two registered data sets into a final compound
image is referred to as fusion (see also Section 5.4.2). Besides medical imaging, fusion of
multi-sensor images are important for machine vision and remote sensing applications in
defense and atmospheric fields.

The development of registration algorithms for specific problems requires the analysis
of the cause for the spatial misalignments between different data sets. In practise there
are several different aspects that must be taken into account:

• The most obvious cause for spatial misalignment is the movement of the object
between data acquisition. The exact location of a patient relative to the recording
device is not consistent for different points in time. In this case, rigid registration
approaches are sufficient if the scanned region itself is assumed to be static and
undistorted.

• More complex registration techniques must be applied if the scanned object is de-
formed. These approaches account for changes in both the shape and the relative
position of anatomical structures. Soft tissue deformation in the abdominal region
such as liver shifts are a prominent example. Additionally, registration of pre- and
intra-operative data must take into account the resection of soft tissue, fluid leakage
and resulting shifts of anatomical structures.
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• For data sets of different modality, the imaging parameters also play an important
role. The contrast and the exact boundaries between different anatomical structures
strongly depend on the imaging modality and the sequence parameters (see Sections
11.1.1 and 11.1.2) and may vary within a considerable range. Partial volume effects
(Section 11.1.3) as well as the sensitivity of specific imaging sequences for different
physical phenomena, such as fluid flow and scattering artifacts must be taken into
account.

According to the most commonly used terminology, a floating data set is transformed into
the local coordinate system of a fixed reference data set. The basic strategy for registration
is to determine the free parameters of the transformation in a way that maximizes a
specific similarity measure. The registration procedure is usually performed in an iterative
process as outlined in Figure 10.16. Starting with an arbitrary initial configuration, the
free parameters of the transformation are estimated. Subsequently the floating data set is
transformed and compared to the fixed data set. The similarity metric is evaluated. If the
result is not satisfactory, the transformation parameters in turn are modified and the whole
procedure is repeated until no further improvement can be achieved. Within this general
framework, the development of a specific registration procedure requires three components,
which greatly influence the accuracy and the efficiency of the whole procedure:

• An appropriate coordinate transformation, the choice of which is based on a math-
ematical model of the real deformation.

• A similarity metric to accurately measure the quality of the applied transforma-
tion.

Parameter

Estimation

Evaluation of

Similarity Metric
Transformation

Figure 10.16: Registration as an iterative process: The free parameters of the transfor-
mation are estimated, the transformation is applied and an appropriate similarity metric
is evaluated. The results of the similarity measurement are in turn used to modify the
transformation parameters.
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• An optimization strategy, which ensures that the algorithm proceeds towards the
global maximum of the similarity metric.

Non-linear transformations are used to account for complex distortions and local defor-
mations of the coordinate space. The first non-linear approach for registration of volumetric
data was introduced by Bajcsy et al. [4]. They used an elastically deformable template
model and a correlation–based similarity measure. Christensen et al. [18] proposed a
deformation model based on viscous flow. The evaluation of this model can be signifi-
cantly accelerated by the use of convolution with filters as suggested by Bro-Nielsen [13].
Thirion [160] introduced a similar model based on force fields that cause the non-linear
deformation. Due to the intrinsic complexity of the registration problem, these meth-
ods usually suffer from extremely long computation times. Fast and efficient non-linear
registration is still an unsolved problem in practise.

With regard to clinical application, our aim was to find a non-linear transformation that
is flexible enough to model local tissue deformations and at the same time easy to evalu-
ate with hardware acceleration. Throughout our experiments, software implementations of
polynomial and Bezier tensor product patches turned out to be extremely time-consuming.
On the other hand hardware implementations were restricted by the high computational
complexity in case of polynomial patches and by limited hardware support in case of
Bezier splines. Registration methods using the deformation model based on hexahedra,
as described in Section 10.3, have been investigated and published in [135, 64]. In this
implementation the floating data set was divided into a constant number of linear patches.
For simplicity, we have assumed the boundary vertices to be fixed in place. The trans-
lation of every inner vertex has been computed for optimal alignment with the reference
data set using multi-dimensional optimization based on mutual information [22, 168] as
similarity metric. Mutual information is a voxel-based similarity metric that has its ori-

monomodal multimodal

Figure 10.17: 2D compound histograms of mono-modal (left) and multi-modal data (right).
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gin in information theory. It is based on the relative entropy, a measure for the amount
of disorder included in a system. In this context, the term disorder is synonymous with
randomness and stochastic independency2. Mutual information involves the calculation of
the joint probability distribution of two random variables, graphically represented by a 2D
compound histogram as displayed in Figure 10.17. The optimal transformation is found,
if the dispersion of significant clusters in the histogram is minimized, which coincides with
mutual information reaching its maximum.

Real-time algorithms for registration and fusion of volumetric data sets are still an
unsolved problem in computer science. Because of its important role in clinical applica-
tions such as computer assisted surgery, various research groups are working on tractable
solutions. Surveys of registration techniques for medical image data can be found in
[100, 14, 105]. Approaches that try to exploit hardware acceleration of any type are ex-
tremely rare in this field. Since from the computational point of view registration and
volume rendering techniques are very similar, I am sure that future applications will lever-
age the great potential of graphics hardware for an improvement of the overall computation
time.

2In thermodynamics, entropy measures the forces that cause the spontaneous mixing of different fluids
and gases. These forces in turn are related to the amount of disorder at molecular level.
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Chapter 11

Introduction

“O Deep Thought computer,
The task we have designed you to perform is this.
We want you to tell us . . . the Answer!”

Douglas Adams (1952–2000)
The Hitchhiker’s Guide to the Galaxy

A major aim of the techniques presented in this thesis was to increase the applicability
of volume visualization techniques in medicine. In this chapter I am going to report on
several cases of clinical applications, that have been carried out in cooperation with the
Division of Neuroradiology of the University of Erlangen-Nuremberg. Section 11.1 provides
a brief introduction to medical image data and tomographic measurement. The described
clinical studies comprise research projects as well as applications of volume rendering for
diagnosis in clinical practise. The description of each individual project starts with a short
introduction to the medical background, the clinical relevance and the specific visualization
problem.

11.1 Medical Image Data

Radiology is a medical discipline which is primarily concerned with the acquisition, evalua-
tion and interpretation of images of the internal human body. In the last decades, medical
imaging and radiology has run through a revolution of technical progress. It started in
1972 with the development of computed tomography (CT). CT slice images represent the
first image material in medicine purely obtained by computation.

Nowadays tomographic techniques represent invaluable methods for medical research,
diagnosis and treatment planning. Major improvements have been achieved especially for
the examination of the brain, the spinal column and the abdominal cavity, including the
liver and the colon. The collaboration of medicine and computer science has lead to new
minimal invasive examination techniques such as virtual endoscopy and virtual colonoscopy.
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11.1.1 Computed Tomography

In contrast to the traditional X-ray technique, which only records two-dimensional projec-
tion images, computed tomography utilizes X-ray technology to reconstruct cross-sectional
images of the internal human body. During the examination an X-ray tube rotates around
the patient while emitting a fan of rays. On the opposite side of the tube an array of
detectors measures the amount of radiation that passes through the tissue. From these
measurements the cross-sectional slice image can be reconstructed by a computer program.
Computed tomography is a widely used technique for the discovery and identification of
space-occupying lesions.

The intensity of a voxel in a CT data set is proportional to the absorption of ionizing
radiation, which is in some sense related to the density of the tissue. As a result CT data
is extremely sensible to hard tissue types and bone structures. The Hounsfield scale allows
the differentiation of various materials such as air, fluid, soft tissue and bone according to
the respective intensity value. A data base of CT slice images can be accessed via internet
at [118].

11.1.2 Magnet Resonance Imaging

In contrast to computed tomography, magnetic resonance imaging (MRI) is a completely
non-invasive technique. The basis of MRI is a strong directional magnetic field. In the
quiescent state the magnetic moments of the hydrogen nuclei inside the human body are
randomly aligned. When a patient is placed into the magnetic field of an MRI scanner,
the magnetic moments of the free hydrogen nuclei align themselves with the direction
of the magnetic field. If a radio-frequency (RF) pulse is applied perpendicular to the
direction of the magnetic field, the magnetic moments of the nuclei tilt away from their
equilibrium. Once the pulse is removed, the magnetic moments realign themselves. During
this relaxation process the hydrogen nuclei emit their own RF response signal, which is
measured by the conductive coil of the MRI scanner. From this measurement a 3D intensity
image can be reconstructed in the computer. The intensity of a voxel is proportional to
the proton density, which is specific for a given tissue type. The contrast of the measured
intensity values depends on two additional tissue-specific parameters. The longitudinal
relaxation time T1 indicates the time required for the magnetic moments to return to
equilibrium. The transverse relaxation time T2 measures the decay time of the response
signal. The initial RF pulse now is applied periodically. The time between the inciting
RF pulse and the measurement of the response signal is called the echo delay time. By
adjusting both the repetition time and the echo delay time images of different contrast can
be recorded.

11.1.3 Partial Volume Effects

Data sets that arise from tomographic measurement, especially CT data, often contain
scanning artifacts for sample points close to the boundary of different tissue types. If
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multiple objects of different intensity partly project into the scan plane, inconsistencies
will occur resulting in shading effects. This inaccuracy is referred to as partial volume
effect (PVE).

The partial volume effect is particularly noticeable in slice images that run almost
parallel to object boundaries. As displayed in Figure 11.1 some regions in the image appear
dim because tissue with lower intensity contributes to the voxel values. Obviously, partial
volume effects can significantly degrade the image quality by blurring object boundaries.
For CT scanner, the partial volume effect is influenced by the z-sensitivity (slice thickness).
Images with higher z-sensitivity are favorable with regard to 3D reconstruction and volume
rendering.

Figure 11.1: Partial volume effects in CT (left) and MRI (right) data.



Chapter 12

The Inner Ear

With high-resolution spiral-CT scanners, it is possible to record very tiny anatomical struc-
tures, such as the middle and the inner ear. The analysis of these vulnerable structures is
of great importance for the planning of surgery close to the temporal bone. In this chapter
we want to compare both indirect and direct volume visualization methods for this exam-
ple of clinical practise. An indirect method is demonstrated by the use of threshold-based
segmentation, contour extraction and surface reconstruction. The results of the surface
reconstruction process are compared to direct volume rendering. Preliminary results of
this work have been published in [63], including the registration of supplementary image
information obtained by MRI.

12.1 Background

The internal part of the human ear can be divided into two functional units, the middle
and the inner ear. The labyrinth of the inner ear mainly consists of the semicircular canals
and the cochlea as displayed in Figure 12.1. These structures again consist of a bony part
and a membranous part. The gap in between is filled with labyrinthine fluid (perilymph).
The middle ear consists of the internal auditory canal, which accommodates the ossicles.
Usually, only the bony parts of the ear are visible on CT data.

Although the small and complex structures are clearly visible on the slice images (Fig-
ure 12.2), it turns out to be extremely difficult to understand their spatial relations. This
is an ideal case in which 3D reconstruction and volume rendering greatly enhances medical
imaging by taking the necessity to mentally reconstruct the entire shapes away from the
physician.

As outlined in Section 1.3.1.2, a polygonal model is usually obtained in a tedious and
time-consuming procedure. The 3D scalar field delivered by the CT scanner is reduced to
the surface description of a specified target structure. Due to the limited spatial extent of
the inner ear, this is a complicated task and effusion within the temporal bone makes this
process even more difficult.

In the following section the extraction of a high quality polygonal model of the middle
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©4
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©7

©1 Semicircular duct posterior
(ductus semicircularis posterior)

©2 Semicircular duct anterior
(ductus semicircularis anterior)

©3 Semicircular duct lateral
(ductus semicircularis lateralis)

©4 Perilymphatic space
(spatium perilymphaticus)

©5 Oval window, vestibular window
(fenestra vestibuli)
with stirrup bone (stapes)

©6 Round window, cochlear window
(fenestra cochleae)

©7 Cochlear duct, Löwenberg’s canal
(ductus cochlearis)

Figure 12.1: The inner ear mainly consists of three semicircular canals (©1 – ©3 ) and the
cochlear duct (©1 ).

and inner ear is exemplified by describing the necessary segmentation and reconstruction
steps. Neither the segmentation nor the surface reconstruction process that we apply claims
to be the most efficient approach. However, the basic procedure and the difficulties that
we encounter are typical for the majority of surface-based reconstruction techniques.

12.2 Surface Reconstruction

Due to noisy data and partial volume effects (see Section 11.1.3), it is hardly possible to
extract the target object by a simple threshold operation. As a result, isosurface techniques
are out of the question. In consequence, a voxel-based segmentation method must be used
to explicitly determine the target structures. Fully automatic segmentation is usually error-
prone and insufficient in terms of robustness. Thus, the reliability of the results obtained
by automatic methods is doubtful.

We have chosen a user-guided semi-automatic segmentation approach, which has been
described in [60]. This method is mainly based on an iterative procedure, involving volume
growing, hysteresis threshold operations and manual editing, supervised by an expert user.
Subsequent to this voxel-based segmentation process, the contours of the extracted objects
are determined on every slice image by a simple contour detection algorithm.

From the resulting stack of contour lines, an initial polygon model is triangulated
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Figure 12.2: High resolution CT slice images of the temporal bone.

using the software package Nuages provided by Bernhard Geiger [51, 50], which is freely
available from the French National Institute for Research in Computer Science and Control
(INRIA) [49]. Nuages is a package for 3D reconstruction from parallel cross-sectional data
based on Delaunay triangulation. Since in our case the exact voxel boundaries of the target
structures are used as contour lines, the resulting surface contains a high number of jagged
edges which appear very distracting to the viewer.

As a smooth surface would much better represent the real target structures, the initial
polygonal model is further post-processed. In order to remove the jagged edges, we apply
discrete fairing as introduced by Leif Kobbelt [84]. The smoothing algorithm is based
on topological mesh refinement. The original triangles are uniformly subdivided and the
position of a newly inserted vertex is calculated by variational methods such as the min-
imization of the bending energy. With uniform subdivision, however, the overall number
of triangles increases rapidly. For reducing the triangle mesh again to a manageable size,
polygon reduction is applied with a technique presented by Campagna et al. [17]. In order
to ensure that the resulting surface is an accurate representation of the real target struc-
tures, it is important to take care that the modifications of the surface comply with the
tolerance measures that are derived from the original resolution of the volume data set.
This of course applies to the surface smoothing as well as to the mesh decimation. Inter-
mediate results from this sequence of post-processing steps are illustrated in Figure 12.3.
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A B

C D

Figure 12.3: Surface reconstruction process for the inner ear. A: Initial surface generated
by Nuages [51]. B: Smoothing step using uniform subdivision. C: Polygon reduction.
D: Final result after additional smoothing step.
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12.3 Direct Volume Rendering

Compared to the time-consuming process of surface reconstruction, texture based volume
rendering allows the immediate visualization of the target structures without any pre-
processing. The first step in a typical work flow of data analysis is the rendering of the
whole volume data set and the assignment of an initial transfer function. If bone struc-
tures are of interest, the soft tissue is usually rendered fully transparent as displayed in
Figure 12.4 (left). Subsequently the interior of the data set is explored interactively using
clipping planes (right). When the interesting details are found inside the data set, sub-
volumes are extracted and rendered separately. In this context it is important to apply
a post-interpolative transfer function. The visualization of the cochlea or the semicircu-
lar canals of the inner ear with a transfer function for pre-classification is hopeless, as
the boundary between these tiny structure will be obscured by interpolation artifacts as
displayed in Figure 12.5(left). This problem is described in detail in Section 5.3. Post-
classification enables implicit reconstruction of thin boundary surfaces which leads to clear
visual results of high quality (right).

12.4 Results

The visual results presented in this chapter demonstrate the benefit of direct volume ren-
dering in the context of the analysis of the middle and the inner ear. The direct volume
rendering part described in this section has proven its value in a clinical application of

Figure 12.4: CT data set of the temporal bone: Clipping planes are used to interactively
examine the data set. The structures of the inner ear (arrows) are embedded inside the
temporal bone of high signal.
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,

pre-classification post-classification

Figure 12.5: Comparison of pre- (left) and post-classification (right) of a high-resolution
CT data set of the inner ear. Both images were generated with exactly the same transfer
function and with exactly the same number of slice images. While the cochlea and the bony
labyrinth is clearly visible in the post-classified image, due to the distracting interpolation
effects the same structures are hardly visible in the pre-classified data.

virtual labyrinthoscopy [164].
In the case of the temporal bone, the application of surface reconstruction techniques

for the only purpose of data visualization is not recommendable. The time consumed
for accurate reconstruction is unnecessarily high compared to direct volume rendering
approaches. Surface reconstruction techniques however are still important in scenarios
that require an explicit surface description e.g. for surface measurement or simulation
purposes.



Chapter 13

Intracranial Aneurysms

The visualization of 3D angiography data such as MRA and CTA is a typical example
for interactive direct volume rendering substituting explicit voxel-based segmentation and
surface reconstruction techniques. The extraction of the target structures is easily achieved
using interactive transfer function assignment. The superiority of direct volume rendering
for the visualization of CTA in comparison to traditional visualization techniques such as
MIP or SSD1 has already been established by a clinical study of intracranial aneurysms [65].

13.1 Background

The term angiography refers to the roentgenographic visualization of blood vessels after
injection of a radiopaque substance. As a consequence of the fast evolution of tomographic
measurement in radiology, there is a clear trend towards 3D imaging modalities which
substitute traditional projection images. A prominent clinical example for the application
of 3D angiography techniques is the diagnosis and surgery planning for the treatment of
intracranial aneurysms.

An aneurysm is a localized abnormal dilatation of a blood vessel filled with fluid or
clotted blood, resulting from a disease of the vessel wall. The term intracranial aneurysm
refers to such a vessel malformation located at the cerebral arteries. As a result of a
weakness of different layers of the vessels wall, there is a considerable risk that a rupture
of the aneurysm will lead to severe haemorrhage in the brain.

Figure 13.1 shows the course of the cerebral arteries and its spatial relations to the cere-
bral nerves. Intracranial aneurysms are frequently located at the anterior communicating
artery (©1 ), the internal carotid artery (©2 ) and the bifurcations of the medial cerebral
arteries (©3 ). The most widely used method for the treatment of intracranial aneurysms
is a highly invasive procedure in which the surgeon inserts a clamp that seals the neck
of the aneurysm. As an alternative approach, a platinum coil is inserted into the vessels
in a minimal invasive procedure in order to prevent the turbulent blood flow inside the

1SSD = Shaded Surface Display
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©1 Arteria communicans anterior
©2 Arteria carotis interna
©3 Arteria cerebri media
©4 Arteria cerebri posterior
©5 Arteria cerebelli inferior anterior
©6 Arteria spinalis anterior
©7 Arteria vertebralis
©8 Arteria cerebri anterior
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©A Arteria cerebelli superior
©B Arteria basilaris
©C Arteria cerebelli inferior posterior

II Nervus opticus
III Nervus oculomotorius
VI Nervus abducens
VII Nervus facialis
VIII Nervus vestibulocochlearis

Figure 13.1: Intracranial arteries and its relation to the cerebral nerves. Intracranial
aneurysms are frequently located at the arteria communicans anterior (©1 ), the arteria
carotis interna (©2 ) and the bifurcations of the arteria cerebri media (©3 ).

aneurysm which most likely causes the rupture. Both methods require profound knowledge
about the individual vascular structures.

13.2 Visualization

The decision which treatment method is applicable in each individual case requires de-
tailed information of the vasculature of the patient. In modern clinical scenarios non-ionic
contrast dye is injected into the interesting vessels and CTA volume data is recorded.

The traditional visualization technique for angiography data is maximum intensity
projection (MIP). The popularity of MIP is mainly due to its simplicity. The assignment
of a transfer function is not required. However, as a consequence of the loss of depth
information, the incorrect display of occlusion easily leads to erroneous interpretations of
spatial relations between different vessels. Additional problems arise if vessels are located
very close to the skull base, since the high intensity of the bone structures supersedes the
signal of vessels filled with contrast medium.

Direct volume rendering techniques have proven superior for the interpretation of CTA
data, as the physically based ray integration is much closer to natural human vision than
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MIP. The results of a clinical study of intracranial aneurysms have been previously pub-
lished in [65]. This application based on expensive high-end graphics server architectures
includes functionality for improved navigation, distance and volume measurement and rigid
registration with MRI data. Although this study provided excellent visual results which
proved extremely valuable for diagnosis and surgery planning, the application was still
limited by the availability of the high-end graphics workstation. In order to enable the
analysis of small vascular structures on a larger number of hardware platforms an alter-
native approach which leads to similar visual results was implemented with respect to
minimal hardware requirements

13.3 Semi-transparent Isosurfaces

As already demonstrated for the case of the inner ear, a transfer function for post-
classification is mandatory for a clear visualization of tiny structures free from sampling
artifacts. As we have seen in Chapter 5, the implementation of post-classification requires
special hardware features such as post-interpolative texture color tables or dependent tex-
ture lookups. In order to visualize angiography data on hardware platforms that do
not support extensions for pre-classification, a supplement of the techniques for rendering
non-polygonal isosurfaces described in Chapter 7.2 can be used. As a result of the ap-
plication of contrast medium with known CT value on the Hounsfield scale, the vascular
structures are extracted by a simple isovalue threshold. An enhanced perception of depth
is provided by illumination effects. For the analysis of angiography data,however, the use
of non-polygonal isosurface techniques brings two drawbacks.

• The alpha test used for isosurface extraction is equivalent to a post-interpolative
transfer function with a sharp edge. Besides the fact that the accurate display of
such a thin surface requires a high sampling rate, a single isovalue does not accurately
represent the fuzzy boundaries within the data which are caused by partial volume
effects.

• Transparency has turned out to be important for understanding the spatial relations
of complex vessel topologies. With the original implementation of non-polygonal
isosurfaces transparent isosurfaces are difficult to accomplish. This is a result of
the GL LESS-metric which we used in the alpha test to avoid an unnecessarily high
sampling rate.

To tackle these problems a dual-pass rendering method was developed, that allows the
display of semi-transparent thick isosurfaces on hardware platforms with minimal require-
ments. The idea of this approach is to exploit the OpenGL stencil buffer to determine the
interior of the isosurface. In the core of the algorithm each slice plane is rendered twice.
In both rendering passes the alpha test is enabled as usual with the GL LESS-metric. Note
that since the alpha test belongs to the per-fragment operations, it is performed after the
interpolation of the texture samples. In the first rendering pass the isovalue I is slightly
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Figure 13.2: Dual-pass rendering for semi-transparent thick isosurfaces. In the first ren-
dering pass the interior of the isosurface is rendered into the stencil buffer. In the second
rendering pass the stencil buffer is used to discard the fragments in the interior.

shifted by a subtracting 1
2
δ as displayed in Figure 13.2. The resulting fragments are writ-

ten to the stencil buffer. In the second rendering pass the isovalue I is shifted in the other
direction by adding 1

2
δ. Simultaneously the stencil test is used to discard all the fragments

in the internal region which was determined by the first rendering pass. The result is an
isosurface with a user-specified thickness δ. Additionally during back-to-front compositing
of the stack of slice images alpha blending is also enabled and a constant alpha value is
used to enable transparent isosurfaces.

13.4 Results

The results of the presented method for rendering of semi-transparent isosurfaces are dis-
played in Figure 13.3 and 13.4 for two different CTA data sets rendered on a PC system
with an NVidia GeForce 2 Ultra GPU (see PC System B in Chapter 8). The dual-pass
rendering procedure works in combination with both 2D- and 3D-textures. The presented
approach is thus an efficient alternative visualization technique to the one presented in [65].
A major benefit of this approach is the low hardware requirements. The only specific hard-
ware extensions required are multi-textures for the trilinear interpolation of slice images as
described in Chapter 4 and a mechanism for dot-product calculation such as the popular
OpenGL extension EXT texture env dot3.

A clear visualization of the spatial relation between different vascular structures is pro-
vided by the use of transparency. Illumination effects additionally enhance the perception
of depth. Compared to the original implementation of non-polygonal isosurfaces, the user-
specified thickness of the isosurface is used to account for fuzzy boundaries that result from
partial volume effects. With the presented approach the value of high-quality visualiza-
tion of angiography data is available on inexpensive graphics hardware. By removing the
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necessity of expensive high-end graphics workstations it enables high-quality visualization
on the desktop PC of every physician.

Figure 13.3: Example of semi-transparent isosurface rendering of CTA data for the visu-
alization of intracranial vessels.
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Figure 13.4: Example of semi-transparent isosurface rendering of CTA data for the visu-
alization of intracranial vessels.



Chapter 14

Dural Arteriovenous Fistulae

In the previous section we have examined a case in which the structures of interest could be
visualized simply by a transfer function or an isovalue threshold. This was possible because
during data acquisition the image contrast between the target vessels and the surrounding
tissue had been enhanced by the use of contrast dye. In this section we will examine
a clinical problem of higher complexity, that does not allow the extraction of the target
structures implicitly by a transfer function. This example demonstrates how to obtain high
quality visualization results while minimizing the necessary segmentation operations.

Dural arteriovenous fistulae are vessel malformations in the area of the spinal cord.
They can cause a variety of somatic diseases. The traditional way to examine such malfor-
mations is digital subtraction angiography (DSA). This medical imaging method requires
the injection of contrast medium into several segmental arteries of the vertebral column in
a highly difficult and time-consuming procedure. An additional drawback of DSA is the
fact, that it only delivers projection images similar to traditional X-ray techniques. Due
to the missing depth information it is considerably difficult to understand spatial relations
of complex vessel structures.

As an alternative approach, a specialized MR sequence called MR-CISS is used to record
volume data of the vertebral column. In this section we will introduce and examine a vi-
sualization approach based on such data. It supplements the traditional DSA examination
by significantly reducing the number of dye injections which are required to determine the
exact position of the fistula. The aim of this approach is not to substitute traditional DSA
examinations completely, since DSA represents a well-known standard for such cases.

14.1 Background

The spinal cord is the large nerve trunk that runs along the vertebral column. The space
between the spinal cord and the dura mater is filled with cerebrospinal fluid (CSF). In
addition to the root nerves which have its origin in the spinal cord, also venous blood
vessels run within the CSF. Like all veins, they are part of the low blood pressure system.
Dural arteriovenous fistulae (dAVF) are pathologic connections between these veins and
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the high-pressure segmental arteries of the vertebral column [58]. In the pathologic case
such a short-circuit and the resulting pressure gradient causes a distension of the venous
vessels and in turn a constriction of the nerve roots. This can lead to a variety of somatic
diseases ranging from back pain to paraplegia and physical disability. Possible treatments
of a dural arteriovenous fistula are coagulation of the pathologic structure or excision of
the whole abnormal area during a neurosurgical intervention.

Even if the symptoms give reason for suspecting a dural arteriovenous fistula, it is
often difficult to prove its existence, as this would require the detection of the feeding
artery, the so-called nidus of the fistula. In a conventional DSA examination, the physicist
injects contrast medium into several segmental arteries on both sides of the vertebral
column and examines the diffusion of the dye. The feeding artery is thus determined in
a trial-and-error process, which is extremely time-consuming. The injection of contrast
dye into the vertebral column also comes with a certain risk of spinal cord injuries. In
order to optimize this procedure it is necessary to reduce the number of dye injections to
a minimum. A non-invasive way to obtain additional information of the vessel situation
prior to the DSA examination is provided by magnetic resonance imaging (MRI), especially
with a specialized MR sequence called MR-CISS.

14.2 The MR-CISS Sequence

As explained in Section 11.1.2, adjusting the set of MRI sequence parameters allows the
differentiation between various tissue types in a very flexible way. By measuring the pulse
response signal at different points in time (multi-spin echo sequences) and by combining
these measured values to reduce visual artifacts, it is possible to obtain image data at high
resolution.

Figure 14.1: The MR-CISS sequence (right) combines two FISP sequences with alternating
phase (left and middle) to remove band effects due to field inhomogeneities (arrows).
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The MR-CISS1 sequence is a Siemens proprietary, strongly T2-weighted sequence, which
consists of a pair of true FISP2 sequences [28]. Although due to local field inhomogeneities
a single FISP sequence is affected by dark phase dispersion artifacts, the combination of
two FISP sequences with alternating phase of excitation pulses allows a complete reduction
of these artifacts (See Figure 14.1). The image combination is automatically performed
after data collection, adding some computation time to the reconstruction process. The
MR-CISS sequence yields excellent contrast between soft tissue and cerebrospinal fluid at
a high spatial resolution.

The slice images displayed in Figure 14.2 show high signal intensities for fluid and fat
tissue while other soft tissue types and vascular structures (©4 ) are represented by low
signal. The space between the spinal cord (©5 ) and the dura (©2 ) is filled with CSF (©1 )
which contains the target vessels. The dura in turn is surrounded by bone structures of
low intensity and partly by epidural fat (©3 ) of relatively high signal values. As a result
MR-CISS data can replace traditional myelography, since it provides all the necessary
information non-invasively [35].

However, to fully understand the spatial relationships of the vascular structures, an
appropriate 3D reconstruction of the vessel tree is required. Since the spinal cord as well
as the vascular and the bony structures are in the same range of data values, it is neither
possible to apply a simple maximum intensity projection (MIP) nor to extract the target
structures with a global transfer function. Explicit segmentation in general is a highly
complex and time-consuming procedure. Due to partial volume effects it turns out to be
almost impossible to obtain a valid segmentation in case of the vascular structures with

1CISS = constructive interference in steady state
2FISP = fast imaging with steady precision
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Figure 14.2: MR-CISS images of the spinal column. Sagittal (left) and coronal (right) slice
image.
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their very limited spatial extent. As a solution to this problem we have developed a fast
sequence of pre-processing operations. The aim of this procedure is not to explicitly extract
the vessel structures, but to coarsely separate different regions which have a similar range
of data values.

14.3 Pre-Processing

As mentioned above, we want to follow the strategy to isolate the region of CSF including
the vascular structures by separating the whole area from the surrounding tissue. If we
have obtained such a coarse segmentation, we can visualize the vessel structures by a
local transfer function as outlined in Section 5.5. This approach is faster and much more
convenient than an explicit segmentation of the vessels. The pre-processing pipeline we
have developed consists of a sequence of 3D image processing operations described as
follows. In some cases noise reduction has been necessary as an initial step to optimize the
data for further pre-processing. Regions of higher homogeneity are obtained by anisotropic
diffusion [52], while the exact object boundaries are preserved. Figure 14.3 outlines the
sequence of further pre-processing operations.

1. In terms of image processing, the tiny vascular structures contained in the relatively
large region of CSF can be interpreted as a high frequency detail. Low-pass filtering
could remove these structures, however at the expense of blurring the object bound-
aries. To avoid this, we apply a morphologic 3D gray-value closing operation with a

Original
Data

3D Closing
Operation

Volume
Growing

Volume
Growing

Figure 14.3: The sequence of image processing operations for the coarse segmentation of
MR-CISS data.
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spherical filter kernel. This operation removes the dark vascular structures within the
region of CSF of high intensity, such that the whole region can be easily extracted by
a simple threshold operation. For optimal results the size of the spherical filter kernel
must be greater than the largest vessel diameter, but smaller than the diameter of
the spinal cord.

2. Successively, the closed region of CSF is extracted by volume growing. The segmen-
tation is computed stepwise starting at the top of the vertebral column. Bounding
boxes are used to prevent volume offshoots.

3. Although this first segmentation already contains all the interesting structures, it has
proven useful to additionally obtain a segmentation of the spinal cord. Again, this
is easily achieved with volume growing of the closed image data, using the previous
segmentation as a boundary.

Due the low computational cost, the presented user-guided image processing sequence
leads to fast and robust segmentation results. Manual correction of segmentation errors
were necessary only in very few cases. Based on the segmentation results, the original
image data is attributed using unique tag numbers for the CSF, the spinal cord and the
surrounding dark tissue. Subsequently local transfer functions as described in Chapter 5.5
are assigned. In order to avoid the visual artifacts that result from interpolation across tag
boundaries, we have chosen to use a pre-classification approach based on pixel transfer.
To speed up the assignment in clinical routine transfer function templates as described in
Chapter 6 were used in combination with manual adjustment.

14.4 Results

Throughout the clinical study the described visualization technique for dural arteriovenous
malformations was applied to the image data of several patients. Figure 14.4 shows the
visualization results for a patient with a dural arteriovenous fistula in the area of the brain
stem. Information about the complex vascular structures and their spatial relations is
extremely difficult to obtain from the traditional DSA projection images (A). The coarse
segmentation generated by the presented sequence of pre-processing steps and the resulting
visualization provides 3D information about the vessel structures (B – D) and their relation
to the surrounding anatomy such as the medulla oblongata (green).

As another example from the same clinical study, Figure 14.5 shows data of a patient
with a dural arteriovenous fistula in the area of the thoracic spine. The distention of
the venous vessel is clearly visible. In this case the closing operation has lead to small
visual artifacts caused by epidural fat tissue close to the dura mater. In some cases these
structures can be removed by clipping planes. Despite of these segmentation artifacts the
vascular structures are represented accurately.
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Figure 14.4: Intricate vascular structure in the area of the brain stem of a patient with a
dural arteriovenous fistula. The spatial relations of the vessels are extremely difficult to
obtain from standard DSA projection images (A). MR-CISS data provides 3D information
of the vasculature (B) as well as additional anatomical structures (C and D).

A B C D

Figure 14.5: Dural arteriovenous fistula in the area of the thoracic spine. The distention of
the venous blood vessel caused by the fistula is clearly visible in the DSA image (A). The
same structures are visualized with the non-invasive technique based on MR-CISS data
(B – D). Segmentation artifacts are partly visible in (B).
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In several cases manual post-processing was necessary to obtain images free of segmenta-
tion artifacts. For an application in clinical practise however, the presented semi-automatic
pre-processing sequence delivers valuable information to facilitate the DSA examination.
Throughout the clinical study the number of dye injections for DSA could be significantly
reduced.

In an interesting case of a dural arteriovenous fistula in the area of the lumbar spine,
the feeding artery was located outside the area of CSF. After multiple DSA examinations
the existence of the fistula still could not be verified. The acquisition of MR-CISS data
however immediately displayed the distension of the venous blood vessels and a fistula
coming from the right internal iliac artery could be identified. With this information
obtained from MR-CISS data the nidus of the fistula was finally verified using DSA. This
example clearly demonstrates the benefit of the combination of DSA with the presented
visualization technique in clinical practise.

A B C D

Figure 14.6: Dural arteriovenous fistula in the area of the lumbar spine coming from the
right internal iliac artery. MR-CISS (B – D) data displays the distension of a venous blood
vessel surrounded by the roots of the spinal nerves. With this information obtained from
MR-CISS data the nidus of the fistula was finally verified using DSA (A).



Chapter 15

The Vertebral Column

This chapter reports on a clinical study on the analysis of the vertebral column and related
diseases. The aim of this study was to improve the diagnosis and therapy planning of
discogenic diseases in orthopaedics.

From the image processing point of view, the procedure is similar to the visualization
of dural arteriovenous fistulae described in the previous chapter. However, this study
demonstrates the benefit of an optimized adaptation of the imaging sequence to the specific
visualization problem.

15.1 Background

The spinal column forms the supporting axis of the human body. It consists of an ar-
ticulated series of vertebrae connected by ligaments and separated by more or less elastic
intervertebral fibrocartilages (Figure 15.1). A single vertebra consists of a cylindrical body,
various spinous and articular processes and a dorsal arch providing a protected passage
for the spinal cord. Within this spinal canal, the spinal cord serves as a pathway for ner-
vous impulses and gives off several pairs of spinal nerves which lead through the vertebral
foramina to the various parts of the limbs.

Degenerative discogenic diseases of the vertebral column are mainly caused by mal-
formation or dislocation of the intervertebral discs and deformations of the spinal cord.
Slipped or ruptured disks can cause severe spinal stenosis, narrowing of the spinal canal
and a resulting constriction of the nerves. In the same context the term spondylolisthesis
refers to a forward displacement of a lumbar vertebra on the sacrum which again produces
a compression of nerve roots. For the diagnosis and the therapy planning of intervertebral
disk diseases detailed information of the relevant structures and their spatial relations is
required.

In clinical practise, the traditional method to examine complex cases of extreme spinal
stenosis and herniated intervertebral disks requires the injection of contrast dye into the
spinal subarachnoid space (x-ray myelography). This is an invasive and time-consuming
procedure that comes with a considerable risk for the patient.
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Figure 15.1: Anatomical structures related to the vertebral column.

To these ends an alternative examination method based on a highly optimized MRI
sequence was developed at the Division of Neuroradiology of the University Erlangen-
Nuremberg. For the visualization of the data we again propose a fast sequence of simple
image-processing operations for a coarse separation of anatomical structures similar to the
visualization of dural arteriovenous fistulae described in the previous chapter. Preliminary
results of this study have been published in [61].

15.2 Data Acquisition

The basis of the completely non-invasive examination procedure is the MR-MEDIC1 se-
quence. In the resulting slice images the spinal canal filled with cerebrospinal fluid (CSF)
is depicted with high signal intensity. The sequence is optimized to provide high con-
trast between the CSF and the nerve roots. Additionally, it allows the differentiation of
intervertebral disks from bony vertebrae. Compared to a first approach based on the MR-
FISP2 sequence [34], the MR-MEDIC sequence delivers an improved in-plane resolution
for more accurate measurement. Compared to the MR-CISS sequence described in the
previous chapter, the MR-MEDIC sequence also removes the problems caused by epidural
fat tissue.

In order to investigate the change in shape and relative position of the elements that
form the spine, functional analysis is performed. For each patient three MR-MEDIC data
sets are recorded, one for the normal resting position, one for the forward bending (in-
clination) and one for the backward bending of the spine (reclination). As in some cases

1MEDIC = Multi Echo Data Image Combination
2FISP = Fast Imaging with Steady State
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Symphony 1.5 Tesla

Matrix: 256× 256
Slice Distance: 1.17 mm
Pixel Resolution: 1.17 × 1.17 mm2

Figure 15.2: MR-MEDIC slice image of the spinal column provides high contrast between
CSF and nervous structures. The separation of intervertebral disks from bony structures
is also facilitated significantly.

it is very difficult for the patient to hold the functional position for the duration of the
scan, an MR-compatible device [33] supports lifting and lowering of certain parts of the
spinal column. Especially for the examination of elderly patients and in case of herniated
intervertebral disks, this device has turned out to be an indispensable aid.

15.3 Pre-Processing

For the visualization of the different structures contained in the MR-MEDIC data set we
follow the same strategy as described in the previous chapter. A coarse separation is
obtained by a fast sequence of image processing operations and the detail structures are
extracted subsequently by local transfer functions.

Analogous to the visualization of dural arteriovenous fistulae a coarse separation of the
area of CSF including the roots of the spinal nerves is achieved by a morphological closing
operation, followed by a semi-automatic threshold operation. For the segmentation of bone
structures a slightly different procedure is required as illustrated in Figure 15.3. Starting
with the original volume data, an anisotropic diffusion filter is applied for noise reduction.
In the MR-MEDIC sequence bony structures are represented by intensity values of about
zero. The only structures that lie within the same range of data values is the surrounding
air and the main arterial trunk, the Aorta. All of these structures are spatially separated
from each other such that the extraction of the bone structure can be performed by a
simple volume growing operation with a seed point manually positioned inside a vertebral
body. Finally the extracted region is inverted as displayed in Figure 15.3(bottom right).
Alternatively, this inversion can also be achieved by means of a local transfer function.
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An additional segmentation of the intervertebral disks is also achieved by semi-automatic
threshold operations with user-specified seed points. Based on the extracted regions, the
original volume data set is attributed with unique tag numbers. During volume rendering
the local transfer functions are assigned for each tagged region separately.

In addition to the application of local transfer functions, the voxel-based segmentation
of the CSF is used for quantitative measurement of the constriction of the CSF in depen-
dance of the functional position. This is achieved by manual positioning of a measuring
widget on the same level with the intervertebral disks. The volume of CSF is determined
by counting the voxels contained inside a bounding box of fixed size that is attached to the
widget. The comparison of volume measurements for different functional positions allows
the quantitative validation of the narrowing of the CSF at multiple levels.

Original
Data

Anisotropic
Filtering

Inverse
Display

Volume
Growing

Figure 15.3: The segmentation of the MR-MEDIC data is performed with a fast sequence
of 3D image processing operations.
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15.4 Results

Within the scope of a clinical study, the presented approach was applied to a high number
of patients with severe spinal stenosis and spondylolisthesis as well as to several healthy
volunteers. In addition to traditional x-ray myelography, MR-MEDIC data was recorded
in normal position, inclination and reclination. In some cases post-myelographic CT im-
ages were acquired. For pathologic cases post-operative data was used to compare the
anatomical structures before and after the intervention.

As an example, Figures 15.4, 15.5 and 15.6 show the examination results for a 85
year old patient with a multi-segment spinal stenosis at the levels L2/3, L3/4 and L4/5.
Due to the speed of the contrast medium, the assessment of the spinal stenosis is difficult
in conventional x-ray myelography (Figure 15.4A, 15.5A and 15.6C). Compared to these
projection images, the coarse segmentation of the spinal subarachnoid space filled with CSF
leads to appropriate 3D visualization and an exact quantification of the spinal stenosis as
displayed in the Figures 15.4B and 15.5B. Based on the segmentation of CSF, volumetric
measurement at the levels of the stenotic segments shows a significant decrease of CSF
in reclined position. The Figures 15.6A and B display the segmented region of CSF in

A B

Figure 15.4: Comparison of traditional x-ray myelography (A) with direct volume render-
ing (B) MR-MEDIC data in inclination for a 85 year old patient with multi-segment spinal
stenosis at the levels L2/3, L3/4 and L4/5. The quatification of the spinal stenosis in
conventional x-ray myelography projection images is very difficult. 3D visualization of the
segmented spinal subarachnoid space allows efficient examination of the pathology. The
corresponding images in case of reclination are displayed in Figure 15.5
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A B

Figure 15.5: Comparison of traditional x-ray myelography (A) with direct volume render-
ing (B) MR-MEDIC data in reclination for a 85 year old patient with multi-segment spinal
stenosis. The corresponding images in case of inclination are displayed in Figure 15.4.

relation to the vertebra and the intervertebral disks using local transfer functions for the
extracted regions. The comparison of the inclination to the reclined position clearly shows
the extremely limited range of movement. As a result of osteochondrosis the intervertebral
disk at level L5/S1 is not visible at all. An axial slice image from post-myelographic CT
data (Figure 15.6 (D) shows a calcification of the flaval ligaments (arrow), which finally
caused the constriction of the CSF.

Examination results of a different patient evaluated within the scope of the described
clinical study are shown in Figure 15.7. The images show volume visualization of the
spinal subarachnoid space including the roots of the spinal nerves in combination with
surrounding anatomical structures in different functional positions. In this case of a 60 year
old patient with minor spinal stenosis and spondylolisthesis at the level L4/5, a significant
narrowing of the CSF is visible in the pre-operative data (arrows). After the diagnosis
of spondylolisthesis, the displacement of the lumbar vertebra which was the cause for the
spinal stenosis has been removed in a surgical procedure. The results of this intervention
have been validated by post-operative MR-MEDIC data. The visualization results clearly
show that the spinal stenosis was successfully removed.

Throughout the clinical study, the combination of the highly specialized MR-MEDIC
sequence, a fast and convenient pre-processing sequence and high-quality volume visual-
ization with local transfer functions has proven its value for the diagnosis of discogenic dis-
eases. In comparison to traditional x-ray myelography, the developed approach represents



15.4. RESULTS 163

a completely non-invasive visualization technique, which allows the interactive analysis of
the spatial structures in 3D.

A

DC1

B

C2

RIGHT

LEFT

Figure 15.6: Direct volume rendering of functional MR MEDIC data with local transfer
functions in inclination (A) and reclination (B). Additionally, conventional x-ray myel-
ography (C.1 frontal, C.2 lateral view) and post-myelographic CT data (D) have been
recorded. The axial slice image from the post-myelographic CT (D) shows a thickened
flaval ligament(arrow) caused by calcification which lead to the spinal stensosis.
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Figure 15.7: MR-MEDIC data of a 60 year old patient with minor spinal stenosis and
spondylolisthesis at the level L4/5. Preoperative data recorded in normal position, in-
clination and reclination shows a significant gap (arrows) at level L5. After the surgical
intervention the constriction of CSF has been successfully removed as documented in post-
operative data (bottom row) recorded in normal position.



Part IV

Conclusion



Chapter 16

Summary

Efficient volume visualization techniques have been topic of active research over the last
decade. Although surface extraction techniques are still important for simulation and
rapid prototyping, indirect techniques are more and more replaced by interactive direct
approaches, which display the volume object as a semitransparent medium. Motivated by
the growing acceptance in medicine, natural science and engineering, in recent years volume
rendering techniques have evolved from prototype implementations in research laboratories
to commercial desktop products in a variety of application areas.

From experience in scientific environments, both interactivity and image quality are
basic requirements. For intuitive exploration of the data, volume rendering techniques
must be interactive in every aspect. This comprises the rotation of the volume in 3D and
the changing of viewing parameters as well as the adjustment of shading and classification
functions. The accuracy related to the resolution of spacial structures inherent in the data
is defined by a physical model of light propagation in combination with the sampling theory
for discrete volume data. In addition to the correctness determined by the physical model,
image quality is also influenced by visual artifacts that are caused by the specific rendering
algorithm.

In this thesis, ray-casting is used as reference in terms of image quality. This physically
motivated model is directly derived from the equation of radiative transfer. Neglecting
the scattering part allows the integration of the emission and absorption of radiation along
linear rays. For discrete volume data, numerical integration requires the reconstruction and
the resampling of the discrete data. Due to the high computational expense for accurate ray
integration, traditional ray casting approaches do not provide high frame rates. In order
to achieve interactive performance, hardware accelerated methods have been developed.
The aim of such approaches is to provide image quality which comes as close as possible
to the results of ray-casting while sustaining interactive frame rates during interaction. In
general there are two different categories of hardware accelerated approaches.

In recent years, several concepts for dedicated volume rendering hardware have been
presented. Although there are many interesting proposals, only very few implementations
have ever left the simulation stage. Up until now the most successful hardware implemen-
tation is the VolumePro board. By the time this thesis is printed, the second generation



167

VolumePro boards will be releases, which is expected to render a 5123 volume data set
at a frame rate of 30Hz. Although this represents a break-through in performance of
high-quality volume rendering, the availability of the solution is limited by the expensive
hardware. In consequence, this thesis investigates approaches that exploit the texturing
capabilities of modern general purpose graphics hardware.

The conventional 2D-texture based method represents a hardware accelerated imple-
mentation of the shear-warp algorithm. Although this implementation is extremely fast
and available on almost all hardware platforms, visual artifacts significantly degrade the
image quality. One reason for this is the inconsistent sampling of viewing rays which does
not provide adequate results with respect to ray-casting. Increasing the sampling rate is
not possible with the conventional 2D-texture based method. This, however, is necessary
to account for transfer functions with a high-frequency component. These problems are
solved by the use of 3D-textures with hardware accelerated trilinear interpolation. They
enable implementations of high quality volume rendering at interactive frame rate. Despite
the reduced memory requirements compared to 2D-textures, severe problems arise with the
growing size of the data sets. The splitting of large volumes into smaller portions which fit
entirely into texture memory turns out to be extremely inefficient with respect to memory
bandwidth and load balancing.

In this context 2D-multi-texture based implementations are introduced which represent
a hybrid solution of conventional 2D- and 3D-texture based methods. The image quality
of these new approaches is equivalent to 3D-textures, while the benefit of the more efficient
memory management of the 2D-texture based solution is preserved. Advanced features of
modern consumer PC graphics boards, such as multi-stage rasterization, pixel shaders and
dependent textures enable the implementation of new efficient volume rendering methods.
Local illumination effects are integrated into the rendering approach either as implementa-
tion of per-pixel illumination with dynamic light sources or as pre-computed reflection maps
which cache the incident light at a single point in space. The performance of all mentioned
texture based approaches has been analyzed on different platforms. Several supplements
to texture based volume rendering are described for performance enhancement, for efficient
clipping and for flow visualization.

The appearance of a semi-transparent volumetric object is determined by a transfer
function which classifies the voxels according to their original intensity value and assigns
the emission and absorption values required for ray integration. This classification can be
performed either before or after the interpolation. The superiority of post-classification is
demonstrated by respective image material and the higher accuracy is documented with
respect to sampling theory. Several efficient implementations of pre- and post-classification
are described. The design of adequate transfer functions is a challenging task which involves
both knowledge about the rendering algorithm as well as detailed information about the
interesting structures inside the data set. Automatic methods for transfer function design
try to derive an optimal transfer function based either on the analysis of resulting images
or on some data-driven mechanism. A novel approach to efficiently adapting an established
transfer functions to a series of new data sets is analyzed.

Real-time deformation of volumetric objects is a scientific problem that has not yet
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been handled sufficiently. To these ends this thesis has introduced two different approaches,
which have been especially designed for intuitive modeling and for automatic registration,
respectively. The first method is based on a strict separation of shape from appearance.
It leverages 3D-textures in combination with an efficient algorithm for the intersection
calculation between slice planes and deformed polygonal surfaces. The second approach
was especially designed with regard to a hardware-accelerated implementation by substi-
tuting traditional tetrahedra deformation by an adaptive decomposition into an octree of
hexahedra.

The application of the described methods in medicine is documented by several case
studies. The comparison of direct volume rendering and surface reconstruction techniques
is exemplified for the visualization of tiny structures related to the inner ear. A medical
case study on intracranial aneurysms demonstrates the benefit of direct volume rendering
in clinical practise. Hybrid approaches that combine explicit segmentation with local
transfer functions have been developed for the diagnosis of spinal vessel malformations and
for the analysis of discogenic diseases of the vertebral column. These highly specialized case
studies document the benefit of a careful analysis of the clinical problem and an adequate
adaptation of both the data acquisition and the visualization procedure.

16.1 Future Challenges

Increasing the availability of interactive high quality volume rendering is a first step towards
an improvement of the acceptance of such techniques in clinical and scientific environments.
However, further steps are required.

The user handling of volume rendering applications must be improved. The operation of
such an application software must be decoupled from detailed knowledge of the underlying
algorithm. This is especially true for data classification. From experience, manual transfer
function design is not widely accepted among non-expert users. Image-driven techniques
such as thumbnail selection might be intuitive, but they are usually non-deterministic and
extremely time-consuming. Novel data driven approaches are very promising, but still far
from being mature.

Especially in clinical environments, reproducibility is extremely important for the doc-
umentation, the verification and the comparison of examination results. The algorithm
for the adaptation of existing classification functions to different data sets represents a
first step towards an improved reproducibility. Further improvements are required for the
implementation of fully automatic analysis tools to be applied in visualization services
via world wide web. Apart from this, existing volume rendering applications should be ex-
panded for intuitive interaction with the volume data such as improved navigation, picking,
measurement of spatial relations, collision detection and interactive segmentation in 3D.
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Appendix A

Data Sets

CTA Aneurysma Detail
2 MB (128 x 128 x 128)

CT Head
16 MB (256 x 256 x 256)

MRI Head
8 MB (256 x 256 x 128)

CT Inner Ear Detail
1 MB (128 x 128 x 64)

CTA Aneurysma Detail
256 kB (64 x 64 x 64)
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CT Carp
128 MB (512 x 512 x 512)

CTA Intracranial Vessels
64 MB (512 x 512 x 256)

CT  Temporal Bone
32 MB (512 x 512 x 128)
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Direct3D, 19
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SGI EBus, 92
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paletted texture, 51
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of an API, 19

fairing, see surface reconstruction
fill rate, see pixel fill rate
filter

box, 5
sinc, 4
tent, 5

filtering
visualization pipeline, 6
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segmentation, 8

example, 139
explicit, 139

semicircular canals, see inner ear
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SGI
O2, see hardware
Octane, see hardware
Onyx, see hardware

shading
definition, 75

shape, 115
shear-warp-algorithm, 12, 26
Silicon Graphics, see SGI
sinc, see filter
slicing

stack selection, 27
smoothing, see surface reconstruction
specular reflection, see illumination
spinal column, 150, 157
spinal cord, 150, 157
spine, see vertebral column
splatting, see volume rendering
spondylolisthesis, 157
stencil buffer, 18, 105, 146
stencil test, 105, 146

per-fragment operations, 18
stenosis

spinal, 157
subdivision

discrete fairing, 140
hexahedra, 124

surface reconstruction, 8
contour lines, 9, 139
example, 138
fairing, 140
mesh decimation, 140
mesh reduction, 140
mesh refinement, 140
Nuages, 139
smoothing, 140
subdivision, 140
triangulation, 139

tagged volume, 64
temporal bone, 138
tent filter, 5
tessellation, 116

texel, 17
texture, 17, 39

application, 17, 39
color table, 53
cube map, 84
dependent, 54
environment map, 83
generation, 17
mapping, 17, 39
multi-texture, 39
normal map, 83
paletted, see color table
pixel transfer, 51

time surface, 112
time volume, 112
transfer function, 10, 48

attributed volume, 64
automatic adaptation, 72
contour spectrum, 70
curvature-based, 60
data-driven, 70
dependent texture, 54
design, 67–74
design galleries, 69
dynamic programming, 72
editor, 67
genetic algorithm, 69
gradient weighted, 59
hill climbing, 69
image processing, 70
image-driven, 69
implementation, 50–56, 61–63, 65–66
interactive evolution, 69
inverse design, 69
local, 64
local intensity structures, 60
multi-dimensional, 58
pixel shader, 54
pixel transfer, 51
post-classification, 50, 53
post-interpolative, 50, 53
pre-classification, 49, 50
pre-interpolative, 49, 50
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principles, 48
sampling theory, 56
semi-automatic, 70
simulated annealing, 69
tagged volume, 64
texture color table, 53
texture palette, 51
thumbnail selection, 69

transform & light unit, see graphics
pipeline

transformation
affine, 115
modeling, 16
perspective, 16
piecewise linear, 115
viewing, 16

triangulation, see surface reconstruction

UMA, see unified memory
unified memory, 91

vertebra, 157
vertebral column, 150, 157
vessel malformation, 144
viewing transformation, 16
VIRIM, see hardware
visualization pipeline, 6

for indirect volume rendering, 7
for ray casting, 10
for surface reconstruction, 9

VIZARD-II, see hardware
volume data

computed tomography, 136
grid structure, 5
magnet resonance tomography, 136
partial volume effect, 136
sampling theory, 4–5

volume growing, 153
volume rendering

2D-multi-textures, 43
2D-textures, 25
3D-textures, 32
compositing, 28–30

computational cost, 25
density-emitter model, 3
direct methods, 10
emission-absorption model, 3
fourier-domain, 10
frequency-domain, 10
image order, 10
indirect methods, 7
isosurface, 8
physical, 2
ray casting, 11
shear-warp, 12
splatting, 10
surface reconstruction, 8
texture-based, 25

VolumePro, see hardware
Volumizer, 115
voxel model, 5
voxel tag, see tagged volume
voxelization, 109
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