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A Rendering Algorithm for Visualizing 3D Scalar Fields 
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Abstract 

This paper presents a ray tracing algorithm for rendering 3D 
scalar fields. An illumination model is developed in which the 
field is characterized as a varying density emittter with a single 
level of  scattering. This model is equivalent to a particle system in 
which the particles are sufficiently small. Along each ray cast 
from the eye, the field is expressed as a function of  the ray 
parameter. The algorithm computes properties of  the field along 
the ray such as the attenuated intensity, the peak density, and the 
center of  gravity, etc.. These are mapped into HSV color space to 
produce an image for visualization. 

Images produced in this manner are perceived as a varying 
density 'cloud' where color highlights the computed attributes. 
The application of this technique is demonstrated for visualizing a 
three dimensional seismic data set. 
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1, I n t r o d u c t i o n .  
Computer  graphics has made an irreplaceable contribution in the 

presentation of  scientific dam. The computer is indispensable as an aid in 
the visualization of certain kinds of functions. This paper focuses on the 
display of single valued functions of three variables, i.e. scalar fields. Such 
functions can be analytically defined but more commonly are computed 
numerically using finite difference or finite element techniques. Examples 
of  such fields are the stress distribution over a mechanical part or the 
pressure distribution within a fluid reservoir. 

Alternately, the field can be empirically measured. For example, sonic 
waveforrns or tomography radiation measurements  can be processed to 
obtain density samples of  a solid over a three dimensional volume. A 
convenient representation for this is a three dimensional array of samples 
referred to as a 3D image.  The sample points are called voxels (volume 
elements). The cuberille [3] is a special case of the 3D image in which all 
the voxels are identical cubes. The retangular prism that is the spatial 
extent o f  the array is called the image extent.  

The 3D image is not the only representation for sampled scalar fields. 
Octrees [14, 12] provide a more compact, structured means of encoding f idd  
samples in which both the spatial extent and the image are hierarchically 
organized. In finite element analysis, samples of a field are computed at the 
mesh nodes. Hence the mesh itself serves as a representation for the field. 

In this paper we use the 3I) image representation. Figure 7 shows a 3D 
image of sub-soil density obtained from surface seismic measurements. The 
density value is mapped into a gray scale. Notice that most  of  the cube, i.e. 
the interior, is not readily visible. 

Although the objectives of  manipulat ion 3D data is application 
dependent, the goal when visualizing the data is to understand the spatial 
distribution of the field values over the domain on which the function is 
defined. It is important to be able to see the location of the occurrence of 
any range of values, such as, for example, high values or 'hot spots' or 
changes in the field gradient. It is also important to perceive the manner in 
which the function varies from it's minimum to maximum va/ues. This is 
especially true for geophysical imaging in which there is hardly any spatial 
correlation in the data and which does not lend itself to existing 
visualization techniques. 

In this paper a new rendering model for visualizing scalar fields is 
proposed. In it, the field is rendered as a varying density emitter (DE) 
object. It is related, but not restricted, to the modeling of light in naturally 
occurring cloud-like objects. The goal here is the perception and 
understanding of the field, not the realistic rendering of natural phenomena. 
The visualization technique is unique in three ways: 

i) A color map is utilized to visualize individual attributes. 
it) The use of  a phase function to visualize the field gradient. 
iii) The Kajiya and Von Herzen ray tracing algorithm is recasted for 

computational efficiency, eliminating shadowing while retaining 
occlusion. 

We first review the two existing rendering models of  3D images. 
Variations of these account for all attempts to date at rendering scalar fields. 
Next we look at scattering models and particle systems used to render 
realistic looking clouds and natural phenomena. We then propose the 
varying density emitter (DE) object which is actually a special case o f  a 
general scattering emitter and a generalization of the particle system. 
Finally, a ray tracing algorithm is described for rendering the DE object 
incorporating false coloring in order to present  mul t id imensional  
information. 

Although the data presented in the figures actually represent a sampled 
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density field, the visualization model is intended to be used on any field. It 
can be adapted to render analytically defined fields or to incorporate bounding 
surfaces such as those of a solid over which the field is defined. It can also 
be extended to render octrees or finite element meshes. 

2. Rendering Models for 3D images 
There are two common techniques to date for rendering 3D images, cross- 

section rendering and threshold rendering. Each of these implicitly are 
models of  the interaction of light on the 3D model. It is important to place 
the DE rendering model within the context of existing schemes. 

2.1 Cross-section rendering 
In cross-section rendering, the 3D image is considered to be an opaque 

array o f  voxels packed inside the image extent. A user can interactively 
remove portions of the image in order to see interior voxels. The rendering 
model is that of  light illuminating the cross-sectional surfaces, or slices. 

Good response time is valuable here in order to perceive the field in three 
dimensions. This perception is achieved by the user sequentially viewing 
multiple slices and mentally interconnecting the features of  interest. For 
example, in order to search for a region of maximum value the user may 
scan through slices until one is found. Then many sections taken in 
possibly different orientations are viewed to see the extent of  the peak 
region. 

An important consideration is the coloring of the voxels. Color is used 
both to indicate the field value at a voxel as well as to provide surface 
orientation cues. The cross-section is therefore a texture mapped surface [1]. 
Usually the intensity is varied according to a shading model while the base 
color, either hue or gray scale is used to indicate field value. 

2.2 Threshold rendering 
Threshold rendering is common in medical applications when dealing 

with 3D images of densities measured by computer aided tomography (CAT) 
scanners.  In this application there are different categories of  materials each 

falling within a specific density range. In order to render a particular 
category, for example the bones, the rendering model considers voxels 
falling outside the range to be non-existent. Consequently, the resulting 
view is of  the surface of a constant field value. Figure 8 shows a threshold 
rendering of  the same 3D image shown in figure 7. 

Thresholding is important since it is a three dimensional view of iso- 
value surfaces. There are three categories of  rendering techniques for 
thresholding, back to front traversal of  the 3D image [7], ray tracing [5], and 
surface reconstruction [11]. A variation of the threshold illumination model 
is to assume that the iso-value surface has a normal vector, computed from 
the field gradient. This allows the iso-valued surface to be shaded using 
Gouraud or Phong shading [8]. 

The threshold rendering model throws away much of the data held in the 
3D image. Except for applications, like medical imaging, in which a small 
number of  density ranges are of  interest, it is like cross-section rendering in 
that it requires many views of the field which have to be mentally combined 
in order for a user to entirely perceive the field. In an application like 
geophysical  imaging,  a 3D seismic image does not portray as much 
coherence as a medical image. Hence  a threshold rendering is not 
satisfactory because it generates fragmented pieces instead of cohesive 
surfaces. 

3. Scattering Models 
We wish to see more than just  iso-value surfaces when rendering a 3D 

image. It is natural therefore to establish a model for viewing three 
dimensional translucent solids. We do not often encounter such solids with 
varying translucency in every day circumstances. However clouds, smoke, 
mist and other systems of suspended particles are common. Through these 
we do have experience in perceiving variations of density. A haze in the 
alanosphere has been modeled by Dugan [4] and opaque clouds, represented 
as elipsoidal height fields, was modeled by Fishman and Schaeter [6]. 
However true cloud-like scenes are achieved by modeling the scattering of  
light. 

Although the goal here is not the rendering of  natural clouds, it is 
important to consider the interaction between light and a medium that occurs 
in clouds so that it may be used to exploit our ability to perceive density 
fields. 

3.1 Background 
Blinn's model [2] of  the rings of  Saturn was the first graphics model of  

the scattering through a thin uniform density cloud of low albedo. Max 
[13] modeled clouds bounded by quadric surfaces. The emphasis was in 

modeling the enclosing volume within which the particles reside. 
More recently, Kajiya and Von Herzen [9] introduced a ray tracing 

technique for rendering 'volume density' models, their term for a 3D image 
of a density field. They presented a solution for multiple radiative scattering. 

Another amorphous class of  model is the particle system introduced by 
Reeves [16,17]. While  they have been used to model many natural 
phenomena, such as blades of  grass, the use of particle systems to model 
fire is most  striking. This is because the particles are point light sources 
that are additively combined when rendered. 

There are three effects observed when illuminating translucent objects. 
i) Occlusion o f  a portion o f  the model occurs when light is 

scattered by the portions of the cloud closer to the observer. 
ii) Shadows are created depending on the position of  the light 

s o u r c e .  

iii) Color variations are caused by separation due to differing 
amounts of  scattering at different wavel~ngths. 

All of  these are highly desirable cues for the realistic rendering of clouds. 
Computationally however, they are expensive; especially when combined 
with secondary effects like multiple scattering. 

3.2 Varying Density Emitters 
For the purpose of  viewing scientific data, shadowing and scattering 

color variations, while visually appealing, may actually detract from 
perception of the density variation. On the other hand, since occlusion is 
proportional to density, it enhances this perception. A system that solely 
exhibits occlusion would be a good one to use, at the same time keeping the 
computation cost low. Such a system is a field of varying density emitters. 

A DE object is a system of  particle light sources. Unlike Reeve's  
particle system in which particles are modeled individually the DE object 
models the density of  particles, not the particles themselves. The size of  the 
particle is sufficiently small  compared to other dimensions so that the 
density of  the particles can be regarded as a continuous function. 

For convenience we define the density p(x,y,z) non-dimensionally as the 
ratio of  the volume occupied by particles, Vp to the total volume of  the 
cloud V. Since the ratio is only valid locally we have 

dVp 
p(x,y,z)-- oV 

This is actually the probability that a particle is present at the point 
(x,y,z). Each particle has a volume ~p. The expected number of  particles 

within a region 12 is 

.~dVp ~ p  dV 

N D =  Vp - Up 

• t 

Figure 1 The volume encountered before the ray parameter t. 

3.3 The Brightness Equation 
Figure 1 sketches the path of a ray traversing the cube. We follow a 

derivation for the intensity of  light, of  a fixed wavelength, reaching the eye 
that is similar to Blinn [2] but allow for varying density and ignore self 
illumination. The density field p(x,y,z) can be parameterized along the ray 
as p(x(t),y(t),z(t)), or s imply p(t). If each particle has an intensity ~:, a 
cylindrical volume element of  cross sectional area ff and length dt at a point 
t along the ray contributes 

K~ "t" dV = ~ P~ ~ dt KNcr= ~'Pvp -p 
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to the intensity of light emitted toward the eye. 
This light emitted by the volume element is scattered backward when 

traveling on it's way toward the eye due to the particles lying within the 
volume between t and t 1 . The expected number of  particles N in this 

volume, V, is 

The intensity of  light reaching the eye is equal to the light emitted, 
attenuated by the probability, P(0;V), that there exists zero particles in the 
volume V. Assuming p is small, this can be approximated by a Poisson 
distribution 

P(O;V) = e "N . 
The intensity of  the light reaching the eye from the point t is thus 

-N K~  
I(t) = P(0;V) r N  o = e -~-p(t)  dt ( 1 ) 

The total intensity due to all contributions along the ray between t 1 and 

t 2 is the integral of  (1) 

I 
t t 

. o ~p(Z)  dZ  

EE. e ~P t l  p(l) dt ( 2 )  B = Vp 1 
G 

The term ~ can be replaced by one constant ~. It has dimensions 
iJ 

1/length and is related to the optical length. We can normalize the entire 
equation by choosing 

Vp 

since we are not dealing with actual radiation measurements. Equation (2) 
simplifies to 

I 
t t 

- • Jp(X)  d~  
B = e t 1 p(t) dt (3 )  

1 
This is a simplified version of Kajiya and Von Herzen's brightness 

equation, omitting the line integrals from the light source [9]. In order for 
this to hold we have assumed that p(t) is small. We can adjust the value of 

to scale p(t) in the exponent integral. Higher values of  z increases the 
attenuation producing a medium that darkens more rapidly. 

Finally, taking advantage of  the fact that p lies between 0 and 1, the 
transformation 

p' =pY 
~s Bsed to corttrol the spread of detasity values. Higher y intensifies the 
appearance of dense portions relative to the more diffuse regions while lower 
y makes the entire cloud appear more diffuse. This transformation is order 
preserving, i.e. the ordering of two values P'(~,I) and p'(;L2) is the same as 
that of  p(3,1) and P(h2). It is useful to spread out the function p since not 

all density variations are perceptible. 
The total brightness along a ray is: 

i 
t l 

- = j'pY(~) dX 
B = 1 e t l  pY(t) dt (4) 

In figure 5 the field in figure 7 is ray-traced using equation (4). The 
results of  varying the two parameters y and x are show.  Each image is 
normalized to use the full intensity range. The image lies within a unit 
cube. As expected, the images on the upper row, in which "t = 1, are not 
sufficiently attenuated. This is corrected by making the value of x larger 
than the distance t2-t 1 in the second and third rows x = 2 and "~ = 3. 

The density spread, controlled by 7, is highest in the first column in 
which y = 1. In the adjacent columns Y equals 5 and 10 respectively. We 
observe, as predicted in figure 2a, the spread narrows and the higher densities 
dominate. 

1 y < 1 (moa~ di£fiu~) I ~ 1  

pr ~ e l )  0=exP 

0 0 
o p I o p 1 

Figure 2a Transformations on p Figure 2b Transmittance functions 

3.4  E q u i v a l e n c e  to D i s c r e t e  s y s t e m s .  

The model utilized in discrete systems for transmission of light through 
translucent surfaces or particles in a particle system is equivalent to equation 
(3). The total intensity remaining after traversing n translucent particles or 
surfaces, is 

n i - 1  
b i ]~IlO j , ( 5 )  

i = 1  j 

Where b i is the amount of  light emitted from the i th surface either by 

reflecting light received from light sources or due to the fact that the surface 
is itself a light source. The transmittance factor of  the ith surface, i.e. the 

proportion of entering light allowed to go through the surface, is 0 i. It 

varies between 0 and 1. Since the i th surface is seen through the preceding 
i-1 surfaces, the total attenuation of b i is the product of  the preceding i-I 0 

terms. 
Equation (5) is actually equivalent to the discrete form of equation (3) 

i 
n -x 5"pt t .~  a t .  

B =.~.,e j=l~ "J"  I p ( t i  ) 8t  i 
i=1 

n i -~p ( t j )  6t j  
= i=l~"P (t i) 8t i j  r[e=l ( 6 ) ,  

in which the surface for i=l is at t=t I and the surface for i=n is at t=t 2. The 

i th surface has a thickness 5t i over which the density can be assumed 

constant. The equivalent terms are 

b i = P(ti) 8t i , 
and 

0j e-,C p (t j)  at j  = ( 7 )  
The threshold rendering model explicitly controls the relationship 

between 0 and p. Figure 3a is an example of a threshold window on p and 
figure 3b shows the corresponding 0, p relationship. 

The equivalent functions for the DE model are shown in figures 2a and 
2b. The shapes of these graphs indicate that the DE model is a continuous 
version of  the threshold model. In the limit, as y goes to infinity, we 
obtain a threshold model with a range of zero width around p = 1. 
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p'  
e(p) 

o o 
o p i i 

Figure 3a. A threshold window Figure 3b. The corresponding 
transmittance function 

4. Mapping into Color Space 
Since we have ruled out the color variations caused by differential 

wavelength scattering we are left with the question of whether or not to 
incorporate the use of color at all. Color can be the result of  a realistic 
model of  light or it can be utilized symbolically. Even though models of  
color space are three dimensional, human perception of color is not. 

Robertson and O'Callaghan in [18] give detaits of their scheme to 
simultaneously display multiple 2D image data sets, In it, one image is 
rendered realistically as the surface of a height field while another is used to 
determine the hue of the displayed surface. The rendering of a DE object is 
different from their application in that here we are interested in rendering one 
3D image. However, we can adapt the idea that realism cues the human 
visual system thereby enhancing the perception of additional variables. 

In ray tracing a surface model, a ray is fired from the eye through a pixel 
to determine the pixel color. The closest surface that is encountered is the 
one whose color is chosen as a base color for the pixel. Even though the 
final color is computed by taking into account light sources and the shading 
model, the surface color indicates s y m b o l i c a l l y  which surface was 
encountered. The same is true recarsively for reflected and refracted rays. 

EYE [,~z 

Figure 4. Properties along the ray 

We have a moi'e difficult problem when ray tracing a field. Instead of 
choosing a color that indicates which surface was hit, the ray encounters the 
density function p(t). Since it is not possible to choose one color that will 
uniquely represent all the values of  the function over the ray, we use color 
to indicate certain characteristic properties of  the function. The properties 
chosen to compute along the ray are (see figure 4): 

t 1 
M = (Max(p(t)))t2Peak value encountered along the ray, 

D = Distance at which the peak value is encountered, 

I = The attenuated intensity, equation (4), 

C = t l  
tZ 

t] 

The centloid or center of  gravity. 

In Robertson and O'Callaghan's scheme, the underlying model is that of  
rendering a surface whose height was determined by one data set and whose 
color was based on a model of  paint pigmentation. The colors chosen were 
evenly spaced in the uniform color space proposed by Meyer and Greenburg 
[15]. 

We take a simpler view with regard to the choice of color scale. The 
goal in our scheme is the rough identification of extrema such as 'hot spots'. 
It is important to realize that such a scale is symbol ic  and are not intended 
for reading absolute values or distances. 

Our  scheme was implemented  in HSV space. In it the Value 
component, corresponding to the light intensity, was obtained from the I 
variable and the Hue component from the peak encountered along the ray, 
M. The hue scale was reversed to be a scale in which 'hot' colors, reds, 
represent high values. 

Saturation can be a strong depth cue because decreasing saturation gives 
the effect of  seeing in a fog [10]. Hence a depth parameter such as D or C 
was chosen for the Saturation component. 

To illustrate the scheme a charge field was computed for two point 
charges. Figure 6 shows the M, D and I properties computed as gray 
images as well as the (M->H, D->S, I->V) color image. Notice that the 
charge to the left which is further away appears more saturated. 

Figure 9a shows in gray scale, the M property for the (~=2, y=5) image. 
Similarly, figures 9b and 9c show the D and I properties and figure 9d the 
(M->H, D->S, I->V) color image. In this image, if the appearance of a hue 
is unsaturated, i.e. appears gray, it indicates that it is further away. If it is 
darker, it is in a diffuse region. 
Using the centroid, C property (figure 10a) for saturation is illustrated in 

figure 10b. This gives the effect of  having a denser fog when the centroid is 
farther. Therefore a hue appears unsaturated due to the average densities, not 
just  the peak, being further. 

In both cases, the existence of  any 'hot spot' or high value can be 
detected by the appearance of a region colored with a hue representing the 
value, or higher. Unfortunately, this implies that regions of 'low values' are 
hidden and more difficult to observe; an obvious result of  mapping peak 
values. 

The existence o f  any 'hot spot' or high value is detected by the 
appearance of a region colored with a hue representing that value, or higher. 
Unfortunately, this implies that regions of 'low values' are hidden and more 
difficult to observe; an obvious result of  mapping peak values. 

4.1 Incorporating Phase functions 
To this point, the fact that the DE object is itself a distribution of 

backward scattering light sources meant that we could ignore the effects of  

the phase function &(s ,s) ,  the function characterizing the amount  of  

scattering from the direction s to direction s. Actually, any backward 
scattering phase function would be adequate for such a model. In a system 
of a large number of  particles, such as we have assumed for the DE object, 
the phase function is not dependent on local properties of  the medium. This 
is the isotropic case. The anisotropic case occurs when there is a preference 
in orientation as occurs in the case of Lambertian surfaces. 

We diverge from the model of  a physical system and assume that the DE 
object is anisotropic and has a phase function equal to the dot product 
between a preferred direction, the field gradient, and the direction of  lighting. 

This provides a further attenuation in the brightness equation (3) of  j(s) 
giving 

I 
t t 

- ~  {p(;~) d~ 
B = e t l  p ( t )  j ( S ) ( x , y , z )  d t  

1 

We assume that j(s) is given by 

( 8 ) .  

n v - 
j (S ) (x , y , z )  = ~ P.L i , 

i = 1  

where there are n external light sources and L i is the direction from the point 

(x,y,z) to the i th external light source. 
Figure 1 l a  is a gray scale rendering of  the DE object shown in figure 9 
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using equation (8) with two light sources. The combined HSV image using 
the centrold image of figure 10a for Saturation is shown in figure 1 lb. The 
main difference between this figure and figure 9d is the darkening of the 
image in regions where the gradient points away from the light sources and 
there is a high density. 

5. The ray tracer 
The ray tracing algorithm is very straight forward. It consists of three 

steps, ray generation, computation, and display. 
The ray generator fires rays from the eye through each screen pixel 

toward the scene. 
When a ray intersects the extent of the 3D image it is stepped through 

the image extent and the four properties M, D, I and C are evaluated. The 
stepping algorithm is essentially identical to the one described by Snyder 
and Burr [19]. Since the centroid C requires the denominator line integral, 
this is also calculated and the final value for C is computed when the ray 
exits the image extent. 

The four properties are stored as a temporary four dimensional image. 
When the entire image has been ray traced, an image may be created 
mapping functions of any three of the properties to the HSV components. 
As discussed in the previous section, the more intuitive combinations are 
the (M->H,D->S,I->V) and (M->H,C->S,I->V) mappings. The reason for 
storing the properties first is to establish a scale for the range of variation of 
each property. This allows the fullest usage of the HSV components. 

Spatial col~erence within the 3D image allows stepping the ray in the 
direction of increasing ray parameter. If there were a terminating criterion, 
such as minimum attenuation factor, the algorithm could stop the stepping 
before traversing the entire span of the extent. Unfortunately, with the 
exception of the intensity, all the properties have no such criterion. This is 
the price paid to be able to see the peak value behind even dim regions. 

Even though there are no other types of rays fired, such as shadow or 
reflection rays, ray tracing was chosen as the rendering technique due to the 
simplicity in computing the attenuated integral in equation (3). Ray tracing 
matches well with the physical paradigm of light propagation and scattering 
in a non-homogeneous medium. 

5.1 R e s u l t s  
The 3D images rendered in figures 5, 7, 8, 9, 10 and l l  have 

dimensions 64 x 64 x 400. The 256 x 256 images in figure 7 each took 
450 seconds on a Sun 4 workstation to compute. The 512 x 512 images in 
the figures 9 and 10 took on the order of 2550 seconds to compute while 
figure 11 which took 4530 seconds. The 512 x 512 images in figures 2 and 
3 took on the order of 76 seconds to compute, showing that thresholding, 
being a surface technique, is relatively fast. 

The image generation phase takes on the order of 1 second on a Sun 
3/160. 

6. C o n c l u s i o n  
The technique presented for rendering a scalar field in color is by no 

means exhanstive. Color is added to the intensity computed in order to 
identify high valued regions, 'hot spots'. Even though the intensity 
calculation is a continuous generalization of the threshold rendering model, 
the full color image is superior since important hot spots cannot be 
occluded. 

One obvious extension is the x-ray illumination model. In an x-ray, an 
attenuated line integral is computed similar to the brightness given in 
equation (3). This allows high density regions to be detected by the absence 
of light due to higher scattering. 

Another extension is to go toward greater realism and perform shadowing 
and color scattering on non-density emitter models, i.e models that only 
scatter. This would allow the combination of backward and forward 
illumination. Discrete light sources could be placed within such a model to 
highlight regions of interest. 

Another technique of visualization, which is important for three 
dimensional perception, is animation. As in particle systems, a fuzzy 
object 'comes alive' when animated. 
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Figure 5, Intensity of the 3D image, x = I, 2, 3 across the columns. 
¥ = 1, 5, 10 down the rows. 

Figure 6, Rendering of  peak (M), distance to peak (D), intensity (1) 
and the HSV mapping (M->H, D->S, I->V) for a simple field. 
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Figure 7. 3D image of sub-soil seismic data. Figure 8. Thresholded view of seismic 3D image of figure 5. 

figure 9a. The peak values (M) for *=2, y=5. Figure 9b. Distance to the peak (D) for *=2, '/=5. 

Figure 9c. The intensity (I) for ,=2, '/=5. Figure 9d. The HSV mapping (M->H, D->S, I->V) 
combining figures 9a, 9b and 9c. 
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Figure 10a. the centroid (C). Figure 10b. The HSV mapping (M->H, C->S, I->V) 
combining figures 9a, 10a, 9c. 

Figure 1 la. the intensity (I) 
using a phase function derived to highlight the gradient. 

Figure l lb.  The HSV mapping (M->H, C->S, I->V) 
combining figures 9a, 10a, l la.  
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