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Optical Models for Direct Volume Rendering

Nelson Max

Abstract—This tutorial survey paper reviews several different
models for light interaction with volume densities of absorbing,
glowing, reflecting, and/or scattering material. They are, in order
of increasing realism, absorption only, emission only, emission
and absorption combined, single scattering of external illumina-
tion without shadows, single scattering with shadows, and multi-
ple scattering. For each model I give the physical assumptions,
describe the applications for which it is appropriate, derive the
differential or integral equations for light transport, present cal-
culation methods for solving them, and show output images for a
data set representing a cloud. Special attention is given to calcu-
lation methods for the multiple scattering model.

Index Terms—Optical models, multiple scattering, extinction,
volume shadows, volume rendering, emission, volume shading,
participating media, discrete ordinates method, compositing.

I. INTRODUCTION

ASCALAR function on a 3D volume can be visualized in a
number of ways, for example, by color contours on a
2D slice or by a polygonal approximation to a contour sur-
face. Direct volume rendering refers to techniques which
produce a projected image directly from the volume data,
without intermediate constructs such as contour surface
polygons. These techniques require some model of how the
data volume generates, reflects, scatters or occludes light.
This paper presents a sequence of such optical models with
increasing degrees of physical realism, which can bring out
different features of the data.

In many applications the data are sampled on a rectilinear
grid, for example, the computational grid from a finite differ-
ence simulation or the grid at which data are reconstructed
from X-ray tomography or X-ray crystallography. In other
applications, the samples may be irregular, as in finite element
or free lagrangian simulations or with unevenly sampled geo-
logical or meteorological quantities. In all cases, the data must
be interpolated between the samples in order to use the con-
tinuous optical models described here. For example, linear
interpolation can be used on tetrahedra, and trilinear or tricu-
bic interpolation can be used on cubes. A number of other in-
terpolation methods are given in Nielson and Tvedt [1]. Here I
will just assume the interpolation is done somehow to give a
scalar function f(X) defined for all points X in the volume.

Optical properties like color and opacity can then be as-
signed as functions of the interpolated value f(X). (The physi-
cal meaning of these optical properties will be discussed in
detail below.)

Interpolating f first permits the optical properties to change
rapidly within a single volume element, to emphasize a small
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range of scalar values. It is possible to compute the optical
properties only at the grid vertices and then interpolate them
instead, but this may eliminate fine detail. The situation is
analogous to the superiority of Phong shading (interpolating
the normal) over Gouraud shading (interpolating the shaded
color) for representing fine highlight detail.

To compute an image, the effects of the optical properties
must be integrated continuously along each viewing ray. This
does not mean that only ray tracing can be used. Mathemati-
cally equivalent integration can be performed with polyhedron
compositing (Shirley and Tuchman [2], Max et al. [3], Wil-
helms and van Gelder [4], Williams and Max [5]). If the inte-
gral is approximated by a Rierhann sum, as discussed below,
then the plane-by-plane compositing methods of Dreben et al.
[6] and Westover [7] can also produce equivalent approxima-
tions. In this paper, I will not be concerned with the distinc-
tions between these methods. Instead, I will deal with the
mathematical forms that the continuous integral takes, depend-
ing on the optical model. Siegel and Howell [8] is a good gen-
eral reference for the physics behind these models.

The optical properties which affect the light passing through
a “participating medium” are due to the absorption, scattering
or emission of light from small particles like water droplets,
soot or other suspended solids or individual molecules in the
medium. For the models below, I will describe the geometric
optics effects of the individual particles and then derive a dif-
ferential equation for the light flow in the medium. The differ-
ential equations are for a continuous medium, in the limit
where the particles are infinitesimally small, so that the ab-
sorption, emission, and scattering take place at every infini-
tesimal segment of the ray. I will write the equations taking the
intensity and optical properties to be scalars, for black-and-
white images. For multiple wave-length bands (e.g., red, green,
and blue) in a color image, the equations are repeated for each
wavelength, so these quantities become vectors.

II. ABSORPTION ONLY

The simplest participating medium has cold perfectly black
particles which absorb all the light that they intercept and do
not scatter or emit any. For simplicity, assume that the particles
are identical spheres, of radius r and projected area A=mnr%, and
let p be the number of particles per unit volume. Consider a
small cylindrical slab with a base B of area E, and thickness
As, as shown in Fig. 1, with the light flowing along the direc-
tion As, perpendicular to the base. The slab has volume EAs
and thus contains N=pEAs particles. If As is small enough so
that the particle projections on the base B have low probability
of overlap, the total area that they occlude on B is approxi-
mated by NA=pAFAs. Thus the fraction of the light flowing
through B that is occluded is pAEAs/E=pAAs. In the limit as
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Fig. 1. A slab of base area E and thickness As.

As approaches zero, and the probability of overlap approaches
zero also, this gives the differential equation

di

= = P(s)Alls)=~1(s)I(s) (1)
where s is a length parameter along a ray in the direction of the
light flow, and I(s) is the light intensity at distance s. The
quantity T(s)=p(s)A is called the extinction coefficient and
defines the rate that light is occluded. The solution to this dif-

ferential equation is

I(s)=1, exp(—j. (1) dtJ ,

0

2

where I, is the intensity at s=0, where the ray enters the vol-
ume. The quantity

T(s)= exp[—j (1) dt]

0

3)

is the transparency of the medium between O and 5. A some-
what different derivation of these equations is given in Blinn
[9]. (See also Section 2 of Williams and Max [5].)

In the volume rendering literature the extinction coefficient
T is often simply called opacity. However, the opacity « of a
voxel of side [, viewed parallel to one edge, is actually

a=1-T(l)=1- exp[—j (1) dt) ,

or, if 7is constant inside the voxel,
o =1—exp(—1) =rl—(1£)2/2+ e

This distinction is important if the voxel is scaled to a different
size or is viewed diagonally, so that the path length through it
is different from /. Wilhelms and Van Gelder [4] have a user
interface in which o is specified for a unit length /, allowing 7
to become infinite when a=1. They also suggest that for small
voxels, o can be approximated by min(1, 7/), which truncates
all but the first term of the above series, but makes sure that o
never exceeds 1. Max [10] suggests a quadratic approximation
for (1) arranged to meet the line a=1 smoothly at [=2/7.
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The mapping which assigns a value for an optical property
like 7 to each value of the scalar f being visualized is called a
transfer function. The simplest transfer function assigns 7=ece if
fexceeds a threshold K, and 7=0 otherwise. Thus if f is tomo-
graphic density on a medical data set, K can be chosen to make
bone completely opaque and all other tissues completely
transparent. Many early medical visualizations were produced
in this way. If the “interpolation” for f(x) just sets f to the value
at the nearest sample point, so that it is constant inside cubes
centered at the sample points, rendering consists of merely
projecting the opaque cubes, or their front faces, onto the im-
age plane. This can be done using a z-buffer or back-to-front
“painter’s algorithm” for visibility determination. If a list of
surface voxels can be found [11], the interior voxels, which are
guaranteed to be hidden, need not be projected.

This technique has been useful in visualizing bone or other
tissues for medical purposes, and various shading schemes
have been developed [12]. The simplest uses only the z-buffer
depth at a pixel, shading the more distant pixels darker. More
realistic surface shading models require the surface normal
vector, which must be estimated. One method uses the z-buffer
values at neighboring pixels to estimate the slope of the pro-
jected surface. Surface normals can also be estimated before
projection, according to the orientation of the cube face and its
neighbors in the boundary of the opaque volume. Finally, the
normals can be determined from the gradient of f(X), estimated
by finite differences of f at neighboring voxels. Note that these
shading functions are applied after the thresholded opaque
volume has been determined and are not the same as the
shading for direct volume rendering to be discussed below.

The more sophisticated optical models use the transfer
function to specify the extinction coefficient as a finite, con-
tinuously varying function 7(f) of the scalar . When the inte-
gration in (2) is carried out along each viewing ray, the result
is an X-ray-like image, which accounts for the attenuation of
the X-rays from the source at s=0 by the density between the
source and the film plane. If f is the X-ray absorption density
reconstructed by Computed Tomography, 7(f) can be taken as
the identity function, to produce a new simulated X-ray image
from any specified direction. Other assignments of 7(f) can
isolate a density range of interest and render all other densities
as transparent. Such images can be used for medical diagnosis
and nondestructive testing.

Alternatively, I, can represent a background intensity,
varying from pixel to pixel, and the resulting image represents
the volume density as a cloud of black smoke obscuring the
background. To illustrate the optical models in this paper, I
have modeled an atmospheric cloud as a sum of ellipsoidal
densities. I have added a 3D noise texture from Perlin [13], to
give a natural fractal appearance to its edges. Fig. 2 shows this
cloud represented with (2), as black smoke hiding the ground,
an aerial photo of Washington, D.C.

The problems of computing these X-ray-like images are basi-
cally those of computing the integrals appearing in (2) and (3),
since the exponential function need be done only once per output
pixel and can even be performed by a “gamma correction” table
lookup as part of the video output process. Malzbender [14] and
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Totsuka and Levoy [15] have shown how to use the Fourier
projection slice theorem and fast Fourier transforms to compute
these integrals very rapidly.

III. EMISSION ONLY

In addition to extinction, the medium may also add light to
the ray by emission or reflection of external illumination. The
simplest case is emission, as by hot soot particles in a flame.
Of course, real particles absorb as well as emit light, but in the
limit as the particle size or number density approaches zero,
while the emission goes to infinity in a compensating manner,
we can neglect the absorption. This is the case for a very hot
tenuous gas, which glows but is almost transparent. In this
section, we will model this case by assuming the small spheri-
cal particles discussed above are transparent, and then in the
next section we will include their absorption.

If the particles in Fig. 1 are transparent, but glow diffusely
with an intensity C per unit projected area, their projected area
PAEAs derived above will contribute a glow flux CpAEAs to
the base area E, for an added flux per unit area CpAAs. Thus
the differential equation for I(s) is

dl

- =Cls)p(s)A= C(s)t(s) = g(s)

The term g(s) is called the source term, and later we will let it
include reflection as well as emission. The solution to this dif-
ferential equation is simply

I(s)=1, +Ig(t) dr. 5)
0

)

Fig. 3 shows the cloud of Fig. 2 drawn in this way, with g
proportional to f. Note that the Fourier methods of Mal-
zbender [14] can also be used to produce such images, which
are like the X-ray negatives commonly viewed by radiolo-
gists. This sort of image is useful for simulating the glow
from fluorescent stains in reconstructed micrographs or in
any situation when the glowing material is not too extensive.
However, unlike the exponentials in (2) and (3), the integral
in (5) has no upper bound, because the intensity can be
added across an arbitrary thickness without attenuation. The
accumulated intensity can easily exceed the representable
range of the output devise. The cloud in Fig. 3 is too tenuous
at the edges because I had to set the constant C very small in
order not to exceed the available intensity range at the center
of the cloud.

IV. ABSORPTION PLUS EMISSION

The particles in an actual cloud occlude incoming light, as
well as add their own glow. Thus a realistic differential equa-
tion should include both source and attenuation terms:

L= (5)=()) ©

In section IV.B we will consider as a special case the model
where g(s)=C(s)t(s), as in (4), but for now, let the source
term g(s) be an arbitrary function of position, perhaps speci-
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fied by an independent transfer function g(f). The absorption
plus emission model is useful for volume rendering continuous
scalar fields from numerical simulations, or medical data that
have been segmented into different tissue types which can be
given different values of Tand g.

Equation (6) can be solved by bringing the 7(s)I(s) term to
the left-hand side and multiplying by the integrating factor

exp(.[;'t(t) dt) , giving

(%i— +1(s)] (s)) exp[] (r) dt] =g(s) exp[ 0 (¢) dt]

0

:‘11; [1 (s) exp[£ 16 dt]) = g(s) exp[_([ (1) dt] .

Integrating from s=0 at the edge of the volume to s=D at the
eye, we get

I(D) exp[f 7(t) dt] —Iy= J [g(s) exp[] 7(2) dtn ds .
0

0 0

or

Bringing the I, to the other side, and multiplying by

exp[—? (1) dt],

0

we can solve for I(D):
D D D
I(D)=1, ex[{‘“J. 10 dt} + J g(s)exp(—f 10) dt)ds )
0 0 s

The first term represents the light coming from the back-
ground, multiplied by the cloud’s transparency, as in (2). The
second term is the integral for the contribution of the source
term g(s) at each position s, multiplied by the transparency

D
TTs)zexp(—jT(x)dx)

§

between s and the eye. Thus

D
I(D) =1, T(D)+ [ g(s)T(s)ds -
]

A. Calculation Methods

For certain transfer functions and interpolation methods, the
integrals in (7) can be calculated analytically, as will be dis-
cussed in section IV.B. For more general cases, however, nu-
merical integration is required. The simplest numerical ap-
proximation to an integral

D
[ h(x)dx
0

is the Riemann sum

gh(x,-)Ax.
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Fig. 2. Black smoke cloud over the ground. Fig. 3. Emission only cloud.

Fig. 4. Cloud with emission and extinction. Fig. 5. Cloud of Fig. 4 over the ground.

Fig. 6. Cloud with single scattering. Fig. 8. Cloud with multiple scattering.
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The interval from O to D is divided up into n equal segments,
of length Ax=D/n, and a sample x; is chosen in each segment,
so that (i—-1)Ax < x; < iAx. To simplify the following formulas,
I will choose x;=iAx. Then

exp(—j 7(x) de

0
is approximated by

exp(—zn: T(iAx)Ax) = fI exp(—T(iAx)Ax) = ﬁt,-
i=1 =1

i=1

where f;=exp(~7 ({Ax)Ax) can be thought of as the transpar-
ency of the ith segment along the ray. As noted above, ¢ de-
pends not only on 7(f) but also on the ray segment length Ax.

Similarly, for the final integral in (7), we can let g;=g(iAr)
and approximate the transparency

exp[— I 7(x) dx}

iAx
between x; and D by

The Riemann sum for

D D
J g(s) exp[— J 7(x) dx] ds

then becomes
n n
AT
i=l =i+l
Thus the final estimate is

n n n
(D)= IOHt,. +2g,- Htj
i=1

=l j=itl
=8&n +tn(gn——1 +tn—](gn—2 +tn—2(gn-3 + (gl +t110)"'))) .

This gives the familiar back-to-front compositing algorithm:
I = To;
for( i =1; i <= n;
I = t[i)*I + gl[i]);
or the front-to-back compositing algorithm:

++i )

I =20.;

T =1.;

i = n;

while( T > small_threshold && i >= 1 )
{
I =T*I + gl[i);
T = T*t[i];
—i;
}

I =1+ T*Ip;.

B. The Particle Model

The derivation of g(s) in (4), based on identical spherical
particles, defines g(s)=C(s) 7(s). A particularly simple case is
when C is constant along the ray or at least along the segment
within a certain material region assigned the color C. This
makes the second integral in (7) much simpler:
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D

D D D
Jg(s) exp[-—_[ 7(t) dt} ds= j C1(s) exp(—J‘ (1) dt] ds
0 0

Dd D
=C|— ~| 7(t)dt |d
{dsexp([” ]

D
=(| .- exp[—j 7(t) dt]

0

Making the above substitution in (7) and using the total trans-
parency T(D) from (3), we get

I(D) = 1,T(D)+ C(1-T(D)) . ®)

This is the simple compositing of the color C on top of the
background I, , using the transparency 7(D). Conceptually, the
opacity a=(1.-T(D)) represents the probability that a ray from
the eye will hit a particle and “see” color C.

If I,=0, and 7 is proportional to £, the result is like an X-ray
negative, brightest where there is most density, but saturating
at the maximum intensity C, as shown in Fig. 4. Fig. 5 shows
the cloud over the ground, according to (8).

Instead of constant C, a somewhat more general assumption
is that C(s) and (s) vary linearly along a ray segment. This
will be the case if both C(f) and 7(f) are linear or piecewise
linear functions of the scalar field f, and if f is interpolated
linearly across tetrahedral cells joining points where f is sam-
pled. In this case, g(s) will be a quadratic function on a ray
segment, and Williams and Max [5] give a rather complicated
analytic formula for the integral, involving tables or subrou-
tines for the normal error integral erf(x), and for

X
2
J.Oexpt dt.

The particle model corresponds to a physical situation with
glowing particles, but sometimes it is convenient to define g(s)
independently of 7(s). For example, g could be given directly
in terms of the scalar field f or even in terms of a different
scalar field unrelated to the one determining 7. This gives
slightly more flexibility than the particle model, because it
allows g to be nonzero even when 7 is zero, permitting com-
pletely transparent glowing gas, without needing an infinitely
bright C(s). Even with nonzero 7, it will have different interpo-
lation properties. For example, in the situation in the previous
paragraph, the interpolated g(s) was quadratic on a ray seg-
ment, while an independently defined and interpolated g(s)
would be linear.

V. SCATTERING AND SHADING

The next step toward greater realism is to include scattering
of illumination external to the voxel. In the simplest model,
sometimes called the “Utah approximation” after early shaded
images from the University of Utah, the external illumination is
assumed to reach the voxel from a distant source, unimpeded by
any intervening objects or volume absorption. We will consider
this case first and deal with shadows in the next section.
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A general shading rule for the scattered light S(X, @) at po-
sition X in direction w1is

S(X, ) =r(X,0,0") i(X,0) )

where i(X, @”) is the incoming illumination reaching X flowing
in direction @, and r(X,w,@") is the bidirectional reflection
distribution function, which depends on the direction w of the
reflected light, the direction @” of the incoming light, and on
other properties like f or its gradient that vary with position X.
For light scattered by a density of particles,

HX,w,0") = a(X)t(X)p(o, ),

where a(X) is the particle albedo, giving the fraction of the
extinction 7 which represents scattering rather than absorption,
and p is the phase function, which specifies the directionality
of the scattering. For spherical particles or randomly oriented
particles of any shape, p will depend only on the angle ¢ be-
tween @ and @', i.e., on x=cosat=@-®". A common formula
for p, which can approximate the Mie scattering for spherical
particles comparable in size to the light wavelength, is the
Henyey-Greenstein function [16]

1-¢2

E (1 +c? —QCx)% '

Here ¢ is an adjustable constant between —1 and 1, which is
positive for forward scattering, negative for backward scattering,
and zero for isotropic scattering, which is equal in all directions.
An even simpler formula (see Blinn [9]) can be derived by geo-
metric optics for a spherical particle much larger than the light
wavelength, whose surface scatters diffusely by Lambert’s law:

po,0")= (10)

plo, 0 )=(8/37) (sina + (- &) cosa).

In volume rendering, one often wants to produce the visual
effect of a shaded contour surface, without actually construct-
ing surface polygons. One can then claim to be rendering di-
rectly from the actual data, without introducing artifacts from
polygonalization. Such shading is a special case of a general
volume scattering term S(X, @) and requires the contour sur-
face normal N, which is equal to the direction of the gradient
Vf, i.e., N =Vf/|Vf|. The gradient Vf can be estimated by
central differences between regularly spaced gridded data val-
ues and then interpolated between the grid vertices.

To simulate shading effects from contour surfaces at sharp
changes in the scalar function f, one could use IVfl to measure
surface “strength.” Then a simple Lambert diffuse shading
formula max(N - @, 0), multiplied by the “strength,” gives

r(X,0,0") = max(Vf-0’,0) . (11)

More sophisticated formulas involving @, @’, and N can be
used, like Phong or Cook-Torrance shading. One can also
make the “strength” depend on f, in order to localize the sur-
face shading near a contour value for f. Details of such shading
algorithms can be found in Levoy [17] and Dreben et al. [6].
The most general source term g(X, w) is the sum of a nondi-
rectional internal glow or emissivity E(X) as in Section III and
the reflection or scattering term S(X, ) of this section:

g(X, ) = E(X)+S(X, »). (12)

VI. SHADOWS

The shading effects discussed above are unrealistic, since
they replace an internal glow by a reflection of external illumi-
nation, but take no account of shadows. If g(X) is to model the
reflections from surfaces or particles, one should account for
the transparency of the volume density between the light
source and the point X, as well as from X to the viewpoint. If L
is the intensity from an infinite light source in the direction
—w’, the illumination i (X, @”) which reaches X is

i(X,0)= Lexp[—_[ T(X—tm’)dt} . (13)

0

In practice, the integral does not run to e, but only to the edge
of the data volume.

At this point, it is convenient to reverse the meaning of the
parameter s in (7), so that it starts at a viewpoint X and goes
out in direction —@ opposite to the light flow, reaching X—sw
at distance s. Rewriting (7) with this reversed ray parameteri-
zation, s’=D — s, t’=D — t, we have

D
I(X)=1, exp[——J‘ (X-t'w) dt’] +
0 (14)
D s
jg(X -s'o) exp[—J. (X -t'w)dt’ |ds’.
0 0
Removing the primes on s and ¢, and substituting (9) and (13),
we get

(x)=1, exp[—lfr(x —ta))dt]+

0

ler(X - 50,0, w’)Lexp[—T (X —sw— tw')dt] exp{—j (X —tw) dt)ds.

0 0

The factor

exp[—} (X —sw— tw’)dt}

0

corresponds to the “shadow feelers” used in recursive ray trac-
ing, except that a shadow feeler is sent to the light source at each
point X — t@ along the primary ray and returns a fractional trans-
parency. In Max [10] and [18], I show how these integrals can
be evaluated under particular conditions, for example, when 7 is
constant or varies only along one dimension. Kaneda et al. [19]
also describe a case of one-dimensional variation, and Nishita et
al. [20] consider multiple light sources when 7 is constant and
opaque polygonal objects are present.

A more general two-pass numerical algorithm was sug-
gested by Kajiya and Von Herzen [21]. The first pass com-
putes the illumination (X, w) reaching X, as in (2). It propa-
gates the flux from the light source through the volume, one
voxel layer at a time, and accounts for the transparency of the
layer before propagating to the next one. In the second pass,
this illumination is reflected or scattered to the viewpoint by a
shading rule g(X,w)=r(X,, ") i(X, @"). The reflected in-
tensity g(X, w) is then gathered along viewing rays according
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to (7). Fig. 6 shows the cloud rendered in this way. The shad-
ing used a Henyey-Greenstein phase function p as in (10), with
a peak in the forward scattering direction, consistent with the
light-scattering properties of small water droplets.

Shadows give useful cues about the shape of opaque objects
and are necessary for photorealistic rendering of opaque objects
in the presence of smoke, fog, clouds, turbid water, and other
“participating media.” The two-pass method takes only twice as
long as the gathering pass without shadows, and the illumination
pass can be amortized over several animated frames if only the
viewpoint moves. The “Heidelberg ray tracing model” of Mein-
zer et al. [22] systematically applies this two-pass method to
medical images. However, its utility in general volume rendering
applications has not yet been demonstrated.

VII. MULTIPLE SCATTERING

This two-pass method is a single-scattering model, because
it accounts for only one reflection or scattering event from the
illumination ray to the observer. It is only valid if the albedo or
the density is low, so that muitiple scattering is unlikely. This
is not usually the case in atmospheric clouds, so the side of the
cloud away from the light source looks unnaturally dark in
Fig. 6. To correct this and account for multiple scattering, one
may apply the “radiosity” methods originally developed in the
field of thermal radiation heat transport. Multiple scattering
calculations are important for realistic rendering of high al-
bedo participating media but are expensive in computer time
and are overkill for most scientific visualization applications.

Multiple scattering involves directionally dependent light
flow, so it is necessary to find I(X, @), the intensity at each
point X in each light flow direction @. The point at distance s
along the viewing ray from X, opposite to the light flow, is
X -sw.Integrating the scattering at X—s® of light from all
possible incoming directions @’ on the 47 unit sphere, the
added scattered intensity gives the source term

g(s,0) = jr(x—sw, 0,0") (X - so,0")do’.
4r

Substituting this into (14) gives

I(X,0)=1(X- Dw,w)exp{-f (X —tw) dtJ+

i | (15)
j[ J r(X~s5s0,0,0) (X -sw,0") dw’] exp[—j (X -tw) dt] ds,

0\4rn 0

where X—Dw is the point at the edge of the volume density,
reached by the ray from X in direction —, and I(X-D®, w) is
the external illumination there flowing in direction .

A. The Zonal Method

Note that the unknown /(X, ®) appears on both sides of this
integral equation, making its solution more difficult. The situa-
tion is simplified slightly if the scattering is isotropic, so that
g(X,w) depends only on X. In this case the method of diffuse
radiosity for interreflecting surfaces can be extended to volumes.
Rushmeier and Torrance [23] and Hottel and Sarofim [24] call
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this the zonal method and assume that g (X) is piecewise constant
on volume elements. These will usually be the voxels in a vol-
ume-rendering application. For simplicity, I will assume their
volumes are the unit volume.

The total contribution of all voxels X; to the isotropic scat-
tering S(X;) at X is

S(X;)= a(X,.)Z Fig(X;)

where the “form factor” F;; represents the fraction of the flux
originating at voxel X; that is intercepted by voxel X; , and the
albedo a(X)) is the portion of this intercepted flux that is scat-
tered. Rushmeier and Torrance [23] also consider the scatter-
ing from surfaces, but for rendering an isolated volume, it is
convenient to propagate the external illumination as in the first
pass of Kajiya and Von Herzen [21] and include the first
bounce of external illumination in the emissivity E(X;) at X
Using (12), this then gives a system of simultaneous linear
equations for the unknowns g(X;):

8(X;)=E(X;)+ “(Xi)z Ejg(xj)'

The form factor Fj is actually a 7D integral over the voxels
X;, X; , and the rays between them. For each pair of points, one
in X; and one in X; , the transparency along the ray between
them must be found as in (3) by integrating 7 across the inter-
vening voxels. Rushmeier approximates this 7D integral using
a single 1D integral along the ray between the voxel centers. If
a cubic data volume is n voxels on a side, there are O(n) inter-
vening voxels along this ray, and a total of n® voxels, so it
takes time O(n") to compute the O(n®) necessary form factors.
Tterative methods, computing one scattering bounce for each of
the O(n®) form factors per iteration, can converge in O(1) it-
erations if the albedos a(X;) are bounded by a constant r<1.
Thus the computation time is dominated by the O(n") cost of
determining the form factors.

Rushmeier combined this volume-to-volume scattering with
the earlier surface-to-surface scattering of Goral et al. [25],
adding surface-to-surface, surface-to-volume, and volume-to-
surface terms to (16). Sobierajski [26] further generalized this
method to include terms from voxels shaded according to (11),
which scatter diffusely into a hemisphere instead of a full
sphere. Hanrahan et al. [27] have proposed a hierarchical
method to group surface-to-surface interactions to reduce the
number of form factors from O(N?) to O(N), where N is the
number of total elements, so that N=r’ in the cubic volume
case. Bhate [28] and Sobierajski [26] have extended these hi-
erarchies to volume scattering.

Once the source terms g(X;) have been determined, (7) can
be used to produce an output image from any desired view-
point, with any desired camera parameters. In this pass, the
presumed constant voxel values g(X;) can be interpolated to
give a smoother rendering. This final view-dependent pass is
also used in surface radiosity algorithms.

(16)

B. The Monte Carlo Method

For directional scattering with a nonisotropic phase func-
tion, g(X, ) depends on the scattering direction @, and it is
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easier to deal directly with (15), where the unknown is I(X, ®).
There are three popular methods for solving this integral
equation, all explained in Siegel and Howell [8].

The first is the Monte Carlo method originally developed by
physicists for neutron transport, and applied to rendering sur-
face interreflection by Cook et al. [29] and Kajiya [30], and to
volume applications by Rushmeier [31]. Sample rays are
traced from the eye through a pixel and undergo random ab-
sorption or scattering, with probabilities based on the extinc-
tion coefficient 7, the albedo a, and the phase function p.
Those rays that end up at a light source or volume emitter
contribute flux to the pixel intensity. Since these contributing
rays are in general a small fraction of all those considered, and
many ray samples are required to decrease the variance of the
mean of their contributions, the resulting images tend to ap-
pear noisy and/or take a very long time to compute.

Rushmeier [31] suggested calculating the g(X,w) by the
zonal method and then doing the final rendering pass using the
Monte Carlo method, for one extra directional bounce toward
the viewpoint. Shirley [32] and Chen et al. [33] also use such a
final Monte Carlo bounce in rendering images of interreflect-
ing surfaces. These two references, and also Heckbert [34],
propose “caustic texture maps” to capture directional interre-
flection propagated by Monte Carlo means from the light
sources, and contributing to the final rendering pass. Thus rays
propagating from the lights and rays propagating from the eye
meet in the middle at the caustic map. This partially solves the
problem that rays originating from the eye rarely end up at a
light source, while rays from a light source rarely end up at the
eye. For volume rendering, Blasi et al. [35] used a similar ap-
proach, analogous to the two-pass algorithm in [21]. In the
first Monte Carlo pass, light was propagated from the light
sources, and any light scattering at voxel X; was added to a
texture map, which was used in a final rendering pass with rays
from the eye, using (7). Blasi et al. only stored an isotropic
scattering texture, but their methods could be generalized to
store a directionally scattered texture I(X;, ).

C. The P-N Method

The second method, called the P-N or Py method in thermal
engineering, was originally developed by Chandrasekhar [36]
for stellar atmospheres and was applied to computer graphics
by Kajiya and Von Herzen {21]. At each point X, it expands
I(X, w) in spherical harmonics in the unit sphere direction ,
getting a coupled system of partial differential equations for
the spherical harmonic expansion coefficients, which can be
solved by finite difference methods.

D. The Discrete Ordinates Method

The third alternative is the discrete ordinates method,
which uses a collection of M discrete directions, chosen to
give optimal Gaussian quadrature in the integrals over a
solid angle. Lathrop [37] points out that this process pro-
duces ray effects, because it is equivalent to shooting the
energy from an element in narrow beams along the discrete
directions, missing the regions between them. He presents
modifications to avoid these ray effects, but the resulting

equations are mathematically equivalent to the P-N method.
This implies that M properly placed directions specify the
directional intensity distribution to the same detail as M
spherical harmonic coefficients. Languénou et al. [38] have
applied the discrete ordinates method to volume rendering
images of clouds.

If the volume is divided into N=n> cubical voxels, there are a
finite number NM of unknown intensities in the discrete ordi-
nates method. These are related by a system of linear equations,
whose coefficients are the form factors Fy; for i, k,=1, ... , N,
and j, I=1, ..., M. As shown in Fig. 7, Fy; represents the effect
of the intensity /(X;, @) in direction @ at voxel X, on the inten-
sity (X, ;) in direction @, at voxel X, taking into account the
extinction between the voxels. In order to reduce the ray effect,
it is necessary to spread the intensity /(X;,®,) into the solid angle
in a direction bin about @, instead of along a discrete ray. Thus
every voxel can propagate flux to every other voxel through at
least one direction bin.

The flux I(X;, ®,) can hit voxel X, only if there is a ray in
the direction bin @; connecting a point in X; to a point in X,.
For distant pairs of voxels, this is usually only possible for
one direction bin @;, and even at the bin corners, it is possi-
ble for at most four. Thus for fixed i, the M fluxes I(X;, @)
affect only O(N) other voxels X;. As in Rushmeier’s method,
one must compute for each pair of voxels X; and X, an inte-
gral for the transparency across the O(n) voxels along the
line between their centers (line CD in Fig. 7). Once the flux
reaches voxel X,, it is scattered to each of the reflected di-
rections @;, using an M X M bin-to-bin matrix version of the
phase function p(w;, ;). This gives O(N*M) nonzero coeffi-
cients, costing O(n’ +n°M) time. As in the case of glossy sur-
face radiosity studied by Immel et al. [39], the matrix Fy; is
sparse, and sparse solution methods apply. Aupperle and
Hanrahan [40] have shown that the hierarchical methods of
[27] can be applied to glossy surfaces, and presumably they
could also be applied to anisotropic volume scattering.

I have found a way to approximate the effects of the coeffi-
cients Fy;; as the flux in direction bin j; propagates from voxel
to voxel in the volume. Basically, the flux entering each voxel
is multiplied by the voxel’s transparency and then distributed
to four adjacent voxels, determined by the direction bin wj
Since this arithmetic is independent of the location of the
shooting voxel X;, the flux from all voxels X; in a layer can be
propagated simultaneously, effectively computing N? interac-
tions in time O(N logN). (See Max [41] for details.)

When the flux reaches a voxel X;, it is deposited into a
temporary array of received flux. After the flux in direction
bin w; from all layers is received at voxel X,, it is scattered
to the M direction bins @y , using a row from the M XM ma-
trix version of the scattering phase function. This takes time
O(MN). Thus one iteration through all M shooting bins @
takes time O(MNlogN+M2N)=O(Mn3logn+M2n3). These
iterations must be repeated until convergence, but when the
number of iterations required is small compared to N, this is
faster than computing all the coefficients Fy; in advance. As
in the other radiosity methods, once the light flow distribu-
tion I(X,w) is approximated, a final gathering pass along
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Fig. 7. Geometry for Fyy; showing direction bin ay at pixel X; and direction
bin ax at pixel Xi. The flux from X; to X; lies in four different direction bins,
because X; is at the corner of bin @

viewing rays using the right-hand side of (15) can be per-
formed quickly from any viewpoint, giving one final direc-
tional scattering bounce.

In my implementation, I used direction bins arranged on the
96 exterior faces of a 4x4x4 block of cubes. These bins con-
tain unequal solid angles, but this is taken into account in the
definition of the MxM phase function matrix p(w;, ®;). Fig. 8
was produced by this method, using the same forward scatter-
ing function as in Fig. 6. The increase in brightness comes
from the higher order scattering. The albedo a was .99, but
only 15 iterations were needed for convergence, because much
of the flux exited at the edges of the cloud. The cloud density
was defined on a 24x24x 18 voxel volume, and each iteration
took 15 minutes on an SGI Personal Iris 4D/35 with a Mips
3000 processor. The final rendering, at 512x384 pixel resolu-
tion, took five minutes.
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