A Polygonal Approximation to Direct Scalar Volume Rendering

Peter Shirley *

Allan Tuchman'

Center for Supercomputing Research and Development
305 Talbot Lab
University of Illinois

Urbana, Illinois 61801

Abstract

One method of directly rendering a three-dimensional vol-
ume of scalar data is to project each cell in a volume onto
the screen. Rasterizing a volume cell is more complex than
rasterizing a polygon. A method is presented that approx-
imates tetrahedral volume cells with hardware renderable
transparent triangles. This method produces results which
are visually similar to more exact methods for scalar volume
rendering, but is faster and has smaller memory require-
ments. The method is best suited for display of smoothly-
changing data.

CR Categories and Subject Descriptors: 1.3.0 [Com-
puter Graphics]: General; 1.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling.

Additional Key Words and Phrases: Volume render-
ing, scientific visualization.

1 Introduction

Display of three-dimensional scalar volumes has recently be-
come an active area of research. A scalar volume is described
by some function f(z,y,z) defined over some region R of
three-dimensional space. In many scientific applications, R
will be some fairly simple region such as a cube or deformed
cube, and f will be defined at a finite set of points within
R, with an interpolation function filling in the gaps between
points. In many applications, such as those that employ fi-
nite element techniques, R will be more complex, e.g. the
interior of a mechanical part.

*Current Address: Department of Computer Science, Lind-
ley Hall, Indiana University, Bloomington, IN 47405. Email:
shirley@cs.indiana.edu.

tEmail: tuchman@csrd.uiuc.edu.

The most intuitive strategy for displaying f is to choose some
particular value k and display all points where f(z,y, z) = k.
For continuous f this will yield a set of well defined iso-
value surfaces or isosurfaces[LC87]. Another method, the
method of interest in this paper, is to display f as a three-
dimensional cloud. This idea of displaying volumes as clouds
is commonly called direct volume rendering[Sab88, UK88].

To generate directly rendered images of f, two basic meth-
ods have been used: ray tracing[Bli82, KH84, Lev88, Sabssg,
UK88, SN89] and direct projection[FGR85, LGLD86, UK88,
DCH88, Wes90]. Upson and Keeler discuss the relative mer-
its of ray tracing and direct cell projection in their V-buffer
paper[UK88]. In ray tracing, viewing rays are sent through
each pixel and integrated through the volume. In direct pro-
jection, each cell of the volume is projected onto the screen.
Because each cell is partially transparent, a painter’s depth
ordering algorithm is used for direct projection. Unfortu-
nately, current graphics workstations do not support scan
conversion of volumetric primatives.

Kaufman describes a hardware design that scan converts vol-
ume primatives into a three dimensional grid, and then per-
forms ray tracing to produce an image[Kau87]. Kaufman’s
design has the advantage of implicitly correct depth order-
ing, so that unstructured grids may be rendered, and the
further advantage that curvilinear cells are approximated by
tricubic parametric volumes rather than polyhedrons, but
such a system is not currently commercially available.

Hibbard and Santek used parallel stacks of transparent
polygonal sheets to approximate volume cells, but their
method is a ‘quick and dirty’ way to get pictures, and they
reported noticeable errors for off normal viewpoints[HS89].

In this paper, we present the Projected Tetrahedra (PT) al-
gorithm, a method of approximating directly projected vol-
ume cells with sets of partially transparent polygons that
can then be rendered relatively quickly on a graphics work-
station. These polygonal sets are recalculated for each new
viewpoint, but are a more accurate approximation to direct
projection volume than Hibbard and Santek’s view indepen-
dent technique.

2 Algorithm

The Projected Tetrahedra algorithm operates with any set
of three-dimensional data that has been tetrahedralated, the
three-dimensional analogue of triangulated data in the plane.
Since a large class of data is sampled or computed on a lattice
of six-sided cells or cubes, we include this decomposition in
our description. The tetrahedra are ultimately described as
partially transparent triangular elements for hardware ren-
dering.

We chose to begin with tetrahedra both to demonstrate the
high-quality images that can be produced as well as to ac-
commodate volumes more general than rectilinear grids.

The algorithm proceeds as follows:

1. Decompose the volume into tetrahedral cells with val-
ues of f stored at each of the four vertices. Inside each
tetrahedron, f is assumed to be a linear combination of
the vertex values (Section 2.1).

2. Classify each tetrahedron according to its projected
profile relative to a viewpoint (Section 2.2).

3. Find the positions of the tetrahedra vertices after
the perspective transformation has been applied (Sec-
tion 2.3).

4. Decompose projections of the tetrahedra into triangles
(Section 2.4).

5. Find color and opacity values for the triangle vertices
using ray integration in the original world coordinates
(Section 2.5).

6. Scan convert the triangles on a graphics workstation
(Section 2.6).

The idea of Projected Tetrahedra is that the image com-
posed of the triangles drawn in the last step will be similar
in appearance to a full direct volume rendering of the in-
put tetrahedra. Because the triangles are semi-transparent,
they must either be rendered in depth order, or an en-
hanced frame buffer such as the A-buffer[Car84] must be
used. Using an A-buffer may not be feasible for large vol-
umes where each pixel might have hundreds of overlapping
transparent polygons. Depth ordering for rectilinear grids
is discussed by Frieder et al.[FGR85] and by Upson and
Keeler[UK88], and for non-rectilinear grids is discussed by
Williams and Shirley[WS90] and Max et al.[MHC90]. Un-
fortunately, a non-rectilinear mesh, even if its boundary is
convex, may have cycles that make a correct depth ordering
impossible[WS90]. The frequency of such cycles in compu-
tational meshes is unknown.

Throughout our discussion it is assumed that a perspective
projection is used. An orthographic projection can be sub-
stituted by modifying step 2. Instead of using the viewpoint
for classification, each face must be classified from a point
on the view plane. This point can be the orthographic pro-
jection of any vertex on that face.

N

NSRS
=)

Figure 1: Decomposition of a cube into five tetrahedra

2.1 Decomposition into Tetrahedra

If the volume is rectilinear or curvilinear, then each rectilin-
ear or curvilinear cell must be partitioned into tetrahedral
elements with an original data point at each vertex. Fig-
ure 1 shows the decomposition of a cube into 5 tetrahedra,
the smallest number of tetrahedra possible. This decom-
position applies to any curvilinear cell (cube deformations
without self intersections). There are only two rotational
states of this decomposition. If two adjacent curvilinear
cells are to be subdivided in this way, care must be taken
to avoid the cracking problem, so that every point will be
in ezxactly one tetrahedron. This problem is similar to the
two-dimensional cracking problem encountered when spline
surfaces are polygonalized. Problems can occur if the four
vertices on a face of a six sided cell are not coplanar in a
curvilinear mesh. In Figure 2, two curvilinear cells share
a boundary surface which is not planer. If this surface is
approximated by two triangles, then there are two possible
options for which triangles are used, as shown on the bot-
tom of the figure. The same pair of triangles must be used
by each of the cells or cracking (an overlap or gap between
cells) will occur. This implies that adjacent cells must use
opposite rotational states of the decomposition shown in Fig-
ure 1. This will produce a three-dimensional checkerboard
pattern of decomposition, with alternating rotational states,
and thus no cracking can occur.

2.2 Classification

A tetrahedron may have any of four silhouettes depending on
the viewpoint and the orientation of the tetrahedron. Since
the goal is to approximate this volume element with trian-
gles, we first classify the tetrahedron based on its projected
shape. Figure 3 enumerates the four possible projected

4 vertices on face are not coplaner

option 1 option 2

Figure 2: Two adjacent curvilinear cells sharing a non-
planer boundary should have the same polygonalization of
the boundary to avoid the three-dimensional cracking prob-
lem.

shapes arising from six possible cases. We note that each
case can be distinguished by examining the surface normal
vectors of each face and comparing them with the viewer’s
eye position or viewpoint. We only care whether the surface
normal points toward, points away from, or is perpendicular
to the view vector, so we use the notation ‘+’, ‘=’ or ‘0’ to
mark each face. Classes 1a and 1b have the same shape,
but in one case (1a) the eye looks directly at three faces and
away from one, so is marked ‘+++-’, whereas in the other
(1b), three faces are not visible to the eye and it is marked
‘=——+’. The number of ‘+’, ‘=’ and ‘0’ faces are counted and
these values used as a table index to classify each tetrahe-
dron into one of the 6 classes shown in Figure 3.

Clearly, classes 3 and 4 are degeneracies class 1 or class 2. We
treat them as separate since they are easy to identify during
this classification step and less efficient to test for later. By
doing so we are also able to avoid generating degenerate
polygons.

In some cases, the surface normal may not be immediately
available or its direction may be ambiguous (since each face
will have two opposing normal vectors). Therefore we use
the plane equation F' for each face which is directly available
from the 3 vertices that make up the plane. If tetrahedron
T is defined by vertices Pi, P2, Ps;, and P4, then find the
equation of plane Py P, Ps. If F(eye) is zero, then the eye is
collinear with the plane and allows that face to be marked
‘0. If non-zero, the value of F(Py) is computed. If this value
has the same sign as the F'(eye), then the plane points away,
otherwise it points toward the view point.

cl ass 3a
+ + + - ++ -0

' class 1b class 3b
- - - 4+ - - +0

class 4
+- 00

cl ass

+ N

Figure 3: Classification of Tetrahedra Projections

2.3 Projection

The tetrahedra must be decomposed into triangles, in
essence triangulating the projection of the tetrahedron. To
do this we define the transformation from the 3-dimensional
viewing frustrum to a 3-dimensional rectangular paral-
lelepiped as a mapping from world coordinates to perspective
coordinates. For an orthographic projection this transfor-
mation is the identity. It preserves the relative distance of
points along the axis of the viewing coordinate system which
is aligned with the view direction vector.

It is easier to transform each tetrahedron to the perspec-
tive (or orthographic) viewing coordinate system and then
intersect 2-dimensional lines (formed by discarding the Z
coordinate) than to do similar calculations in the original
world coordinate system. Also, this transformation must be
performed anyway.

The viewing transformation is a simple one composed of a
translation to the origin, a rotation from the world coor-
dinate system to the viewing coordinates, and an optional
perspective transformation. The viewing transformation is
applied to each vertex of the tetrahedron.

In this step and the decomposition step described in the
next section, both the viewing matrix and its inverse are
needed. The matrices that perform these transformations
are described in the Appendix of this paper.

2.4 Decomposition into Triangles

Each projected tetrahedron is decomposed into one to four
triangles. The projection may be used to find the coordi-
nates of each triangle, as shown in Figure 4.

For each triangle, the tetrahedron has zero thickness (and
therefore opacity) around its outline. The maximum bright-
ness and opacity occur where the tetrahedron is thickest.
This thickest point and its attributes must be computed. In

Tetrahedron Projection

V7

classes la & 1b

Triangle Decomposition

Ny

3 triangles

N

4 triangles

2 triangles

class 2

< <

cl asses 3a & 3b

class 4 1 triangle
Figure 4: Decomposition of Projected Tetrahedra into Tri-
angles

class 4, the point is just the original two vertices collinear
with the view point. In classes 2 and 3, a line intersection is
performed, and in class 1 a bilinear interpolation of the near
or far point on the opposite face is used. In each case, the
intersection point is mapped by the inverse viewing trans-
formation, V!, to find the resulting decomposed triangle
vertices. The thickness of the tetrahedron is determined at
this intersection point by the Euclidean distance formula.
The opacity at this vertex is obtained from the thickness of
the tetrahedron and the scalar values at the vertex and the
intersection point.

For example, a class 1 projection has one interior point, P
and three boundary points, Pa, Pg, and Pc (all in the per-
spective coordinate system). As shown in Figure 5, the vec-
tor from the eye through P; pierces the plane PaPpPc at
point Pr. The z and y coordinates of Pr are the same as
those of Pr. A bilinear interpolation is used to find the z
coordinate. We define

Pr = P4+ u(PB — PA) + 'U(Pc — PA)

and solve this vector equation in z and y for the parameters
u, v. From » and v we can solve for both the z-coordinate

Pa
/
)E P ‘
Pg

Figure 5: Example of Class 1 Decomposition.

Figure 6: Example of Class 2 Decomposition.

of Pr and the interpolated value of the the scalar function.
Pr is then mapped via V™! to world coordinates and its
distance from V' P; (the untransformed PI) is computed.
Figure 6 shows a ray passing through a class 2 tetrahedron.
In this case we need to find Pg, the point on the front-facing
edge, and Pp, the point on the back facing edge.

2.5 Ray Integration

We next describe the rules for ray integration at the thickest
point of a tetrahedron. We assume that linear interpolation
of the brightness and opacity across each triangle decom-
posed from a tetrahedron is acceptable, so a ray integration
is needed only at the thickest point. This approximation is
reasonable for tetrahedra with small opacity.

To develop the rules for direct volume rendering, we assume
a density volume scatterplot model that uses particles of
cross sectional area A,. We also assume that for each scalar
value p that f might take, there is a corresponding particle
number density N,(p), and a corresponding particle color
Cyp(p). The particle color Cp(p) is assumed to be the same
for all viewing angles. Typically, N, and C}, are stored as
tables.

To determine how the small particles change the color seen
along a viewing ray, consider the color of the ray as a function
C(t) of the distance ¢ along the ray, where ¢ increases as we
advance along the ray toward the viewer. To generate a
differential equation for how the particles interact with a

ray, consider the change in color that occurs as we advance
a small distance At toward the viewer:

C(t+ At) = (1= Np(t) ApA)C(t) + Np(t) ApAtCy(t) (1)

old new

The subexpression marked as old is the color at ¢ attenu-
ated by the opaque particles between ¢t and t + At. The
amount of attenuation N.(t)AAt is simply the fraction of
area that is covered by particles as opposed to background.
The subexpression ‘new’ is the color contributed by the par-
ticles between t and ¢t + At. Taking At to be differential
yields:

LW 4 Ny (A, [C(1) - Golt)] = 0
This differential equation cannot be solved in closed form
for arbitrary N, and C,. However, if we assume constant
particle color Co, a known value for C(#), and that N,
varies linearly between known values No and N; at to and
t1, we can solve for C(#;):

C(th) = C(to)e—Ar(t1—t0) Z05=2

Ng+N
Co |1 — emArlir—to) =05

We can view this equation as stating that the region along
the ray between to and t; has a color C = Cy and an opacity

« defined by:

a=1-— e_A"(tl_tO)m
If even less accuracy is acceptable, then Equation 1 can be
used directly for alpha:

No+ Ny

CY:Ap(t1 —to) 2

Approximating Cy by the average particle color between to
and t1, color can be calculated as:

CP(tO) + Cp(tl)

C(t1) =« 2

+ (1 —a)C(to)

Note that this is just alpha compositing as described by
Porter and Duff[PD84] (it is the atop operation in their ter-
minology). The preceding discussion shows the motivation
for the use of alpha compositing in direct volume rendering.

2.6 Rendering

Once the triangles are generated, with each vertex having
an associated color C' and opacity «, they can be rendered
back to front in painter’s algorithm order with C and «
being linearly interpolated in between the vertices (similar
to Gouraud shading). The opacity at the zero thickness
vertices will be zero, but the color will be determined from
the color function S(p) discussed in Section 2.5. Each pixel
value in the frame buffer will change according to the rule:

Cnew =aC + (1 - Q)Cold

where C ey is the new pixel color, C'is the interpolated color
of the polygon at that pixel, o is the interpolated opacity,
and where Cgq is the current pixel value, originally just the
background color.

Since this process will generate a large number of adjacent
partially transparent polygons, the graphics engine should
be of a type that will not duplicate edges for adjacent poly-
gons, or visual artifacts may occur at every shared edge.

Another possible problem can arise when the frame buffer
uses one byte to store «. If v is reasonable small, precision
errors could greatly damage image quality.

3 Results

The Projected Tetrahedra algorithm has been implemented
in C and runs on several different workstations. With an
initial version of the program running on a Sun 4/490 work-
station we process about 3900 tetrahedra per second into
triangles. The number of triangles created varies with the
view point, but is close to 13,000 triangles per second. For
our timings we include the time to input the tetrahedra,
since they are likely to be produced in the proper back-to-
front order by another program. We do not include the time
to output the triangles since we will generally pass them
directly to a rendering library.

A medium sized volume from a simulation of a binary star
formation is defined on a rectilinear grid of 33 x 33 x 15
nodes, or 32 x 32 x 14 cells, giving 14,336 voxels or 71,680
tetrahedra. We used this volume on a Sun 4/490 (Sparc) to
create our color image. Color Plate 1 (shown in grey level
in Figure 7) compares the Projected Tetrahedra algorithm
to more exact volume rendering. Both images in the color
figure (and grey version) were rendered at 256 x 192 pixel
resolution. The upper image in Figure 7 was generated with
the PT method in about 19 seconds plus rendering time, in-
cluding input and all steps described in Sections 2.1 through
2.5. The timing is independent of image size. The lower
image in Figure 7 was rendered on the same computer in
about 7 minutes with volumetric ray tracing program using
techniques similar to those in [UK88]. The ray traced image
time is directly proportional to the number of pixels in the
resulting image. The MPDO algorithm[WS90] was used to
generate the back to front ordering of tetrahedra for the PT
version. This step took approximately 3 seconds including
output of the tetrahedra.

Also note the background white lines equally spaced both
horizontally and vertically in Figure 7. The image buffer
was initialized to this pattern of lines on a black background.
The lines accentuate the transparent components of the ren-
dered image. This is a computationally free way to highlight
the areas of low opacity but high brightness and to distin-
guish them from areas of high opacity but low brightness.
The initial pattern can be defined procedurally or by loading
a pre-computed image.

Figure 7: Binary Star Formation Simulation. Top: ray
traced image. Bottom: Projected Tetrahedra image

4 Future Work

It is sometimes useful to embed opaque geometric primitives
in the volume. We have found it helpful for visual interpreta-
tion to place grid bars within a ray traced cloud-like volume.
Grid bars are long thin opaque cylinders or rectangular par-
allelepipeds embedded in a volume. A few bars are usually
defined evenly spaced along each axis of the cartesian coor-
dinate system, forming a bounding box of the original grid.
The images would provide more visual cues than those ob-
tained using the background grid described in Section 3.

There are several examples of more important applications
for embedded opaque geometry primitives. The geometric
model of a wing or other structure may be embedded in a
volume computed by a computational fluid dynamics simu-
lation to aid visualization of the flow. Flow ribbons tracking
a vector-valued function in the same region as the scalar
may be shown by calculating the ribbon paths and render-
ing these polygons in the volume[SN8&9].

One possible way to combine the Projected Tetrahedra algo-
rithm with opaque surface primitives would be first to render
the opaque surfaces with a Z-buffer[FvDFH90], and then to
render each transparent polygon in depth order, omitting
any contribution to a pixel if the z-value of the triangle at
that pixel is deeper than the z-value stored in the Z-buffer.
This would introduce additional error only for tetrahedra
that contain surfaces.

Embedded transparent iso-surfaces are sometime useful.
Once the cells have been divided into tetrahedra, it would
be possible to extract isovalued surfaces in a manner simi-
lar to the marching cubes algorithm[LC87]. Such a march-
ing tetrahedra algorithm would generate three and four-sided
polygons that could be rendered separately or embedded in
the volume. The surfaces can be rendered with any degree
of transparency.

The greatest promise of the Projected Tetrahedra technique
is its potential for faster volume rendering useful in preview-
ers and interactive systems. As the rendering can be done
in hardware, the bottlenecks will be either the conversion of
volume elements to polygonal approximations, described in
this paper, or the generation of the tetrahedra in a back-to-
front order. Our current implementation certainly cannot
generate triangles fast enough to keep up with a 100,000
polygon per second graphics workstation, but is reasonably
fast and is linear in the number of input tetrahedra.

5 Conclusion

The Projected Tetrahedra algorithm presented in this paper
approximates the volume rendering of tetrahedral cells by
hardware renderable partially transparent triangles. This
approximation is accomplished by finding triangles with the
same silhouette as a tetrahedron, and linearly interpolating
color and opacity on the triangles from the fully transparent
silhouette edges to the values at the thickest part of the
tetrahedron, as seen by the viewer.

The strengths of the method are that the triangles can be
rendered in hardware, that perspective or orthographic view-
ing can be used, and that unstructured mesh geometry can
be used provided that a painter’s depth ordering is known
(or an A-buffer with sufficient levels of transparency is avail-
able). The voxels and thus the tetrahedra can be processed
independently, so the Projected Tetrahedra algorithm may
be implemented in parallel. This algorithm also has very
small memory requirements since the only data needed are
for the tetrahedron currently being processed.

The weaknesses of the Projected Tetrahedra method include
the restriction to tetrahedral cells and possible precision
problems in the scan conversion. In Section 4 we mentioned
that conventional geometric primitives could be embedded
in the volume with an appropriate depth sort. Even with
such a sort there would be visibility errors wherever the ge-
ometric primitive intersected a volume element. This would
at best limit the number and complexity of embedded prim-
itives. The visibility errors would be more pronounced than
the other approximation artifacts introduced by the PT al-
gorithm. The primary approximation used in the Projected
Tetrahedra method is the low particle number density as-
sumption of the ray integration section (which implies the
linear interpolation used on the triangles). This approxi-
mation can cause problems in datasets where the particle
density is high. An example of such a high particle den-
sity dataset is the medical dataset used by Levoy[Lev&8],
where pseudo-surfaces are generated. The PT method is
also suspect for very large datasets, because one of the pri-
mary reasons for generating the triangles is to avoid having
to perform ray integration at every pixel covered by a tetra-
hedron. For very large datasets most tetrahedra would cover
at most a few pixels, so the triangles would not yield much
time savings.

The limitations above seem to indicate that the Projected
Tetrahedra method presented in this paper is primarily use-
ful for medium size datasets (on the order of millions of cells
or fewer) that have reasonably smooth variations (e.g. no
surface-bone interfaces). Such data include many fluid flow
and stress analysis calculations. With hardware triangle ren-
dering this algorithm for direct volume rendering should also
find a place in interactive volume visualization environments.

6 Acknowledgements

We are very grateful to Peter Williams for developing an
algorithm for producing a back-to-front traversal of an arbi-
trary three-dimensional volume of data. Thanks also to Den-
nis Gannon and Henry Neeman for their help and encourage-
ment. We would like to thank Richard Durison, Department
of Astronomy, Indiana University, Bloomington for the star
simulation data. We would also like to thank the anony-
mous reviewer for the careful reading of this paper and the
suggestions for improvement. This work was partially sup-
ported by the Air Force Office of Scientific Research Grant
AFOSR-90-0044.

Appendix: Viewing Matrices

If u, v, and w are the normalized orthogonal basis vectors for
the viewing coordinate system in (z, y, z) world coordinates,
then the rotation matrix is straightforward to compute. The
perspective transformation is not a projection to a two-
dimensional plane, but to 3-dimensions. Thus the inverse
transformation can be applied to the intersection points we
compute during the triangle decomposition. The projection
matrix P (below) transforms the viewing frustrum aligned
with the z-axis to a rectangular parallelepiped. We later
discard the z component of the transformed coordinate to
project to the view plane. The three matrices are deter-
mined from initial view data and are multiplied to produce
a viewing transformation matrix as follows:

1 0 0

0 1 0

0 0 1
_zeye _yeye _Zeye
U Vg Wy

- o O

Uy vy Wy
U, vy Wy
0 0 0
0
0
(n + f)t
i —fut

-_o o o

o OO -
o O O
o -~ O o

where n is the distance from the eye to the near clipping
plane, f is the distance to the far clipping plane, ¢ is the
field of view, and ¢ = tan(6)/2. The viewing transformation

is the product of these matrices

V =TRP

The inverse of this matrix is needed and is easily determined
also: the inverse of the orthogonal matrix R is its transpose
and P is composed of a 2 x 2 identity and a 2 x 2 block.

1 0 0 0
0 1 0 0
-1 _
== 0 0 1 0
L ZTeye Yeye Zeye 1
[uz uy w, O
R — Vg Uy v, O
- wy wy w: 0
L 0 0 0 1
1 0 0 0
0 1 0 0
-1 _
P = 0 0 O —1/fnt
L0 0 1/t (n+ f)t/fnt®

The inverse viewing transformation is the product of these
matrices

Y=l — plp=ip-1

References

[Bli82] James F. Blinn. Light reflection functions for
simulation of clouds and dusty surfaces. Com-
puter Graphics, 16(3):21-30, July 1982. ACM
Siggraph ’82 Conference Proceedings.

[Car84] Loren Carpenter. The A-buffer, an antialiased
hidden surface method. Computer Graphics,
18(3):103-108, July 1984. ACM Siggraph ’84
Conference Proceedings.

[DCH88] Robert A. Drebin, Loren Carpenter, and Pat
Hanrahan. Volume rendering. Computer Graph-
ics, 22(4):65-T4, July 1988. ACM Siggraph ’88
Conference Proceedings.

[FGR85] Gideon Frieder, Dan Gordon, and Anthony

Reynolds. Back-to-front display of voxel-based
objects. IEEE Computer Graphics and Appli-
cations, 5(1):52-60, January 1985.

[FvDFH90] James D. Foley, Andries van Dam, Steven K.
Feiner, and John F. Hughes. Computer Graph-
tcs: Principles and Practice. Addison-Wesley,
Reading, MA, second edition, 1990.

[HS89] William Hibbard and David Santek. Interac-
tivity is the key. In Proceedings of the Chapel
Hill Workshop on Volume Visualization, pages
39-43, May 1989.

[Kau87] Arie Kaufman. Efficient algorithms for 3d scan-

conversion of parametric curves, surfaces, and
volumes. Computer Graphics, 21(4):171-179,
July 1987. ACM Siggraph 87 Conference Pro-
ceedings.

[KH84]

[LC87]

[Lev8s]

[LGLDS6]

[MHC90]

[PDs4]

[Sab83]

[SN89]

[UKs88]

[Wes90]

[WS90]

James T. Kajiva and B. P. Von Herzen. Ray
tracing volume densities. Computer Graphics,
18(4):165-174, July 1984. ACM Siggraph ’84
Conference Proceedings.

William E. Lorensen and Harvey E. Cline.
Marching cubes: A high resolution 3d surface
construction algorithm. Computer Graphics,
21(4):163-169, July 1987. ACM Siggraph ’87
Conference Proceedings.

Mark Levoy. Display of surfaces from volume
data. IEFE Computer Graphics and Applica-
tions, 8(3):29-37, 1988.

Reiner Lenz, Bjorn Gudnumdsson, Bjorn Lind-
skog, and Per Danielsson. Display of density
volumes. IEEE Computer Graphics and Appli-
cations, 6(7), July 1986.

Nelson Max, Pat Hanrahan, and Roger Crawfis.
Area and volume coherence for efficient visual-
ization of 3d scalar functions. Computer Graph-
ics, 24(5), December 1990. San Diego Volume
Visualization Conference Proceedings.

Thomas Porter and Tom Duff. Compositing dig-
ital images. Computer Graphics, 18(4):253-260,
July 1984. ACM Siggraph ’84 Conference Pro-
ceedings.

Paolo Sabella. A rendering algorithm for vi-
sualizing 3d scalar fields. Computer Graphics,
22(4):51-58, July 1988. ACM Siggraph ’88 Con-
ference Proceedings.

Peter Shirley and Henry Neeman. Volume visu-
alization at the Center for Supercomputing Re-
search and Development. In Proceedings of the
Chapel Hill Workshop on Volume Visualization,
pages 17-20, May 1989.

Craig Upson and Micheal Keeler. V-buffer:
Visible volume rendering. Computer Graphics,
22(4):59-64, July 1988. ACM Siggraph ’88 Con-
ference Proceedings.

Lee Westover. Footprint evaluation for volume
rendering. Computer Graphics, 24(4):367-376,
August 1990. ACM Siggraph ’90 Conference
Proceedings.

Peter L. Williams and Peter Shirley. An a pri-
ori depth ordering algorithm for meshed polyhe-
dra. Technical Report 1018, Center for Super-
computing Research and Development, Univer-

sity of [llinois at Urbana-Champaign, Septem-
ber 1990.

