
Interactive Volume Rendering on Standard PC Graphics Hardware

Using Multi-Textures and Multi-Stage Rasterization

C. Rezk-Salama � K. Engel y M. Bauer � G. Greiner � T. Ertl y

� Computer Graphics Group, University of Erlangen, Germany
y Visualization and Interactive Systems Group, University of Stuttgart, Germany

Abstract

Interactive direct volume rendering has yet been restricted
to high-end graphics workstations and special-purpose hard-
ware, due to the large amount of trilinear interpolations, that
are necessary to obtain high image quality. Implementations
that use the 2D-texture capabilities of standard PC hard-
ware, usually render object-aligned slices in order to substi-
tute trilinear by bilinear interpolation. However the result-
ing images often contain visual artifacts caused by the lack of
spatial interpolation. In this paper we propose new render-
ing techniques that signi�cantly improve both performance
and image quality of the 2D-texture based approach. We
will show how multi-texturing capabilities of modern con-
sumer PC graphics boards are exploited to enable interac-
tive high quality volume visualization on low-cost hardware.
Furthermore we demonstrate how multi-stage rasterization
hardware can be used to eÆciently render shaded isosurfaces
and to compute di�use illumination for semi-transparent vol-
ume rendering at interactive frame rates.

Keywords: volume rendering, multi-textures, rasteriza-
tion, PC hardware

1 Introduction

Interactive volume rendering has become an invaluable tech-
nique to visualize 3D scalar data for a variety of applications
in engineering, science and medicine. Due to the large num-
ber of trilinear interpolations that must be processed in order
to produce image results of high quality, the availability of
direct volume rendering has yet been restricted to high-end
workstations and special purpose graphics hardware. A brief
outline of recent techniques is provided in Section 2.
Although there is a clear trend toward standard PC hard-

ware as visualization platform [11], the application of in-
teractive hardware-accelerated approaches is still limited.
Volume rendering techniques that exploit the 2D-texturing
hardware of PC graphics boards usually produce images
that contain visual artifacts. The basic 2D-texture based
approach is to decompose the volume into a set of object-
aligned slices. The necessary trilinear interpolation can then
be reduced to a bilinear interpolation which can be eÆciently
computed by standard texturing hardware. However, when
zooming closely on a small detail inside the volume data,
which is often done in medical applications, the missing tri-
linear interpolation is strongly visible.

�Lehrstuhl f�ur Graphische Datenverarbeitung,

Am Weichselgarten 9, 91058 Erlangen, Germany,

Email: rezk@informatik.uni-erlangen.de
yAbteilung f�ur Visualisierung und Interaktive Systeme,

Breitwiesenstr. 20-22, 70565 Stuttgart, Germany,

Email: engel@informatik.uni-stuttgart.de

Driven by the mass market of computer games and en-
tertainment software, PC graphics accelerator boards have
become more exible and powerful. In Section 3, the capa-
bilities of current PC rasterization hardware are described.
Since our approaches exploits multi-texturing and multi-
stage rasterization, these features are explained in detail.
In Section 4 the basic ideas of texture based volume ren-

dering are explained. As we will show in Section 5, the
image quality of the 2D-texture based implementation can
be greatly enhanced by performing real trilinear interpola-
tion. This is achieved without loss in performance by in-
terpolating intermediate slices using multi-textures. Section
6 describes how multi-textures can be further exploited to
speed up rendering performance by mapping multiple slice
images onto a single polygon. Section 7 adapts an algorithm
for fast rendering of shaded isosurfaces to PC rasterization
hardware and Section 8 describes methods to include local
di�use illumination for rendering semi-transparent volumes.
Finally, in Section 9 an approach to interpolate slice images
in arbitrary direction is discussed. Although the techniques
described in this paper are aimed at an enhancement of the
2D-texture based approach, most of these methods are ready
to be adapted to 3D-texturing hardware, which is very likely
to be available on future graphics boards. In Section 10 the
results of our study are evaluated by comparing performance
and image quality of our solutions to standard 3D-texture
based approaches of high-end graphics workstations. Sec-
tion 11 briey sums up the contents of our paper.

2 Related Work

There is a variety of di�erent visualization approaches for
scalar volumes in multiple application scenarios. Recent
approaches are categorized into indirect methods, such as
isosurface extraction [8, 5], and direct methods, that imme-
diately display the voxel data. We will focus on interactive
direct methods.
The basic idea of using object-aligned slices to substitute

trilinear by bilinear interpolation was presented by Lacroute
and Levoy [7], although the original implementation did not
use texturing hardware. For the PC platform, Brady et
al. [1] have presented a technique for interactive volume navi-
gation based on 2D-texture mapping. More recently, Mueller
et al. [10] used image based techniques to improve the per-
formance of volume ray-casting.
The most important texture based approach was intro-

duced by Cabral [2], who exploited the 3D-texture mapping
capabilities of high-end graphics workstations. Westermann
and Ertl [13] have signi�cantly expanded this approach by
introducing a fast direct multi-pass algorithm to display
shaded isosurfaces. Based on their implementation, Mei�ner
et al. [9] have provided a method to enable di�use illumi-
nation for semi-transparent volume rendering. However, in

this case multiple passes through the rasterization hardware
led to a signi�cant loss in rendering performance. Dachille et
al.[3] have proposed an approach that uses 3D texture hard-
ware interpolation and software shading and classi�cation.
In comparison to these techniques, we provide an en-

hanced implementation of the fast isosurface algorithm in
Section 7 using 2D-texturing hardware. In Section 8, we
show how semi-transparent volumes can be rendered with
ambient and di�use illumination in a single-pass process us-
ing the multi-stage rasterization hardware provided on PC
graphics boards.

3 PC Graphics Hardware

For accelerated rendering, modern graphics boards provide
a hardware implementation of the standard pipeline for dis-
play traversal [6]. To produce images, geometric primitives
(points, lines, triangles, etc.) are generated from the scene
description and passed through this rendering pipeline. The
process of image generation is then divided into three basic
parts:

1. The geometry processing step computes transformation
and lighting for the geometric primitives.

2. The rasterization step then converts geometric primi-
tives into pixel-values (fragments).

3. Finally, per-fragment operations like blending or depth-
test are performed before the fragments are written into
the frame-bu�er.

As mentioned above, rasterization denotes the process of
converting geometric primitives into fragments, which co-
incide with pixels in the resulting image. Each fragment
contains information about color, opacity, depth and tex-
ture values respectively. Recent PC graphics accelerator
boards provide very exible rasterization hardware, enabling
advanced rendering techniques like per-pixel lighting or en-
vironment mapping. The technique described in this paper
eÆciently exploit multi-texturing hardware. Multi-texturing
is an optional extension introduced with OpenGL 1:2, allow-
ing one polygon to be textured with image information ob-
tained from multiple textures. OpenGL 1:2 speci�es multi-
texturing as a strict sequence of texturing stages, which al-

Texture
Fetching

Color Sum

Fog Coverage
Application

Register
Combiners

Texture
Environment
Application

Texture Unit 1

Texture Unit 0

To
Fragment

Processing

Pixel Rect.
Rasterization

Bitmap
Rasterization

Polygon
Rasterization

Line
Rasterization

Point
Rasterization

From
Primitive
Assembly

Draw
Pixels

Bitmap

O
p

en
 G

L
 1

.2
 s

p
ec

if
ic

at
io

n
s

E
xt

en
si

o
n

N
V
_
r
e
g
i
s
t
e
r
_
c
o
m
b
i
n
e
r
s

General Stage 0

General Stage 1

Final Stage

Figure 1: Since the multi-texture model of OpenGL 1.2 turns
out to be too limiting, NVidia's GeForce 256 processor pro-
vides multi-stage register combiners that completely bypass
the standard texturing unit.

lows to combine each texture with the results of the previous
stage.
Although the basic idea of multi-texturing is represented

by this speci�cation, the concept of a static texture pipeline
turns out to be not exible enough for many desired ap-
plications. Therefore recent PC graphics boards support
multi-stage rasterization, which allows to explicitly control
how color-, opacity- and texture-components are combined
to form the resulting fragment. This allows rather complex
calculations to be performed in a single rendering pass.
Although multiple rasterization stages are supported by

PC graphics boards from di�erent vendors, until now these
features are optional extensions to the OpenGL standard
and thus hardware-dependent. Since every manufacturer of
graphics hardware de�nes its own extensions, we will restrict
our description to graphics boards with NVidia's GeForce
256 processor. The techniques described in Sections 5{8
were implemented using this multi-stage rasterization hard-
ware.
To gain explicit control over per-fragment infor-

mation, NVidia has provided the OpenGL extension
NV register combiners [12]. With this extension enabled,
the standard OpenGL texturing units are completely by-
passed and substituted by a register-based rasterization unit
(see Fig. 1). This unit consist of two extremely exible gen-
eral rasterization stages and one �nal combiner stage. One
general combiner stage is divided into an RGB-portion, dis-
played in Figure 2 and a separate Alpha-portion, which is
designed in a similar way, but can be programmed indepen-
dently.

CCC
CCC
CCC
CCC

CCCCCCCC
CCCCCCCC
CCCCCCCC

CCCCCCCC
CCCCCCCC
CCCCCCCC

CCC
CCC
CCC

CCCCCC
CCCCCC
CCCCCC

CCC
CCC
CCC
CCCCCC
CCC
CCCCCC
CCC
CCCCCC
CCC
CCCCCC
CCC
CCC
CCCCCC
CCC
CCCCCC
CCC
CCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCC
CCC
CCC

CCC
CCC
CCC

CCCCCC
CCCCCC
CCCCCC

CCCCCC
CCCCCC
CCCCCC

not readable

input
map

input
map

input
map

input
map

A B C D

primary color

secondary color

texture 0

texture 1

spare 0

spare 1

fog

constant color 0

constant color 1

zero

primary color

secondary color

texture 0

texture 1

spare 0

spare 1

fog

constant color 0

constant color 1

zero

input registers output registers

RGB A RGB A

computations

scale
and
bias

A B + C D
−or−

A B mux C D

A B
−or−

A � B

C D
−or−

C � D

not writeable

Figure 2: The RGB-portion of the general combiner stage
supports arbitrary register mappings and complex computa-
tion like dot products and component-wise weighted sum.

In this hardware architecture per-fragment information is
stored in a set of input registers (see Fig. 2). The contents
of these registers can be arbitrarily mapped to the four vari-
ables A;B;C and D. After combining these variables, i.e.
by dot product (A � B) or component-wise weighted sum
(AB+CD), the results are scaled and biased and are �nally
written to arbitrary output registers. The output registers
of the �rst combiner stage are then the input registers for the
next stage. An additional feature of this hardware is, that
�xed point color components, which are usually clamped to
a range of [0; 1] can internally be expanded to a signed range
[�1; 1]. This allows also vector components to be stored in
the color registers without the need to internally scale and
bias them. The calculation of local di�use illumination for
the methods described in Section 7 and 8 is signi�cantly
simpli�ed by this feature.

input
map

A B C D

primary color

secondary color

texture 0

texture 1

spare 0

spare 1

fog

constant color 0

constant color 1

zero

input registers

RGB A

input
map

input
map

input
map

input
map

input
map

input
map

EF

spare 0 +
secondary color

E F

G

AB + (1−A)C + D

G

computations

fragment RGB out

fragment Alpha out

Figure 3: The �nal combiner stage is used to compute the
resulting fragment output for RGB and Alpha.

The output registers of the second general stage are com-
bined by a �nal combiner stage displayed in Figure 3. The
�nal stage only supports two output registers (RGB and Al-
pha) and allows to compute AB + (1 � A)C + D for the
RGB-portion. Additionally one of the variables A{D can
be assigned to another intermediate component wise prod-
uct E � F . After the multi-stage rasterization the standard
OpenGL per-fragment operations, like depth test or alpha-
blending are performed on the resulting fragment output
from the �nal combiner stage. Note that this hardware
also supports paletted textures, but the color-table lookup
is performed before the interpolation, so the input regis-
ters texture 0 and texture 1 already contain interpolated
RGBA values.

4 Texture Based Volume Rendering

In order to exploit texture hardware for volume rendering,
the volume data set is represented by a stack of adjacent
polygon slices. If 3D-textures (OpenGL 1.2) are supported
by hardware, it is possible to render slices parallel to the
image plane with respect to the current viewing direction
(see Fig. 4 left). This means that if the viewing matrix
changes, these viewport-aligned slices must be recomputed.
Since trilinear texture interpolation is supported by hard-
ware, this can be done at interactive frame rate. In the �nal
compositing step, the textured polygon slices are blended
back-to-front onto the image plane, which results in a semi-
transparent view of the volume. With this approach it is
easy to enhance image quality just by increasing the num-
ber of slices. However, in order to obtain equivalent repre-
sentations of the volume data while changing the number of
slices, opacity values must be adapted to the varying slice

Viewport-Aligned Slices Object-Aligned Slices

Figure 4: Viewport-aligned slices (left) in comparison to ob-
ject aligned slices (right) for a spinning volume object.

Figure 5: Visual artifacts are caused by the lack of trilin-
ear interpolation (left) but can be successfully removed by
inserting multiple intermediate slices (right).

distance. Although the correct scaling factor is a function of
the opacity value, in most cases scaling the values linearly
with a constant factor according to the slice distance is a
visually adequate approximation.
In contrast, if hardware supports 2D-textures only, the

slices are set parallel to the coordinate axes of the rectilinear
data grid (object-aligned slices, Fig. 4 (right)). This allows
to substitute trilinear by bilinear interpolation. However,
if the viewing direction changes by more that 90 degrees,
the orientation of the slice normal must be changed. This
requires to keep three copies of the data set in main mem-
ory, one set of slices for each slicing direction respectively.
The slices are rendered as planar polygons textured with
the image information obtained from a 2D-texture map and
blended onto the image plane. This is equivalent to an im-
plicit decomposition of the viewing matrix into a 3D shear
and a 2D image warp step as proposed in [7]. However, this
factorization is not coded explicitly, since the decomposition
is automatically performed by the OpenGL transformation
matrix. Despite the high memory requirements, the ma-
jor drawback of the 2D-texture based implementation is the
missing spatial interpolation. As a result the images contain
strong visual artifacts as displayed in Figure 5. To obtain
correct visual results with this approach opacity values must
be scaled according to the distance between two adjacent
slices in direction of the viewing ray. Like in the 3D-texture
based approach, scaling the values linearly with a constant
factor as an approximation has lead to good visual results.

5 Multi-Texture Interpolation

In order to enhance the image quality of 2D-texture based
volume rendering, an approach to remove the visual artifacts
caused by the �xed number of slices is required. The idea
to enable real trilinear interpolation is to compute interme-
diate slices on the y. The missing third interpolation step
is then performed within the rasterization hardware using
multi-textures.
Computing an intermediate slice Si+� can be described

as a blending operation of two adjacent �xed slices Si and
Si+1:

Si+� = (1� �) � Si + � � Si+1: (1)

With each slice image stored in a separate 2D-texture, bilin-
ear interpolation is automatically performed by the texture
unit. The third interpolation step is computed subsequently
by blending the resulting two texels. As displayed in Fig-
ure 6, the blending step can be computed by a single gen-
eral combiner stage (see Sec. 3), if the �xed slices Si and

slice i

slice (i +1)

input registers

RGB A

 texture 1

interpolation
factor α const color 1

 texture 0

INVERT

general
combiner 0

A

B

C

D

A B + C D

output register

RGB A

 fragment

A

B

C

D

final
combiner

A B +
(1−A) C

+ DZERO

ZERO

ZERO

G

Alpha portion:
interpolated

alpha

RGB portion:
interpolated

color

Figure 6: Combiner setup for interpolation of intermediate slices.

Si+1 are speci�ed as texture 0 and texture 1 using the
multi-texture extension. The combiner is setup to compute
a component-wise weighted sum AB+CD with the interpo-
lation factor � stored in one of the constant color registers.
The contents of this register is then mapped to input vari-
able A and at the same time inverted and mapped to vari-
able C. In the RGB-portion, variables B and C are assigned
the RGB components of texture 0 and texture 1 respec-
tively. Analogously, the Alpha-portion interpolates between
the alpha-components. For rendering semi-transparent vol-
umes, the output of this �rst combiner stage is directly used
for back-to-front alpha blending without any further modi-
�cation by the �nal combiner stage. Since multi-texture in-
terpolation and combination is performed within one clock
cycle of the graphics CPU, an intermediate slice is rendered
at almost the same performance as a �xed single-textured
slice. Of course multiple intermediate slices can be inserted
this way without any increase in memory size. This appli-
cation of multi-texturing greatly enhances image quality by
removing visual artifacts as can be seen in Figure 5. Like
in the 3D-texture based approach, opacity values must be
adapted according to the new slice distance. This is approx-
imated as usual by a constant linear scale factor.

d

d

d

(0,0) (1,0)

(1,1)

texture

polygon

h

w

corner view vector

v
v
v

T1

T2

x

y

z

w’

h’

d = slice distance

w = slice width

h = slice height

w’= projected
 slice width

h’= projected
 slice height

x

y

z
(s,t)

(0,0) (1,0)

(1,1)

b = slice corner

c = camera position

slice
polygon
vertex

Figure 7: Correct texture mapping by calculating adapted
texture coordinates for projected textures.

6 Performance Enhancement

In addition to the optimization of image quality described
above, multi-texturing can be used to speed up rendering.
In this section we are going to analyze an application of
multi-textures for performance enhancement. The idea of
this approach is to reduce the necessary number of triangles
by mapping the textures of multiple slice images onto a single
polygon.
If there are n independent multi-texture units available,

only every n-th slice polygon is drawn, textured with the im-
age information of n consecutive slice images. At �rst, the
n texture images are combined by multi-texturing hardware
and the resulting fragment is blended into the frame bu�er.
If the combination of n texture images can be computed in
one clock cycle by the graphics CPU, rendering time will
theoretically be reduced by a factor of 1=n . Additionally,
frame bu�er reads, which are necessary for back-to-front al-
pha blending, are reduced by the same factor.
When mapping n slice images onto a single polygon, only

the texture slice, which lies in the same plane of the slice
polygon is drawn at the correct position due to perspective
displacement of the other texture slices (see Fig. 13). In
order to compensate this e�ect we increase width w and
height h of a slice polygon by 2 � d � (n � 1) and adapt the
texture coordinates to the new size. Although this technique
can handle an arbitrary number of multi-texture units, for
simplicity, we restrict our further considerations to only two
textures.
Separate texture coordinates are calculated for each tex-

ture image that is mapped onto the slice polygon. Observe
that texture coordinates (s; t) of the slice image, which lies
in the same plane as the polygon, are given by (1+ d

w
,1+ d

h
)

at the vertex marked in Figure 7. The texture coordinates
of the subsequent slice images are adjusted by projecting
the corners of the texture view-dependently onto the poly-
gon. Figure 7 shows the adaptation of texture slice T2 to
the slice polygon of texture slice T1. The view vector from

camera position ~c to the corner of the slice ~b is given by

~v = (vx; vy; vz)
T = ~c�~b. Then the displacement of the pro-

jected slice in relation to the original corner position is given
by d vx

�vy
for the s-direction and d vz

�vy
for the t-direction.

According to this, the texture coordinates at the polygon
vertex are given by�

s0

t0

�
=

�
1 + d

w0
+ d�vx

w0 �vy

1 + d
h0
+ d�vz

h0�vy

�
(2)

where w0 and h0 denote the width and height of the pro-
jected texture. The texture coordinates of the other three
vertices are calculated accordingly. Note that we obtain tex-
ture coordinates greater than 1 and less than 0. Texel val-
ues for coordinates outside the range of [0,1] should be set

input registers output registerfinal
combiner

A

B

C

A B +
(1−A) C

+ D

D

RGB A

RGB A

slice i texture 0

 texture 1 slice (i +1)

RGB A

G

 fragment ZERO

general
combiner 0

A

B A B

Alpha portion:

A

B

C

D

C D

A B

RGB portion:

INVERT

INVERT

INVERT

Figure 8: Combiner setup for correct blending of two slices

to zero. However, clamping textures to a �xed value (like
the SGIS texture edge clamp extension provided by SGI)
is currently not supported on GeForce 256 hardware. As
a workaround, standard OpenGL texture clamping is used
and the texture border must be initialized with zero values.
The slice polygons are blended back-to-front into the

frame bu�er. Prior to this process the n texture maps must
be combined correctly by the multi-texturing hardware. Let
us proceed by considering the process of blending two sin-
gle textured polygons into the frame bu�er. During alpha
blending, color values of the incoming fragment (the source)
are combined with the color values at the corresponding
frame bu�er position (the destination) according to a speci-
�ed blend function.
In the following considerations the character C indicates a

R,G or B color component and the character A refers to an
alpha value. Subscripts of t0 and t1 indicate the texture val-
ues of the �rst and the second texture map. A subscript of
d indicates a destination value and a subscript s the source
value of an incoming fragment. Using the blending func-
tion glBlendFunc(GL SRC ALPHA,GL ONE MINUS SRC ALPHA)
for back-to-front rendering and the GL REPLACE texture en-
vironment, the resulting color value in the frame bu�er after
blending the �rst textured polygon amounts to

C0
d = Ct0At0 + Cd(1�At0): (3)

This color value is now used as the destination color when
blending the second textured polygon.

C00
d = Ct1At1 +C0

d(1�At1)

= Ct1At1 + (Ct0At0 + Cd(1�At0))(1�At1)

= Ct1At1 +Ct0At0(1 �At1) + Cd(1�At0)(1�At1):

In order to get exactly this blending function during multi-
texturing the register combiner have to be programmed
as displayed in Fig. 8. The RGB-portion of general com-
biner 0 is programmed to calculate Ct0At0 and Ct1At1 .
The Alpha-portion of this combiner is used to compute
(1 � At0)(1 � At1). The output of the RGB-portion are
routed into the �nal combiner stage which calculates the
resulting RGB value

Cs = Ct0At0(1�At1) + Ct1At1 : (4)

The result of the Alpha-portion is directly used as alpha
value

As = (1�At0)(1�At1) (5)

of the output register. The resulting fragment is then
blended into the frame bu�er using the blending function

glBlendFunc(GL ONE,GL SRC ALPHA) resulting in

C00
d = Cs � 1 + Cd �As

= Ct1At1 + Ct0At0(1�At1) + Cd(1�At0)(1�At1):

Using this register combiner setup we obtain exactly the
same blending results for multi-texturing as for rendering
two separate polygons using single textures. A comparison
of the image results can be seen in Figure 13.

7 Fast Shaded Isosurfaces

As mentioned in Section 2, Westermann and Ertl [13] have
introduced an eÆcient algorithm that exploits rasterization
hardware to display shaded isosurfaces. This method evalu-
ates the equation of local illumination

I = Ia + Id � (~n �~l); (6)

where ~l is the direction of light and ~n is the normal of the iso-
surface which coincides with the volume gradient. Ia and Id
are the intensities of ambient and di�use light. At the core
of the algorithm the vector components of the voxel gra-
dients are stored in the RGB components of a 3D-texture
image. Additionally the intensity values are stored in the
alpha-component. The volume is then rendered into the
frame bu�er using the OpenGL alpha-test to display the
speci�ed isovalues only. In a second step, the frame bu�er,
that contains the voxel gradient coded in RGB components,
is reinserted into the rasterization pipeline and the OpenGL
color matrix is used to compute the dot-product with the
light vector. This two-pass technique allows to eÆciently
render shaded isosurfaces at interactive frame rate. How-
ever, the algorithm is restricted to a single light source and
to monochrome display only.
Using multi-stage rasterization, this method can be eÆ-

ciently adapted to PC hardware. The voxel gradient is com-
puted as before and written into the RGB components of a
set of 2D-textures that represent the volume. Analogously,
the intensity is coded in the alpha-component. The regis-
ter combiner are then programmed as displayed in Fig. 9.
The �rst general combiner stage is applied as described in
Section 5 to interpolate intermediate slices. The second gen-
eral combiner is now enabled and computes the dot product
A � B, where variable A is mapped to the RGB output of
the �rst combiner stage (the interpolated gradient ~n) and
variable B is mapped to the second constant color register,

that contains the light vector ~l. The alpha-component is not
modi�ed by the second combiner stage. Note that the gen-
eral combiner stages support signed �xed point values, so

input registers
RGB A

interpolation
factor α const color 1

slice i
 texture 0

intensity
gradient

slice (i +1)
 texture 1

intensity
gradient

A

B

C

D

A B + C D

INVERT

color of
diffuse light

direction
of light const color 2

color of
ambient light

 primary color

 second color

general
combiner 0

general
combiner 1

A

B

C

D

dot
product

A � B

output registerfinal
combiner

RGB A

 fragment

A

B

C

A B +
(1−A) C

+ D

(RGB and Alpha portion) (RGB portion only)

RGB portion:
interpolated

normal

Alpha portion:
interpolated

intensity

D

G

E F

ZERO

Figure 9: Combiner setup for fast rendering of shaded isosurfaces

there is no need to scale and bias the vector components to
positive range.
As described in Section 3 the �nal combiner is capable of

computing AB + (1 � A)C +D. When storing the color of
di�use and ambient light in the registers for primary and
secondary color, the �nal combiner can be used to compute
equation 6. Therefore variable A is assigned to primary color
(Id) and is multiplied with variable B which is mapped to the
dot product, computed by the RGB-portion of the second
general combiner. Variable C is set to zero and variable D
is mapped to secondary color (Ia).
Compared to the original work of Westermann and Ertl,

our implementation is a single-pass rendering technique,
since no copying of the frame bu�er is required. Addition-
ally, multi-stage rasterization allows the use of colored ambi-
ent and di�use light sources. As displayed in Figure 8, vari-
ables C and D are not used at the second combiner stage.
The ability of the general combiner to compute a second
dot products C � D in parallel, can be used to compute lo-
cal illumination for a second di�use light source. However,
the limiting factor is the available number of input registers,
which are needed to store color and direction for the sec-
ond light source. Unfortunately, it is not possible to write
initial values to the two spare registers displayed in Fig. 2.
Thus an additional colored di�use light source can only be
applied by sacri�ce of either the trilinear interpolation or the
speci�cation of separate colors for ambient and di�use light.

8 Shading for Semi-Transparent Volumes

The fast algorithm to display isosurfaces directly leads to
a shading technique for semi-transparent volume rendering.
Using multi-stage rasterization hardware, there are two pos-
sible methods to enable shading for semi-transparent vol-
umes. The �rst approach is basically the same as the algo-
rithm for shaded isosurfaces, with the exception that alpha-
blending is used instead of the alpha-test. In this approach,
however, there is no possibility to assign an ambient color
for every data value independently, since the RGB channels
are used as gradient vector and the alpha channel is used for
opacity. As a result there is only a globally de�ned ambi-
ent color, while normal vectors and opacity are de�ned for
each voxel separately. Unfortunately, the hardware does not
provide a component-wise color lookup table. Thus it is not
possible for example to use the alpha-component as color
index to specify ambient color for each voxel separately.

If speci�cation of ambient color is desired on a per-voxel
basis, this is also possible using current PC hardware, how-
ever at the sacri�ce of real trilinear interpolation. The basic
idea of this approach is to use separate textures for gradient
and color values. The �rst texture is an RGB texture, that
contains the gradient information and the second texture
contains the color and opacity information for every voxel.
Note that the second texture can be a paletted texture of
color indices, so the memory requirements are the same as
for the isosurface algorithm (disregarding the memory allo-
cated for the color table).
The register combiners for displaying shaded semi-

transparent volumes are displayed in Fig. 10. In this sce-
nario, the �rst combiner stage computes the dot product of
the light vector (variable B) and the voxel gradient, obtained
from the �rst texture (variable A). The �nal combiner sums
up the ambient color stored in the second texture (variable
D) and the product of di�use color (B) with the dot product
computed by the �rst combiner (variable A). Interpolation
of intermediate slices is not possible, since current hardware
only supports two input textures at a time. However, as de-
scribed in Section 7, variables C and D of the �rst combiner
stage can now be used to compute di�use illumination for
a second colored light source, since the input registers for
secondary color and constant color 1 are unused.
Despite the lack of real trilinear interpolation, this ap-

proach has several advantages compared to the implementa-
tion proposed in [9]. Since the dot product is directly sup-
ported by the hardware, illumination is computed in a single-
pass rendering process, and thus interactive frame rates are
achieved. Additionally no large-scale workaround is required
to allow for signed vector components, since they are also
supported by hardware. The main drawback is that the
image quality is limited, due to the missing real trilinear
interpolation. However we are con�dent that future hard-
ware will provide a higher number of texturing units or even
3D-texturing capabilities.

9 Interpolation of Arbitrary Slices

In addition to direct volume rendering, many applications
require to interpolate slice images of the volume data set in
arbitrary direction. In medicine this is usually referred to as
multi-planar reformatting (MPR).
An interesting 2D-texture based technique to render ar-

bitrary slices was introduced in [4] and is easily adapted to

 texture 1

input registers

RGB A

slice i
 texture 0

ambient
color

gradient

general
combiner 0 output registerfinal

combiner
(RGB portion)

color of
diffuse light

direction
of light const color 2

 primary color

A

B

C

D

dot
product

A � B

A

B

C

A B +
(1−A) C

+ D

D

ZERO

RGB

RGB A

 fragment

GAlpha

Figure 10: Combiner setup for rendering semi-transparent volumes with local di�use illumination

calculate
cross−section

cut polygon
into stripes

specify alpha
values

apply
multi−texture

Figure 11: Rendering procedure to interpolate slice images
in arbitrary direction.

multi-texturing hardware. The basic idea of this algorithm
is displayed in Fig. 11. At �rst the cross-section of the slic-
ing plane with the bounding box of the volume is calculated.
The resulting intersection polygon is then cut into a set of
polygon strips at the intersection line with the object-aligned
texture slices. Subsequently for each of these polygon strips
the image information is obtained by interpolating the two
adjacent texture images. This is achieved by speci�cation of
alpha values for the polygon vertices. In this case an alpha
value of 0 indicates that the corresponding vertex should be
textured with the image information from the �rst texture.
Accordingly, if a value of 1 is speci�ed the second texture
image is applied. Within the polygon, Gouraud shading is
used to interpolate between the alpha values speci�ed at the
polygon vertices. The interpolation between the two tex-
ture images is �nally performed by the register combiners as
displayed in Figure 12. In this scenario, general combiner
0 is programmed to blend both textures (mapped to vari-
ables A and C) using the primary color alpha (mapped to
variable B and inverted to variable D). As mentioned above,
primary alpha is interpolated between the values speci�ed
at the vertices.

slice i

slice (i +1)

input registers

RGB A

 texture 1

interpolation
factor α primary color

 texture 0

INVERT

general
combiner 0

A

B

C

D

A B + C D

Alpha portion:
interpolated

alpha

RGB portion:
interpolated

color

Figure 12: Combiner setup for interpolation of arbitrary slice
images

Although, the described technique is usually applied to
interpolate single slice images, it is potentially applicable
for volume rendering with viewport-aligned slices. However,

the signi�cant computational overhead for intersection cal-
culation in combination with the large number of texture
binding operations results in a poor rendering performance.
Using viewport aligned slices only 5|8 frames per seconds
were achieved for a small data set of size 643.

10 Results

The presented algorithms were implemented on Windows
NT platform on a standard PC (AGP 2�) with single
500 MHz Intel Pentium III CPU and a graphics board with
NVidia GeForce 256 processor and 32 MB of double data
RAM.
Figure 14(A) shows the comparison of the standard single-

texture based approach with our method to enhance per-
formance using multi-textures (Section 6). When multi-
texturing is enabled, the number of polygons to be rendered
is reduced by a factor of 2. Theoretically this should results
in a speedup of rendering performance also by a factor of
2. However, as displayed in Figure 14(A) we only achieve a
factor of 1:8. This might be an e�ect of the limited memory
bandwidth. Although we only render half the polygons, the
complete texture information must be accessed during one
render pass.

A. Single and Multi−Textures

128x128x64

256x256x128

256x256x256

0 5 10 15 20 25 30 35 40 45 50 55

54.929.7
22.2

12.3
7.8

4.3

0 5 10 15 20 25

22.5
4.1

2.0

B. Shaded Semi−Transparent Volumes

128x128x64
256x256x128
256x256x256

dual texture single texture

frames per second

frames per second

Figure 14: Performance measurement using a viewport size
of 600� 600 pixels: (A) Frame rates of single- versus multi-
texture rendering. (B) Frame rates of shaded direct volume
rendering

The visual artifacts displayed in Figure 13 are completely
removed by adjustment of the texture coordinates and cor-
rect blending computation using the register combiners. The
computational overhead to calculate correct texture coordi-
nates does not signi�cantly inuence the frame rate. Turn-
ing this calculation o� only increases the performance by 0:2
frames per second for a data set of moderate size. However
due to the mapping of texture slices at incorrect positions in

Figure 13: Right: Image results of single-texture based approach. Middle: Multi-texture based approach without correction
generates visual artifacts. Left: The artifacts are successfully removed by correction of texture coordinates.

3D, problems may occur when using clipping planes. Coping
with these problems will be focused on in the future.

The usage of multi-texturing does signi�cantly increase
performance of texture based volume rendering without any
loss in image quality compared to the standard 2D-texture
based approach. The di�erent rendering algorithms pre-

36.7

Onyx2 Base RealityA. CTA Aneurysm (128 x 128 x 64)

0 5 10 15 20 25 30 35

29.7

3.1

18.5
13.4

10.2
8.9

7.3

2.3

direct volume rendering

shaded isosurface

16.7

13.7

4.2

5.6

1.5

4.1

8.9

GeForce 256

100%

200%

300%

1000%

100%

200%

300%

1000%
40

0 2 4 6 81 3 5 7

100%

200%

300%

1000%

100%

200%

300%

1000%

direct volume rendering

shaded isosurface

C. MR Head (256 x 256 x 256) Onyx2 Base RealityGeForce 256

4.3
7.3

2.3

1.3

0.4
0.8

2.7

3.9

1.7
4.0

1.7
2.2

1.5
1.5

0.4
0.5

14

Onyx2 Base RealityB. Engine Block (256 x 256 x 128)

2 4 6 8 10 120

100%

200%

300%

1000%

100%

200%

300%

1000%

shaded isosurface

direct volume rendering

GeForce 256

12.4
6.7
6.8

4.0
3.7

2.7
1.4

1.3

4.0
3.9

3.6
2.1

3.0
1.6

0.8
0.5

14

frames per second

frames per second

frames per second

Figure 15: Frame rates of the GeForce 256 implementa-
tion in comparison to the 3D-texture solution on SGI Onyx2
BaseReality (viewport 600 � 600)

sented in this paper were evaluated using volume data sets of
di�erent resolution. Figure 16 displays a computed tomog-
raphy angiography (CTA) data set showing an intracranial
aneurysm. Image A displays the results of direct volume
rendering without illumination. In image B a colored di�use
light source has been added using the approach described
in Section 8. The achieved frame rates for shading semi-
transparent volumes are displayed in Figure 14(B). Com-
paring these values to the performance of the 3D-texture
based multi-pass solution presented in [9] clearly demon-
strates the bene�ts of multi-stage rasterization. The results
of the isosurface algorithm (Section 7) are displayed in Fig-
ures 16 (C.1) and (C.2) for di�erent isovalues. Note that
we are able to interactively display isosurfaces in noisy data
(C.1), where polygon-based algorithms are bound to fail due
to the resulting extremely high number of triangles. In Fig-
ure 15(A) performance of the presented multi-texture im-
plementation on NVidia GeForce 256 hardware is compared
to 3D-texture based volume rendering performed on an SGI
Onyx2 with BaseReality graphics hardware and 64 MB of
texture memory. For the CTA data set of size 128�128�64,
the GeForce 256 implementation reaches signi�cantly higher
frame rates, even if the data set is extremely super-sampled
by increasing the number of slices from 100% to 1000%. It
is also remarkable that on GeForce 256 isosurfaces display
is signi�cantly faster than direct volume rendering. Obvi-
ously reading the frame-bu�er, which is required for alpha-
blending semi-transparent slices, but not for the isosurface
display, is rather expensive on GeForce hardware. Figure 17
displays the image results of our implementation for the
engine block data set of size 256 � 256 � 128. Image A
was generated using direct volume rendering with 300%
super-sampling and without illumination. Shaded semi-
transparent representations are displayed in Image B.1 and
B.2 for di�erent opacity settings. Image C.1 and C.2 show
the results of fast isosurface rendering for di�erent isovalues
using a blue ambient color and a single di�use white light
source. Image C.3 demonstrates the application of two light
sources. The second light source was enabled as described in
Section 7 by sacri�ce of color speci�cation for di�use light
sources. As displayed in Figure 15(B) the GeForce imple-
mentation still achieves signi�cantly higher performance for
both direct volume rendering and isosurface display. How-
ever, due to the higher memory requirements for gradient
textures, the frame rate for isosurface rendering is now sig-
ni�cantly lower that for semi-transparent display. In con-

trast to the color-index texture used for semi-transparent
rendering, the RGBA texture for isosurface display does not
�t entirely into graphics memory and is thus swapped into
main memory via AGP (2�) bus.
Finally, for the MR head (Fig. 18(A)) of resolution 256�

256 � 256, the Onyx2 clearly dominates in rendering per-
formance as displayed in Figure 15(C). The limited mem-
ory bandwidth of the AGP port is evident when comparing
the frame rates for isosurface display at 100% and 200%.
Although the number of textured slices has increased by a
factor of 2, the achieved frame rate remains the same. Fig-
ure 18(B) displays image results for a large CT data set of
size 512�512�106, which were generated at approximately
1 frame per second on GeForce 256 hardware.
As we have demonstrated the multi-texture based volume

rendering on GeForce 256 hardware has proved superior for
displaying volume data sets of moderate size. Using multi-
texture interpolation, the resulting images quality is equiv-
alent to 3D-texture based solutions. The only drawback of
GeForce 256 hardware is the lack of post-interpolative color
lookup tables, which are necessary for high precision transfer
functions.
In order to build a scalable volume rendering application,

the presented techniques for performance and quality en-
hancement can be combined. While user interaction events
are scheduled in the event queue, performance optimization
is used to provide high frame rate. In consequence, if the
event queue is empty, image quality is optimized. Current
PC graphics hardware only supports two independent multi-
texturing units. However, performance of the presented al-
gorithms will greatly bene�t from a higher number of avail-
able textures. Additionally, with the exception of multi-
texture interpolation, all presented methods are ready to be
extended to 3D-textures, when they are �nally supported by
future graphics boards.

11 Conclusion

On the basis of standard 2D-texture based volume rendering
we have introduced several advanced rendering techniques,
that exploit rasterization hardware of PC graphics boards in
order to signi�cantly improve both performance and image
quality. The presented approaches are based on the multi-
texturing and the multi-stage rasterization capabilities of
NVidia's GeForce 256 processor. The resulting image qual-
ity is equivalent to 3D-texture based solutions provided by
high-end graphics workstations. We have also shown that
for volume data sets of moderate size PC graphics hardware
is signi�cantly faster than high-end systems. Furthermore,
advanced algorithms like fast isosurface display or shaded
volume rendering are eÆciently adapted to the PC platform.
Since only low-cost hardware is required, the presented ap-
proaches signi�cantly contribute to the availability of inter-
active direct volume rendering in practice.

12 Acknowledgments

We thank John Spitzer and NVidia for providing information
and image material about the GeForce 256 hardware.

References

[1] M. Brady, K. Jung, Nguyen HT, and T. Nguyen. Two-
Phase Perspective Ray Casting for Interactive Volume
Navigation. In Visualization '97, 1997.

[2] B. Cabral, N. Cam, and J. Foran. Accelerated Vol-
ume Rendering and Tomographic Reconstruction Using
Texture Mapping Hardware. ACM Symp. on Vol. Vis.,
1994.

[3] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kauf-
man. High-Quality Volume Rendering Using Tex-
ture Mapping Hardware. In SIGGRAPH Eurographics
Graphics Hardware Workshop, 1998.

[4] G. Eckel. OpenGL Volumizer Programmer's Guide. SGI
Developer Bookshelf, 1998.

[5] K. Engel, R. Westermann, and T. Ertl. Isosurface ex-
traction techniques for web-based volume visualization.
In Visualization '99, 1999.

[6] J. Foley, A. van Dam, S. Feiner, and J. Hughes.
Computer Graphics, Principle And Practice. Addison-
Weseley, 1993.

[7] P. Lacroute and M. Levoy. Fast Volume Rendering Us-
ing a Shear{Warp Factorization of the Viewing Trans-
form . Comp. Graphics, 28(4), 1994.

[8] W.E. Lorensen and H.E. Cline. Marching Cubes: A
High Resolution 3D Surface Reconstruction Algorithm.
Comp. Graphics, 21(4), 1996.

[9] M. Mei�ner, U. Ho�mann, and W Stra�er. Enabling
Classi�cation and Shading for 3D Texture Based Vol-
ume Rendering Using OpenGL and Extensions. In Vi-
sualization '99, 1999.

[10] K. Mueller, N. Shareef, J. Huang, and Craw�s. R. IBR-
Assisted Volume Rendering. In Visualization 1999 Late
Breaking Hot Topics, 1999.

[11] H. P�ster. Why the PC will be the most pervasive
visualization platform in 2001. In Visualization '99,
1999.

[12] J. Spitzer. GeForce 256 and RIVA TNT Combiners.
http://www.nvidia.com/Developer.

[13] R. Westermann and T. Ertl. EÆciently Using Graphics
Hardware in Volume Rendering Applications. In Proc.
of SIGGRAPH, Comp. Graph. Conf. Series, 1998.

A B C.1 C.2

Figure 16: CTA aneurysm data set (1282�64): (A) direct volume rendering without illumination, (B) direct volume rendering
with red di�use light source, (C) shaded isosurface for di�erent isovalues.

A B.1 B.2

C.1 C.2 C.3

Figure 17: Engine Block (2562 � 128): direct volume rendering without illumination (A), shaded (B.1), shaded with lower
opacity (B.2) and shaded isosurface (C.1) and (C.2) with di�use white light source and with two white light sources (C.3)

A B.2 B.2

Figure 18: direct volume rendering of MR (2563) (A) and CT (5122 � 106) (B) with di�erent transfer functions

