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CHAPTER 1

INTRODUCTION

Volume rendering! is used to show the characteristics of the interior of a solid region in a
2D image [31]. This thesis focuses on volume rendering as a technique for visualizing three
dimensional space-filling? scientific data sets.

A scientific data set may consist of the results from a supercomputer simulation (a com-
putational data set) or it may be a set of observed data (scattered or empirical data).> These
data sets are defined over a mesh.?

Meshes can be classified by the structure of their cells as rectilinear, curvilinear or unstruc-
tured (irregular). Curvilinear and unstructured meshes are also referred to as nonrectilinear
meshes. These terms as well as others are defined in Chapter 2. Two dimensional examples of

each type of mesh are shown in Figure 1.1.

! Also known as volumetric rendering.

2Three dimensional space-filling data means the data is defined over a region of non-zero measure, also referred
to as a volume of £?, as opposed to over 3D surface or shell. More formally, the region is a 3-manifold embedded
in E°. Such data is sometimes referred to as a volume of data or volumetric data.

3 A typical simulation is the use of the finite element method to solve a problem in computational science such
as computational fluid dynamics. Scattered data sets come from various scanning methods used in areas such as
the earth sciences or biomedicine.

*Scattered data has no specified connectivity between the data points. For the purpose of visualization, the
data points can be triangulated, resulting in an unstructured (irregular) mesh.
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Figure 1.1: Two dimensional examples of (A) a rectilinear mesh, (B) a curvilinear mesh, (C)
an unstructured (irregular) mesh, and (D) the points of an empirical or scattered data set.
Scattered data can be treated as an unstructured mesh if its points are triangulated.



A good deal of attention has been given to volume rendering rectilinear data sets [17, 20, 36,
47, 55, 57, 59, 60, 61, 66, 76, 88, 89, 93, 97, 101, 103]. However, much less has been published
dealing with nonrectilinear data [9, 38, 40, 61, 93, 94, 96, 102, 104, 105]. Nonrectilinear data is
often rendered volumetrically by first interpolating it to a rectilinear mesh. The focus of this
thesis is on volume rendering nonrectilinear data without interpolating it to a rectilinear mesh.

There are three basic techniques for displaying volume data [60], the use of 2D cross sec-
tions or slices of the data (cross section rendering); 3D level surfaces (isosurfaces) or threshold
rendering, which can either be opaque or semitransparent; or direct volume rendering where a
2D projection of a colored semitransparent 3D volume or cloud is displayed. We concentrate
on direct volume rendering.

Direct volume rendering is a method for rendering 3D scalar fields by directly displaying
the data without first extracting intermediate representations, such as isosurfaces. The volume
of data as a whole is rendered. One way to do this is to display a 2D projection of a colored
semitransparent 3D volume or cloud, where the color and opacity are functions of the scalar
field. These functions can be used to highlight desired features in the data, such as the extrema
or hot spots, or other regions of interest such as shock waves. Thus a holistic view of the entire
field can be given with the brightly colored extrema gleaming through the cloud. A feeling
for the spatial orientation of the field and the relative locations of areas of interest is given by
rotating the image, hence the importance of interactivity.

When discussing the optical properties of this colored semitransparent cloud or volume, it

is sometimes referred to as a volume densily. This subject is discussed at length in Chapter 3.



There are three classes of techniques for direct volume rendering: ray tracing or ray casting
[9, 36, 55, 59, 60, 89, 97, 102], projection methods [17, 57, 61, 93, 97, 100, 101, 103, 104, 105],
and hybrid methods [38, 40].

In ray tracing, rays are cast out from the viewer through the screen pixels. The contributions
to the pixel from the points [59] or regions [89] along the ray are calculated. This approach is
simple to implement, but can be liable to the aliasing problems common to ray tracing. Ray
traced images typically take from 15 min to several hours to generate and their complexity
depends on the size of the image in pixels. It is possible that the aliasing problem may be
overcome if adaptive supersampling is used [70].

This thesis focuses on the use of projection methods for nonrectilinear data where the data
is rendered without interpolating it to a rectilinear mesh. I refer to this henceforth as Direct
Projection Volume Rendering (DPVR). Methods for DPVR are discussed in [61, 93, 104, 105].

In DPVR, each cell of the mesh is projected onto the screen in back-to-front or front-to-back
order. To do this, an algorithm is required to visibility order the cells of the mesh. The cell’s
color and opacity contribution to each pixel is calculated and then blended with the pixel’s
existing color and opacity.

If the cells are output in layers from back to front, then the image unfolds as if a cutting
plane perpendicular to the line of sight was sweeping over the image towards or away from the
viewer. During the rendering process, useful information can be gained by watching the image
being generated. When the data sets are large, it is as if one is watching an animation.

A very accurate, but computationally intensive, DPVR algorithm is given by Max, Hanrahan
and Crawfis [61]. A fast approximation to this process, sometimes called a splatting algorithm,

is given by Shirley and Tuchman [93]. The Shirley and Tuchman splatting algorithm, which



they refer to as the Projected Tetrahedra (PT) Algorithm, is used as the basis for the work
herein. Wilhelms and Van Gelder [103] discuss a number of issues very relevant to DPVR.

A brief overview of splatting is given here; it is described in more detail in Chapter 6. In
this technique, each cell is projected onto the screen in visibility order from back to front to
build up a semitransparent image. Westover [100] first referred to this process as splatting, as
in splatting a snowball against a wall. See Figure 1.2. The contribution of each cell to the image
is proportional to the thickness of the splat. This means the opacity is zero at the periphery of
the splat.

The splat is rendered as a set of up to four triangles which have a common vertex at the
point of maximum thickness of the splat. At this common vertex, the opacity is nonzero; at all
other vertices the opacity is zero. The opacity and color at the vertices are interpolated over
the splat. Wilhelms and Van Gelder [103] describe three possible interpolation methods for this
purpose.

To highlight areas of interest in the scalar field and de-emphasize other areas, user-specified
color and density transfer functions, are used to map the scalar field value to a color and
density. As explained in Chapter 3, the density is used in a ray integration process to calculate
the opacity. Some typical transfer functions are shown in Figure 1.3. Typically, the color and
density maps are implemented as lookup tables.

The goal of this thesis is: (1) to develop a method for visibility ordering the cells of meshes of
any shape and cell structure, and (2) to investigate techniques for achieving interactive perfor-
mance with a DPVR splatting algorithm, even when the data sets are very large. The techniques
investigated are parallelization, graphics hardware support, a suite of splatting approximations,

and mesh filtration.
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Figure 1.2: The splatting process.
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Figure 1.3: Example transfer functions which map a scalar value s, such as temperature or
pressure, into density p and color x. (A) Shows the density function being used to emphasize
the extrema and de-emphasize the mid band. (B) Shows the density transfer function used to
create three isosurfaces. (C) Shows color transfer functions. These color transfer functions were
used in the creation of the image shown in Figure 3.5.



The suite of splatting approximations along with the PT algorithm and highly accurate
volume rendering methods, such as ray tracing and the DPVR algorithm by Max, Hanrahan
and Crawfis [61], form a hierarchy of rendering methods that tradeoff image accuracy/quality
and generation time.

Parallel volume rendering algorithms that include visibility ordering for both convex and
nonconvex irregular meshes are investigated and results are given for several versions of parallel
algorithms. A performance analysis of one of these algorithms on a high performance MIMD
3D graphics workstation is presented.

Even with parallelization, fast graphics hardware and the use of rendering approximations,
it still may not be possible to interactively generate images of very large data sets. To achieve
this goal, it may be necessary to reduce the number of cells rendered by filtering techniques.

Projection methods were chosen for this research because they seemed to have the best
potential for interactive performance. Using the methods described herein, the DPVR splat-
ting algorithm has generated volume rendered images of data sets with over 1,000,000 cells
interactively (in less than 15-30 seconds)®. Using the filtering methods described herein, this
performance is possible for even larger data sets. These results justify the choice of a projection
method, since they are significantly faster than any results published to date for any of the
methods of direct volume rendering.

Giertsen’s papers [38, 40] on the hybrid method of volume rendering do not state the com-
plexity of his algorithm; and it is difficult to calculate bounds based on the information pub-
lished. It appears that the complexity depends not only on the size of the mesh but also on

the size of the image in pixels, as in ray tracing. The timings reported are for relatively small

°I distinguish between interactive and real-time performance. By real-time, I mean an object on the screen
can be rotated smoothly under the control of a mouse.



meshes. Based on this limited information, it appears that this hybrid method is an order
of magnitude slower than the algorithms reported on herein. Some advantages of this hybrid
algorithm are that it allows adjacent cells in the mesh not to be aligned, it doesn’t require a
depth buffer, and it can get arbitrary precision in alpha blending.

Since considerable research is being devoted to parallel ray tracing, it will be interesting to
compare the results reported herein with those from a ray tracing volume rendering algorithm
for irregular volumes, such as the one reported by Garrity [36], that uses the latest parallel ray
tracing algorithms and the most efficient hardware available.

The thesis is organized as follows. In Chapter 2, we define a number of terms and discuss
concepts needed for future chapters. Chapter 3 discusses various optical models that are used
as a theoretical basis for volume rendering; and a new model for interactive volume rendering is
introduced. Algorithms and techniques for visibility ordering the cells of nonrectilinear meshes
are presented in Chapter 4. Chapter 5 discusses hardware support for high performance polygon
rendering and its role in interactive DPVR. Cell projection methods are discussed in Chapter 6
and a suite of fast approximations to the DPVR splatting process is introduced; results from
the various approximation methods are presented. In Chapter 7, parallelization of the visibility
ordering algorithms, the PT algorithm, and the suite of splatting approximations are discussed.
Filtering techniques are discussed in Chapter 8. In Chapters 9 and 10 respectively, it is shown
how the visibility ordering algorithms, presented in Chapter 4, can be used to solve the spatial
point location problem and how they can assist in domain decomposition of finite element
meshes for parallel processing. Finally, in Chapter 11, we discuss how well the goal of this

thesis was achieved and what work still needs to be done.



CHAPTER 2

PRELIMINARY DEFINITIONS, TERMS AND CONCEPTS

In this Chapter, we define some terminology and concepts relevant to this thesis.

2.1 Meshes, Fields and Manifolds

In Chapter 1, for the purpose of visualization, meshes were classified by the structure of their
cells as rectilinear, curvilinear or irregular (unstructured). For volumetric data, a rectilinear
mesh is one whose cells are right-angled parallelepipeds. Examples of nonrectilinear meshes are
curvilinear meshes and irregular meshes. A curvilinear mesh is a nonorthogonal mesh in E?
which is a transformation of a rectilinear mesh in some curvilinear coordinate system. Haber,
Lucas and Collins [45] classify meshes by their topology and geometry.

A mesh can have a regular or irregular topology and a regular or irregular geometry. A
curvilinear mesh has a regular topology but may have either a regular or irregular geometry. An
unstructured or irreqular mesh is one which has an irregular topology and an irregular geometry.

Examples of different classes of meshes are shown in Figure 1.1.

10



A mathematically rigorous definition of a regular or irregular geometry and/or topology is
not given. However, intuitively, a regular geometry is one in which the vertices of the mesh
form a lattice. A regular topology means the connectivity of the mesh is regular.

For the purpose of visibility ordering, it is assumed that if any cells have curved bounding
surfaces, then these surfaces will be approximated by flat surfaces, and if any cells are nonconvex,
then these cells will be decomposed into convex cells.

A scalar function f(z,y,z) defined over some domain D implies that at every point p =
(p1,p2,p3) of D the function defines a scalar given by f(p) = f(p1, p2, p3). The totality of points
p and scalars f(p) is called a scalar field. If the field is defined at every point of D then it is
a continuous scalar field. A discrete scalar field is a field which is defined at a discrete set of
points in D.

Formally, the domain D, referred to above, is a manifold. A manifold M is a set of points
in E” so that each point of M has a neighborhood homeomorphic to E*. Intuitively, each point
in the manifold has a local environment that is like a piece of EF. M is called a k-dimensional
manifold embedded in n-space. The mapping from EF, the coordinate domain, to E", the
embedding space, is called a parametrization, the inverse mapping is called a chart.

The calculus of manifolds serves as a useful mathematical model for scientific visualization
because it allows for a uniform treatment of data (scalar, vector or tensor) defined on meshes of
different dimensionality, geometry and topology. Haber, Lucas and Collins [45] have developed
this model to some extent.

For example, a curvilinear mesh, as used in the finite difference method, exists as a rectilinear
mesh in the coordinate domain. An irregular mesh with distorted elements, from the finite

element method, exists as an undistorted irregular mesh in the coordinate domain where the
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parametrization is the isoparametric mapping function. Often visualization calculations can
be done more efficiently in the coordinate domain, where the mesh is simpler, than in the
embedding space.

A scalar field defined at the nodes or vertices of a mesh is an example of a discrete scalar field.
An interpolation function can be used to interpolate the nodal field values over the boundary
and interior of each cell. Thus, a discrete scalar field along with an appropriate interpolation

function becomes a continuous scalar field. Interpolation functions are discussed in Chapter 3.

2.2 The Voxel Model

A wvozel or volume element is a small right-angled parallelepiped whose interior is considered
to have one color, density, or scalar value, as the case may be. This is analogous to a pizel or
picture element in 2D which is a small rectangle whose interior is all the same color.

Rectilinear data sets are often referred to as wvozel data, and the visualization model for
rectilinear data as the voxel model. Much has been published on the voxel model of volume
rendering [17, 36, 55, 57, 59, 60, 61, 89, 93, 97, 101, 103]. Biomedical data has usually been the
center of attention.

The voxel model is not generally applicable to curvilinear or irregular data unless the data
is interpolated onto a rectilinear mesh. Therefore, many direct projection volume rendering
techniques developed for the voxel model are not directly applicable to curvilinear or irregular
data.

Interpolating nonrectilinear data to a rectilinear mesh has the drawback that if the non-
rectilinear mesh is graded then the mesh scale of the rectilinear mesh needs to be as small as

the finest gradation of the nonrectilinear mesh. This can be very expensive for meshes with
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highly refined regions. Some workers are investigating hierarchical rectilinear meshes, using a
quadtree or octree concept, which may compensate for this problem [102]. If a satisfactory so-
lution can be found, then the many volume rendering techniques developed for the voxel model
will become applicable to nonrectilinear meshes.

The goal of this thesis is to visualize irregular volume data without interpolating the data

to a rectilinear mesh.
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CHAPTER 3

VOLUME DENSITY OPTICAL MODEL

3.1 Introduction

An exact simulation of light interacting with a volume density or cloud is quite complex and
requires the use of Radiative Transport Theory [10, 53]. However, for the purpose of scientific
visualization, especially interactive previewing, less complex simulations are satisfactory.

The optical model is the most crucial part of a volume renderer but it also can be the most
confusing part. Therefore it is important that the underlying model be clearly understood.
Current models such as in [89, 103] lack some generality and/or are not easy to comprehend.
This chapter presents a new continuous model which is rigorous and quite general, yet is intuitive
and easy to understand.

The next section discusses an early cloud model upon which many subsequent cloud models
are based. Then Section 3.3.1 reviews the particle model and also makes some aspects of its
derivation more rigorous. In Section 3.3.2, the continuous optical model for a volume density
is presented. This model is suitable either for ray tracing or for projection methods and allows
maximum flexibility in setting color and opacity. An expression for the light intensity along a

ray through a volume, in terms of six user-specified transfer functions, three for optical density
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and three for color, is derived. Closed form solutions under several different assumptions are
presented, including a new exact result for the case that the transfer functions vary piecewise
linearly along a ray segment within a cell. A method is described which allows isosurface

shading within a volume rendering.

3.2 Early Cloud Models

One of the first computer graphics models for clouds was reported by James Blinn [4] of the Jet
Propulsion Lab. He described a method to synthesize an image of the rings of the planet Saturn
using data from Voyager 1. The rings of Saturn consist of clouds of reflective ice particles in
orbit about the planet.

Blinn used his model to calculate the amount of light reflected/transmitted by the cloud,
that is, to show the effect of light incident on the cloud from the same side as the viewer and also
from the opposite side. The model assumes a cloud of spherical reflecting particles positioned
randomly in a layer as shown in Figure 3.1 (A).

Blinn’s model deals with the scattering, shadowing and transmission of light propagating
through the cloud. It assumes that a ray of light is reflected (scattered) by only a single particle,
i.e. multiple reflections are considered negligible. This simplifying assumption will be true if
the reflectivity (albedo) of each particle is small (less than 0.3). This model also deals with the
shadowing or blocking effect of other particles after a light ray has been scattered by a single
particle. See Figure 3.1 (B). And, it deals with the transparency (transmittance) of the cloud
layer, that is, the amount of light coming from behind the cloud not blocked off by particles.

See Figure 3.1 (C).

15
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Figure 3.1: (A) Geometry of Cloud Layer. (B) Scattering Conditions. Shaded areas must
contain no particles in order for the light ray to enter from L and escape to F; or Fy after being
scattered by particle p. (C) The transparency of the layer is the probability that the shaded
area has no particles in it.
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In order for light reflected from particle p in Figure 3.1 (B) to be visible, there must be no
other particles in the shaded area. Statistically, the attenuation of light traversing the shaded
volume V' is P(0; V), the probability of zero particles in the volume V. If n is the number of

particles per unit volume, then the expected number of particles in V is nV. If n is small, the

distribution of particles can be modeled by a Poisson distribution P(z;V) = 6_;!)‘1. In this
case, A is the expected number of particles in V, so A = nV, and so P(0;V) = e V. The
exponent is sometimes referred to as the optical density or optical depth p. Therefore, in this
model, light passing through an absorbing medium is attenuated by the factor e=*.

Kajiya and Von Herzen [50] give an alternative model which deals with multiple scattering
against particles with high albedo; and they further develop Blinn’s low albedo model and
give a ray tracing algorithm for it. Light propagating through clouds is also discussed by Max
[62, 63], Rushmeier and Torrance [87] and Ebert and Parent [20]; however, these techniques
are not directly applicable to volume rendering. Ruder et al [86] discuss the use of line of sight

integration for visualization of 3D scalar fields.

3.3 Current Volume Density Models

Up to this point in the development, the light sources have been outside the cloud and the
model has described how the particles in the cloud scatter, absorb and transmit this light.
For the purpose of volume rendering for scientific visualization, a slightly different volume
density model is used in which the cloud itself emits light. Two basic models can be used. Both
yield very similar results but differ in the degree of flexibility in setting color and opacity. In
the first model, the particle model, the scalar field being visualized is modeled as a cloud of light

emitting particles. In the other model, the continuous model, the scalar field is represented as

17



a cloud expressed as continuous glowing medium. Each point of the medium both emits and
absorbs light.

The two models are really two different explanations of the same physical phenomenon. For
a single transfer function, which is all the particle model allows, the two models give the same
mathematical formula for the derived intensity. By neglecting shadowing on the way in, Blinn’s
single scattering model turns out to be the same as the particle model if the phase factor is
neglected.

For the remainder of this chapter, it is assumed that the volume over which the scalar field

is defined is subdivided into cells and that the scalar field is continuous over the volume.

3.3.1 The Particle Model

Paolo Sabella [89] first described a particle model for volume rendering which he called the
density emitter model. It is based on Blinn’s model but assumes the particles emit their own
light, rather than scattering light from a source. This model is not related to Reeves [81] particle
system in which particles are modeled individually. Sabella models the density of particles, not
the particles themselves. The size of the particle is considered to be small compared to other
dimensions so the density of the particles can be regarded as a continuous function.

In Sabella’s model, the density of particles at any point @ = (z,y, z) is defined by considering
a volume element of the cloud dV centered at a. If dVp is the volume occupied by the particles
in dV, then the density function is defined to be p(z,y,z) = dVp/dV. If v, is the volume of a

single particle, then the expected number of particles in a region R of the cloud is:

dVv, dv
Np = Vp :/ p(x,y,z) v (31)
R Up

R Up
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A volume rendered image is created by setting a pixel’s color to the intensity of light
perceived by the eye along a ray from that pixel to the eye through the volume. Consider a
cylinder with cross section o whose axis is a ray to the eye, parameterized by length ¢, which
enters the cloud at {; and exits at {3. Assume the density function is parameterized along the
ray as p(z(t),y(t),2(t)), or just as p(¢). An infinitesimal segment S of this cylinder, centered at

t and of length dt, has volume dV = o dt, and contains Ngy = p(tg% particles. If the particles

are all spheres with radius r, then v, = %7‘[‘7‘3, and each has projected area 7r2. So if they all
glow diffusely on their surfaces with intensity x, the total light power crossing the front surface

of § is:

4 3
krr Ny = krrip(t)o dt/(gﬂ'TS) = %p(t) di
T

The power is distributed over an area o, so the intensity (power per unit area) contributed

by this segment is i—’;p(t) dt. We have assumed dt is infinitesimal, so that the particles do not

occlude each other. But on the path from the interior position ¢ to the front edge {5 of the cloud,
occlusion can take place. To calculate the probability that this ray from ¢ to ¢3 is unoccluded,
take another cylinder C' about it, of radius r, the particle radius. The ray will be unoccluded if
there are no particle centers within C'. From Equation 3.1, the expected number N¢ of particles
inside C' is:

dv t 4 t
N¢ :/ plz,y,2)dV = /;(u)ﬂ"l‘z du/(=mr3) = i/;(u) du (3.2)
C ’Up t 3 4r t

If the density is small enough that the chances of mutual overlap are small, the particles can
be assumed to be independently distributed. Then the probability P(0;C') that there are no
particle centers in the cylinder is given by the Poisson distribution formula P(0;C') = e No =

3

t2
e~ . W) du, Therefore, the intensity of light reaching the eye due to dV is:

3K 3 (t2
S o(t)die" i Je P du
P dieinde
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The total intensity I reaching the eye due to all contributions between ¢; and {5 is:

1
1= 25 7 e 2o du gy
4r t

3

If we assume the intensity at ¢ is zero, that is, there is a black background, and we let 7 = ;-

and ¢ = kT, we get:

t2 to
I= c/ p(t)e_Tft plw)du gy (3.3)
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For Equation 3.3 to hold, the density must be small as required by the Poisson distribution.
The density can either be set equal to the scalar field S which is being visualized, or a single user
defined transfer function f can be used, i.e. p(z,y,2) = f(S5(z,y, 2)). Sabella uses numerical
methods to estimate the integral in Equation 3.3 by sampling along the ray.

Since the modeled light intensity is monochromatic, Sabella’s images using the above model
are gray scale pictures. He introduces color in a novel way by the use of the HSV color model.
V', the value, is set to the intensity I in Equation 3.3. 5, the saturation, is mapped to the
distance D into the volume where the peak density is encountered along the ray. And H, the
hue, is the entry in a user-defined color map corresponding to value of the peak density M.
See Figure 3.2. Sabella also allows for lighting from several point light sources exterior to the
volume by incorporating a diffuse lighting term into Equation 3.3.

When the indefinite integral ) p(u) du can be tabulated or calculated analytically, and when
¢ and 7 are constants, Max, Hanrahan and Crawfis [61] show how Equation 3.3 can be simplified
to a closed form expression which can be evaluated for each cell through which the ray passes.
In addition, they take ¢ and 7 as vectors with three components, red, green and blue. This has
the effect of scaling the single transfer function differently for each of the three components of

color. The images created by this method are very accurate renderings of the volume density;
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Figure 3.2: A 2D view of a density profile along a ray.

however, the process is computationally intensive and really is intended to be implemented in
microcode.

It may be possible to modify Sabella’s model to include three separate transfer functions
for red, green and blue emitted light by assuming that a fraction of the particles emit light of
a certain color. Then the density of the red-emitting particles, for example, will vary with a
density function p,(z,y, z), and similarly for the blue and green particles. However, these three
color particle densities need to be related to the attenuation particle density p which appears
in the exponent in Equation 3.3. It seems easier to make this generalization in the continuous

model which is described below.

3.3.2 The Continuous Model

We now consider the second model, the continuous model for a volume density. This formulation
and development is new and has not been presented before. For visualization, it offers more

flexibility than the particle model described in the last section. The volume renderer described
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in this thesis is based on this theoretical model. We benefit greatly from the earlier work of
Shirley and Tuchman [93] and Wilhelms and Van Gelder [103].

The goal is to provide a simple, but accurate, formal model on which to base direct volume
rendering of scalar fields defined on irregular meshes and to maximize the flexibility of use of
transfer functions. It is intended for use with scalar field data from the finite element method,
or scattered data, as opposed to scanned data sets where material classification is involved.
The model is suitable either for ray tracing or for projection methods. The model is simplified
to the bare minimum needed to clearly display the internal structure of the scalar field. No

attempt is made to produce a highly realistic simulation of an actual cloud.

3.3.3 Model Development

In this model, the volume density can be thought of as a luminous or glowing gas cloud, such as
neon or a glowing plasma, that selectively absorbs light of certain wavelengths and emits self-
generated light. The gas cloud has two physical properties, optical density and chromaticity,
both of which are functions of the scalar field being visualized.

The optical density of the gas at any point is wavelength A dependent and is given by the
function p(z,y,z,A) > 0. The chromaticity is specified by a chromaticity function s(z,y, z,A) >
0. These two functions are defined in terms of six user-specified transfer functions p,, pg, ps,
Ky, Kq, Kp, so for example, p(z,y,z,red) = p,(5(x,y,2)), where S is the scalar field being
visualized.

Let P(t) be a ray to the eye parameterized by length ¢ which enters the cloud at P(ty) and
exits at P(1,), and let ¢ be a point on the ray centered in the interval (¢ + %,t - %); see

Figure 3.3. Let the notation p(¢, A) stand for p(P(t), ), and similarly for (¢, ).
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A

Figure 3.3: A 2D view of a cloud with a ray P(¢) to the eye parameterized by length ¢.

The meaning of the optical density p(¢, A) is that, in the limit as At goes to zero, p(t, A\)At
is the fraction of light of wavelength A entering Atf that is occluded over the distance At. The
chromaticity (¢, A) has the meaning that, in the limit as At approaches zero, (¢, A)p(t, \)At
is the intensity of light of wavelength (color) A emitted at the point P(t). Henceforth, I(¢,\)
will represent the cumulative intensity of light of wavelength A at ¢ due to all contributions up
to the point ¢.

The intensity of light reaching ¢ + % is:
A Al
I(t + - /\) = I(t 5 /\)(1 - p(tv /\)At) + H(t7 /\)p(tv /\)At (34)

Simplifying, we get:

I(+ 88,0 — 1(1 - 31,0
At

:_m@xﬂu—%;A)+duAMﬁJ)

In the limit as At goes to zero, we get:

dI(t,\)
dt

= —p(t, VI(t,\) + K(t, \)p(t, \) (3.5)

Equation 3.5 is instantiated once for each of the three component wavelengths of light:
red, green and blue. In each of these equations, p, k and I are functions only of ¢; therefore,
Equation 3.5 is really a set of three linear first order differential equations. For example, for

red light:

dL, (1)
dt

oD (1) = R (D (1)
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These equations can be solved by numerical methods, for example by the fourth-order Runge-

Kutta method, or by linking to a ODE solver subroutine.
f:o p(u,A) du

Alternatively, by use of the integrating factor e , we can rewrite Equation 3.5 as:

eftto p(u,A) du dI(t, A) u,A) du

R (P

k(L A)p(t, N)

then,

% [efto plud)du e, /\)] _ oo P 3o N

Integrating both sides from iy to {¢,, using the boundary condition that the intensity at tg is
I(tg, A), yields:
tn

tn ¢ u u
= [ e PN (e, A d

to to

[efto Pl A)]

and so,

t t
fton p(u,A) du fto p(u,A) du

e I(t,, X) — e’to

tn ¢ u u
I\ = [ el DM A p(e, N di

to

which simplifies to:

tn th [T (4 " _rtn
I(t,,N) = e fto p(tA) dt efto plu)d K(t, N)p(t, N)dt+ I(tg, N)e ffo P\ dt

to
(The limits of integration of the integrating factor were chosen so as to satisfy the boundary

condition.) By combining the two exponentials in the first term, we get:

tn tn _ tn
(1, \) = / e S AN Ay N o1, ) di 4 T(1g, \)e o PN (3.6)

to
Equation 3.6 can not be solved in closed form for the general case. However, if the transfer
functions vary piecewise linearly along a ray segment within a cell, then this equation can be
integrated exactly on a cell by cell basis. This solution is given in Section 3.3.5 after parameter

functions are introduced in Section 3.3.4.
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If the chromaticity is assumed to be constant along a ray then, by the same method that
Max [61] used to simplify Equation 3.3 or by a simple transformation of Equation 3.6, a closed

form solution for Equation 3.6 can be obtained:

tn p(u,A), du

I(ty, ) = k(N)(1—€ Jig L7 p(t2) dt

) + I(tg, N)e o (3.7)

If we further assume that both the optical density and chromaticity are constant along a

ray, then from Equation 3.7 or by integrating Equation 3.5 by separation of variables, we get:

I(ty, A) = K(A) (1 — e PNty 4 1(15, X)) e7PM(Enmto)) (3.8)
A B

The term labeled B is the transmittance of the region, the fraction of light of wavelength
A entering the region at g that reaches ¢,,. The opacity « is one minus the transmittance or
1 — e=#(M(tn=t0) and represents the fraction of light of wavelength A that enters the region at
o that is occluded while passing through the region. Term A represents the attenuation of the
light emitted within the region itself. Equation 3.8 is the alpha compositing formula described
by Porter and Duff [77] which they call the atop operator.

The restriction that the optical density and/or chromaticity be constant along a ray is not
too serious since the cloud is discretized into cells. The ray integration can be evaluated by
discretizing the ray in the same way that is used in finite element analysis and then integrating
on a cell by cell basis, thus the density and/or chromaticity can vary from cell to cell.

Equation 3.8 can be evaluated for each cell by letting x(A) and p(A) be the average chro-
maticity and density respectively along the ray between {; and {3, the points where the ray
enters and exits the cell:

B K(A 1) + k(A tg)

Kaug(A) = 5 (3.9)
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and similarly for the optical density. Since it is common to linearly interpolate the scalar field

within a cell, this approximation is acceptable. For further efficiency, the opacity
a=1-—ePMNl-t) (3.10)

can be approximated by
a=pA)(tz — 1) (3.11)

provided p(A)(tz — ¢1) < 1.0. The calculation can be further simplified if the optical density
is assumed to be independent of wavelength, then only four user-defined transfer functions are
required. If Equation 3.10 is used, then the exponential need be evaluated only once per cell.
Figure 3.4 compares a = (1 — e™") with a = z.

Images generated using the approximation for cell opacity given in Equation 3.11 were
compared with images generated using Equation 3.10. The images were very similar; often
no difference could be detected. See Figures 3.5 and 3.6 where the images shown are volume
renderings of the density field from a simulation of a binary star formation which is defined on
a mesh of 593,920 tetrahedra. The MPVO algorithm was used for the visibility ordering; and
the PT algorithm was used for splatting.

If it is desired to specify the opacity and color in the range (0,1), the optical density and
chromaticity whose range is (0,00) can be normalized to the range (0,1), as p = 1 — e~ * and

i =1—e7%, where p is the normalized density and & is the normalized chromaticity.

3.3.4 Shading, Gradients & Parameter Functions

For shading contour (level) surfaces, the intensity at a point on the surface can be made to vary
as a function of the angle between the surface normal vector and a vector to a point light source.

One way to incorporate surface shading into the model is discussed at the end of Section 3.3.5.
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Figure 3.4: Comparison of a@ = (1 — e™7), the solid line, with a = z, the dotted line.

The surface normal at any point p on a level surface of a scalar field § is the direction of
the gradient of S at p. For tetrahedra, the gradient will be constant throughout the cell. For
other types of cells used in the finite element method, the gradient can be computed from the
parameter function for the type of cell involved. The parameter function 5., sometimes referred
to in visualization as the interpolation function, gives the value of the scalar field within any
given cell. The parameter function may be linear, quadratic, cubic, etc. For example, for a 4
node tetrahedron, the parameter function is linear; and so the scalar field within a cell is given

by the parameter function:

Se(z,y,2) = c1 4 2z + cay + caz (3.12)
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Figure 3.5: Top image uses Equation 3.10. Bottom image uses Equation 3.11 (no exponential
term).
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Figure 3.6: Top image uses Equation 3.10. Bottom image uses Equation 3.11 (no exponential
term).
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p.k

Figure 3.7: Example piecewise linear transfer functions p, and k,, for red light. sg and s, are
the values of the scalar field at the points where the ray enters and exits the cell.

Since the scalar field value is known at the four vertices of the cell and the coordinates of
the vertices are known, Equation 3.12 becomes a set of 4 simultaneous equations which can be

solved for ¢1, ¢9, 3 and ¢4.!

!For the other three most common 3D elements (cells), the parameter functions are as follows. For an
undistorted 10 node (quadratic) tetrahedron:

Se(z,y,z) =c1+ 2z 4+ cay +caz+ ez 4+ ceTY + C7y2 + csyz + coz? 4 croz2
for an 8 node (linear) brick:
Se(z,y,2) =c1 4+ c2z + cay+ caz + cszy + ceyz + crzz + csryz
for a 20 node undistorted (quadratic) brick:

Se(z,y,2) = c14caxm+cay+caz+ sy +cezz+cryz + sz’ + coy’ +croz” +
c11zyz + c1o2”y + c1azy’ + c1az”s 4 15327 + c16y’ 2 + c17yz” + c1sz’yz + 107y’ 2 + coozy”
When the elements are distorted by the use of an isoparametric mapping function, then the mapping function
needs to be inverted and the interpolation performed in the undistorted element using the parameter function.
(In order to assure convergence in the finite element method, the mapping function must be invertible.) The
topic of visualization of distorted elements is not dealt with here but it is an important issue that needs to be

faced.

The parameter function can also be expressed in terms of the scalar values s; at the ¢ vertices of the cell:
Se(z,y,z) = Z Ni(z,y,z)s;
i

For a linear tetrahedron, this becomes:
Sc(z,y,z) = Ni(z,y,z)s1 + Na(z,y,z)s2 + Na(z,y, z)s3 + Na(z,y,2)ss

The coefficients N;(z,y, z) are referred to as the shape or basis functions for the cell. They are polynomials of
the form discussed above; for example on the 4 node tetrahedron they are linear.
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The parameter functions will generally not be Cl-continuous at the boundary between
cells; and so the gradient will not be C%continuous between cells. If the change in the gradient
between cells is large then the shading will show anomalies from cell to cell. This can provide
useful feedback to the scientist regarding the quality of his/her mesh. However, if smooth
shading is desired, an average gradient at each vertex may be calculated by averaging the
gradients at the centroids of all cells that share the vertex.? The surface normal at any point
in a cell can then be calculated by interpolating the gradients at the cell’s vertices. A more
accurate average vertex gradient can be calculated by weighting the gradients at the surrounding

centroids by the inverse of the distance to the centroid. Other methods are described in [35].

3.3.5 Exact Solution for Linear Parameter and Transfer Functions

Equation 3.6 can be integrated exactly on a cell by cell basis if the transfer functions vary
piecewise linearly along a ray segment within a cell. This can be done as follows.

If the scalar field data has been generated by the finite element method, then, within a
cell, the scalar field is given by the parameter function S.(z,y,z). This is shown for a linear
tetrahedron in Equation 3.12. We would like to express 5. as a function of ¢, the ray parameter.
In parametric form, a ray through the cell is expressed as: @ = ayj+aql, y = B1+ 021, z = 11+721,
where (ay, 31,71) is the point where the ray enters the cell and (az, 82,72) is a unit vector along
the direction of the ray.

Substituting these three equations into Equation 3.12 gives, for the case of linear tetrahedral
elements:

Se(t) = v+ wt (3.13)

2When a mesh is rectilinear, a finite difference scheme [97, 59, 100] can be used to approximate the gradient.
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where v = ¢; + coay + ¢361 + c471 and w = caaz + 302 + c472.

Now the transfer functions must be considered. Let so = S.({p) be the scalar field value at
the point where the ray enters the cell, and s, = 5.(t,) be the value at the exit point. If the
transfer functions are piecewise linear, as they are in Figure 3.7, then they can be considered
to be composed of m+ 1 piecewise linear intervals (sg,s1), (81,52) 5 -+, (SiySit1), -« (Sm, Sn)-
See Figure 3.7 where five intervals are shown. The intensity of light at ¢,, can be calculated by
integrating Equation 3.6 over each of the (m + 1) intervals. The value of ¢ at s1,2,...,5,, can
be found from Equation 3.13. For example: t; = (s1 — v)/w.

For red light, the terms involving p, and x, in Equation 3.6 are p,(s) = a + bs and

Kr(8)pr(8) = f 4 gs+ hs® or in terms of ¢, using Equation 3.13:
pr(1) = a+ bv + bwt Kr(O)p(8) = f +gv+ hv? + gwt 4+ 2hvwt + hw?t?

over any interval on which k and p are both linear. Hence a table lookup procedure may be
used to return the coeflicients a, b, f, g and h for any given interval; v and w are calculated
from the ray entry and exit points and the parameter function for the cell. For example, for
the first interval (g, s1) shown in Figure 3.7, ¢ =5,b= -3, f =8.5,g= 5.1 and h = 0.

For red light, Equation 3.6 can then be written as:

Lit1 _ rtiga a;+b;v+b;wu) du
L (tiy1) :/t e~ Ji T ertbivtbivud (fi + giv + hiv®

— [ (g b vtbiw
Fgiwt + 2hevwt + hiwt?) di 4 I (t;)e i @b

simplifying, we get:

tz‘+1 t; _ ti41
Ir(ti_l_l) :/t e_ft +1(ql+q2u)du(q3—|—(J4t—|-(J5t2)dt+Ir(ti)€ ftz (q1+4g21) dt

where ¢ = a; + b;v, g2 = biw, g3 = fi + giv + hiv?, ¢4 = giw + 2h;vw and g5 = hw?.
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The second term can be integrated easily to give:

. @ty w2l
IT(tZ.)e—(QJt:H-l-T—fht:— =)

The first term can be evaluated by completing the square of the exponent and then using
integration by parts. With the help of Nelson Max [personal communication] and Mathematica,

version 2.0, the first term evaluates to:

@294 — 0195 + @2¢5tiy1 G244 — 1G5 + thstie(ti_tm)(2q1+q2ti+q2ti+l)/2
q2 4
\@(q%qg - 19294 + 4105 — 4295)

q§.5€(Q1+Q2ti+1)2/(2‘J2)

+

¢+ g2ti41 q1 + g2t;
Erfi( ————) — Erfi( ———=—
(rf( DR g L)

In this expression, the argument to Erfi is either real, when ¢ > 0, undefined if ¢, = 0, or
pure imaginary, when ¢z < 0. Erfi(z) is shorthand for two functions, depending on whether z is
real or pure imaginary. If z is real, Erfi(z) = % s ev’ du, while if z is pure imaginary, of the
form a = b, with real b, Erfi(ib) = z% fg e~ du. When g5 < 0, the i in the latter expression
cancels the 7 in the denominator ¢2-°>. Thus, we need only prepare one dimensional tables for
these two integrals, or use subroutines to approximate them. (The second integral is closely
related to the integral of the Gaussian error function, for which subroutines and tables exist.)

If g = 0, then the first term takes a different form, and integration by parts or Mathematica
gives:

(0793 — 0194 + 205 + Giqati1 — 2q1¢5tig1 + G05tE1)
q

(g3 — q1qa + 205 + G qati — 2q1q5t; + qhgst?)en (lititn)
3
i

This is a new result. It remains to be seen if these expressions can be evaluated so as to
permit interactive rendering. Certainly, they can be used to generate benchmark images against

which images generated by approximate solutions, such as those given in Equations 3.7 and 3.8,
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can be compared. And, they can be used for the generation of presentation quality images.
Accurate approximations need to be investigated.

Surface shading is helpful for understanding the orientation of (iso)surfaces that may appear
in a volume rendered image. However, for the remainder of the image shading is not appropriate
and may even make the image harder to understand. An interval in the density map which
produces an isosurface is distinctive, for example a tall narrow rectangular pulse or a delta
function. If such intervals are flagged, surface shading can be turned on only for those intervals.

Wilhelms and Van Gelder [103] outline a continuous model and develop differential equa-
tions for cumulative intensity and transmittance based on it. Our model benefits from their
development, but also differs from their model in a number of respects. For example, in our
model the opacity does not appear as a factor in the denominator of the cumulative intensity;
and color intensity is linked to opacity, i.e. color and optical density are multiplicative factors.
The value of the former property is that the cumulative intensity is well behaved for very small
or zero opacity. The latter property means that if the transfer functions are defined such that
(a) the optical density at a point in the volume is very small, i.e. the medium is almost totally
transparent at that point, and (b) the color intensity is maximum at that point, then the overall
contribution will be minimal. These differences need further investigation.

Our new exact solution needs to be implemented and the rendering time and image quality
compared with those resulting from implementations of Equations 3.7 and 3.8 and with results
from other volume density models. Also, the utility of the three density transfer functions

introduced by the continuous model needs to be investigated.
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3.3.6 Other Models and Considerations

Texturing and/or a general shading model with exterior lights may be used to highlight and
accentuate surfaces which may occur in the volume density, either level surfaces of the scalar
field or surfaces based on material classification, such as bones or flesh, or oil, water or sand,
etc. As Westover [100] states, [the volume density has now become] “a reflective light emitting
semi-transparent blob”.

The standard equations for surface reflection due to ambient light I,(A) and ¢ point light

sources Ip,(A) can be written as:

() = Ka(Ma(A) + £a(3) D0 L (NN - L) + 5s D L (AN - Hy)* (3.14)

where k,, kg, ks are the coefficients of ambient, diffuse and specular reflectivity respectively.
N, L; and H; are the normal, light and bisector vectors, respectively. See Figure 3.8. The value
of n determines the shininess of the surface.

The cumulative intensity I(¢,A) derived in Section 3.3.2 can be considered to be the first
term in Equation 3.14, that is the ambient term. Upson and Keeler [97] add a contribution to
the diffuse reflection due to surface texture M(z,y, 2z, A), and use depth cueing to weight both
the ambient and diffuse terms.

Westover [100] provides the user additional flexibility by offering a number of transfer func-
tions in addition to opacity and color, such as reflected color tables and opacity modulation
tables. For example, setting specular reflectivity to zero turns off specular shading. The reader
is referred to Westover’s paper for interesting examples of applications of these additional trans-

fer functions.
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Figure 3.8: Surface shading diagram. N is the normal vector to the surface at the point
(z,y,2). H is a vector halfway between the light vector I and the eye vector E.
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CHAPTER 4

VISIBILITY ORDERING MESHED POLYHEDRA

4.1 Introduction

A wisibility ordering of a set of objects from some viewpoint is an ordering such that if object a
obstructs object b, then b precedes a in the ordering. Certain visualization techniques, particu-
larly direct volume rendering based on projection methods [17, 57, 61, 93,97, 101, 102, 104, 105]
require a visibility ordering of the polyhedral cells of a mesh so the cells can be rendered us-
ing color and opacity blending. Visibility ordering the cells of rectilinear meshes (or certain
classes of regular meshes based on a decomposition of a rectilinear mesh) is straightforward
[33]. However, for other types of meshes, such as curvilinear or unstructured meshes, it is not
immediately obvious how to compute this ordering.

This chapter describes a simple and efficient algorithm for visibility ordering the cells of any
acyclic convex set of meshed convex polyhedra. This algorithm, called the Meshed Polyhedra
Visibility Ordering (MPVO) algorithm, orders the cells of a mesh in linear time using linear
storage. Preprocessing techniques and/or modifications to the MPVO algorithm are described
which permit nonconvex cells, nonconvex meshes (meshes with cavities and/or voids), meshes

with cycles, and sets of disconnected meshes to be ordered. The MPVO algorithm can also
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be used for domain decomposition of finite element meshes for parallel processing. The data
structures for the MPVO algorithm can be used to solve the spatial point location problem.

The MPVO algorithm was used to generate the picture of a scientific data set of approx-
imately 70,000 tetrahedra which is shown on the cover of [93]. Other images generated using
the MPVQ algorithm and the MPVO algorithm for nonconvex meshes are shown in Chapter 6.
The basic ideas of the MPVO algorithm were suggested by Herbert Edelsbrunner in a conver-
sation regarding his paper on the acyclicity of cell complexes [26]. A similar algorithm to the
MPVO algorithm, also based on Edelsbrunner’s suggestions, was developed independently by
Max, Hanrahan and Crawfis [61].

The Binary Space Partition (BSP) tree algorithm [34] is not suitable for visibility ordering
large meshes because the algorithm uses splitting planes, (even when not required to break
cycles). Since the cells are meshed, a large number of cells could be split, resulting in a potential
explosion in the total number of cells. Analysis of the BSP tree algorithm by Paterson and Yao
[72] suggests that its performance could be O(f?), where f is the number of faces in the original
mesh. An A-buffer [7] is also not suitable for visibility ordering large meshes because there
are too many transparent cells at each pixel, making memory requirements prohibitive with
current hardware.! Goad [41] describes a special purpose program written in LISP for visibility
ordering polygons. This approach might be adapted for polyhedra; further investigation may
be warranted. The brute force algorithm, for visibility ordering an acyclic mesh, calculates an

obstructs relation? for every pair of the n cells in the mesh, and requires at least Q(n?) time.

L An off the cuff estimate indicates that an A-buffer could require a minimum of 30 MBytes for a 64,000 cell
mesh rendered as a 250x250 pixel image; a 1,000,000 cell mesh could require 300 MBytes of A-buffer memory for
a 500x500 pixel image.

2An obstructs relation can be calculated for two convex polyhedra by projecting them onto a plane and
checking their projections for intersection.
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This Chapter is organized as follows. An overview of the MPVO algorithm is given in the
next section, and some preliminary definitions in Section 4.3. Section 4.4 contains a formal
description of the MPVO algorithms. Implementation details of the algorithms are discussed
in Section 4.5. A time and storage analysis is given in Section 4.6. Section 4.7 deals with
the effects of numerical error and degeneracy. Sections 4.8 and 4.9 give methods for dealing
with cyclically obstructing polyhedra and show how any cyclic and/or nonconvex mesh can be
converted into an acyclic convex mesh. Other applications of the MPVO algorithms are given

in Section 4.10.

4.2 Overview of the MPVO Algorithm

An intuitive overview of the MPVO algorithm is as follows. First, the adjacency graph for
the cells of a given convex mesh is constructed. Then, for any specified viewpoint, a visibility
ordering can be computed simply by assigning a direction to each edge in the adjacency graph
and then performing a topological sort of the graph. The adjacency graph can be reused for
each new viewpoint and for each new data set defined on the same static mesh.

The direction assigned to each edge is determined by calculating a behind relation for the
two cells connected by the edge. Informally, the behind relation is calculated as follows. Each
edge corresponds to a face shared by two cells. That face defines a plane which in turn defines
two half-spaces, each containing one of the cells. If we represent the behind relation by an arrow
through the shared face, then the direction of the arrow is towards the cell whose half-space
contains the viewpoint; see Figure 4.1%. To implement this, the plane equation for the shared

face can be evaluated at the viewpoint. The adjacency graph and the plane equation coeflicients

3 All figures in this paper, except Figures 4.8 and 4.9, are two dimensional, representing polyhedra as polygons.
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Figure 4.1: Visibility ordering of the cells of a mesh relative to viewpoint vp.

can be computed and stored in a preprocessing step. The MPVQ algorithm can be extended

to order many nonconvex meshes; this is described in detail in Section 4.4.2.

4.3 Preliminary Definitions

A convez polyhedronin E? is the intersection of a finite set of closed half-spaces so that its interior
is nonempty (it has positive volume). A polyhedron can therefore be unbounded; however, for
purposes of this paper we will assume that all polyhedra are bounded.* Henceforth the terms
cell and polyhedron will be used synonymously and, unless specified to the contrary, will mean
a bounded convex polyhedron. The interior of a polyhedron P is the largest open subset in P.

A set of meshed polyhedra or a mesh is a finite set S of polyhedra, where (1) the intersection

of any two polyhedra is either empty or a face, edge or vertex of each, and (2) for any partition

*Technically, a bounded polyhedron is called a polytope, a term not used in this paper.
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Figure 4.2: Examples of valid and invalid meshes. In 3D a void is completely enclosed by
faces of the mesh; a cavity may be a tunnel or network of tunnels.

of 5 into two subsets, there is always at least one polygon that is a face of a polyhedron from
each subset.’ Two meshes are disconnected if they do not share any faces. See Figure 4.2.

If a face f of some cell in a mesh § is not shared by any other cell in S, then f is an ezlerior
face. The union of all exterior faces of S constitutes the boundary of §. A face that is not an
exterior face is an interior face. An exterior cell has at least one exterior face. The convex hull
of a mesh S is the smallest convex set containing the cells of 5. If the boundary of a mesh 5 is
also the boundary of the convex hull of 5, then 5 is called a convex mesh; otherwise it is called
a nonconvexr mesh.

Let S be a nonconvex mesh. A polyhedron p, not necessarily convex, which is not a member
of §, such that each face of p is shared by some cell in 5, is called a void. If pis convex, then we
call it a convex void. A nonconvex mesh may have zero or more voids. The union of all faces
of a void is referred to as the void boundary. The union of the faces in the boundary of 5" that

are not faces of a void is the outside boundary of 5. A nonempty region between the boundary

5A mesh corresponds to a cell complex, a standard notion in computational geometry, provided the cell
complex has property (2) and the cells are convex polyhedra.
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of the convex hull of a mesh S and the outside boundary of 5 is referred to as a cavily. See

Figure 4.2. In some cases a cavity may be a tunnel or network of tunnels.

4.4 The Visibility Ordering Algorithms

DEFINITIONS: A wiewpoint is some point in E3. The obstructs relation is defined as follows.
Let vp be a viewpoint, p; and pz be two distinct cells of a mesh 9, and int(p;) and int(pz) be the
interiors of p; and ps. Relative to viewpoint vp, py obstructs py if there is a half-line hl starting
at vp so that hl Nint(py) # 0, kI Nint(p2) # B, and every point of hl Nint(p;) lies between vp
and any point of Al Nint(pq) [26]. Let us define the behind relation <,, such that p; <y, ps if
and only if p; and p; are adjacent, that is, share a face, and py obstructs p;. Diagrammatically,
we represent p; <,p pp as an arrow through the face shared by p; and p, pointing from p; to
p2. See Figure 4.1. We denote the transitive closure of <,, as <1*]p.

We can assume, without any loss of generality, that the viewpoint does not lie in any plane
spanned by a face of the mesh. Otherwise the viewpoint can be perturbed infinitesimally to
eliminate such degenerate cases. Since a mesh has a finite number of faces, the viewpoint
can be perturbed infinitesimally without changing the obstructs relation for any face whose
plane does not contain the viewpoint. Thus, every pair of adjacent cells can be related by
<yp. A symbolic perturbation technique that illustrates this is given in Section 4.7. Practical
considerations about degeneracy, floating point arithmetic and numerical error are discussed in
Sections 4.5.1.2 and 4.7.

DEFINITIONS: Let S be a mesh. A cycle is a sequence a <y, b <yp -+ <yp € <yp @ of cells
of 5. The obstructs relation on 5 is acyclic if, for every viewpoint, no cycles exist; then, we say

S is an acyclic mesh. Let § be an acyclic mesh, and vp be a viewpoint. A wvisibilily ordering of
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Figure 4.3: Diagram for proof of Lemma

S relative to vp is defined to be an ordering of the cells of 5 such that if cell py obstructs cell
p1, then p; precedes py in the ordering.

LEMMA: Given a viewpoint vp, any total ordering which is consistent with the ordering
defined by the <,, relation on an acyclic convex mesh 5 is a visibility ordering of the cells of
S relative to vp. In other words, for any cells p; and p; in S, if py obstructs p; then p; <7, pa.

PROOF: Let p1,p2, ¢1,q2, ..., qr be cells of an acyclic convex mesh S and vp be any view-
point. If p; and p, are adjacent and p; obstructs p; relative to vp, then p; <,, pa by definition.
If p; and p, are not adjacent and py obstructs py, then it is possible to draw a ray starting
from vp such that the ray intersects both int(p;) and int(pz). We can assume that by proper
selection of a point in p; through which the ray passes, that the ray will intersect no edges
and vertices of the mesh, nor will the ray lie in any plane spanned by a face of the mesh.
By the definition of the obstructs relation, the ray will first intersect py, and then exit ps.
The face through which the ray exits p; has the relation ¢, <., p2, where g; is the other cell
that shares this face. Because a mesh has a finite number of cells and is convex, this process
will continue until we reach ¢; which shares a face with p;. This face will have the relation

p1 <vp q1. See Figure 4.3. Therefore there exists a sequence of cells g1, ¢2,...,q; such that

D1 <vp G <vp q2 <vp et <vp qk <vp P2, ie. D1 <1*]p P2. |
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4.4.1 The MPVO Algorithm

THE MPVO ALGORITHM: Given an acyclic convex mesh §, construct the adjacency graph
G for the cells of S. For a given viewpoint vp, for every pair of adjacent cells p; and ps in
S, compute the <, relation. If p; <,, p2, direct the corresponding edge in G from p; to py,
otherwise from p, to p;. G is now a directed acyclic graph (DAG). Perform a topological sort
of GG as described in Section 4.5.1.3; the resulting ordering is a visibility ordering of the cells
of §.

The directed graph constructed by the algorithm is a representation of the ordering defined
by the <,, relation. A topological sort generates a total ordering of a DAG. Therefore, by the
lemma, the MPVO algorithm will output a visibility ordering of the cells of 5 relative to vp.
The domain of the MPVO algorithm is the set of all acyclic convex meshes. Sections 4.8.2 and
4.9 describe methods to preprocess meshes which are cyclic and/or nonconvex such that the
resulting mesh can be ordered by the MPVO algorithm. If cells of a computational mesh have
curved bounding surfaces, the cells can be approximated by sets of tetrahedra [54]; nonconvex
cells can be tetrahedralized [13, 93]. Thus, the domain of the MPVO algorithm may be extended

to any mesh.

4.4.2 The MPVO Algorithm for Nonconvex Meshes

The MPVO algorithm can be adapted to visibility order many acyclic nonconvex meshes. This
modified algorithm, called the MPVO algorithm for nonconvex meshes, is a heuristic; its limi-
tations are discussed below.

DEFINITIONS: If a DAG G has an edge from node a to node b, then we say a is a predecessor

of b and b is a successor of a. If certain nodes of G are marked, the set upreds*(b) is defined
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Figure 4.4: The examples of boundary anomalies shown in (A) and (B) cause only a few cells
to be incorrectly ordered. However, the example in (C) could cause large numbers of cells to
be incorrectly ordered.

as follows. If b is marked, then upreds™(b) = 0, otherwise upreds*(b) is the union of {b} and
upreds™(a) over all predecessors a of b. Let S be a mesh and vp a viewpoint, if p is an exterior
cell in 5 which has an exterior face f such that the plane defined by f separates vp and p, then
we say p is a front facing exterior cell.

DEFINITION: Let dist() be the Euclidean metric and cen() be the centroid. Let S be an
acyclic mesh. If for some viewpoint vp, (1) there exist front facing exterior cells p and ¢ in S
such that dist(vp, cen(q)) > dist(vp, cen(p)), and either (a) there exists a cell ¢ <} ¢ such that
c obstructs p, and p £, ¢, as in Figure 4.4 (A) and (C), or (b) ¢ obstructs p, and p £, ¢,
as in Figure 4.4 (B), and (2) for all front facing exterior cells r in S with dist(vp,cen(r)) >
dist(vp, cen(q)), p £;, 7, then we call this an instance of a boundary anomaly. See figure 4.4.

THE MPVO ALGORITHM FOR NONCONVEX MESHES: Given an acyclic mesh S, con-
struct the adjacency graph G for the cells of 5. For a given viewpoint vp, initialize a list L
called the start node list to empty. Place all front facing exterior cells in S on L. Sort the cells

on L by decreasing distance from vp to the centroid of the cell. For every pair of adjacent cells

45



*vp
A I\ A
1 2 3 Sorted Start Node
L~ -—4 list: 753921
I
| Topological sort of
VOID upreds(): gives:
4™ ~ s 7 87
5 5
3 3
T A ? 9 9
2 2
6 7 8

Figure 4.5: Example of the MPVO algorithm for nonconvex meshes. The cells with exterior
faces facing vp are sorted by decreasing distance from vp.

p1 and py in S, compute the <, relation. If p; <y, p2, direct the corresponding edge in G
from py to py, and otherwise from py to p;. For each cell ¢ on L, starting with the first and
continuing in order, mark and output in topological order the cells of upreds®™(c). See figure 4.5.
(If a cell d is marked, then by definition of a topological sort, all cells ¢ such that ¢ <}, d will
also be marked.) Provided S has no boundary anomalies, the output is a visibility ordering of
the cells of §.

Increasing the distance from the viewpoint to the mesh tends to reduce the incidence of
boundary anomalies. An efficient procedure for determining if a mesh has a boundary anomaly
for any viewpoint is not known. The MPVO algorithm for nonconvex meshes has been tested
on several actual computational meshes and found to give a correct ordering for all viewpoints
tried. However, it is easy to generate counterexamples by hand, as is shown in figure 4.4. This
heuristic is regarded as an interim algorithm which is quick and easy to implement and that
can be used until the methods for converting a nonconvex mesh to a convex mesh described in

Section 4.9 are implemented.
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4.5 Some Implementation Details

4.5.1 The MPVO Algorithm

The domain of the MPVO algorithm is the set of all acyclic convex meshes. If a mesh has a
cycle, it will be detected by the implementation of the MPVO algorithm described below. No
test is made for convexity. The MPVQ algorithm consists of three phases. The first phase, a
preprocessing step done once for a given mesh, constructs an adjacency graph for the mesh and
calculates the plane equation coeflicients for each face. At runtime, for each given viewpoint,
phase II calculates the <,, relation for all adjacent pairs of cells in the mesh, thus converting
the adjacency graph into a DAGj; and, phase I1I generates a visibility ordering of the cells of the
mesh by performing a topological sort of the DAG. Two different algorithms for topologically
sorting a DAG are described, one uses a depth first search (DFS) and the other a breadth first
search (BFS).

One possible set of data structures for this algorithm consists of two arrays. One array has
a record for each face. The record has four fields, one for each coefficient of the plane equation
pe(z,y,z) = Az+By+Cz+ D. The other array, indexed by cell number, has a record or pointer
to a record for each cell. Each cell record has fields for recording the cell’s vertices, faces, the
cell numbers of the cells adjacent to it, and for marking each face with the <,, relation, the
arrow referred to in Section 4.4. The arrow field can have the markings ‘inbound’, ‘outbound’
or ‘none’, which are explained in Section 4.5.1.2. One field per cell is required for marking
the cell ‘imaginary’ as described in Sections 4.8.2 and 4.9. If the DFS algorithm will be used
in phase III, then each cell should have two additional fields to mark whether a cell: (1) has
ever been ‘visited’, and (2) has been ‘visited on this descent’. As indicated in Section 4.5.1.3,

the first marking is used to guide the search and the second is used to check for cycles. If the
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BFS algorithm will be used in phase III, one additional field per cell for holding the number of
inbound arrows to the cell is helpful. If the cells have a varying number of faces, one field per

cell should be used to hold the number of faces.

4.5.1.1 PHASE I of the MPVO Algorithm (Preprocessing Step)

Construct and initialize the data structures described above. If the cells of a mesh are non-
convex, or if it is desired that all the cells be converted to tetrahedra, then the cells can be
triangulated during this phase.

When computing the plane equation coeflicients, a suitable convention should be used so the
sign of the plane equation is consistent for all cells and also with the usage described in the next
section. For tetrahedral meshes the following technique can be used. For each cell, index each
face f by the local vertex number (0 .. 3) of the vertex vy not used to define f. So, for example,
face 1 has vertices {0,2,3}; face 3 has vertices {0,1,2}; etc. Using the convention that for vertices
(6,0, k), A = yilzj —z1) +yi (e — 20) Fyr(zi— 25), B = ziwj—ap) +zj(ar —zi) +2r(wi—25), C =
iy — )t ei(ye—vi)Far(yi—y;), and D = —xi(y;20 —ywz;) — 2 (yrzi — vize) — er(Yiz; — ¥ %),
calculate the plane equation coeflicients for face 3 of any nondegenerate cell, using the vertex
ordering (0,1,2). If pe(vs) > 0, swap the first two vertices of face 3 in that cell’s data structure.
Propagate this ordering of the vertices to all the other cells in the mesh. For a right-handed
coordinate system, the vertices are now recorded so they can be enumerated in counterclockwise
order when viewed from outside the cell provided the following ordering is used: face 0: (3,2,1);
face 1: (0,2,3); face 2: (3,1,0); face 3: (0,1,2). Now calculate the plane equation coefficients for

each face of each cell using this vertex ordering. Mark all degenerate cells ‘imaginary’.
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Sink Cells: 2,6,8
Source Cells: 1,17,18

One possible ordering by
BFS: 1,17,18; 11,19; 9,12; 3,13;
4,15; 5,14,16; 2,10; 7,8; 6
DFS: 1,17,11,9,3,4,5,2,18,12,13,
19,15,14,16,10,7,6,8

Figure 4.6: The DAG for the mesh in Figure 1. Edge 7-8 is not included since vp is coplanar
with the shared face between cells 7 and 8.

4.5.1.2 PHASE II of the MPVO Algorithm

In this phase the adjacency graph built in phase I is converted into a DAG by calculating the
<yp relation for each shared face; see Figure 4.6. If a perspective projection is used, the <,,
relation is calculated as shown below using the plane equation coefficients computed in phase L.
As discussed in Section 4.7, cycles can be caused by a combination of degeneracy and the effects
of numerical error due to floating point arithmetic. Therefore, when —e < pe(zyp, Yup, 2vp) < €,
where ¢ is some small number, we assume that the corresponding cells are not related by the

<yp relation and so mark the arrow field of the corresponding edge ‘none’.

PHASE II ALGORITHM:
read in a viewpoint vp = (Zyp, Yups Zup)
for each cell ¢
for each interior face f of ¢

let ¢’ be the cell that shares f with ¢
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if the cell number of ¢ < the cell number of ¢
if pes(xyp, Yup, 2vp) > € then
mark arrow field for c.f ‘outbound’
mark arrow field for ¢’. f ‘inbound’
else if pef(Zyp, Yup, 2op) < —¢ then
mark arrow field for c.f ‘inbound’
mark arrow field for ¢’.f ‘outbound’

else mark c.f and ¢’.f ‘none’

If an orthographic projection is used, then let (ry,7y,7,) be a vector along the direction of
projection, and evaluate —Ar; — Br, — C'r, instead of pe ¢(Zyp, Yup, 2vp) in the above algorithm;
where A, B, C are the first three coefficients of pes. If the DFS algorithm will be used in phase
III, mark all cells ‘not visited’ and ‘not visited this descent’; find all sink nodes, nodes which
have no arrows leaving them, and place them on a list called the sink cell list. If the BFS
algorithm will be used, count the number of inbound arrows for each cell and record this in the
appropriate field; and, find all the source nodes, nodes which have no arrows entering them,
and put them in a queue, called the source cell queue, in any order. All these operations can

be done within the above for loop.

4.5.1.3 PHASE III of the MPVO Algorithm

In this phase a total ordering of the cells in visibility order is obtained by topologically sorting
the DAG. The graph search methods DFS and BFS can be used. A DFS of a DAG yields a
reversed topological sort of the nodes. If the DFS is reversed, as in the phase III-DFS algorithm

below, an unreversed topological sort is obtained. The use of the phase III-DFS algorithm has
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the advantage that it will output all cells in the mesh regardless of the existence of cycles;
however, it is not significantly parallelizable. On the other hand, the phase III-BFS algorithm
can be parallelized and its output consists of sequences of cells that do not obstruct each other
and therefore can be rendered concurrently; but, it will halt on encountering a cycle. The cycle

issue is discussed further in Section 4.8.1.

PHASE III-DFS ALGORITHM:
for each cell on the sink cell list dfs( cell ).
df s( cell ):
mark cell ‘visited’;
mark cell ‘visited this descent’;
for each predecessor p of cell
if p is not marked ‘visited” then dfs( p );
else if p is marked ‘visited this descent’ then output cycle warning;
if cell is not marked ‘imaginary’ then output( cell );

remove the mark ‘visited this descent’ from cell.

PHASE III-BFS ALGORITHM:
while the source cell queue () is not empty
let i be the cell at the head of )
if A not marked ‘imaginary’ then output A
remove h from @);
for each successor s of h

if number inbound arrows into s > 1 then
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decrement number inbound arrows into s;
else put s on the end of @;

if (number cells output # total number cells) output cycle warning.

4.5.2 The MPVO Algorithm for Nonconvex Meshes

The MPVO algorithm for nonconvex meshes is implemented in the same way as the MPVO
algorithm described above except for the following modifications. In phase I, calculate the
centroid of each exterior cell and store it in an array called the centroid list. For each exterior
cell, set one of the unused adjacent cell fields to the negative of the index of the cell’s entry in
the centroid list. Calculate the plane equation coeflicients for all faces including exterior faces.
In phase II set the arrow field for all faces including exterior faces. Place all exterior cells that
have one or more exterior faces with the arrow field marked ‘outbound’ on a list L, the start
node list. Sort the cells on L by decreasing distance from wvp to the centroid of the cell. In
phase III call dfs() for each cell on L that is marked ‘not visited’, starting with the first and
continuing in order.

Since a DF'S is used by this algorithm, it is not significantly parallelizable; however, it is
possible to parallelize the overall rendering system of which the algorithm is a part as is shown

in Chapter 7 [104, 105].
4.6 Time and Storage Analysis

The size of a three-dimensional mesh is the total number of cells, faces, edges and vertices in
the mesh. For a tetrahedral mesh, the MPVO data structures require 4 f 4+ 14n words of storage,

where f is the number of interior faces and n the number of cells in the mesh. This includes
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Computer 71,680 593,920 1,208,320
tetrahedra tetrahedra tetrahedra
IBM RS6000/530 | 0.8 sec. 6.8 sec. 14 sec.
Alliant FX /2800 | 1.0 sec. 9.5 sec. 20 sec.
Sun SPARCstn2 | 1.1 sec. 10 sec. 21 sec.
SGI 4D/340VGX | 1.2 sec. 11 sec. 23 sec.

Table 4.1: Typical timings for the MPVO algorithm, phases II & III-BFS combined, using
one CPU. Time is user time measured by getrusage().

space for the adjacency graph, cell vertices, the plane equation coeflicients, the arrows, and one
word per cell for flags. In addition, 3v words are required for the vertex coordinates, v words
per scalar field for data, where v is the number of vertices in the mesh, and n words for the
sink /source cell list. The space requirement is on the same order as the space required by the
simulation that generates the data. For the MPVO algorithm for nonconvex meshes, f in the
above equation becomes the total number of faces in the mesh; and, 3z words are required for
storage of centroids, and another 2z words for the start node list, which is used instead of the
sink /source cell list, where z is the number of exterior cells. A result that may be useful for
data structure planning is that the maximum number of tetrahedra for a triangulation of v
vertices is: %(02 —3v—2) [25]. In general, for meshes whose cells are not necessarily tetrahedra,
the amount of storage required is linear in the size of the mesh.

For the purpose of analysis, we assume the input mesh is in a form such that it can be
converted into an adjacency graph in linear time. Let f be the number of interior faces and n
the number of cells in a mesh. Each phase of the MPVO algorithm requires O(n + f) time. If
/ becomes the total number of faces, then this bound also applies to the MPVO algorithm for
nonconvex meshes provided the ratio of the number of exterior cells to the total number of cells
is sufficiently small as described next. Phase II of the MPVO algorithm for nonconvex meshes

requires a sort of the exterior cells; however, unless the number of exterior cells is asymptotically
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54,405 cells | 187,395 cells | 593,920 cells
1.13 sec. 3.7 sec. 11.9 sec.

Table 4.2: Typical serial timings for the MPVQ algorithm for nonconvex meshes on a SGI
4D /340VGX. The number of exterior cells range from 5% to 10% of the total number of cells.

larger than n/log, n, sorting their centroids in time O(mlog, m) is only O(n).5 Typically, m
is way less than this threshold.

Tables 4.1 and 4.2 show typical timings for the MPVO algorithms. When the program
and data fit entirely in physical memory and no other users are active, the timings shown are
identical to wall clock time. For unstructured meshes, 256 MB of physical memory will hold
the MPVO data structures for up to 2,500,000 cells. Phase IT accounts for approximately 65%
of the times shown. Phase III-DFS takes 25% longer than phase III-BF'S, resulting in an 8%
increase in overall time. Parallelization of the MPVO algorithm in conjunction with a volume

rendering system is described in Chapter 7.

4.7 Degeneracy and Effects of Numerical Error

In phase II of the MPVO algorithm the plane equation pe(z,y,z) = Az + By + Cz+ D is
evaluated. Due to roundoff error, it will not be possible to reliably evaluate pe(z,y,z) for a
face when —e < pe(z,y,2) < e, where ¢ is some small number. Therefore the <,, relation will
be indeterminate for that face, which we call an e-face. The perturbation technique described
below can not be used to eliminate e-faces.

When an e-face is detected, it is not known which way to direct the edge for that face or
even whether there should be an edge there at all. It has been concluded that the best policy

is to consider that the two cells that share an e-face are not related. This means the possibility

nlog,loggon
logon

¢O(mlog, m) = O(n) when m = Top o Since o logQ(IOg"2 —)=n-— < n.
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Figure 4.7: In A, the correct ordering of the cells can be obtained by topologically sorting
following the arrows. In B, due to numerical error, the ordering by DF'S is either 1,3,5,7,2,4,6,8
or 2,4,6,8,1,3,5,7; by BFS it is either 1,2,3,4,5,6,7,8 or 2,1,4,3,6,5,8,7. The second ordering
shown for both BFS and DFS results in slivers of cells being rendered out of order.

of introducing cycles is avoided, but at the cost of possibly introducing an artifact in the form
of a sliver that either may not be rendered or may be rendered out of order; see Figure 4.7.

Single precision floating point arithmetic has been used to achieve maximum speed with no
noticeable degradation in image quality. Methods to experiment with to eliminate artifacts are:
changing the viewpoint slightly, reducing the value of ¢ defined for the algorithm, moving the
viewpoint farther away, and/or using double precision arithmetic. For presentation graphics,
the problem can be eliminated by using integer arithmetic and tetrahedra.

If exact arithmetic is used, the following procedure can be used to relate every pair of
adjacent cells by the <,, relation even if the viewpoint is coplanar with a face. When the
viewpoint vp = (z,y,2) lies in the plane of a face f, that is pes(z,y,2) = 0, we want this to
be interpreted such that vp lies on one side of the plane, and we want this interpretation to be
consistent over all cells of the mesh so that cycles are not introduced. This can be accomplished
by the following symbolic perturbation technique based on the ideas described by Edelsbrunner

and Miicke [24]. If pes(z,y,z) = 0 for a face f, then we symbolically perturb the point (z,y, 2)

55



by some small positive amount in each of its three coordinates, let us say to (z+¢, y+¢?, 2+¢?),
where ¢ is indeterminate, ¢ > 0 and ¢ can be assumed to be arbitrarily small. Thus,
pef(z+e,ytel,z+e’)=Ax+ Ae+ By+ Be* +Cz2+Ce® + D
but Az + By + Cz + D = 0, therefore,
pef(z+e,y+e?z+e%) = Ae + Be? 4+ Ce® = g(e).

Since ¢ is arbitrarily small, g(¢) can be evaluated as follows:

if A >0 then g(¢) >0
else if A < 0 then g(e) < 0
else if A =0 then
if B> 0 then g(¢) >0
else if B < 0 then ¢g(¢) <0
else if B = 0 then
if C > 0 then g(e) >0

else if C' < 0 then g(e) < 0

Therefore, whenever pes(z,y,z) = 0, evaluate g(¢) instead. Now every pair of adjacent cells
will be related. This technique is valid since (A, B,C') # (0,0,0) and there exist a finite number

of faces in a mesh.

4.8 Cycles and the Delaunay Triangulation

4.8.1 Cycles and Their Effect

If a mesh has cyclically obstructing polyhedra, then the only way any algorithm can correctly

visibility order the mesh is to cut some of the cells into smaller cells so that the obstructs
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relation is acyclic. One way to do this is to retriangulate the vertices of the mesh such that
the resulting mesh is acyclic. The MPVO algorithm is not amenable to cutting the polyhedra
therefore it will output a correct ordering only if there are no cycles. A BSP tree [34] can be
used to visibility order a set of polyhedra, regardless of whether they are acyclic. This can be
done by using each shared face as a splitting plane to create the BSP tree. These facial splitting
planes correspond to the internal nodes of the tree; and, the leafs correspond to the cells. For
the reason mentioned in Section 4.1, this method is not suitable for large meshes. Furthermore,
due to splitting, new cells will result with a possibly different number of faces; and, field values
will need to be interpolated for the new vertices.

It is possible for cycles to occur in unstructured and curvilinear meshes. See Figures 4.8 and
4.9. However, the frequency of occurrence of cycles in actual meshes is not known. It would be
useful to have a preprocessing method for determining whether or not a mesh is acyclic for all
viewpoints; however, an efficient algorithm for doing this is not known. An O( f*) algorithm
has been described by Edelsbrunner [personal communication], where f is the number of faces.
Briefly, it works as follows. Each face in the mesh defines a plane. This in turn defines an
arrangement of planes which partition space into O(f?) regions. From each region, choose any
point and use that point as a viewpoint for a cycle test; a cycle test for a convex mesh takes
O(f) time.

The MPVQO algorithm using the phase III-DFS algorithm will still output an ordering of the
cells of a mesh with cycles but the ordering will not be a correct visibility ordering for some of
the cells involved in the cycle. It is quite possible, due to the high degree of abstraction inherent
in the process of direct volume rendering, that, in some cases, cycles may have no noticeable

effect on the image. If the number of cells involved in the cycle is small in comparison to the
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Figure 4.8: These three tetrahedra, which bound Schénhardt’s polyhedron [92], form a cycle.
By adding a point in the ‘middle’ of the polyhedron and then triangulating, a convex mesh of
tetrahedra is created which has a cycle. Such a situation could occur in an unstructured mesh,
possibly a finite element mesh.

total number of cells, then an image with cyclic artifacts might be considered acceptable. This
tradeoff between robustness and accuracy needs investigation.

When the phase III-BFS algorithm is used, which can be preferable for the reasons given
in Section 4.5.1.3, it will halt on encountering a cycle. It would be nice to find a way to break
cycles encountered and thus output all the cells even though the resulting ordering would not
be entirely correct. It is known that heuristics must be used to do this since the general problem
of minimizing the number of cells incorrectly ordered, which is related to the feedback arc set
problem, is NP-complete. One heuristic to use when a cycle is detected is to delete the inbound
edges of a cell with a minimum number of such edges. For either phase III algorithm, if the
mesh has cycles, the user is given a warning. The user then has the following options: use the
output anyway, try a different viewpoint, or abort and either retriangulate all or a portion of

the mesh or use a different visibility ordering algorithm.
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Figure 4.9: A simple curvilinear mesh with a cycle. The cycle is over the entire mesh for
the viewpoint from which the figure is shown. If the curved bounding surfaces of the cells are
approximated by triangles, the resulting cells can be tetrahedralized so that the cycle remains.

4.8.2 The Delaunay Triangulation

An acyclicity theorem for the obstructs relation for meshed polyhedra resulting from a Delaunay
triangulation (DT) [19] has been proven by Edelsbrunner [26]. A DT of a set S of points in E®
is a triangulation such that a sphere circumscribed about the four vertices of any tetrahedron
in the triangulation contains no other points in 5. Therefore, in order to eliminate cycles from
a meshed data set or to be sure it does not contain cycles, one can construct a DT of the
vertices of the mesh thereby redefining the cells of the mesh such that they are guaranteed to
be acyclic. For unusual point distributions, a DT of n points can be O(n?) both in time and in
size; however, for uniform point distributions, over certain domains, a DT can be expected to
have size O(n) and [1, 49] report expected running times of O(n*/3). It is possible that most
scientific data sets will fall into the category of uniform point distributions; but, this requires
investigation, especially for graded meshes.

The boundary of a DT of a set of points P is the boundary of the convex hull of P. If a
nonconvex mesh is retriangulated with a DT, then the boundary of the new triangulation will
not be the same as the original boundary; and, it will be necessary to ensure that the faces

in the original boundary are also faces in the new triangulation, and to mark all tetrahedra
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outside the original boundary as ‘imaginary’. A conformed DTis a DT which is required to have
certain faces, in this case the original boundary faces. Since a DT of a given point set is unique,
usually a conformed DT is possible only if new points are added. The process of adding points
and retriangulating is repeated until no tetrahedron intersects the original boundary. Points
are usually added only on the original boundary using heuristics. The convergence properties
of this process in E? is an unsolved problem.” An implementation of such a process for floating
point DTs has been developed by Meshkat et al at IBM [64]. Although they are not able to
prove convergence for their algorithm, they have tested it on hundreds of objects and found
that it converges rapidly. The convergence issue in E? is discussed somewhat in [69].

The DT is important in computational geometry and also is considered to be one of the three
most attractive methods for 3D automatic mesh generation [73]. In computational geometry, the
DT is usually implemented using integer arithmetic in order to properly handle degenerate cases.
Three-dimensional DT algorithms are described in [49, 68, 85]. Mesh generation algorithms used
by computational scientists usually are implemented in floating point; see for example Baker’s
3D DT algorithm [1]. The proof of acyclicity of the DT is based on exact arithmetic and the
slightest inaccuracy can destroy the acyclicity property. The Simulation of Simplicity (SoS)
technique developed by Edelsbrunner and Miicke [24], and now implemented as a C library by
Miicke, uses integer arithmetic, and cleanly and transparently handles all degenerate cases that
may arise in the implementation of the DT algorithm. It is possible to implement a floating
point front and back end to the SoS library which will make the use of integer arithmetic

transparent to the user.

"Edelsbrunner and Tan [22] have demonstrated an O(m?n) bound on the number of points in a Delaunay
triangulation in E? that conforms to m line segments and n vertices.
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A number of algorithms have been published which are called Delaunay triangulations of
nonconvex domains or sometimes constrained DTs, e.g. [52]; however, these triangulations are
not rigorous DTs due to relaxing the DT criteria at the boundary, therefore they may have
cycles.

Delaunay triangulations are a special case of regular triangulations [58]. A regular triangu-
lation in E? is a triangulation that can be obtained by projecting the boundary complex of a
convex polyhedron in E“t'. Edelsbrunner has proven the acyclicity of the obstructs relation for
regular triangulations [26]. One of the best algorithms for constructing a regular triangulation
in any dimension is given by Edelsbrunner and Shah [23]. When more is known about the prop-
erties and the implementation of regular triangulations, it may be the case that a conformed
regular triangulation will be more suitable than a conformed DT for the purpose of the work
taken up in this thesis.

The impact of retriangulation on the interpolation of data defined on the mesh should be
investigated. Due to the high degree of abstraction in direct volume rendering, interpolation
errors introduced by retriangulation may be acceptable. If the computational scientist uses a

mesh generated by a DT, then this problem will not arise.

4.9 Nonconvex Meshes

Curvilinear and unstructured meshes often are nonconvex. The MPVO algorithm for nonconvex
meshes can be used; however, it has some shortcomings. It takes time O(nlogn 4 f) rather
than O(n + f) if many cells are exposed, it is not parallelizable, and it will not give a correct
ordering if a boundary anomaly exists. Therefore, an important area of research is to find ways

to convert nonconvex meshes into convex meshes so the regular MPVO algorithm can be used.
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By use of a conformed DT as described in Section 4.8.2, any mesh can be converted into an
acyclic and convex one. Alternatively, the following techniques can be used. A nonconvex mesh
all of whose cavities or voids are convex can be converted into a convex mesh simply by treating
the voids and cavities as ‘imaginary’ cells in the mesh. If a mesh has nonconvex voids and/or
cavities they can be triangulated or decomposed into convex cells and then marked ‘imaginary’.
Cells marked ‘imaginary’ are not output by the MPVO algorithms. Two or more disconnected
meshes can be combined into one nonconvex mesh using these techniques.

Some of these preprocessing techniques are predicated upon being able to determine compu-
tationally whether a mesh is convex or nonconvex. If the mesh is nonconvex, then it is necessary
to computationally locate each void or cavity and determine its surface, and then determine if
these regions are convex or nonconvex. By tracing adjacent exterior (unshared) faces via their
shared edges and calculating the dihedral angle between these faces we can determine if the
mesh is convex. The mesh is convex if all exterior faces are connected to each other and all
dihedral angles are greater than or equal to 180 degrees. If there is more than one connected
set of exterior faces, this implies the existence of voids or that the mesh is disconnected. To
perform this computation it is helpful to have a data structure containing edge adjacency in-
formation, and to order the vertices so as to have facial orientation information. One such data
structure is given in [56]. If more than one connected set is found, the set which is the outside
boundary can be determined by comparison with the convex hull or by the following method.
Select any face in any of the connected sets, draw a half-line from that face and intersect the
half-line with all the faces in all of the other connected sets. If the half-line intersects an odd

number of faces, then the face from which the half-line originates is a member of a void surface,

62



otherwise it is the outside boundary. The use of the SoS library greatly simplifies this method
by eliminating degenerate cases.

To define the set of faces for each cavity: trace the outside boundary; when it diverges from
the convex hull a cavity face has been located; start from this face and gather all adjacent
exterior faces which are not a part of the convex hull, stopping, and backing up if necessary
any time a face or edge in the convex hull boundary is reached. If necessary, the convex hull
faces which cap the cavity can also be gathered, bearing in mind that a cavity may have more
than one cap if the cavity is a tunnel or network of tunnels. The dihedral angle examination
can be used to determine if each void or cavity is convex/nonconvex.

An O(nlogn) time convex hull algorithm for n points in E® has been described by Preparata
and Hong [78] and implemented by Day [18]. Day writes that he found the task “... definitely
not a trivial exercise ...” due to degeneracies and special cases. However, if an O(n?) algorithm
[27, section 8.4] is satisfactory, a much simpler implementation is possible. Even an O(nlogn)
implementation can be quite clean if the Guibas and Stolfi quad edge data structure [43] and
the SoS library is used. Algorithms by Chazelle [11] or Chazelle and Palios [13] can be used to
partition any nonconvex cavities or voids into convex regions; however, there is no guarantee
of acyclicity.

A collection of observed data with no specified connectivity between the data points is
called scattered data. In order to visualize this data it is very helpful to triangulate it. The
Delaunay triangulation is an excellent method for doing this since the resulting triangulation
is acyclic and so can be visibility ordered by the MPVO algorithm. When the shape of the
data set is nonconvex, for example a set of samples gathered over the land mass surrounding

the Gulf of Mexico, the Delaunay triangulation can create tetrahedra which are not amenable
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to accurate interpolation. Consider for example a tetrahedron created such that three vertices
are in Mexico and one in Florida. The a-shape concept discussed in [21, 27, 68] can be a useful
way to make a DT conform to the implicit boundary of the data, which in the example given
would be the shore line of the Gulf.

The implementation of the preprocessing methods, described in this section, for converting
a nonconvex mesh into a convex mesh could take a very significant amount of time; they are
by no means trivial. The implementation of a 3D conformed Delaunay triangulation is still a
research question at this time. Therefore, the MPVO algorithm for nonconvex meshes, which

has been found to be easy to implement, may fill an immediate need despite its shortcomings.

4.10 Other Applications of the MPVO Algorithms

The MPVO algorithm may be used for domain decomposition of finite element meshes for
parallel processing. This topic is covered in Chapter 10. The MPVO algorithm data structures
and the <,, relation can be used to solve the point location problem. This is described in
Chapter 9.

The data structure for the MPVO algorithm can be used to easily create a mesh previewer
so the mesh geometry can be observed. Either the exterior surface of the mesh can be viewed
or the surfaces of any voids. If the computer supports hidden surface removal, then output
the exterior faces (or the void faces) and render them as bordered polygons; otherwise, use
the appropriate MPVO algorithm to visibility order the mesh and render only the front facing

exterior faces (or back facing void faces).
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4.11 Conclusion and Remarks

The MPVO algorithm can visibility order any acyclic convex mesh in time linear in its size.
Therefore it can be useful for direct volume rendering of large 3D curvilinear or unstructured
data sets, making rotation, zooming and animation a possibility. It will be especially useful if
polyhedron rendering hardware becomes available. An acyclic nonconvex mesh can be visibil-
ity ordered by the MPVO algorithm for nonconvex meshes if it has no boundary anomalies.
However, a better approach seems to be to convert the mesh into a convex mesh as discussed in
Section 4.9. Visibility ordering and point location can then be performed in a straightforward
manner. Comparative timings for these two approaches are given in Chapter 7. If a mesh is
cyclic, a Delaunay triangulation, which is acyclic, can be used to retriangulate the vertices of
the mesh; if the cyclic mesh is nonconvex, then a conformed Delaunay triangulation is required.

Rectilinear meshes with embedded rectilinear meshes can be visibility ordered by the recur-
sive use of a method such as given in [33]. Nonrectilinear meshes with embedded meshes can
be ordered by treating the embedded mesh as a cell in the embedding mesh. Apply the MPVO
algorithm to the embedding mesh; when a cell is encountered that is an embedded mesh, apply
the MPVO algorithm recursively to it.

We would like computational scientists to consider the following generation technique for
unstructured meshes. Whenever possible, generate a mesh over a convex domain even though
the domain of interest is nonconvex; such a technique is used by Baker [2]. Retain the vertices
and cells which lie outside the domain of interest for use at visualization time; send the remaining
vertices and cells to the finite element solver. By doing this, the data set can be immediately
and efficiently visualized using the MPVQ algorithm. Since this algorithm has been found to

be easy to implement, the scientist can then view his or her own data with minimal effort. This
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technique of saving the vertices and cells lying outside the domain of interest also applies to
meshes created with a conformed Delaunay triangulation. The Gehduse and ONERA meshes
discussed in Chapters 6 and 7 are examples of the application of this technique.

The basis for the MPVO algorithm came from theoretical work in the field of computational
geometry by Herbert Edelsbrunner, and bears testimony to the practical applicability of theo-
retical research in computer science. This paper has shown that computational geometry is a
rich source of solutions for many of the problems encountered in dealing with volume visual-
ization of nonrectilinear meshed data sets; and also that investing in a one time preprocessing
of a data set yields high dividends in terms of run-time efficiency.

It would be especially helpful to have a suite of efficient, correct and relevant 3D compu-
tational geometry programs in the public domain, such as implementations of the SoS library,
a parallel version of the brute force visibility ordering algorithm, an O(log2 f) spatial point lo-
cation algorithm, as well as code to triangulate a nonconvex polyhedron, to compute a convex
hull, an a-shape, a (conformed) Delaunay triangulation, etc. These programs would provide a
valuable platform on which to build research experiments. As it is now, researchers face many
months of labor to implement one or more of these algorithms before they can begin to inves-
tigate the issues in computer graphics or computational science that really interest them. A
team consisting of researchers from the fields of computational geometry, computational science
and computer graphics/visualization, with a grant from a national funding agency, could make

a most valuable contribution to science by undertaking such a project.
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CHAPTER 5

HARDWARE SUPPORT FOR GRAPHICS

5.1 Introduction

High-end graphics workstations offer hardware support for high performance polygon rendering.
At the present time, polyhedron rendering engines are not available; although, experimental
architectures for rendering voxels have been developed. As noted in Chapter 2, the voxel model
does not apply when volume rendering nonrectilinear data.

The splatting technique for DPVR described in Chapter 6 decomposes each tetrahedron
into triangles. Therefore, high performance polygon rendering engines can be harnessed to help
achieve interactive rates of rendering.

Shirley and Tuchman [93] implemented their Projected Tetrahedra (PT) splatting algorithm
for volume rendering on a Sun 4/490 workstation. They wrote a scan conversion algorithm to
create and display the image on a Pixar monitor. They reported that volume rendering a data
set with 71,680 tetrahedra took 19 seconds for the execution of the PT algorithm, 3 seconds

for the MPVO Algorithm to do the visibility ordering, plus the time to render the image.
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The rendering time was considerable since the scan conversion, Gouraud shading and opacity
blending were all done in software.!

These last three procedures, scan conversion, Gouraud shading and opacity blending, as
well as viewing transformations, lighting calculations and clipping, are precisely what are im-
plemented in hardware and microcode on high performance 3D graphics workstations such as
the Apollo DN10000VS, the Pixel machine and the Silicon Graphics Power Series. Therefore,
to achieve the goal of interactive volume rendering of very large data sets, it is natural to utilize
hardware support for high performance polygon rendering.

For the reasons given in Chapter 7, the Silicon Graphics Power Series (SGIPS) was chosen
for this research. The SGIPS is an MIMD machine.

In the next section we describe some architectural details of the SGIPS that relate to
hardware support for polygon rendering and to the parallelization issues that will be discussed
in Chapter 7. In Section 5.3 we discuss software support for these hardware features and some
other related software issues. Knowledge of both of these sections will be helpful in reading

Chapters 6 and 7. The inaccuracies introduced into volume rendering by the use of graphics

hardware are discussed in Chapter 6, Section 6.5.

5.2 SGIPS Architectural Description

The Silicon Graphics Power Series have up to eight 33 MHz MIPS R3000 RISC main processors
and eight floating point coprocessors, as well as 85 dedicated proprietary graphics processors

in the VGX graphics subsystem. The specific model utilized for my work was the 4D /360VGX

! For the purpose of this work, Gouraud shading means the color and opacity at each vertex of the triangle are
linearly interpolated across the pixels in the interior of the triangle. Opacity or alpha blending is the process of
blending a portion of a pixel’s existing color with a portion of the new color to achieve the effect of transparency.
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Figure 5.1: Block diagram of the Silicon Graphics Power Series architecture. Figure shows
one CPU and its associated caches. There are up to eight such CPU configurations in a SGIPS
machine.

with six CPUS, henceforth referred to as the SGI-VGX. It had 128 MB of physical memory. The
fundamental design of the SGI-VGX is a tightly coupled symmetric shared memory architecture.
See Figure 5.1.

The Sync Bus provides high speed synchronization between the main CPUS in support of
fine grain parallelism. It supports 65,000 individual test-and-set variables which are in a special
part of the physical address space. These provide the user with very fine grained hardware spin
locks. Any one process share group can use up to 4,096 hardware locks. As described in

Chapter 7, these locks were heavily used in my algorithms and found to be quite efficient.
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Figure 5.2: The graphics subsystem of the SGI-VGX

The Processor Bus can support sustained data transfers at 8 bytes every clock cycle. Thus
an eight processor system has a total processor to cache bandwidth of 2100 megabytes per
second. The first level caches, both instruction and data, are 64 kilobytes. The second level
caches are 256 kilobytes, organized as 16 lines of 16 bytes each. The second level cache watches
every transaction on the MPlink bus and checks for transactions in its data storage. The first
level cache is always a subset of the second level cache so data consistency is guaranteed. Both
caches use physical addresses rather than virtual addresses.

The MPlink bus supports the above cache consistency scheme and provides communication
between the main processors, memory, the I/O system and the graphics subsystems. The
Illinois cache consistency protocol is used. The MPlink bus, which is pipelined, has a 64

megabyte sustained bandwidth.
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The graphics subsystem is shown in Figure 5.2. It receives a description of 3D objects in
the form of polygons from the main CPUS. Each polygon is expressed in terms of its vertices.
Each vertex is specified by its coordinates and an optional color, opacity and normal vector.

The graphics subsystem, composed of 85 processors, is divided into four subsystems: the
Geometry Subsystem, the Scan Conversion Subsystem, the Raster Subsystem and the Display
Subsystem. The first two of these have a SIMD pipeline organization and can process four
graphics primitives simultaneously. The primitives accepted are points, line, polygons and
polygon meshes. The latter two stages have an MIMD organization and allow up to 200 million
pixels to be processed per second.

The Geometry Subsystem performs viewing transformations, lighting calculations and clip-
ping. The Scan Conversion Subsystem converts the output of the Geometry Subsystem into
pixel RGBA data for each pixel on the screen (1280x1024). Vertex color and opacity is linearly
interpolated across the interior of lines or polygons.

The Raster Subsystem contains up to 40 processors, each of which controls up to 1/40 of
the pixels on the screen. Each pixel has at least 144 bits of data, which includes 32 bits of
RGBA data for each of two buffers, a 24 bit Z-buffer, an 8-bit stencil plane used to extend
the capability of the Z-buffer so various prioritizing algorithms can be performed, two 4-bit
underlay /overlay planes for use by the window manager, and two sets of 4-bit window planes.
This subsystem is responsible for hidden surface removal and various blending and texturing
operations.

The Display Subsystem reads the frame buffer and displays the image on the screen. It
allows the display of multiple images simultaneously in an overlapping window environment, in

single or double buffered RGB modes.
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Figure 5.3: Flow abstraction of the SGI-VGX

The graphics pipeline is entirely under the control of microcode. The user feeds the graphics
pipe with data using calls from the SGI GL graphics library. See Figure 5.3. At this level of
abstraction, there are two processes going on in parallel, the graphics pipeline and the main
CPUS. Thus while the user’s algorithm runs in parallel on the main CPUS, at the same time the
data output from the user’s algorithm is is being processed in parallel by the graphics pipeline.

When the system is being used at its maximum efficiency, one CPU is used to fill the
graphics pipe full time and the remaining CPUS are used to calculate the data being fed
into the graphics pipe. Whether or not the system can be used at its maximum efficiency is
application dependent.

As described in the performance analysis in Chapter 7, it was determined that the system
could not be used at its maximum efliciency for this application due to a slow graphics pipe. One
of the reasons for this is discussed in the next section. The bottleneck was further pinpointed

to the Scan Conversion Subsystem of the graphics pipe.
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Most of the frequently made graphics calls are compound calls. For example, to render a
triangle, where the coordinates for vertex ¢ are stored at location vip and the RGBA data for
that vertex are stored at cip, requires the following sequence of calls. The c4f() call means the
color is specified as 4 floating point numbers, r, g, b and opacity. The v3f() call means the
vertex is specified by 3 floating point coordinates, x, y, z. If lighting is used, then a normal

vector is specified for each vertex in addition to a color.

bgnpolygon();
cdf(clp);
v3f(vlp);
cdf(c2p);
v3{(v2p);
c4f(c3p);
v3f(v3p);

endpolygon();

Since graphics calls can be made by any of the CPUS, compound graphics calls must be
atomic and so mutual exclusion must be used; hardware spin locks may be used for this purpose.
The flow of data from the main CPUS to the graphics pipeline is maximized by the use
of burst DMA which moves four 32-bit words of data. Typically this transaction will involve
the vertex coordinates < z,y,2,w > or colors < r,¢,b,a >. Thus, for maximum performance,

these data should be quadword aligned.
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5.3 Software Issues

The SGI graphics library (GL) provides the functionality to utilize the SGIPS graphics hard-
ware. To achieve maximum performance from the graphics hardware, surfaces are described
as meshes of polygons, either triangles or quadrilaterals. Often a surface will be described by
several hundred or several thousand such polygons. When the basic element is a triangle, the
mesh is called a tmesh.

The advantage of this form of description can be seen be comparing the following code
fragments. The first fragment uses GL calls to render a single triangle. The second fragment
uses the tmesh to render three triangles; see Figure 5.4. The coordinates of vertex ¢ are stored
at memory location vip and the color for that same vertex at cep.

To render a single triangle requires eight GL calls. Whereas, using a tmesh, three triangles
can be rendered using only 12 calls. When rendering very large tmeshes the savings can be

very significant.

CODE TO RENDER 1 TRIANGLE:
bgnpolygon();
cdf(clp);
v3f(vlp);
cdf(c2p);
v3f(v2p);
cdf(c3p);
v3f(v3p);

endpolygon();
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Figure 5.4: The three triangles used for the tmesh example. This corresponds to a case 1
splatting decomposition as defined in Chapter 6

CODE TO RENDER 3 TRIANGLES USING A TMESH:
bgntmesh();
cdf(clp);
v3f(vlp);
cdf(c2p);
v3f(v2p);
cdf(c3p);
v3f(v3p);
cAf(cdp);
v3f(vdp);
cdf(clp);
v3f(vlp);

endtmesh();
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In the splatting process described in Chapter 6, a tetrahedral cell is projected into from
one to four triangles and then each triangle is rendered. Therefore, using a tmesh rather than
rendering each triangle individually results in increased efficiency. When a tetrahedron projects
into three triangles, if a tmesh is used, 12 graphics calls are needed instead of 24.

Using the tmesh whenever possible resulted in a performance improvement of 35% when
rendering in parallel using 6 CPUS with the Projected Tetrahedra splatting algorithm for 71,680
tetrahedra. The improvement in performance for serial rendering was even higher.

To use the rendering hardware at its maximum efficiency it is necessary to use tmeshes
which consist of hundreds or thousands of triangles. Because our volume renderer had at most
4 triangles per tmesh, it was unable to use the graphics hardware at its maximum efliciency.

The software support for parallel processing on a SGIPS is described in Chapter 7.
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CHAPTER 6

CELL PROJECTION METHODS

6.1 Introduction

In this Chapter, we present a suite of fast rendering approximations that support the goal
of interactive volume rendering. A modified version of Shirley and Tuchman’s [93] Projected
Tetrahedra (PT) splatting algorithm is used as the basis for these approximations and also as
a standard of comparison, both for image information content and rendering speed.

When considering the validity of these approximated images, it is important to keep in mind
that interactive DPVR is intended to give the scientist a working tool to provide a general idea
of the spatial distribution of the scalar field and roughly identify areas of interest, e.g. extrema
or hot-spots, and not necessarily to create a highly realistic or precise image for publication
purposes.

In other words, this environment is intended to be a data previewer for the scientist. He
or she might use it in an analogous way to a professional photographer who uses a Polaroid
camera to quickly check several different shots before using a 4x5 view camera for the final
photo. These fast approximations can also be useful for selecting and tuning the color and

density transfer functions.
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There is a high degree of abstraction inherent in DPVR; every cell in the mesh contributes
to the image. Therefore approximation errors if randomly distributed over the image may not
be significant. However, if the mesh is highly regular, then these errors can be magnified and
be highly noticeable.

For this thesis, only tetrahedral cells are considered. The MPVO algorithm can deal with any
cells. The PT splatting algorithm, described below, deals only with tetrahedra. Wilhelms and
Van Gelder [103] discuss the splatting of right-angled parallelepipeds (bricks). Alternatively,
nontetrahedral cells can be tetrahedralized so the PT algorithm can be used.

We start with an overview of the splatting process, then describe Shirley and Tuchman’s
PT algorithm, then describe our suite of four fast splatting approximation algorithms, then
discuss distortions introduced by the use of graphics hardware, and finally present comparative

timings and discuss image quality.

6.2 Overview of the Splatting Process

In splatting, as in splatting a snowball against a wall [100], each cell is projected onto the screen
in visibility order from back to front to build up a semitransparent image. The contribution of
each cell to the image is proportional to the thickness of the splat. The splat is rendered as a
set of up to four triangles which have a common vertex at the point of maximum thickness of
the splat. At this common vertex, the opacity is nonzero; at all other vertices the opacity is
zero. The opacity and color at the vertices are interpolated over the splat; Wilhelms and Van

Gelder [103] describe three possible interpolation methods.
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Figure 6.1: Projections of a tetrahedron onto the plane. There are four cases or footprints.
The point marked as NZT is used as a non-zero thickness vertex for the triangles.

6.3 The Projected Tetrahedra Algorithm

The PT algorithm [93] works by compositing into an image the polygonal projection of each
cell, called the cell’s footprint, onto the viewing plane. Each footprint is subdivided into from
one to four triangles, depending on the projection, and then rendered as a set of triangles.

For tetrahedra, there are only two combinatorially different projections; they are shown in
Figure 6.1 as cases 1 and 2. Cases 3 and 4 are degenerate instances. My experiments show
that for irregular meshes case 1 occurs approximately 40% of the time, on average, and case
2 approximately 60%. Cases 3 and 4 occur less than 5% of the time. Only cases 1 and 2 are
discussed here; the extension to the degenerate cases is obvious.

The PT method uses the assumption, described in Chapter 3, that the optical density and
chromaticity are constant along a ray through a cell. See Equation 3.8. Only one density

transfer function p is used, rather than three.
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Each 2D footprint has a “nonzero thickness” (NZT) vertex as shown in Figure 6.1. For each
cell, the opacity at the NZT vertex is computed using either Equation 3.10 or 3.11. In these
equations, t; and {5 are the entry and exit points of a viewing ray through the NZT vertex.
The opacity at the remaining vertices is set to zero. The color is calculated using Equation 3.9;
a similar equation is used for the density.

The splatting calculation time was slightly faster when the opacity approximation given in
Equation 3.11 was used rather than Equation 3.10, but not significantly so. For consistency,
Equation 3.11 has been used for all results reported herein.

The Shirley and Tuchman PT algorithm was modified and optimized for an MIMD archi-
tecture with hardware support for high performance polygon rendering.

The opacity and color at the vertices of each triangle is linearly interpolated over the interior
of the polygon by the graphics hardware (Gouraud shading). Also, the hardware is used to blend
the new and old color for each pixel (alpha blending). The remainder of the splatting process,
cell visibility ordering, decomposition of the polyhedral cell into polygons, and calculation of
color and opacity for each polygonal vertex is done in software.

Figures 6.2 through 6.7 show volumetrically rendered images using the the modified PT
algorithm on a Silicon Graphics 4D/360VGX workstation. Other images were shown in Fig-
ures 3.5 and 3.6 in Chapter 3. The images in Figures 3.5 and 3.6 were generated using the
MPVO Algorithm. The images shown in Figures 6.2 through 6.7 were generated using the
MPVO Algorithm for nonconvex meshes. Figure 6.2 shows volume rendered images of a sim-
ulated temperature field and of hot-spots in a different temperature field, both defined on
an nonconvex irregular mesh of 13,499 tetrahedra comprising a MBB-Gehéuse solid modeling

benchmark. The mesh was generated by a conformed Delaunay triangulation [65].
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Figure 6.3 shows two views of an energy field from a simulation of airflow around an air-
foil defined on a mesh of 287,962 tetrahedra. The data is courtesy of ICASE, NASA Langley.
Figure 6.4 shows the energy and the magnitude of velocity from a CFD simulation of incom-
pressible flow around multiple posts defined on a curvilinear mesh of 513,375 tetrahedra [84].
The images shown in Figure 6.5 show an N3S simulation of velocity magnitude of coolant flow
in a component of the cooling system in Electricité de France’s Super Phoenix nuclear reactor.
The data field is defined on a mesh of 12,936 tetrahedra. Figure 6.6 shows a composite image
of the Mach number field from two different viewpoints and also an image of the pressure field
for airflow around an ONERA M6 wing with freestream Mach number 0.84, and a 3.06 angle
of attack. The mesh has 362,712 tetrahedra and was constructed using a conformed Delaunay
triangulation [2]. The top image in Figure 6.7 shows the density field defined on a curvilinear
mesh of 187,395 tetrahedra from a simulation of a blunt-fin induced shock wave and turbulent

boundary layer separation [48].

6.4 Suite of Rendering Approximations

To investigate the feasibility of even faster methods than the PT algorithm, a suite of four
different rendering approximation methods have been developed. They tradeoff image accu-
racy/quality for faster image generation time. Along with highly accurate methods for direct
volume rendering, the PT algorithm and the suite of fast approximations form a hierarchy of
rendering methods as shown in Figure 6.8. Color photographs of the images generated by each
of the approximations are shown in Figures 6.7 to 6.12.

For all these approximations, it is assumed that the transfer functions x,(5(z,y, 2)), £4(5(z, ¥, 2)),

kp(S(z,y,2)), and p(S(z,y,2)) exist, where is S(z,y, z) is the scalar field being visualized.
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Figure 6.2: Two different temperature fields are shown. FEach is defined on an nonconvex
unstructured mesh of 13,499 tetrahedra comprising a MBB-Geh&use solid modeling benchmark.
The mesh was generated by a conformed Delaunay triangulation.
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Figure 6.3: Volume rendered images of an energy field for a simulation of airflow around an
airfoil defined on a mesh of 287,962 tetrahedra.
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Figure 6.4: The top image shows the energy field and the bottom image shows the magnitude
of velocity from a CFD simulation of incompressible flow around multiple posts defined on a
curvilinear mesh of 513,375 tetrahedra.
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Figure 6.5: Volume rendered images of simulation of velocity magnitude in a component of the
cooling system from the Super Phoenix nuclear reactor defined on a mesh of 12,936 tetrahedra.
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Figure 6.6: Flowfield for an ONERA M6 wing with freestream Mach number 0.84, and a 3.06
angle of attack on a mesh of 362,712 tetrahedra. The top image shows two views of the Mach
number field; the bottom image shows the pressure field.
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Figure 6.7: Volume rendered images of the density field defined on a curvilinear mesh of
187,395 tetrahedra from a simulation of a blunt-fin induced shock wave and turbulent boundary
layer separation. The top image was generated using the modified PT splatting algorithm. The
VOX approximation was used to generate the bottom image.
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Higher Order Methods

PT

/ \

WED VOX UTS1 uTS2

Figure 6.8: Hierarchy of approximations to the highly accurate methods for volume rendering,
such as ray tracing and the projection algorithm of Max et al [61]. The approximations tradeoff
image accuracy/quality for faster image generation time. PT is the Projected Tetrahedra

algorithm of Shirley and Tuchman [93]. The other four methods WED, VOX, UTS1 and UTS2

are described in this Section.

6.4.1 The Voxel Approximation

The first approximation considered, the vozel (VOX) approximation, precomputes an average
color and opacity for each cell based on the average of the scalar data at the four vertices of the
cell. This value is stored as a single packed 32-bit integer in the MPVO data structure along
with the cell’s vertex, adjacency information, etc.

The color intensity for the red channel for a cell ¢ is calculated as:

Ky, = kr(avgScalarData(c))

c

similarly for the other two channels. The opacity is calculated as:

a. = ap(avgScalarData(c))

where @ is an empirically determined constant called the attenuation factor. Typically, 0.05 <
a < 1.5 for the VOX method. The average scalar data is calculated by averaging the data

values at the four vertices of the cell.
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The attenuation factor e for a given data set is calculated by adjusting e until the ap-
proximated image matches as closely as possible the corresponding image produced by the PT
method. Once the attenuation factor has been determined in this way for a particular data set,
it is valid for all viewpoints and viewing parameters.

For case 1, only one triangle is output, the single front-facing or back-facing triangle, for
case 2, the two front-facing triangles. Each triangle is rendered with a single color and opacity,
the precomputed average value for the cell described above.

Images generated using the VOX approximation are shown at the bottom of Figure 6.7 and
at the top of Figure 6.9. In the image at the bottom of Figure 6.7 ¢« = 0.7 and at the top of

Figure 6.9 ¢ = 0.075.

6.4.2 The Uniform Thickness Slab Approximation

The next approximation, the uniform thickness slab (UTS1) approximation, treats each cell as
a slab of uniform thickness.

The opacity for each vertex v is calculated as a = ap(S(v)), where a is an empirically
determined attenuation factor. Interesting and useful visual effects can be achieved by varying
a, between 0.1 and 2.5. The color for each vertex is simply &,(5(v)), k4(5(v)) and k(5 (v)).
The vertex colors and opacities are calculated in a preprocessing step and stored as a single
packed 32-bit integer for each vertex.

Rather than perform a case analysis to determine the splat profile, all front-facing faces are
rendered. This technique is fast since the MPVO data structure contains information about

which faces are front-facing.
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Figure 6.9: The top image is generated using VOX approximation. The bottom image is
generated with the UTS1 approximation. For comparison, an image using the modified PT
algorithm is shown in Figure 3.5
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Figure 6.10: Volume rendered image using the UTS1 approximation.

Images generated using the UTS1 method are shown in Figures 6.9 through 6.12. The top
image in Figure 6.11 was rendered using the UTS1 approximation with ¢ = 0.4. The bottom
image used the UTS1 approximation with ¢ = 1.8.

A variation of this method, called the UTS2 method, is to render the single front-facing
or back-facing face for case 1 projections. This requires extra calculation to determine the
footprint, but it results in about 25% fewer polygons being rendered. Figure 6.12 compares an

image created using the UTS1 method with one created by the UTS2 approximation.

6.4.3 The Wedge Approximations

The final method considered here, the wedge (WED) approximation, decomposes each splat

into triangles as shown in Figure 6.1. Initially, the centroid was used as the single NZT vertex
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Figure 6.11: The top image was rendered using the UTS1 approximation with an attenuation
factor of 0.4. The bottom image used the UTS1 approximation with an attenuation factor of

1.8.
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Figure 6.12: The top image was rendered using the UTS1 approximation. The bottom image
used the UTS2 approximation. An attenuation factor of 0.15 was used.
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for case 2 because it was faster to calculate than the NZT vertex used by the PT method.
However, the image quality was not good; therefore the NZT vertex, as calculated by the PT
method, was used.

The color and opacity for each vertex is calculated in the same way as in the UTS1 method.
For case 1, the color and opacity for the NZT vertex is just the color and opacity for that vertex.
For case 2, the color and opacity for the NZT vertex is the average of the color and opacity at
the four cell vertices. The opacity is set to zero at the remaining vertices of the footprint. The
color and opacity for each vertex is calculated and stored in a preprocessing step.

The WED approximation was not significantly faster than the PT algorithm; and its image

quality was noticeably inferior. Therefore this approximation method was not considered useful.

6.5 Distortions Introduced by Use of Graphics Hardware

In this section, we discuss how the use of hardware support for graphics can lead to inaccuracies
in certain of the calculations in the splatting algorithm. These involve the use of Gouraud
shading and opacity blending.

The PT algorithm uses either Equation 3.10 or 3.11 to calculate the opacity. Equation 3.10

is reproduced here:

a=1-—ePMNl-t) (6.1)

The PT algorithm calculates the opacity at the thickest point of the splat and then linearly
interpolates it over the interior of the splat, with the assumption that the opacity is zero at the
periphery.

Figures 6.13, 6.14, 6.15, 6.16 and 6.17 show the distribution of opacity as calculated using

linear interpolation versus the actual opacity distribution calculated using Equation 6.1. It can
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Figure 6.13: Opacity calculated using linear interpolation (dashed line) versus actual opacity
calculated using Equation 6.1 (solid line).

be seen that the error in the use of linear interpolation increases with the thickness of the cell
and with increasing opacity. If Equation 3.11 is used to calculate the opacity of the cell, then
linear interpolation does not introduce any additional inaccuracy.

As discussed in Section 6.3, there was no perceptible difference between images produced
using Equation 3.10 and Equation 3.11. However, Gouraud shading (linear interpolation) was
used to create both images. To create an image using Equation 3.10 without Gouraud shading
it would be necessary to either use ray tracing or else to do the scan conversion in software.

It has been pointed out [93, 103] that because only 8 bits are used for the opacity channel
on many high performance workstations, this can lead to distortions in splatted images which
are created using hardware opacity blending. This is due to roundofl error when a lot of cells

have very small opacity. However, this was not observed to be a problem in the experiments
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Figure 6.14: Opacity calculated using linear interpolation (dashed line) versus actual opacity
calculated using Equation 6.1 (solid line).
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Figure 6.15: Opacity calculated using linear interpolation (dashed line) versus actual opacity
calculated using Equation 6.1 (solid line).
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Figure 6.16: Opacity calculated using linear interpolation (dashed line) versus actual opacity
calculated using Equation 6.1 (solid line).
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Figure 6.17: Opacity calculated using linear interpolation (dashed line) versus actual opacity
calculated using Equation 6.1 (solid line).
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71,680 cells 593,920 cells
PT | WED | VOX | UTS1 | UTS2 || PT WED | VOX | UTS1 | UTS2
Serial 5.51 | 4.19 | 2.76 | 2.39 2.79 46.40 | 34.75 | 23.42 | 19.13 | 23.42
6CPUS || 1.80 | 1.74 1.14 | 1.69 1.41 16.46 | 16.33 | 10.05 | 16.27 | 12.45

Table 6.1: Comparative volume rendering timings in seconds for the different approximation
methods. All methods use the MPVO algorithm for visibility ordering and were executed on a
SGI 4D/360VGX graphics workstation. Time is wall clock time.

that were performed. If an image was too transparent then the density map or attenuation
factor was adjusted. It would be helpful to implement a volume renderer which did not rely on

hardware blending in order to compare the images.

6.6 Comparative Timings and Image Quality Summary

Table 6.1 shows comparative timings for the PT, WED, VOX, UTS1 and UTS2 methods for
71,680 and for 593,920 tetrahedra, both for serial and parallel execution using 6 CPUS. The
parallel times are discussed in Chapter 7.

The execution time for the PT splatting method, for data sets up to 600,000 cells, was
brought into the interactive range by the use of graphics hardware and parallelization. Through
the use of the suite of approximations described above, in particular the UTS1 method, inter-
activity was achieved for serial rendering of data sets of over 1,000,000 cells. Using the VOX
approximation, a data set of 1,003,520 cells was rendered in parallel in 16.3 seconds. In serial
mode that same data set was rendered using the UTS1 method in 34.0 seconds. In comparison,
the time to render that data set using the PT method in serial was 79.6 seconds, and 30.2

seconds in parallel.
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It was found that the size of the image generated had little effect on the time of generation.
An image that filled the entire screen took less than 2% longer than one that was one inch
square.

Since the WED approximation was not significantly faster than the PT algorithm relative
to the speed of the other three approximations, it is not considered useful.

The UTS1 method was the fastest of the approximation methods for serial execution; and
surprisingly, its images were the best approximation to the PT method’s images, especially if the
attenuation factor was carefully set in the one time process described above. Little difference
was noted between the images of the UTS1 and UTS2 methods.

The VOX approximation also gave good images but usually the voxel nature of the ap-
proximation was clearly evident. The VOX approximation is more valid when the cells are
relatively small in terms of pixel coverage. For parallel usage, this method is the fastest of all
the approximations. An explanation of why the VOX method outperforms the other methods

for parallel execution is given in Chapter 7.
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CHAPTER 7

PARALLELIZATION

7.1 Introduction

Machines in the SIMD and MIMD classes of parallel architecture offer varying degrees of support
for graphics. My decision to use the MIMD class for volumetric rendering of nonrectilinear data
was based on an analysis of the following factors.

Massively parallel SIMD machines, such as the Connection Machine, have many thousands
of processors and often have a nearest neighbor topology. The Connection Machine has a
north-south-east-west (NEWS) interconnection scheme. Such machines perform best when the
algorithms can be designed to use lock-step parallelism and when the data structures lend
themselves to a NEWS topology. Also, machines in this class generally do not offer hardware
support for 3D graphics.

The MIMD class, on the other hand, have a much smaller number of processors but offer
more flexibility in terms of algorithm and data structure design. And, certain machines in this
class have high performance graphics hardware.

Interactive volume rendering has been done on a Connection Machine. But it has been done

for rectilinear meshes, which can take advantage of a NEWS topology because there is a one
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to one mapping from the mesh geometry to the processor topology. Ray integration can then
proceed along a NEWS axis.

It is not clear that the splatting and graph algorithms used herein could take advantage of a
SIMD architecture. The graph algorithms needed for visibility ordering an irregular mesh and
the associated data structures do not seem suited to the NEWS topology.

Graph algorithms for unbounded parallelism are often based on computing the transitive
closure of a boolean adjacency matrix. This is discussed further in Section 7.4.2.1.

Finding ways to effectively apply massively parallel architectures with a NEWS topology
to an irregular mesh is still a open problem. If an answer is found it will benefit not only
volume rendering, but more importantly, the solution of finite element problems on such meshes
[29, 46, 90]. It will be interesting to investigate volume rendering using the next generation
of SIMD machines which are expected to offer constant time communication between any two
processors.

The two main factors that led to the choice of an MIMD architecture were the problem
matching the data to the interconnection topology on SIMD machines and the availability of
high performance graphics hardware on certain MIMD machines. The selection of a particular
machine in the MIMD class was made based on maximizing hardware support for 3D graphics
and the equipment available. This led to the use of the Silicon Graphics Power Series (SGIPS)
for this work. The SGIPS is one of a class of machines that were enumerated in Section 5.

Other MIMD machines with graphics capability were considered, such as the Alliant FX /2800
and the Hypercube, but their hardware support for graphics was minimal. As will be seen below,

even though the SGIPS has only eight CPUs, compared to 28 for the Alliant FX /2800 and sev-
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eral hundred for the Hypercube, high-end SGIPS machines have nearly 100 graphics processors

that operate in parallel or pipeline at the same time the eight main CPUs are processing.

7.2 Preliminary Matters

Since it would be highly advantageous to utilize a massively parallel machine such as a Con-
nection Machine for interactive volume rendering, we briefly review current results pertinent to
this and define several terms that we will use.

The complexity of parallel algorithms can be analyzed from two different points of view.
Bounded parallelism, sometimes referred to as k-parallelism, assumes the availability of &
processors. Unbounded parallelism assumes the availability of an arbitrarily large number
of processors. The first approach is more suited to the shared memory MIMD model of com-
putation and the second to the massively parallel SIMD model typified by the Connection
Machine.

The abstract model of parallel computation used here for discussing unbounded parallelism is
the parallel random-access (PRAM) model. It is a model in which it is assumed that, in addition
to the private memory for each processor, there is a shared memory, and that any processor
can access any cell of that memory in unit time. This model is not physically realizable at the
present time due to the complexity of linking the processors to the memory when the number
of processors and the size of the memory gets very large. Nevertheless this model is commonly
used to analyze parallel algorithms. Read and write conflicts can be resolved in a number
of different ways; the method chosen for this discussion is the exclusive-read exclusive-write

(EREW) PRAM which forbids concurrent reading or writing of a cell of shared memory.

102



Let the term polylog be defined as follows polylog(n) = Uy O(log*(n)). Let S be a problem
whose fastest sequential algorithm runs in time proportional to T'(n). A parallel algorithm for
S running in time {(n) with p(n) processors is optimal if {(n) = polylog(n) and the work
w(n) = p(n)-t(n)is O(T(n)). An efficient parallel algorithm for S is one where the work w(n)
is T'(n) - polylog(n) with time t(n) = polylog(n).

The class NC*, k > 0, is the class of problems that are solvable in time O(logk n). The class
NC = Uso NC* is generally accepted as a characteristic of the class of problems that can be
solved with a high degree of parallelism using a feasible number of processors. In other words,
the class of problems that can be solved very rapidly, in time polynomial in log n, with a feasible
(polynomial) number of processors coincides with NC'. The class NC was first identified and
characterized by Pippenger in 1979 [74] and is now called NC' for Nick’s class. The problems
in NC?! are the problems that are solvable by the fastest parallel algorithms.

When discussing bounded parallelism, the notation T%(n) is used to mean the time com-
plexity of the parallel algorithm when k processors are used.

Speedup as used herein is the ratio of the time to execute an efficient serial program for a
calculation to the time to execute a parallel program for the same calculation on N processors.
Efficiency, as used henceforth, is the ratio of speedup to the number of CPUs. Efficiency for

bounded parallelism has a different meaning than was given above for unbounded parallelism.

7.3 Software Support for Parallelism

On the SGIPS, the user is given the choice of parallelizing compilers or a number of explicit

parallelism constructs. All algorithms herein were expressed using explicit parallelism.
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Figure 7.1: Hierarchy of support for parallelism on the SGI.

Support for explicit parallelism on the SGIPS is hierarchically arranged as shown in Fig-
ure 7.1. The functions in the higher levels of the hierarchy are based on the functionality of the
lower levels.

The kernel function sproc() is a variant of the standard fork() call. sproc() creates threads
of execution that share resources, including virtual address space, files, etc, with the parent
thread and with any sibling processes in the same process share group.

At level 2, four lock functions are offered setlock(lock), csetlock(lock,spins), wsetlock(lock,spins)
and testlock(lock). The conditional lock csetlock(lock,spins)returns 1 if a lock is acquired within
spin spins, otherwise it returns 0. The wsetlock() is the same as setlock() except the number of

spins can be specified. Neither setlock() nor wsetlock() return until the lock is acquired.
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The level 2 semaphores were tested and found to be very inefficient. Typically, they were
an order of magnitude slower than locks.

The barrier function at level 3 creates a rendezvous point for threads of execution. It makes
a process wait for the other threads to reach the same point before continuing.

The microtasking library functions are patterned after the Sequent Computer Systems par-
allel programming primitives. They include m_fork(), m_park_procs(), m_sync(), m_rele_procs(),
m_lock(), etc.

All lock types were tested with a varying number of spins and waits between spins. It was
found that the optimum performance was obtained with the default lock setlock(), which spins
up to 600 times before relinquishing the CPU. The default lock was found to be 10% faster
than the mlock().

The microtasking m_fork() was tested versus the more primitive library call sproc(). Sur-
prisingly, m_fork() performed better (on the order of 20%) for the work herein. On the other

hand the microtasking barrier m_sync() was 10% slower than the primitive barrier() call.

7.4 Algorithm Parallelization

As mentioned in Chapter 5, the specific SGIPS model utilized for this work was the 4D /360VGX
with six 33MHz CPUs and 128 MB of physical memory. All timings given in this Chapter are
wall clock times and are based on the use of this configuration. As mentioned earlier, in addition
to the 6 CPUs, there are 85 dedicated graphics processors operating in parallel.

A diagram of the overall runtime algorithm is shown in Figure 7.2. After phase II of the

MPVQO algorithm, as described in Chapter 4, is completed, phase III of the MPVO algorithm
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Figure 7.2: Overall runtime algorithm

and the splatting algorithm are executed as a unit. As described in Chapter 6, several different
splatting methods were tested, including the PT, VOX, WED, UTS1 and UTS2 methods.
Phase II of the MPVO algorithm will now referred to as Stage 1 and the combined phase
III MPVO algorithm and the splatting algorithm will be called Stage 2. Several different
parallelization schemes for Stage 1 and Stage 2 will now be described. Timings reported for
Stage 1 and Stage 2 combined constitute the time for the overall volume rendering process.

In what follows, it is assumed that each cell is identified by a distinct integer.

7.4.1 Parallelization of Stage 1

In Stage 1, the adjacency graph, which was created in a preprocessing step, is converted into a
directed graph. This is done by evaluating the plane equation for each face with the coordinates

of the viewpoint. This results in the arrow field being set for each face of each cell.
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Two different versions of the parallelization of Stage 1 are presented.

Version 1 requires only one sweep of the cells and uses no locks. Therefore, a process must
set all the arrows for each of the cells for which it is responsible. This means the plane equation
is evaluated twice for each shared face. In spite of this, the version 1 algorithm was faster than
all alternatives tried. Each process uses a shadow queue to collect the source cells it finds. At
the end of the sweep all shadow queues are gathered into Output Queue. Either one process
can do the gathering or it can be done in parallel.

An alternative to the use of shadow queues is to use just one queue and require a lock to
access it. Usually only a minority of the cells are source cells and so the queue will not be
accessed heavily. It was found that the use of one queue and locks took 20% longer, on average,
than the use of shadow queues.

The details of the version 1 algorithm are shown below. It is assumed the process ids (pids)

are zero based.

STAGE 1 PARALLEL ALGORITHM - VERSION 1
for cell = pid +1; cell < total NumClells; cell += numbProcs
for each face of cell
set arrow
set numInbound]cell]
if numInbound[cell] == 0
enqueue cell on shadow queue
barrier

move cells in shadow queues to Qutput Queue
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Figure 7.3: Performance data for Version 1 of Stage 1 for 1,003,520 tetrahedra.

Performance data for Version 1 of Stage 1 is shown in Figure 7.3 for 1,003,520 tetrahedra.
Table 7.1 gives typical timings for 71,680, 593,920 and 1,208,320 tetrahedra. The complexity
of the version 1 algorithm is T%(f) = O(f/k), where f is the number of faces in the mesh.

The cause of the flattening of the speedup curve between four and five processors is unknown;
it occurred in all runs. The speedup for 71,680 and for 593,920 tetrahedra were found to be
roughly equivalent to those shown for 1,003,520 tetrahedra.

The serial times given in Table 7.1 are for the most efficient serial algorithm which is the
algorithm described in Section 4.5.1.2. A serial adaptation of the parallel Stage 1 version 1
algorithm described above was found to be 7% slower.

The second version of Stage 1 avoids evaluating the plane equation twice per shared face.

To do this, the lower numbered cell assumes responsibility for setting the arrow for the higher

108



Number Processors || time for 71,680 | time for | lime for
tetrahedra 593,920 1,003,520
tetrahedra tetrahedra
Serial 0.83 sec. 7.21 sec. 12.33 sec.
2 CPUs 0.48 sec. 4.16 sec. 7.06 sec.
3 CPUs 0.36 sec. 3.13 sec. 5.31 sec.
4 CPUs 0.30 sec. 2.59 sec. 4.38 sec.
5 CPUs 0.30 sec. 2.55 sec. 4.30 sec.
6 CPUs 0.26 sec. 2.19 sec. 3.72 sec.

Table 7.1: Typical timings for Stage 1 Version 1. Time is wall clock time.

numbered cell it shares a face with. On the one hand, this saves on evaluation of the plane
equation, on the other hand, some overhead is involved since (1) when setting an arrow, the
adjacent cell which shares the face must be searched to find the desired face, this is described

further below, and (2) a separate sweep is required to set the numlnbound field for each cell

and find the source cells.

STAGE 1 PARALLEL ALGORITHM - VERSION 2

for cell = pid + 1; cell < total NumClells; cell += numbProcs

for each face of cell

if (cell < adjacent cell which shares face)

set both arrows

barrier

for cell = pid + 1; cell < total NumClells; cell += numbProcs

set numInbound]cell]

if numInbound]cell] ==

lock(Qlock)

enqueue cell on Qutput Queue

unlock(Qlock)
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0 1 2 3 0 1 2 3
sharedByTetra 599 321 92 427 | 1045
faceNumber 71 | 910 | 33 | 201 910
arrow
IN
Cell 427 Cell 599

Figure 7.4: Data structures for two cells. The arrow for face 910 in Cell 427 has just been set
to IN. Now it is necessary to find that same face in Cell 599 so the arrow can be set to OUT.
This requires searching each sharedByTetra field in Cell 599 to find Cell 427.

Version 2 was more than twice as slow as Version 1, even when locks were not used. The
factor which most adversely effected performance was the search to find the adjacent shared

face; see Figure 7.4.

SEARCH REQUIRED IN STAGE 1 PARALLEL ALGORITHM - VERSION 2
for each face
if (sharedByTetra == myTetra)
set arrow

break

A field could be added to each cell’s data structure to contain a pointer directly to the
adjacent face. This would increase memory usage. Another possibility is to replace each
existing adjacent tetrahedra (sharedByTetra) pointer with a pointer directly to the adjacent
face. The problem with this approach is that it would be difficult to find other faces in the

adjacent cell.
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If the data structures could be set up so face[i] of cell A which is shared with cell B
could also be found in face[i] of cell B, then a search could be avoided. Thus a more efficient
algorithm would result.

For tetrahedral cells this becomes a graph coloring problem, which can be called the Triangle
4-Coloring Problem; it is an unsolved problem.

Let T be a triangulation in R3. A triangle coloring of T is a 4-coloring of its triangles so
that each tetrahedron of T has four differently colored triangles. The problem is: Does each
triangulation in R® have a triangle coloring?

It is known that five colors are sufficient to guarantee that each tetrahedron can get four
differently colored triangles. It is also known that there exist 3D triangulations that are not

4-colorable if the outside cell is included.

7.4.2 Parallelization of Stage 2
7.4.2.1 Introduction

In Stage 2, the directed graph created in Stage 1 is enumerated in topological order. This
ordering is a visibility ordering of the cells of the mesh. As each cell is output in visibility
order, it is splatted as described in Chapter 6.

The parallelization of the splatting process is straightforward. One process takes a cell
through the entire splatting procedure and uses spin locks to ensure mutual exclusion when
making graphics calls.

Either a depth first search (DFS) or a breadth first search (BFS) can be used for the
topological sort. It was initially conjectured that a DFS was inherently sequential and so not

solvable in poly-log parallel time [80, 82, 83, 95]. In 1989, however, Bongiovanni and Petreschi
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published a DFS algorithm using O(n*) processors which runs in time O(log®n). However,
the algorithm is not efficient. DFS has a serial time of O(n + €) [99] where n and e are the
number of nodes and edges, respectively. Therefore, the processor-time product for the parallel
algorithm is far in excess of the time required to solve the problem serially.

The best known bounds for a BFS algorithm are O(log? n) using O(n?37®) processors [51, 37].
This means BFS is placed in NC?. Techniques related to transitive closure are used to exhibit
the algorithm. However, since BFS can be solved sequentially in time O(n 4 €) [99], this
algorithm is not efficient for the same reason as given above.

Reghbati and Corneil [82, 80] describe an algorithm for BFS using bounded parallelism.
It has complexity 1 = > ([d;/k] + 1) + L[log, k], where d; is the degree of vertex i, L is
the distance of the farthest node from the start node, and n is the number of nodes. They
conclude that k-parallel BFS is superior to serial search when the average vertex degree is at
least [logy k] 4+ 5. For a tetrahedral mesh the average vertex degree is approximately 2. This
implies that k-parallel BFS may not be superior to serial search for a graph of average vertex
degree 2. The parallel algorithms for BFS described below did show some speedup (1.21X —
1.46X) for four or more CPUs. However, the efficiency was relatively low.

Two versions of parallel algorithms for Stage 2 are given. Both are based on the fact that
the output of the Phase III BF'S algorithm given in Chapter 4 consists of sequences of cells that
do not obstruct each other. We refer to each sequence as a layer. All the cells in a layer can be
rendered concurrently.

When Stage 2 begins, the Output Queue (OQ) contains the source cells gathered in Stage 1.
This constitutes the first layer of the BFS. All eligible successors of the current layer constitute

the next layer.
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7.4.2.2 Version 1

In the first version of Stage 2, all processes do the same task. Each process takes a cell from
the Output Queue, splats it and then updates the graph as shown below. Each process has a
shadow queue on which it enqueues the cells for the next layer. When a layer is complete, all

the shadow queues are merged into the global Qutput Queue, and then this process is repeated.

STAGE 2 PARALLEL ALGORITHM - VERSION 1
while OQ not empty
for ¢+ = pid; ¢ < Length(OQ); ¢ += numbProcs
cell = OQ]1];
if cell.actual
splat(cell)
lock(gPipeLock)
render(cell)
unlock(gPipeLock)
numRendered[pid]++
else num Virtual[pid]4++
for each face of cell
if outbound arrow
lock(adjCellLock)
if adjCell.numInbound > 1
decrement adjCell.numInbound
else enqueue adjCell on shadow(Q

unlock(adjCellLock)
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barrier
move cells on shadowQ’s to OQ
barrier
end while
if pid ==
for 1 = 0 to numbProcs — 1
total_num Rendered += numRendered|i]
total_numVirtual += numVirtual[i]
if (total numRendered 4 total numVirtual) # total numCells

output cycle warning

Times for version 1 of Stage 2, for the BFS enumeration only, are given in Table 7.2; times
for the entire Stage 2 are given in Table 7.3. Performance data is given in Figures 7.5, 7.6 and
7.7.

Spinlocks are used to guarantee mutually exclusive access to a shared variable in each cell
and also to the graphics pipe in the splatting routine. Only one lock is required for the graphics
pipe. However, each cell has its own shared variable. If there are enough hardware locks
(hardlocks), then one is used per cell. If there are not enough, there are two alternatives. Each
hardlock can guard several cells, or multiplexed locks [71] can be used.

Multiplexed locks use a single hardlock to guard multiple softlocks. Each cell has its own
softlock which is a boolean software variable. In order to access a cell’s shared variable, a

process spins on that cell’s softlock. Then it spins on the associated hardlock before locking
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Number Processors || time for | time for | time for
71,680 593,920 1,003,520
tetrahedra tetrahedra tetrahedra

Serial 0.45 sec. 4.34 sec. 7.61 sec.
2 CPUs 0.61 sec. 5.81 sec. 10.45 sec.
3 CPUs 0.45 sec. 4.28 sec. 7.69 sec.
4 CPUs 0.38 sec. 3.52 sec. 6.31 sec.
5 CPUs 0.34 sec. 3.13 sec. 5.57 sec.
6 CPUs 0.33 sec. 2.97 sec. 5.22 sec.

Table 7.2: Typical timings for Stage 2 version 1, for the BFS enumeration only. Time is wall
clock time.

Number Processors || time for | time for | time for
71,680 593,920 1,003,520
tetrahedra tetrahedra tetrahedra

Serial 4.64 sec. 39.25 sec. 67.22 sec.
2 CPUs 3.12 sec. 30.51 sec. 54.15 sec.
3 CPUs 2.28 sec. 21.63 sec. 38.40 sec.
4 CPUs 1.80 sec. 17.53 sec. 31.05 sec.
5 CPUs 1.57 sec. 15.33 sec. 27.21 sec.
6 CPUs 1.47 sec. 14.19 sec. 25.48 sec.

Table 7.3: Typical timings for Stage 2 version 1 including the BFS enumeration and the PT
algorithm for splatting. Time is wall clock time.

the softlock. Once the softlock is locked, the hardlock is unlocked. This procedure allows the

shared variables of more cells to be accessed simultaneously.

7.4.2.3 Version 2

Version 2 of Stage 2 is an experiment to determine if one CPU can perform the BFS faster
than multiple CPUs. Multiple CPUs require synchronization to access the shared variable
numlInbound in each cell. In addition, the granularity of the BFS is quite small.

Version 2, uses one CPU to traverse the graph in BFS order while the remaining CPUs do
the splatting. Two queues are used as shown in Figure 7.8. When the Output Queue is emptied

and the input queue is filled with the next set of cells that may be rendered concurrently, the
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Figure 7.5: Performance data for Stage 2 version 1 for the BFS enumeration only, for 1,003,520
tetrahedra.
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Figure 7.6: Performance data for Stage 2 version 1 for the BFS enumeration and splatting
using the PT algorithm for 71,680 tetrahedra.
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Figure 7.7: Performance data for Stage 2 version 1 including the BFS enumeration and
splatting using the PT algorithm for 1,003,520 tetrahedra.

pointers to the two queues are swapped. The pseudocode for this is shown below. The cycle
test and splatting procedure is not shown. It is the same as in version 1 of Stage 2 shown

earlier.

STAGE 2 PARALLEL ALGORITHM - VERSION 2
while O@Q not empty
if (pid == 0)
for each cell in OQ
for each face of cell
if arrow outbound
if adjCell.numInbound > 1
decrement adjCell.numInbound

else enqueue adjCell on input queue
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Number Processors || time for 71,680 | time for | lime for

tetrahedra 593,920 1,003,520

tetrahedra tetrahedra

2 CPUs 3.0 sec. 24.68 43.80 sec.

3 CPUs 2.24 sec. 17.98 sec. 31.26 sec.

4 CPUs 1.95 sec. 15.29 sec. 27.59 sec.

5 CPUs 1.82 sec. 14.00 sec. 24.41 sec.

6 CPUs 1.77 sec. 13.77 sec. 25.91 sec.

Table 7.4: Typical timings for Stage 2 version 2 using the PT algorithm, with load balancing.
Time is wall clock time.

else /* all other processes */
for ¢ = pid-1; ¢ < Length(0OQ); ¢ += numbProcs
splat OQ[¢];
barrierl
switch pointers on O@ and input queue

barrier2

Timings for Stage 2 version 2 are given in Table 7.4. The times are very similar to those
shown for version 1.

The amount of time each process waited at barrier 1 was measured for Stage 2 Version 2.
It was found that on average the process (pid0) which performed the BFS and filled the Input
Queue was idle 70% of the time. To balance the load, when pid0 finished filling the Input
Queue, it was assigned to assist with the splatting. The idle time was then remeasured and no
process was found to be idle more than 8% of the time. Comparative timings for Stage 2 Version
2 are given in Table 7.5. The table shows that the benefits from load balancing diminish as

more processes are added. This is to be expected since only the load of one processor is being
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Directed Graph

Input Queue

Output Queue

Barrier 1

Barrier 2

Figure 7.8: Parallelization of Stage 2 Version 2. The Qutput Queue is initialized with the
source cells by Stage 1.
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Number Processors | Time with No | Time With

Load Load
Balancing Balancing

2 CPUs 4.83 sec. 3.00 sec.

3 CPUs 2.75 sec. 2.24 sec.

4 CPUs 2.13 sec. 1.95 sec.

5 CPUs 1.85 sec. 1.82 sec.

6 CPUs 1.75 sec. 1.77 sec.

Table 7.5: Times for Version 2 of Stage 2, with and without load balancing.

Number Processors || time for | time for | time for
71,680 593,920 1,003,520
tetrahedra tetrahedra tetrahedra

Serial 1.28 sec. 11.55 sec. 19.94 sec.
2 CPUs 1.09 sec. 9.91 sec. 29.05 sec.
3 CPUs 0.81 sec. 7.61 sec. 13.00 sec.
4 CPUs 0.68 sec. 6.11 sec. 10.69 sec.
5 CPUs 0.64 sec. 5.68 sec. 9.87 sec.
6 CPUs 0.59 sec. 5.16 sec. 8.94 sec.

Table 7.6: Typical times for the parallelization of the MPVO algorithm

balanced, and the portion of the overall load that one processor is responsible for decreases as

the number of processors increase.

7.4.2.4 Performance Results for Overall Volume Rendering System

All subsequent results are based on the use of the version 1 algorithms for both stages. The
Stage 1 version 1 algorithm was clearly more efficient. Since both versions of the Stage 2
algorithm were about equal in performance, it was a somewhat arbitrary decision to use the
version 1 algorithm.

Typical timings for the parallelization of Stage 1 and the BFS of Stage 2, which together

comprise the MPVQ algorithm, are given in Table 7.6.
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71,680 cells 593,920 cells
PT | WED | VOX | UTS1 | UTS2 || PT WED | VOX | UTS1 | UTS2
Serial 5.51 | 4.19 | 2.76 | 2.39 2.79 46.40 | 34.75 | 23.42 | 19.13 | 23.42
2 CPUs || 3.61 | 3.10 1.90 | 1.94 2.12 34.51 | 28.62 | 17.85 | 18.91 | 18.83
3 CPUs || 2.66 | 2.24 141 | 1.76 1.59 24.69 | 21.24 | 13.01 | 16.96 | 14.14
4 CPUs || 2.15 | 1.90 1.28 | 1.72 1.45 20.02 | 17.85 | 10.99 | 16.53 | 12.78
5 CPUs || 1.91 | 1.77 1.17 | 1.72 1.44 17.91 | 16.94 | 10.47 | 16.60 | 12.77
6 CPUs || 1.78 | 1.74 1.14 | 1.69 1.41 16.46 | 16.33 | 10.05 | 16.27 | 12.45

Table 7.7: Comparison of typical timings, in seconds, for Stages 1 and 2 combined, utilizing

the PT, WED, VOX, UTS1 and UTS2 splatting methods.

Comparative serial and parallel timings for the PT projection method and the four approx-
imations to it, the VOX, WED, UTS1 and UTS2 methods described in Chapter 6, are given in
Table 7.7. Comparative performance data is shown in Figure 7.9.

Table 7.7 shows that the UTS1 projection method is the fastest serial method and the VOX
method is the fastest parallel method. This Table also shows that the VOX and UTS2 methods
are faster than the UTS1 method when two or more CPUs are used. The reason for this is
given below.

The VOX and the UTS2 methods calculate the footprint type of each cell in order to render
the minimum number of triangles and also to determine the order of the vertices so a tmesh
can be used. The UTS1 method does not do this; it just checks each face’s arrow and if it is
outbound, it renders that face. Therefore, the UTS1 method requires less calculation than the
VOX or UTS2 methods. This is why the UTS1 method is faster for the serial case.

With additional CPUs, the rate of production of triangles increases to the point that the
graphics pipe starts to saturate (this is explained below). At that point, the VOX and UTS2
methods become faster than the UTS1 method since they both produce about 20% fewer

triangles than the UTS1 method.
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Figure 7.9: Performance data for stages 1 and 2 combined, utilizing the PT, VOX, UTS1 and
UTS2 splatting methods for 71,680 tetrahedra.
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71,680 cells 593,920 cells 1,003,520 cells

PT UTS1/VOX || PT UTS1/VOX || PT UTS1/VOX
Serial 5.5 sec. | 2.4 sec. 46.4 sec. | 19.1sec. 79.6 sec. | 34.0 sec.
6 CPUs || 1.8 sec. | 1.1 sec. 16.5 sec. | 10.1 sec. 30.2 sec. | 16.3 sec.

Table 7.8: Typical times for the PT method, and the fastest serial and parallel methods,
the UTS1 approximation and the VOX approximation, respectively, for 71,680, 593,920 and
1,003,520 cells.

The code executed by the UTS2 method and the VOX method is quite similar. However,
when parallelized, the VOX approximation is faster than the UTS2 method since the VOX
method uses only one color for the entire footprint. The UTS2 method specifies a color for
each vertex of each triangle. Hence, for footprint number 2, which is rendered as two triangles
by both methods, the VOX method makes three fewer graphics calls per splat than the UTS2
method.

Table 7.8 shows typical times for the PT method, and the fastest serial and parallel methods

for 71,680, 593,920 and 1,003,520 cells.

7.5 Performance Analysis

All of the above performance curves show speedup falling off significantly with the use of five
or more CPUs. The curve labeled NR (normal rendering) in Figure 7.10 shows the speedup for
Stage 2 of the PT algorithm for 71,680 tetrahedra. The basis for the all speedup calculations
for this figure is the parallel algorithm operating on one CPU. The curve labeled IDEAL is
the maximum possible theoretical speedup. To locate the bottleneck causing the fall off in
performance, a number of experiments were performed.

The possible sources of the bottleneck were: the locks, the rate at which the CPUs could

compute and transfer data to the MPlink bus (for subsequent delivery to the graphics pipe), the

123



bandwidth of the MPlink bus itself, or the flow rate through the graphics pipe. To determine
which source was responsible, it was necessary to devise methods to eliminate one or more of
these sources and then remeasure the performance to see if it had improved.

First, all graphics rendering calls and lock usage were commented out of the algorithms.
This prevented the MPlink bus, the graphics pipe and the locks from effecting the speedup
in performance. The resulting speedup is shown by the curve labeled NGC in Figure 7.10.
As can be seen, this eliminated the bottleneck since the speedup curve improved significantly.
Therefore the bottleneck must be either the locks, the MPlink bus or the graphics pipe.

Next, all lock usage was uncommented. The results were unchanged. This indicated that
the locks were not the cause.

Then, the graphics calls were replaced by equivalent non graphics function calls with an
identical number of arguments and a one line body making a reference to a global variable.
(The particular graphics calls used require the CPU to communicate to the MPlink bus a single
memory reference to a block of four words in main memory. The MPlink bus then uses a DMA
burst to move the four words to the graphics pipe.)

The results of this experiment are shown by the curve labeled ENG in Figure 7.10. This
curve shows a slight fall off in speedup but not nearly so marked as when actual graphics calls
were used (curve NR). This indicated that at this level of performance the CPUs were starting
to become the bottleneck.! However, when actually rendering, the level of performance was far
below this so the real bottleneck still remained to be found. It had to be either the MPlink bus

or the graphics pipe.

!This experiment (ENG) gave an indication of the potential speedup of my algorithms when executed on

these CPUs.
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If the same amount of data was transferred over the MPlink bus, but the graphics pipe
was required to do less work, then an improvement in performance over normal rendering (NR)
would indicate that the graphics pipe was the bottleneck. One way to do this is to render the
same number of triangles but make the size of the triangles much smaller. The MPlink bus has
the same loading, but the graphics pipe has less to do since it has to set fewer pixels. The result
when all triangles are scaled down by 0.01 is shown by the curve labeled SCA in Figure 7.10.
Since an improvement in performance was shown over normal rendering, this indicated that the
graphics pipe was the bottleneck.

Another experiment performed was to double the number of triangles in each tmesh. The
tmesh was described in Chapter 5. In this case the traffic over the bus increases only marginally
per triangle compared to the graphics pipe. That is, the graphics pipe must render another
complete triangle, whereas the bus need only make two additional DMA bursts. If this experi-
ment yielded a speedup, then it would indicate that the graphics pipe was not the bottleneck.
The results for this experiment, shown by the curve labeled BIG in Figure 7.10, indicate a sig-
nificant decrease in performance. This result supported the conclusion that the graphics pipe
is the bottleneck.

To get peak performance from the DMA transfers as described in Section 5.2, all data
passed to the graphics pipe is quadword aligned. However, when the data was forced to be
nonquadword aligned, there was no measurable change in performance. This was even further
corroboration that the CPUs and the MPlink bus were not the bottleneck.

To pinpoint which graphics subsystem was the bottleneck, one additional experiment was

performed.
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Figure 7.10: Performance speedup for Stage 2 of the PT algorithm using the modifications
described in the text, for 71,680 tetrahedra.
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Since decreasing the size of the triangles significantly improved performance, this suggested
that the work performed by the saturated graphics subsystem was pixel intensive. This indicates
that the bottleneck was either in the Scan Conversion Subsystem or the Raster Subsystem.

The algorithm used by the Raster Subsystem to fill the pixels is 8 times slower when doing
opacity blending then when not doing it. If the Raster Subsystem was saturated, then turning
off hardware opacity blending should give an increase in performance. When hardware blending
was turned off the performance was unchanged from normal rendering (NR). This indicated that
the Raster Subsystem was not the bottleneck. By elimination, the Scan Conversion Subsystem
was identified as the bottleneck.

Normally, the bottleneck to high performance rendering on a SGIPS is the CPU speed.
That is, the CPU’s ability to put data onto the MPlink bus fast enough to feed the graphics
pipe. The reason this did not apply here is that for high performance rendering large tmeshes

are expected. The splatting method has only approximately four triangles per tmesh.

7.6 Parallelization of the MPVO Algorithm for Nonconvex

Meshes

The next section describes the parallelization of the MPVO algorithm for nonconvex meshes.
Then in Section 7.6.2 the results from the use of this algorithm are reported.

The MPVO algorithm for nonconvex meshes is described in Chapter 4, Section 4.4.2 and
implementation details are given in Section 4.5.2. We will now refer to phase III of the MPVO
algorithm for nonconvex meshes as the phase III algorithm. The splatting algorithm together

with the phase III algorithm will be referred to as Stage 2.
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7.6.1 Algorithm Parallelization

Phase II of the MPVO algorithm for nonconvex meshes accounts for a minority of the total
time and it involves a sort; therefore, it was not parallelized.

The phase III algorithm requires a DFS. A BFS can not be used. Therefore, the phase 111
algorithm can not be significantly parallelized. However, Stage 2 as a whole can be parallelized.

A DF'S does not output cells in layers that can be rendered concurrently as is the case when
a BF'S is used. Therefore, each cell must be rendered in the same order as it is output by the
DFS. To deal with this, two queues are used, Queuel and Queue2. One CPU, call it CPUO, is
dedicated to performing the DFS; it places its output into Queuel. The remaining CPUs splat
and render the cells in Queue2. After CPUO has enqueued a predetermined number STEPSIZE
of cells on Queuel, and the remaining CPUs have rendered all the cells in Queue2, then the
pointers to the two queues are swapped. We refer to this as one cycle of the algorithm.

Initially, Queue2 is empty, so on the first cycle only CPUO is busy, the remaining CPUs are
idle. On the last cycle, CPUO is idle while the remaining CPUs splat the cells in Queue2.

The DFS algorithm is normally implemented as a recursive routine. However, to allow
CPUO to synchronize with the remaining CPUs when it is time to swap the queues, the DFS
algorithm is implemented without recursion using a stack. This algorithm is shown below for
tetrahedra; however, it can be generalized to deal with any cells. As before, it is assumed
that the process ids (pids) are zero-based; CPUOQ has pid = 0, etc. The following variables
are initialized to 0: allDone, Q1lidz, ()2end, doneDFS, lastCycleSplalted. The boolean variable
not Visited is initially set to true for each cell. The variable allDone should be declared as

volatile.
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STAGE 2 PARALLEL ALGORITHM FOR NONCONVEX TETRAHEDRAL MESHES
if pid ==
for each cell on sink cell list
if cell.notVisited
cell.notVisited = false; cell.cycleTestFlag = true
face = 0
push(cell,stack); push(face,stack)
while not empty(stack)
face = pop(stack); cell = top(stack)
while face < 3 /* for tetrahedra */
if inbound(cell.face.arrow)
adjCell = cell.face.sharedByCell
if adjCell.notVisited
adjCell.notVisited = false; adjCell.cycleTestFlag = true
push(face+1,stack); push(adjCell,stack)
cell = adjCell; face = 0
else
face++4+
if adjCell.cycleTestFlag then output Cycle warning
else face++
end while face < 3
cell = pop(stack)

if cell not marked imaginary
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if Qlidx < STEPSIZE then Q1[Qlidx++] = cell
else goto BAR
L1: Q1[Qlidx++4] = cell
cell.cycleTestFlag = false
end while not empty(stack)
end for loop
doneDFS = true
else /* remaining CPUs */
L2: for (i = (pid — 1); i < Q2end; i += numbProcs — 1) splat(Q2[i])
end else
BAR: barrier()
if pid ==
reinitialize waitLock array
if lastCycleSplatted then allDone = true else swap Q1 and Q2
barrier()
if not allDone
if pid ==
if not doneDFS then goto L1
else if not lastCycleSplatted
lastCycleSplatted = true
goto BAR /* to wait for last splatting cycle */

else goto 1.2
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To ensure the cells are rendered in the same order as they are output by the DFS, an ordering
algorithm is needed to control access to the graphics pipe. This algorithm is shown below. The
boolean array waitLockfNUMBPROCS]is initialized to all true except for waitLock[1] which is
set to false. This allows CPUL (pid 1) to get a lock.

It is important that the array waitLock be declared as volatile, otherwise an optimizing
compiler might translate the first line of the following algorithm, while (waitLock[pid]) busy-

wait, as: if (lwaitlock[pid]) for (;;) busy-wait.

LOCK ORDERING ALGORITHM:
while (waitLock[pid]) busy-wait
lock(gpipe)
make graphics calls
waitLock[pid] = true
if pid == (numbProcs - 1) then waitLock[1] = false
else waitLock[pid + 1] = false

unlock(gpipe)

7.6.2 Results of Parallelization of Nonconvex Algorithm

The ONERA M6 wing simulation described in Chapter 6 is defined over a nonconvex mesh

generated by a conformed Delaunay triangulation. Using the technique described in Chapter 4
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Number Processors || time for PT + | time for PT +
MPVO MPVO
Nonconvezx
Serial 32.66 36.01
6 CPUs 11.96 16.28

Table 7.9: Summary of timing results in seconds for volume rendering a nonconvex data set of
362,712 tetrahedra. The use of the MPVO algorithm for nonconvex meshes for the nonconvex
data set is compared with the use of the regular MPVO algorithm for the comparable convex
data set which has 373,654 tetrahedra. The PT splatting algorithm was used in each case. The
STEPSIZE was 1000 for the parallel algorithm.

Section 4.11, the mesh was generated over a convex domain even though the domain of interest
is nonconvex. The vertices and cells lying outside the nonconvex region were retained for
visualization and the remaining vertices and cells were sent to the finite element solver [2].

This enables us to render the ONERA data either as a convex mesh, where the cells lying
outside the nonconvex domain of interest are marked invisible, or to render it using the MPVQO
algorithm for nonconvex meshes. Thus we have the opportunity to compare the timing of the
overall volume rendering algorithm when the MPVO algorithm for nonconvex meshes is used
with the timing when the regular MPVO algorithm is used. This comparison can be made both
with and without parallelization.

Timings for this experiment, both serial and parallel, using the PT algorithm for the splat-
ting, are given in Table 7.9. The nonconvex ONERA mesh has 362,712 cells. The convex
ONERA mesh has an additional 10,942 cells, the cells located inside the wing.

Typical times for volume rendering using the MPVO algorithm for nonconvex meshes and
the PT Splatting algorithm, both serial and parallel, for a number of different meshes, are shown

in Table 7.10. All parallel results are from the nonconvex algorithm described in Section 7.6.1.
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13,499 187,395 287,962 513,375
cells cells cells cells
Serial 1.15 14.37 24.74 38.44
6 CPUs || 0.72 7.81 13.30 20.67

Table 7.10: Typical times in seconds for volume rendering using the MPVO algorithm for
nonconvex meshes and the PT Splatting algorithm. The number of exterior cells varied between
4% and 8% of the total number of cells. The STEPSIZE was 1000 for the parallel algorithm.
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CHAPTER 8

FILTERING METHODS

8.1 Introduction

Even with parallelization, fast graphics hardware and the use of rendering approximations, for
very large data sets, it still may not be possible for a DPVR algorithm to generate images
interactively. For example the hardware rendering system may have an upper bound on the
number of polygons per second that it can handle.

Therefore, to achieve interactivity, it may be necessary to reduce the number of cells rendered
by techniques such as: filtering (rendering only selected cells), by coalescing adjacent cells, or by
retriangulating a subset of the vertices of the mesh. I refer to this concept as reduced resolution
meshes. How best to create such meshes is an open question.

Filtering generally requires visibility ordering the entire mesh and may result in holes or gaps
in the image. The coalescing method can result in nonconvex cells not amenable to ordering
by the MPVO Algorithm.

The most promising approach seems to be to retriangulate a random subset of the original

vertices of the mesh using a (conformed) Delaunay triangulation [64, 105]. Therefore, this

134



‘ | No Fillering | Max Indep Set | 20% Random | 50% Random |

Serial 79.6 sec. 35.1 sec. 33.4 sec. 55.9 sec.
6 CPUs 30.2 sec. 13.9 sec. 13.0 sec. 21.6 sec.

Table 8.1: Comparative timings for the overall rendering process using three different filtration
methods and the PT Algorithm for 1,003,520 tetrahedra.

will decrease the time for visibility ordering since fewer cells need to be ordered; the MPVO
Algorithm can be used; and, there will be no holes in the image.
Since the size of data sets continues to grow with the increase in hardware computing power,

the concept of reduced resolution meshes may remain valuable for some time to come.

8.2 Filtering Techniques

One way to render only selected cells is by rendering the maximal independent set! of the
adjacency graph of the cells of the mesh. This can be done as follows. For each cell ¢ in the
mesh, render ¢ only if none of ¢’s neighbors have been rendered.

A disadvantage of this method is that the degree of the nodes imposes bounds on the level of
filtration allowed. Typically, maximal independent set filtration results in approximately 20%
of the cells being rendered.

A volume rendered image using maximal independent set filtering and the modified PT
algorithm is shown at the top of Figure 8.1. The unfiltered image is shown in Figure 6.7.
The regular gaps in the images shown are probably due to the order in which the cells were
processed. It may be possible to avoid these gaps if the indices of the cells in the mesh are

randomly permuted.

Y An independent set is a set of vertices in a graph no two of which are adjacent. A mazimal independent set
is an independent set which will no longer be one when any vertex is added to the set.
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Figure 8.1: Top image uses maximal independent set filtration. Bottom image uses 20%
random filtration. The unfiltered image is shown in Figure 6.7.
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Figure 8.2: Volume rendered image with 50% random filtration. The unfiltered image is shown
in Figure 6.7.

More flexibility in the level of filtration can be achieved by selecting cells at random in
the mesh. In general random selection methods have a nice distribution property. Volume
rendered images using 20% and 50% random filtering are shown at the bottom of Figure 8.1
and in Figure 8.2, respectively. A comparison of all three methods is shown in Figure 8.3.

Comparative timings for these filtering methods are given in Table 8.1 for a 1,003,520 cell
mesh.

Another technique is to discard every n-th cell that is output from the visibility ordering,

possibly tagging adjacent cells to prevent their removal.
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Figure 8.3: A comparison of the three filtering methods.
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For any of these methods, it may be valuable to flag cells which have interesting or rare
data values at their vertices so these cells are not filtered out. Such a determination can be
made based on domain specific knowledge and/or on a histogram analysis of the data.

Low-reject, high-reject or band-reject filtering can be used to eliminate uninteresting data.
Filtered cells can be flagged ‘do-not-render’ in a preprocessing step. Similar filtering could be

achieved by the density transfer function; however, such filtration would then occur at run time.
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CHAPTER 9

SPATIAL POINT LOCATION

9.1 Introduction

Given a mesh and an arbitrary point in E3 called the query point, the question can arise:
In which cell of the mesh, if any, does the query point lie? This is known as the spatial point
location problem. It can arise in volume visualization when doing interactive probing, streamline
generation, or in ray tracing. When the mesh is rectilinear, the point location problem is trivial.

However, when the mesh is unstructured, the problem is not straightforward.

9.2 The Meshed Polyhedra Point Location Algorithm

The Meshed Polyhedra Point Location (MPPL) Algorithm uses the MPVO Algorithm data
structures and the <,, relation to solve the point location problem for any convex mesh. The
mesh need not be acyclic. Informally, the MPPL Algorithm works like this. Set the viewpoint
to the query point; and then start from any cell of the mesh and follow any ‘outbound’ arrow
to the next cell. Keep doing this until a cell with no outbound arrows is reached; this is the

target cell, the cell which contains the query point. If an exterior face with an outbound arrow
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is reached, then the point doesn’t lie within the mesh. The direction of the arrows is computed
on the fly and not for all cells in advance as is done in phase II of the MPVO Algorithm.

The MPPL Algorithm uses the MPVO adjacency graph described in Sections 4.5.1 and
4.5.1.1. The viewpoint is set to the query point, and then function search is called with any
cell in the mesh. To maximize efficiency, the initial cell can be selected heuristically, to be either
a centrally located cell, or, a cell in the neighborhood of the target cell, if this is known. The
search path of the MPPL Algorithm is a zig-zag approximation to a ray from the start cell to
the query point; no backtracking is done. It is difficult to theoretically calculate expected case
bounds for this algorithm since they depend on the structure of the mesh; the time complexity

can be determined empirically.

MPPL ALGORITHM:
search( cell ):
L1:for each face f of cell
calculate arrow for f;
if arrow is outbound then
if fis an interior face then
cell = cell which shares f; goto L1;
else
exit search and return -1; /* query point outside mesh */
end for

return cell;
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9.3 The Meshed Polyhedra Point Location Algorithm for Non-

convex Meshes

The MPPL Algorithm can be modified to deal with nonconvex meshes; however, for efficiency
it requires heuristics, and it is not efficient when the query point lies outside the mesh. Each
cell is required to have a field for marking the cell ‘visited’ that has been initialized to the
unmarked state. Between calls to the algorithm either this field needs to be reinitialized or else
a unique mark needs to be used each time the algorithm is invoked. Since the cells are marked
‘visited’ the first time they are searched, no cell will be searched more than once. If the query
point is not in any cell of the mesh, then every cell will be searched by the algorithm. Function
searchl, below, has a local variable targetCell; and, function search2 has local variables:
hasOutboundFdge and targetCell. Various heuristics and optimizations can be used; however,
for sake of clarity and brevity they are not shown. Parallelization of this algorithm is worth
investigating. A more efficient method would be either to convert a nonconvex mesh into a
convex mesh by one of the techniques described in Section 4.9, and then use the regular MPPL
algorithm, or to triangulate any nonconvex voids and then use one of the algorithms mentioned

in the next paragraph.

MPPL ALGORITHM FOR NONCONVEX MESHES:
searchl() :
for each cell in mesh
if cell not marked ‘visited’ then
targetCell = search2( cell );

if targetCell not -1 then exit searchl and return targetCell;
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end for

return -1; /* query point is outside mesh */

search2( cell ):
hasOutboundFdge = FALSE;
mark cell ‘visited’;
for each face f of cell
calculate arrow for f;
if arrow is outbound then
hasQutboundFdge = TRUE;
if fis an interior face then
if cell which shares f not marked ‘visited’ then
targetCell = search2( cell which shares f );
if targetCell not -1 then
exit search2 and return targetCell;
end for
if hasQutboundFdge = TRUE then exit search2 and return -1;

else exit search2 and return cell;
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9.4 Conclusion

Efficient spatial point location algorithms have been published by Chazelle [12] and by Preparata
and Tamassia [79]; however, no known implementations of these algorithms exist. The former
algorithm requires the mesh be acyclic and have no nonconvex voids; it requires O( f) storage
and has a query time of O(log? f), where f is the number of faces; no preprocessing bounds
are given. The latter algorithm requires that the mesh have no nonconvex voids and requires
O(flog? f) preprocessing time and storage, and has a query time of O(log?® f) worst case;
Goodrich and Tamassia [42] improve the storage and preprocessing bound to O( flog f).

The advantages of the MPPL Algorithms are that they are easy to implement and that they
utilize the data structures of the MPVQO Algorithm which may have already been built. Further,
it appears that the MPVO Algorithm for Nonconvex Meshes lends itself to parallelization. Both

of the MPPL algorithms described in this Chapter were implemented.
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CHAPTER 10

DOMAIN DECOMPOSITION

10.1 Introduction

To maximize the speedup of a parallel finite element code, it is necessary to distribute the load
as evenly as possible and to minimize interprocess communication. This means that a roughly
equal number of elements should be assigned to each processor. It is also important that the
subdomain of elements assigned to any one processor should be clustered coherently and the
boundary minimized in order to to minimize interprocess communication. I refer to the process
of partitioning the elements (cells) of a computational mesh into subdomains that can each
be processed in parallel as the domain decomposition problem. A number of solutions to this
problem have been proposed [6, 14, 28, 29, 30, 46, 67, 75, 90].

Sadayappan and Ercal [90] summarize a number of categories of approaches to the do-
main decomposition problem, including graph based approaches, mathematical programming
based formulations, queuing theory based models and heuristic approaches such as scattered

decomposition [67], simulated annealing [30] and a graph-based recursive bisection model [32].
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It has been found that the MPVO Algorithm may be a candidate for domain decomposition
of unstructured finite element meshes. While the resulting partitioning may not be optimal, it
has the property of coherence.

The simulated annealing process for domain decomposition as described by Flower, Otto
and Salama [30] can achieve an optimal mapping of finite elements to a set of parallel processors;
although it does not guarantee determination of an optimal mapping. The simulated annealing
method requires an initial decomposition of the mesh. The algorithm is then iterated starting
from this initial decomposition. How close the resulting partition is to the optimal partition
depends on the number of iterations of the annealing process and on the initial decomposition.

It is worth investigating whether the MPVOQO Algorithm could be valuable for creating the

initial decomposition for simulated annealing.

10.2 Domain Decomposition Using the MPVO Algorithm

The MPVO Algorithm may be used for domain decomposition of an unstructured finite element
mesh as follows. For k processors, and a mesh of n cells, each successive n/k cells output by
the MPVO Algorithm can be assigned to a processor for execution of the finite element code.
Due to the inherent coherence of the MPVO ordering, provided n is sufliciently larger than
k, the partitioning obtained might enable parallel architectures to be exploited efficiently.
For example, for the mesh shown in Figure 4.1, using phase III-DFS, for 2 CPUS, cells 1,
17,11, 9, 3, 4, 5, 2, 18, 12 would be assigned to CPU1, and cells 13, 19, 15, 14, 16, 10, 7, 6, 8

to CPU2.
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It will be interesting to see which phase III method, DF'S or BFS, will prove more valuable
and also to investigate the influence of the location of the viewpoint. Preliminary experiments
indicate phase I1I-DFS with a viewpoint outside the mesh seems preferable.

Since efficiency and boundary anomalies do not appear to be serious concerns for domain
decomposition, the MPVO Algorithm for Nonconvex Meshes can be used even in the presence
of cycles.

By mapping the cells of each partition to a different color and using transparency, an image

produced by direct volume rendering can be used to view the decomposition.
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CHAPTER 11

CONCLUSION

In summary, we have examined several methods for achieving interactive direct projection vol-
ume rendering: a suite of approximations to the splatting process, the use of high performance
graphics hardware, parallelization and a number of different filtering methods.

Just as importantly, we have developed a visibility ordering algorithm to order the cells of
any connected mesh in linear time, using linear storage. By-products of this algorithm are a
method for solving the spatial point location problem and a technique for domain decomposition
of irregular finite element meshes for parallel computation.

By the use of parallelization and the suite of splatting approximations, the goal of interactive
DPVR has been found to be feasible, even when the data sets are very large. Using the
methods described herein, the DPVR splatting algorithm has interactively generated volume
rendered images of nonrectilinear data sets with over 1,000,000 cells. Using the filtering methods
described herein, this performance is possible for even larger data sets. For nonrectilinear data
sets with up to 100,000 cells, volume rendered images were generated in less than 2 seconds.

Due to the tradeofl between the accuracy of the image and the time required to render it,

it is not reasonable to expect high quality images of very large data sets in interactive time.
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In the author’s opinion, the images generated using the suite of splatting approximations
should be very useful to the computational scientist. It will remain for the computational scien-
tist to validate the utility of the volume rendering techniques described herein as to the accuracy
and detail of information content. However, we can be quite certain that these techniques will
be valuable for data previewing and for setting viewing parameters and the color and opacity
maps.

The comparison of approximated images is subjective. The ultimate test is whether the
scientist finds the image useful for understanding his or her data, and is not misled.

It would be useful to extend the current volume renderer to include a ray tracer. This would
allow experimentation with more accurate ray integration methods based on the continuous
volume density optical model described in Chapter 3. It would also provide a more accurate
image for comparison with approximated images. In addition, the parallelization of the ray
traced version would provide comparative timings for these two competing methods of direct
volume rendering.

Sharp isosurfaces do not seem to be feasible for the splatting methods described herein. If
the density transfer function simulates a set of very narrow band pass filters, then the density
map will have a set of very narrow square pulses. Since the PT method averages the density at
the front and back faces of a cell, the PT method could completely miss an isosurface passing
through the cell.

Solids or polygons can be embedded in a volumetrically rendered image by generating a
new mesh using a Delaunay triangulation that conforms to the vertices of the old mesh and the

geometric description of the embedded objects.
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When the MPVO algorithm is used, it outputs the cells in layers from front to back. Then
the image unfolds as if a cutting plane perpendicular to the line of sight was sweeping over the
image towards the viewer.

One of the most interesting discoveries in this work was the amount of information that
could be gained by watching the image being rendered. The fine structure of the interior of the
scalar field could be clearly discerned during the rendering process. It was known that watching
this process could be useful. However, the degree of utility far surpassed my expectations.

The rendering process became an animation. It was quite fascinating to watch; sometimes
it could be breath-taking. If the rendering time was significantly faster, or much slower, this
effect would be lost. This way of experiencing data provides information that is not available

by looking at a finished image, even with transparency.
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