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The ]argc size of many volume data sets often prevents visualization algorithms from providing
interactive rendering. The use of hierarchical data structures can ameliorate this problem by
storing summary information to prevent useless exploration of regions of little or no current
interest within the volume, This paper discusses research inta the use of the octree hierarchical
data structure when the regions of current interest can vary during the application, and are not
known a priori, Octrces are well suited to the six-sided cell structure of many volumes.

A new space-efficient design is introduced for octree representations of volumes whose resolu-
tions are not conveniently a power of two; octrees following this design are called branch-on-need
ortrees (BONOS). Also, a caching method is described that essentially passes information
between octrcw neighbors whase visitation times may be quite different, then discards it when its
useful life is over.

Llsing the application of octrees to isosurface generation as a focus, space and time compar-
isons for octree-based versus more traditional “marching” methods are presented.
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1. INTRODUCTION

Interactive visualization is of major importance to scientific users, but the
sheer size of volume data sets can tax the resources of computer worksta-
tions. Intelligent use of data structures and traversal methods can make a
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significant difference in algorithm performance. In particular, the use of
hierarchical data structures to summarize volume information can prevent
useless traversal of regions of little interest. However, the storage and
traversal of hierarchical data structures themselves can add to the resource
consumption of the algorithm, both in terms of time and space.

We are exploring the advantages and disadvantages of hierarchical data
structures for visualization. In particular, we have explored the use of octrees
in conjunction with a cell-oriented isosurface generation algorithm [13, 26,
27].

Octrees are particularly appropriate for representing sample data volumes
common to scientific visualization, where the data points often define a
spatial decomposition into hexahedral, space-filling, nonoverlapping regions.
Use of octrees for controlling volume traversal is appropriate whether regions
are regular hexahedra (cubes, rectangular parallelopipids), as is common in
medical imaging, or the irregular, warped hexahedra (curvilinear decomposi-
tions) that are common in computational fluid dynamics.

A volume whose maximum resolution is between 2k -1 and 2 k can be
represented by an octree of depth k. This paper discusses the use of summary
information at each node for the entire subvolume beneath it, making it
possible to explore the volume contents without examining every data point.
For isosurface generation the summary information consists of the maximum
and minimum values of data within each node’s region.

1.1 Background and Prior Work

Octrees, like quadtrees, are hierarchical data structures based on decomposi-
tion of space [ 14–17, 20–22]. Quadtrees are two-dimensional decompositions
that had their beginnings in the hierarchical representation of digital image
data and spatial decomposition for hidden surface elimination [11, 19, 24]. In
quadtrees, space is recursively subdivided into four subregions, hence the
name “quad”. Octrees are three-dimensional extensions of quadtrees, where
space is recursively subdivided into eight subvolumes, and the root of the
octree refers to the entire volume [ 15– 17, 22]. In the normal case, each
coordinate direction is divided in two, giving a “lower” half space and an
“upper” half space. The effect of all three divisions is to create octants.

Octrees have been used to represent three-dimensional objects [ 10, 28].
Octrees have also been used just to represent the spatial relationship of
geometrical objects, making it relatively simple to accomplish such operations
as locating neighbors [18] and to traverse the volume from front to back for
hidden surface removal [4, 25].

In many octree applications, including those mentioned so far, the octree is
used to represent some boolean property of the points in the volume, or some
property for which most of the points take on a null value that is specified
a priori. In image-processing terminology, a point in the volume is “black” (in
the object), or “white” (uninteresting). Here we briefly review some storage
optimizations that have been developed for such cases, and discuss why they
do not carry over to the applications we have, in which the volume data can
assume many values (none of which may be “uninteresting” a priori).
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When the property is boolean, only one bit per octree node is needed. Levoy
described a straightforward implementation for abstracting the (boolean)
property of nontransparency from medical image data as part of volume
rendering [ 12]. Initially, his method rounds the volume resolution up to
2d X 2 ‘i X 2 ~, and assigns eight data points to each node in the lowest level
of the octree. It represents every node at the same level of the octree in a long
bit-vector ( 1 = “black”), where 1 denotes that some child has value 1, or at
the lowest level, that some data point is nontransparent among the eight
covered by the octree node. All octree information is located by address
calculations; no pointers are needed. The storage overhead is acceptable, well
under 20Yr of the original volume data in practice.

An alternative strategy is to prune lower portions of the octree when their
values can be inferred from an ancestor [29]. One method is to define an
internal node as “white” or “black” if all of its descendants are of that color,
in which case no storage is allocated to the descendants; this process is called
condensation. Otherwise the node is gray and has 8 explicit children. (For
static nonboolean properties, only white nodes can be condensed. ) How many
octree nodes are needed depends on the original data. Because of the irregu-
lar shapes possible in such octrees, the structure must be represented expli-
citly, with pointers being the usual choice. Eight pointers per node use up
storage quickly, so this implementation is workable only when the object can
be represented with relatively few black and white nodes. However, it is
possible to reduce the storage requirement to one pointer per node if all eight
children of a node are allocated contiguously.

Linear octrees were introduced by Gargantini as a way to improve on the
storage requirements of condensed, pointer-based octrees [6]. Related linear
structures were used by others [16, 23]. Essentially, each “black” node in the
condensed octree is assigned a key that encodes the path in the octree from
the root to that node (see Section 4. 1). Gray and white nodes are not allocated
any storage, and the keys of the black nodes are stored in sorted order in one
array (hence the name “linear”). Whether a linear octree requires more or
less storage space than a bit-vector octree depends on the coherence of the
boolean property being represented.

Glassner describes an implementation related to linear octrees, but with
several innovations [8]. He uses a hash table instead of a sorted array to
speed up node location by key. His ray tracing application requires storage of
gray nodes, so he uses a slightly different key and allocates all 8 children of a
node contiguously, so they can all be accessed under one key entry.

Bloomenthal also uses an octree to organize nonboolean data for implicit
surface modeling [3]. A closed-form function is defined over the volume and
evaluated by adaptive sampling. A piecewise polygonal representation is
derived from the octree. The octree only pertains to the current isovalue, or
threshold value, so this application also falls into the category of those whose
data has a frequently occurring null value.

We are concerned here with the use of octrees to organize nonboolean data,
where the points of interest cannot be determined a priori; that is, there is no
frequently occurring null value. The reason that the condensation methods
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just discussed are not applicable in this context soon becomes evident:
condensation occurs only when all children of a node have the same value, an
event that may never occur in volumetric data such as density fields. We are
not dealing with an object, or small set of objects, which occupies a possibly
small portion of the volume, but rather a function that is defined throughout
the volume. Aa we shall show in Section 3, without the benefits of large scale
condensation, obvious octree designs can easily lead to prohibitive storage
overhead.

Globus has independently investigated the use of an octree for isosurface
generation [9]. His work is compared with ours in more detail in Sections 3.4
and 6.2. Briefly, he solved the storage problems by stopping the octree
construction at a higher level, allowing an octree node to cover as many as 32
data points.

An alternative tree data structure for 3-dimensional data is the 3-d tree,
which is a special case of the k-d tree for k-dimensional data. A k-d tree is
really a binary tree in which each node divides in some coordinate direction
[2, 211. The choice of direction can depend on the region “covered by the
node. By choosing to split the root in the z direction, to split the nodes at
depth one in the y direction, those at depth two in the x direction, and
repeating that cycle, we can simulate an octree with a 3-d tree. 3-d trees
might offer advantages similar to octrees in some situations.

1.2 Summary of Results

Unlike earlier octree applications, where certain regions of the volume could
be classified as uninteresting a priori, we studied the use of octrees to
organize volume information when all of the volume is potentially interest-
ing. In Section 4 we present an octree design that has proven to be efhcient in
time with acceptable storage requirements, which we call a branch+n-need
octree (BONO). Appendices A and B provide a technical supplement to this
section. In Section 3 we show that more obvious alternate designs will have
prohibitive storage requirements in most practical cases, where the resolu-
tions of the volume are not precisely 2d x 2 d x 2d, as is usually conveniently
assumed.

An important time-saver in isosurface generation is the reuse of computed
information on cell edges that intersect the isosurface; each such edge is
incident on four cells, so the computation can be used four times if it can be
saved and located. A normal coordinatewise (marching) traversal of the
volume permits a straightforward caching strategy with arrays [13]. How-
ever, the octree traversal order complicates storage-efficient caching consider-
ably. We solved the problem with a hash table, as described in Section 5 and
Appendix C. A key feature of the solution is that we can tell when a hash
table entry has been retrieved for the last time, and delete it, making room
for later entries.

Section 6 presents our experimental results, which compare the perfor-
mance of an octree-based isosurface generation program with the more
standard, nonhierarchical methods, such as marching cubes [13], and its
variants [26]. In applying octrees to isosurface generation, it is important to
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remember that the only part of the processing that we are addressing is the
detection and bypassing of trivial cells: those that do not intersect the current
isosurface. Isosurface patches are calculated in significant cells with the same
subroutines as used by the marching traversal, so their time cost is un-
changed. Therefore, it is somewhat surprising that our experiments demon-
strated speedups by factors of 2 and 3 in some cases, even when octree
creation time is included.

Because one application often generates many isosurfaces from the same
data, the speedup on the surface extraction phase alone is often more
significant to the user. We observed speedups in the range of 1.6 to 11.

We develop a performance model based on the experimental data to predict
the time requirements of isosurface generation with our implementations of
both octree traversal and marching traversal.

Rounding out the paper, Section 2 reviews polygon-based isosurface gener-
ation methods, and describes our adaptations of previous methods to take
advantage of an octree, and Section 7 draws some conclusions and suggests
future directions for the research.

2. OCTREES IN CONJUNCTION WITH ISOSURFACE GENERATION

A common approach to visualization is to extract a geometrical representa-
tion of a surface of constant threshold value (the isosurface ) from sampled
volume data. Graphics workstations are deft at handling such geometrical
representations efficiently, offering the ability to render hundreds of thou-
sands of polygons per second. For large volumes with complex surfaces,
however, generation of the geometric representation may take many minutes.

A popular method for isosurface generation is to imagine the volume as
consisting of cells whose corners are the sample values [3, 5, 13, 26, 27]. Each
cell is examined one by one for the presence of an isosurface, which is
detected when at least one corner value is above and another below the
threshold value. If the isosurface intersects the cell, intersection points along
the cell edges are calculated and become the vertices of polygons representing
the portion of the isosurface within that cell. Lorensen and Cline introduced a
table-lookup method to speed polygon generation [13].

Generally, isosurfaces intersect a small subset of the cells within a volume.
However, most of the useful work of the algorithm occurs within those cells
that do intersect the isosurface. The relative costs of traversal versus cellular
computation are extremely variable, depending upon the total size of the
volume, the number of cells including the isosurface, and the size of the
computer memory. Previous research indicated that between 30°4 and 70Vr of
the time spent in isosurface generation was spent examining empty cells [26].
This provided impetus for the study of the octree traversal methods described
here.

2.1 Two Contrasting Approaches

We explored two approaches to isosurface generation: the first is a typical
marching method [13, 26] and the second is the octree-trauersal method
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introduced here. Both methods read the volume data into an array, begin
with a setup phase, then continue with a surface-finding phase for each
threshold furnished by the user.

The marching method has a minimal setup phase; for the user’s conve-
nience in selecting thresholds, it finds the maximum and minimum data
values. Each surface-finding phase visits all cells of the volume, normally by
varying coordinate values in a triple “for” loop. As each cell that intersects
the isosurface is encountered, the necessary polygons to represent the portion
of the isosurface within the cell are generated. There is no attempt to “trace”
the surface into neighboring cells. To find the isosurface for a new threshold
value the whole phase is repeated; there is no carry-over information.

During its setup phase, the octree method creates an octree that contains
at each node the maximum and minimum data values found in that node’s
subtree. The lowest level of the octree represents eight cells, and contains a
pointer into the data array to the sample value having the minimum ( x, y, z)
value of any of the 27 samples defining these eight cells. The volume data is
stored in an ordinary 3-D array, rather than octree traversal order, to
simplify the location of neighboring data points. In contrast to the marching
method, the setup phase does a substantial amount of work, and determining
maxima and minima are an essential part of the setup, not merely a user
convenience.

In surface-finding phases, the octree is traversed with a particular thresh-
old, only exploring those branches that contain part of the isosurface; any
node whose maximum is below the threshold or whose minimum is above it is
exited without traversing its children. When a leaf node that contains isosur-
face is visited, each of the (normally eight) cells that it “covers” are visited,
and polygons are generated.

Both methods use a table lookup for polygon generation. The basic idea is
due to Lorensen and Cline [13]; refinements to handle “ambiguous” cells were
described by Wilhelms and Van Gelder [26]. The table contains 256 entries,
referring to the 256 combinations of positive and negative (relative to thresh-
old) values that can occur for an eight-cornered cell. Each table entry
describes which cell edges contain intersections and how they should be
joined to produce the polygons representing the isosurface. A second table is
used to treat ambiguous cases; each ambiguous case in the first table
contains a “pointer” to the relevant section of the second table.

3. SPACE REQUIREMENTS OF PREVIOUS OCTREE DESIGNS

The space requirements of an octree can be a serious issue in the design of
a system that will process large data volumes. In this section we examine
space requirements of previous designs; in Section 4 we describe a more
space-efficient design. First, we review octree basics and introduce some
terminology.

3.1 Octree Basics

Octrees are tree structures of degree eight. It is convenient to number the
children from zero to seven; their numbers, written in binary, encode which
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subregion of the parent they “cover”. We shall use the zyx convention. If the
z bit is 1, the child covers an octant that is “upper in z“; if it is O, the child
covers an octant that is “lower in z”. The y and x bits are similarly
interpreted. We shall write child numbers in binary to facilitate this interpre-
tation. (An alternate notation is back/front for z, south/north for y, and
west/east for x.)

Traversal of an octree is accomplished by recursively visiting a node and
traversing its children in order. Notice that all children of a fixed node that
are “lower in z” are visited before all children that are “upper in z“; among
those that are in the same z division, the ones that are “lower in y“ are
visited first, etc.

A full octree is one in which each node has exactly eight children; however,
this is possible only if the volume’s resolution is the same power of two in
each dimension, e.g., 4 x 4 X 4 (64) samples, 8 X 8 x 8 (512) samples, 64 X

64 X 64 (262,144) samples, etc. Full octrees offer the best ratio of the number
of nodes to data points. For a volume with a resolution of s in each direction
where s is a power of 2,

10g2,s– 1

nodes = ~ 8’=?.
1=(J

As described in Section 3.3, the regularity of the full octree data structure
permits it to be implemented without storing explicit addressing information
in the octree node; we call this a pointerless octree design. An alternative is
to use an octree design in which nodes are allocated space only if they “cover”
a region that is actually within the volume. This makes the location of nodes
less predictable. Traditionally, each node contains addressing information
necessary to determine the location of its children. We call this design a
pointer octree.

3.2 A Running Example

Previous treatments of octrees have made the simplifying assumption that
the resolutions of the volume are precisely 2~ x 2 ~ x 2 d for some integer d.
However, power-of-two volumes are not the norm; moreover, volumes often
vary widely in resolution among the three dimensions. In this case, storage of
a full octree can be extremely wasteful because many nodes correspond to
regions not actually within the volume.

To explore the impact on previous designs when the power-of-two assump-
tion does not hold, we shall consider an example at some length. To make the
discussion concrete, let us assume that each data value requires the same
space as a pointer or index, and call this a “word”. Usually a “word” is 32
bits. For our application, isosurface generation, each octree node must store
two words ( maximum and minimum), plus whatever structural bookkeeping
is required.

For our running example, consider a data volume whose x, y, and z
resolutions are 320 x 320 x 40, for a total of 4,096,000 data points. An octree
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for this volume will have nine levels. This is the size of one of our CT-scan
volumes for which computational experience is presented; see Section 6.

3.3 Pointerless Full Octree Design

Suppose we naively set up a “full” octree over this 320 X 320 X 40 volume;
that is, every node in the octree has exactly eight children, and each leaf node
refers to eight data points (which may or may not be within the actual
volume). One motivation for using a full octree is that the nodes can be stored
in an array T in such a way that parent and child pointers are not required.
In analogy with the heap-sort strategy in one dimension and the pyramid
strategy in two dimensions, the root is in 2’[0], the children of the node
occupying 7’[ k ] are found in locations Z’[8k + 1] .. . T[8k + 8], and all nodes
at the same level are contiguous within the array. (Thus we can think of
T[9] . ““ T[72] as a subarray containing all the nodes at depth two, etc.)

Unfortunately a full octree for the example volume requires

1 + 23+43+-.. +2563 = 19,173,961

nodes of two words each, or almost 40 million words. (As discussed earlier, in
applications requiring only one bit per node the full octree fits in slightly
over 500,000 words, which is quite acceptable.) This overhead in this exam-
ple, almost 4 times as many nodes as data points and nearly eight times as
much space as the original volume, is almost certainly not acceptable. Most of
the space is wasted, but is not easy to eliminate because “real” nodes are
scattered throughout it.

3.4 Traditional Design of Pointer Octrees

An alternative is to build the octree in the more traditional way, with
pointers or indices (subscripts) to a node’s children within the node record.
Nodes are only created if they “cover” some portion of the data. Leaf nodes
should require only one pointer, which is to data, because the neighbors of
that point can be located. Although a naive design would specify a pointer for
each child, giving at least eight pointers per internal node, with some care, all
of a node’s children can be allocated contiguously, so that one child pointer (or
index) suffices for internal nodes as well. In this design, each octree node
occupies three words. (Some designs might include a fourth word for a parent
pointer.)

Let us see how this might work, following the traditional and intuitive
even-subdivision strategy, which divides each node’s range from the top down
in each coordinate direction as evenly as possible. (Ranges of 1 or 2 are not
divided.) Consider an octree in which the three resolutions are not equal.
Because nodes branch in each dimension from the top down until no more
subdivisions are required, the even-subdivision strategy will result in 8-way
branching at the top when all dimensions subdivide, 4-way branching in the
middle when two dimensions subdivide, and (effectively) binary subtrees at
the bottom when only the largest dimension continues to subdivide. As most
nodes are at the greater depths, this means the least efficient nodes are the
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Node Number Region
depth of nodes covered

o 1 320x320x40
1 8 160x160x20
2 64 8OX8OX1O
3 512 40X40X5 Fig. 1. An even-subdivision octree
4 4,096 20x20x3 or 20x20x2 covering a 320 x 320 x 40 data vol-

5 24,576 10x10x20r 10xlOxl ume.

6 98,304 5x5x2 or 5x5x1

7 393,216 3x3x2, 3x2x2, 2x2x20r

3x3x1, 3x2x1, or 2x2x1

8 786,432 2x2x2, 2x2xl, or2xlxl

total 1,307,209

most numerous; consequently, the ratio of nodes to data points can be quite
high.

The outcome for our example is shown in Figure 1. Observe that a node has
null children whenever one or more of its coverage resolutions is 1 or 2.
(Strategies to detect when this occurs are not difficult, and are similar to
those employed in our actual implementation, as discussed later.) When all
coverage resolutions are two or less, the node is a leaf, and it points to data.

As Figure 1 shows, an octree designed by this strategy for our example
consists of about 1,300,000 nodes, and nearly four million words. This octree
requires almost as much memory as the original volume—better than a full
pointerless octree, but still a serious overhead. Even if a pointerless strategy
were devised for this octree, the use of even subdivision will produce an
octree whose size is about 2/3 of the original volume. The ratio of octree
nodes to data points is 0.3191, a significant degradation when compared
to the optimum of 0.1428. This observation motivated our search for an
improvement.

Globus reports a variation of the even-subdivision strategy that addresses
the storage space issue [9], Primarily, a coarser granularity is accepted in
that an octree node that covers less than 32 cells is not further subdivided.
Also, nodes that cover small but very oblong regions are divided four or eight
times in the longest dimension, and not divided in one or both of the shorter
dimensions. On our example Globus’ strategy yields an octree of 201,289
nodes; each leaf node turns out to cover 25 cells in a 5 x 5 x 1 pattern. The
number of words needed per node depends on implementation choices that
were not reported; various trade-offs between time and space are possible.
Comparison with his timing results appears in Section 6.2.

4. A SPACE-EFFICIENT OCTREE DESIGN

This section describes the octree design we adopt and compares the space
requirements with the even-subdivision method. Essentially, we regard the
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octree as conceptually full, but avoid allocating space for empty subtrees.
Note that the even-subdivision strategy divides the volume, from the top
down, whenever it can. The approach we describe now, in some sense, delays
subdivision until absolutely necessary. Therefore we call it the branch-n-need
strategy, and we call the resulting data structure a branch-on-need octree
(BONO for short). The presentation here is from a top-down point of view,
because the procedures work top-down to facilitate storage allocation. An
alternative bottom-up view is discussed in Section 4.2.

4.1 Branch-on-Need Octrees

We can associate with each node a conceptual region and an actual region, as
illustrated in Figure 2 with our running example, which is a 320 x 320 x 40
volume. Recall that in our terminology, “001 child” means the “lower z, lower
y, upper x“ child. The three bits of the child code represent motion in the z,
y, and x directions, respectively, when read left to right. Since all of the
“upper z” children of the root have empty actual regions, no space is
allocated for them. Therefore the root has only four actual children, and we
say that it “branches” in the x and y directions, but not in the z direction.

A further element of the BONO strategy is that the “lower” subdivision in
each branching direction always covers the largest possible exact power of
two (yielding a range of the form 2 k – 1). A two-dimensional analog contrast-
ing the even-subdivision and branch-on-need strategies is shown in Figure 4
on a 5 x 6 array.

Definition 4.1. We define the range in each of the x, y, and z directions
as the difference between the upper and lower limits of the actual region. The
range vector is the triple of x, y, and z ranges.

An interesting pattern emerges if we look at a node’s range vector in
binary. In our example, for the root we have:

Direction Range in Binary (Decimal)
x 100111111 (319)

Y 100111111 (319)
z 000100111 ( 39)

The directions that branch are precisely those that have a 1 bit in the
leftmost position, when all ranges are written with the same number of bits.
The number of bits equals the height of the node in the octree, with leaves
considered height 1 (and data considered height O). To obtain the range of the
“upper” children in a direction that branches, simply remove that leftmost 1
bit. The range of the corresponding “lower” children is a bit string of l’s, one
shorter than the root’s original range. Following this rule, the ranges of the
001 child of the root are:

Direction Range in Binary (Decimal)

x 00111111 ( 63)

Y 11111111 (255)
z 00100111 ( 39)
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Node

root

000 child
001 child

010 child

011 child

100 child

. . .

Conceptual Region I Actual Region
x Y z x Y z

0-511 0-511 0-511 0-319 tL319 o--39
0-255 0-255 0-255

256-511 0-255 0-255

0-255 256-511 0-255

256-511 256-511 0-255

0-255 0-255 256-511

. . . . . . . . .

0-255 0-255 (L39
256-319 0-255 (L39

O-255 256-319 0-39

256-319 256-319 0-39

0-255 0-255 empty
. . . . . . empty

Fig. 2. Conceptual and actual regions for octree nodes over a 320 X 320 X 40 volume

We see immediately that this node branches in the y direction, but not the x
or z directions. Both of its children will have the following range configura-
tion:

Direction Range in Binary ( Decimal)

x 0111111 ( 63)

Y 1111111 ( 127)
z 0100111 ( 39)

The bit patterns of the ranges also allow us to quickly discover how many
(actual) nodes the octree has at each depth. This information is vital for the
allocation of storage. For example, to see how many nodes are at depth 4, we
take the 4 leftmost bits of each range of the root:

Direction Range in Binary

x 1001I11111

Y 1001[11111
z 0001100111

This gives ranges of 9, 9, and 1. Add 1 to each and multiply, giving 10 * 10* 2

= 200 nodes at depth 4. To see why this works, just imagine that we began
with a data volume of resolutions 10 X 10 x 2, and built an octree over it.
Then the root’s ranges would be 9, 9, and 1.

Figure 3 shows the number of nodes produced by this strategy on our
320 x 320 x 40 example (4,096,000 data points). In contrast to previous
schemes, the 585,439 nodes are far fewer than the number of data points, and
the ratio is virtually the optimum one of 1 node per 7 data points for a full
octree. The space, about 1,750,000 words, is well under 50’% of that occupied
by the data volume. This behavior is typical, and not an artifact of the
resolutions chosen for the example. As shown rigorously in Appendix A, when
all resolutions are at least 32, the ratio of octree nodes to data points never
exceeds 0.1615, which is not far from the optimum of 0.1428.

Using the above observations, we can efficiently allocate precisely the
correct amount of space for an octree, and determine which directions any
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Node Number Region
depth of nodes , covered

o 1 320x320x40

1 4 256x256x40 or 256X64X40

or 64x256x40 or 64x64x40

2 9 128x128x40 or 128x64x40

or 64x128x40 or 64x64x40

3 25 64x64x40
4 200 32x32x32 or 32x32x8
5 1,200 16x16x16 or 16x16x8

6 8,000 8x8x8
7 64,000 4x4x4

8 512,000 2x2x2

total 585,439

Fig, 3. Nodes by depth for a branch-on-need octree (BONO) covering a 320 X 320 X 40 volume.

given node branches. Our implementation precomputes this information and
stores in each octree node a 3-bit code to tell which directions branch, and an
index to its “leftmost” (000) child. The actual children of the node are
contiguous in the array in lexicographic order. That is, if all eight children
are actual, their order is 000, 001, 010, 011, 100, 101, 110, 111. We assume
the volume has less than 2 28 data points and pack the code and index into
one 32-bit word.

In fact, all nodes at a given depth are contiguous and appear in what we
call shuffled zyx order. For example, at depth 4, a node’s origin in the data
volume is the triple

Direction Origin in Binary
x X9X8X7X6000000

Y Y9YElY7Y6°00000

z Z9Z8Z7Z6000000

where X9 is O for the lower-in-x children of the root, and is 1 for the
upper-in-x children of the root, etc.

The node’s shufled zyx key is

29Y9x92~Y~x827Y7x72~Y~x~.

Interpreting the bits of this key in groups of three gives the path in the octree
to this node.

Appendix B describes how to calculate the location of a node without using
pointers (or indices) from its key and the range vector of the root of the
octree. Although this can be done in time proportional to the length of the
key, it is still fairly expensive, so we chose to incur the space overhead of one
index per node to speed traversal of the octree. As the discussion showed, this
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space overhead is about 15% of the basic data volume. Furthermore, it can be
greatly reduced by use of pointerless nodes on the leaf level only.

Our isosurface application does not require the ability to locate an arbi-
trary node in the octree, but this is a necessary operation for many other
algorithms [6, 7, 8, 23]. For example, Gargantini uses (essentially) the same
shutlled zyx key to specify a node’s place in the octree [6]. However, her
linear octree explicitly stores the key with the node, and stores the nodes
sorted in key order; a binary search is employed to locate a node in memory
by its key. Glassner uses a slightly different key and a hash table [8]. In
contrast, we do not store the key at all, but can calculate the node’s location
in memory from the key.

4,2 Comparison of Branch-on-Need and Even-Subdivision Strategies

The branch-on-need strategy can also be viewed as a bottom-up one, as
compared to the top-down even-subdivision strategy described earlier. Data
points are grouped from the bottom up in the most efficient manner. For
volumes with different resolutions in the three dimensions, this places the
8-way branching section of the hierarchy (or 8-way collapsing if one thinks
from the bottom up) at the bottom of the tree; 4-way branching occurs where
one dimension has been clustered as much as possible, and an (effectively)
binary tree occurs where only one dimension still requires clustering. Thus,
the most efficient reductions take place at the bottom of the tree where there
are the most nodes. In general, this strategy is space-wise far superior to the
even-subdivision approach. Figure 4 demonstrates a two-dimensional analog
of this phenomenon on a 5 x 6 array; in three dimensions and with larger
resolutions the difference is much more pronounced. The two methods are
identical and produce a full octree when the volume resolutions are precisely
X(i ~ 2,{ ~ 2(!

Two factors influence the ratio of nodes to data points for branch-on-need
octrees: the size of each resolution (resolutions of a power of two are best, and
of a power of two plus one are worst); and the relative size of the resolutions
(cubical volumes are best). The size of each resolution is a more significant
influence, but neither effect seriously degrades the ratio. We show this in an
intuitive manner below; Appendix A gives the formal proof. Consider volumes
all of whose resolutions are at least 32. (This bound is chosen as a reasonable
minimum resolution. The true worst case ratio can be produced by having
two resolutions of 1. The tree is then a binary tree, which is uninteresting.)

First, consider a volume that contains (s + 1) x (s + 1) x (s + 1) data
points, where s is a power of two. A full octree can be built over s x s x s
data points, which will contain ~(ss – 1) nodes. Three quadtrees can be built
over the remaining nodes covering three faces; each one will contain ~( ,sz – 1)
nodes. Three binary trees can be built along the three edges which still
include nodes not considered, each adding approximately s nodes. The neces-
sity of nodes with only two or four children on the deepest levels of the tree
produces the worst case, which is approximately ~ss + s 2 nodes actually
needed, compared with the optimum of about +(s + 1):]. While not a major
degradation, the ratio of actual to optimum is about (1 + 4/s).
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Even-Subdivision Strategy

1 Node

4 Nodes

12 Nodes

T
000000

000000

000000
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000000

33
000000

000000

000000
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00:000:0
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oo~ooo:o
------ --.--

m
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Level 1

Level 2

Branch-on-Need Strategy

000000

000000

000000
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0000

0000
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0000
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00
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00

00

00

0 010 010 0

1
00; 0000

o o~oo- o 0
,---- ----
00; 0000

00:0000

1 Node

4 Nodes

9 Nodes

Fig. 4. Comparison of designs in two dimensions on a 5 x 6 array.

For larger volumes, up to a resolution of 2s x 2s X 2s, the “binary” and
“quad” nodes in the above described tree can be given new children, making
them more “efficient”, and the ratio of nodes to data points will never be
worse than for the above case. For each power of two over 32, the ratio
improves slightly, approaching ~. Thus, the worst case among cubical vol-
umes is one with resolutions 33 x 33 X 33. This volume requires 5803 nodes
for 35937 data points, a ratio of. 1615.

What about the effect of one resolution being much larger than the other?
Consider the effect of a volume of resolutions s x s X t, where s is a power of
two and at least 32, as before, and t > s. An octree of height logzs can be
built over the volume. At the top of this octree, two resolutions cannot
undergo firther divisions and the other resolution is s. A binary tree of
height log t – logzs can be built on top of the octree. The octree contains
approximately ~s 2t nodes and the binary tree approximately t/s nodes. The
effect of the binary tree is relatively negligible; the ratio of nodes to data
points remains near #.

The branch-on-need strategy normally produces a tree shaped quite differ-
ently from the even-subdivision version. The even-subdivision strategy will
partition the volume into more equal parts. Using a one-dimensional exam-
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pie, if there are 65 data points, the even-subdivision strategy will divide at
the top into one subtree covering 33 data points and another covering 32. The
branch-on-need strategy will divide into one region covering 64 data points
and the other covering 1 point.

In rare cases, it may be necessary to visit more nodes in a BONO than in
an even-subdivision octree to process a particular section of the volume. In
this one-dimensional example, if the two highest-indexed points were the
only ones of interest, the branch-on-need tree would require visitation of 13
nodes because these two points are on separate subtrees of the root. The
even-subdivision tree would require only six or seven. However, there are
counterexamples, as when the two points are in the center of the volume,
where the even-subdivision tree requires more visitation because the nodes
are on separate subtrees of the root while in the BONO tree they are not.
Furthermore, as traversal has a modest cost (see Section 6), this whole issue
is not a major consideration.

5. RECALLING PREVIOUSLY COMPUTED INTERSECTION POINTS

Each vertex is generally contained in four neighboring polygons, and each
vertex requires six floating point numbers: three representing location, and
three a normal vector required for rendering. Calculating vertex information,
particularly the normal vector, is quite expensive, and a substantial time
savings is realized by reusing the results. Storage is also saved by represent-
ing polygons by indices into a vertex array, saving over twice the space
normally required for geometric representations.

A straightforward array method for saving this information, as described
by Lorensen and Cline [ 13], is used in the marching method. However, it is
not suitable for octrees because the octree traversal does not visit the nodes
in row-major order. It is possible to devise a savings method designed
particularly for use with octrees, but a hash table appeared to provide a
simple and general solution to the problem. Wyvill et al. also used a hash
table in their implementation [27]. Technicalities of our hash table are given
in Appendix C.

The main observation needed for storage efficiency here is that it is
possible to identify the last visit of an edge, and remove its information from
the hash table, freeing the storage for later use. Because of traversal order,
the three edges adjacent to the “origin” of a cell will never be visited again.
This allowed us to use hash tables which are much smaller than would be
necessary to store all significant edges simultaneously. Artzy et al. used a
related storage optimization in their traversal of an implicit binary spanning
tree; although their data structure was a set of linked lists, the removal of
“marked nodes” that would never be visited again was critical [ 1].

6. EXPERIMENTAL RESULTS

Tests were run on six sets of data. In all cases, use of octree traversal was
faster than the marching approach. This was true whether the time for octree
creation was included or whether only the actual surface-finding traversal
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TableI. Characteristicsof DataVolumes

Number Octree % Cells

Data File of Cells Size Threshold with Surface

Blunt Fin 4)x32x32 31,117 5,855 1.0 12.97%

Protein 64x64x64 226,981 37,449 0.1 0.82%

Enzyme 97x97x116 998,468 160,383 36.5 9.22%

Dolphin . 320x320x40 3,718,093 585,439 120.2 2.87%

I NMR Brain I 256x256x109 I 6.784.954 I 1,032.229 ! 500.5 I 7.04% I
[-CTHed T256x256x11317,040.99011,070.3731 150.5 I 4.28% I

times were compared. The justifications for comparing the two methods on
the surface-finding phases only are two: first, the octree can be precomputed
and stored for reuse; and, second, it is possible to use the same octree for
multiple thresholds.

6.1 Description of Experimental Data

Table I describes the data. The blunt @ (C. M. Hung and P. G. Buning,
NASA Ames Research Center) is a curvilinear volume generated using
computational fluid dynamics and extracting a surface from the density field.
The superoxide dismutase enzyme (D. M. McRee, Scripps Clinic) and the
high-potential iron protein (L. Noodleman and D. Case, Scripps Clinic) are
molecular volumes from the volume data set distributed by the University of
North Carolina. The dolphin (T. Cranford, UC Santa Cruz) is a threshold
from a CT-scan of a dolphin head, using only central slices. The MR-brain
(Siemens Medical Systems) and the CT-head (North Carolina Memorial
Hospital) are also scans from the UNC dataset. Figure 5 shows the images of
some of these surfaces generated on a Silicon Graphics Iris.

6.2 Experimental Timing Results

Table II summarizes the costs of the two methods on the seven sets of data.
Runs were made on a Sun Sparcstation 1 with eight megabytes of memory.
Tests on a 16 megabyte machine have produced similar relative timing
results. Note that, in general, octree traversal shows increasingly better
relative performance as the data tiles get larger. This is to be expected, as the
fraction of cells containing isosurface tends to decrease as volume size
increases.

The octree-creation time includes allocating memory for the octree, recur-
sively traversing it downwards establishing pointers, and accumulating max-
imum and minimum information on the return to the root node. The surface-
finding time involves, for the marching version, traversal of all cells, and, for
the octree version, traversal of the regions of the octree and volume as
dictated by summary information in the nodes. The total generation time is
the sum of these for the octree method, and is the same as the surface-finding
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(a)
Fig. 5. Selection of isosurfaces  analyzed.  (a) Iron  protein  wave function  threshold .l; (h) Enzyme
electron  density  map threshold 36.5; Cc) NMR-scan  of head threshold 500.5.

time for the marching method.  The time to display  the resultant polygons
would  be the same  for both methods,  and is not included.  The time to read in
the data and do minor preliminary initialization is not included  in the
statistics  either,  because it is the same  for both methods.  It is worth  mention-
ing that  for very  large  files, this cost is approximately equal  to the octree
creation  time.

In the best  experimental case, the protein,  the octree  method  improved
surface-finding speeds  by a factor of 11. For this volume, relatively few cells
have surfaces  and these  are concentrated in small  regions  of the volume.  For
the other  volumes,  surface-finding using the octree  took between  a quarter
and two thirds  the time of the standard  method.

The actual  octree  traversal  times  were  insignificant. For example,  the MR
Brain  volume took under  4.5 seconds  for actual  octree  traversal, compared  to
almost  300 seconds  for the surface-finding phase.

Globus  reports  experiments on the same  blunt fin data set that  we used [9].
He does not report  precise  thresholds used,  but the threshold we used should
be most  comparable to his maximum case. There  we both found  that  the
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W
Fig.  5--Continued

octree  produces  a substantial time reduction in the surface-finding phase:  he
reports  about 4.7 versus 8.9, or 53% to compare with our 64%. However,  he
experiences  a somewhat larger relative cost for building the octree:  1.78/&g,
or 20% of the “marching”  time. We found  it to be .36/3.00,  or 12%.  This
difference  may be due to a more  complicated subdivision strategy (see  Section
3.4). In any event  we both observe  a benefit even when only one surface  is
extracted, with increasing dividends  as the octree  is reused  for subsequent
surfaces.  Globus,  like us, found  substantially greater speedups  in other  cases,
including some by a factor of 9.9.

6.3 Performance  Models of Surface  Finding

We estimated a linear function of the total  number of cells and the number of
cells intersecting the isosurface to explain the running times  observed in our
experiments.  Specifically,  the running time is modelled as time  = At + Bs,
where  t is the total  number of cells actually visited and s is the number with
isosurface.  The estimates of constants A and  B are shown  below.  The value
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We do not have  enough data to achieve  statistical  significance; these  values
were informally estimated,  and fit the larger runs better  than the smaller
ones.

We observed  that  the octree  method very consistently visited  about  twice  as
many  cells as had isosurface,  because the lowest  internal  node  indicates
whether an isosurface may be present in any of up to eight cells. Thus,  t = 2 R
for the octree  method,  to a good  approximation. Of course,  t equals  the whole
volume  for marching methods.  From this crude  model  we can estimate a ratio
of surface-finding times  of the two methods as a function  of f, the fraction of
cells that intersect the isosurface.  Let r be the ratio  of marching time to
octree  time for the surface-finding phase.  Let t now be the total number of
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Table II. ComparativeProcessingTimesfor IsosurfaceGeneration,in CPU8econds

Blunt Fin

Octree Creation

Surface Finding
Total Extraction

Protein
Octree Creation

Surface Finding

Total Extraction

Enzyme

Octree Creation

Surface Finding
Total Extraction

Dolphin

Octree Creation
Surface Finding

Total Extraction

MR Brain

Octree Creation

Surface Finding

Total Extraction

CT Head

Octree Creation

Surface Fkding

Total Extraction

March Traversal I Octree ‘hwenud I % Octree/March
, ,

0.36
3.00 1.90 64%
3.00 2.26 75%

d-=b
I 11.9

75.2 43.0 57%
75.2 54.9 73%

=4-J@
109.6

556.5 282.2 51%

556.5 391.8 70%

114.1

464.1 167.1 36%

464.1 281.2 61%

cells in the volume; thus s = ft. We have

54t + 431ft .094

r = 72(2ft) + 431ft
=.75+—

f“

Whenever f is less than about .37, r exceeds 1, and we anticipate that the
octree method will outperform the marching methods in the surface-finding
phase. We have yet to encounter a situation where the percentage of cells
with surface is anywhere near this.

The other side of the coin is that the octree method requires significant
setup time, other than reading in the data. For this time factor, we estimated
C = 16 ~-seconds per cell in volume. (The comparative value for the march-
ing method is just the time per cell to get the maximum and minimum of the
volume, and is optional; it is about 5 ~-seconds.)
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As remarked before, the setup time can often be amortized over several
surface-finding phases. However, for a run consisting of setup and tinding
one isosurface, we get the ratio rl marching time to octree time for the run:

5t + 54t + 431fl .082
r-l ==

16t + 72(2ft) + 431fl
= .75 +

f+ .028 “

Whenever f is less than about .30, r-l exceeds 1, and we anticipate that the
octree method will outperform the marching methods for single isosurface
runs (including both setup and surface-finding phases). For f less than about
.037, we calculate that octrees are better by a factor of 2.

6.4 Miscellaneous Remarks

Use of an octree traversal without a saving strategy to reuse previous
intersection-point-related computations obviated its speed advantages. Pre-
liminary results showed the octree traversal was about equivalent to the
traditional marching method when the octree did not save those computa-
tions. Similarly, removal of the saving strategy from the traditional method
significantly slows down that algorithm. Therefore, use a saving strategy.

Another interesting side note is that traversal times on machines with
relatively small memories can be highly dependent on traversal order. As-
sume the x dimension varies fastest in the array that stores the data volume,
followed by y, and then z. We inadvertently found ourselves at one time
traversing the volume in the order z-y-x and found that it could take many
times as long as an x-y-z traversal, due to the time taken by page faults. Our
particular tests were on an 8 megabyte machine, which is surely “relatively
small memory” by current standards in graphics. But small memory is
relative: Moving to a machine with greater capacity soon leads us to work
with larger volumes. While there is no reason to use z-y-x order for polygon
generation methods, algorithms such as direct volume rendering normally
access the volume front to back, and hence direction can make a significant
difference. In such cases, storing the data in octree order to equalize traversal
costs might be preferred.

Even very small data sets stored in ascii take a long time to read and
convert. Ascii is most convenient for portability, but should be converted to
floats or integers, as appropriate, for repeated use.

7. CONCLUSIONS AND FUTURE RESEARCH

Our studies showed that octrees can yield substantial improvements in
performance for isosurface generation on data sets produced by current
technologies. These improvements will be even more significant on larger
data sets. However, several technical problems had to be solved to realize the
benefits.

(1) A new octree implementation made the storage overhead acceptable.

(2) A careful caching method enabled us to reuse results of earlier computa-
tions, then discard them when they would not be referenced again,
freeing the storage for others.
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Numerous topics remain to be explored concerning octrees in scientific
visualization. The use of octrees on irregular, nonhexahedral grids, as are
often produced in finite-element analysis, requires further research. Other
applications of octrees should also present new, interesting, technical prob-
lems.

APPENDIX A: RATIO OF BRANCH-ON-NEED OCTREE NODES TO DATA
POINTS

In this appendix we show that the BONO design creates a number of nodes
that is less than 1/6 the number of data points covered, for volumes all of
whose dimensions are at least 32. The lower bound of 32 was chosen as a
bound that should be satisfied in practice. The same analysis can be repeated
with looser restrictions to get slightly weaker bounds. Recall that 1/’7 is the
best possible case, and is easily achieved by all methods when the volume is
2d x 2d x 2d.

To simplify the formulas, we use the nomenclature introduced in Definition
4.1 that the range in each coordinate direction is one less than the number of
points (or resolution) in that direction. Thus a 32 x 32 x 48 volume has the
range vector (31, 31, 47).

Let ( XO,y., Zo) denote the range vector for the data. Let ( XA, y~, z~ ) denote
the range vector for the octree nodes at height h,
octree are at height 1. As discussed earlier, from the

Xh ==[xo/2~]

Yh = [Yo/2”]

z~ = [zo/2~j.

where the leaves of the
way the octree is formed,

That is, h rightmost bits are dropped off each range coordinate at height zero.
Throughout this discussion let d be the height of the root, and let 1< h < d.

We are concerned with bounding the ratio

d (x, +1)(Y, + 1)(z, + 1)
R(xo, yo, zo) = ~

h=l (~o+ l)(YO+ 1)(20+ 1)

for ranges X. >31, y. >31, ZO >31. Thus the minimum volume to which
our bound applies is 32 x 32 X 32.

To find the point where R( X., y., Z.) achieves its maximum, we use the
fact that R must be maximized in any coordinate direction when the other
two coordinates are held constant. The analysis is complicated by the fact
that there are numerous local maxima. To simplify the formulas that follow,
we abbreviate:

(Yh + l)(zh + 1)
K~ =

(Xo+ l)(yo+ 1)(2. + 1)”

First we consider points such that X. is a power of 2, and compare
R(2 ~, y., Z.) for different values of m.
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LEMMA A. 1. R(2’”, yO, ZO) is a decreasing function of m, for 1< m < d

and fixed .Y(, and Z(l.

PROOF. R(2 ‘“’ ‘ ,Y(), z{)) – R(2’”, Y o, ZO) can be written as

,,1+1 h+l) (z~l ~+1)

,,;, ((;2”’ “’ + 1) )
K~

(2m + 1)

( 2 1

)+ (2’””’ + 1) - (2”1 + 1) ‘“]’ ‘

d 1
+

/1=:+ 2((2’””’ + 1) - (2”1: ~) ~h1

The second sum is clearly negative (or zero if m + 1 = d). The other terms
can be simplified to

f (~2,,1(+:’”“- 2:) )Kh
h=l

+ 1)(2 + 1)

i

1

+ (2n] ‘ ‘ 1
K~l. l.

+ 1)(2’” + 1)

Using the facts that m > 1 and K,rl , , s K,,,, we see that the mth term of the
sum is at least as negative as the term under the sum is positive. Since all
terms of the sum are negative, the lemma is proved. ❑

Next we show that a power of two dominates all the values up to the next
power of two.

LEMMA A.2. R(2”’, yo, Zo) > R(2’” +k, yO, zO)forl<k<2’’’, l< m<d,
and fixed y,, and zo.

PR(X)F. R(2’” + k, yo, ZO) – R(2’”, y,), ZO) can be written as

‘“ h + ~k/2AJ + 1) _ (2’” h+l)

,7!, ((2 (2”’ +A + 1) (2’” + 1) I
K,,

d

h=:.lL“’+;+1) -

1
+

)
K~ .

(2m + 1)

The second sum is clearly negative. The first sum can be simplified to

m (_k2~~ h+y[kz ‘j–k+[kz ‘]) Kh,

q
h=l , (2”’ + k + 1)(2’” + 1) 1

Since all terms of the sum

Now we can establish a
data points:

are negative or zero, the lemma is proved. u

worst-case bound on the ratio of BONO nodes to
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THEOREM A.3. For XO >31, yO >31, and ZO>31, the maximum value of
R( XO,yO, ZO) occurs at (32, 32, 32), corresponding to a 33 X 33 X 33 data
volume.

PROOF. Lemmas A. 1 and A.2 show that no XO >32 can produce the
maximum, and direct calculation shows R(31, y., Z.) < R(32, Y., Zo), so R
must be maximized at X. = 32. The same arguments apply to y. and Z.. ❑

The ratio of BONO nodes to data points for a 33 x 33 X 33 volume is

173+93+53+33+23+1
R(32,32,32) =

333

= .1615<:

which is the worst case for volumes all of whose dimensions are at least 32.

APPENDIX B: LOCATION OF NODES FROM KEYS

Here we sketch the calculation of a node’s location, given its depth in the
octree, its shutlled zyx key, and the range vector of the octree. The underly-
ing idea is that nodes at the same depth preceding the desired node are in the
subtree of a smaller sibling of some ancestor of the desired node. The
relationship to Gargantini’s linear octrees is discussed near the end of
Section 4.1.

Assume the key is a list of octal digits describing the path from the root to
the desired node. Let function head return the first element of such a list,
and let ta i1 return the list of all elements except the first. Also, let
chi ldRange (child, range) return the range vector of a child, given the
child number (an octal digit), and range, the range vector of the parent, as
described in Section 4.

The function offset (key, range, depth ) shown in Figure 6 returns
the number of actual nodes at depth depth whose shuflled zyx keys are
lexicographically less than key in an octree whose range vector is range.

This number gives the offset of the desired node from the beginning of the
subarray of nodes at that depth.

The depth of recursion equals the depth of the desired node, which is
proportional to the length of the key. The work at each level is bounded by a
constant, as the for loop body executes at most seven times. Thus the
function takes time that is linear in key length. Nevertheless, a substantial
time penalty would be incurred if this calculation were used instead of a
pointer, to save space.

APPENDIX C: HASH TABLE DESIGN DETAILS

This appendix describes some details of the hash table used to store edge-
related calculations for later use in the octree traversal, as discussed in
Section 5. Other designs are certainly workable, but this can provide a
starting point for other implementors.
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of fset (key, range, depth)

{
count = O;

If (depth > O)

{
ancestor = head(key);

for (slbllng = O; sibllng < ancestor; slbllng++)

{
s = chlldRange(slbllng, range);
count += (S.X + 1) * (s.y + 1) * (s.z+ 1);

}
count += offset(tall(key), chlldRange(ancestor, range), depth-l);

}
return count;

}

Fig. 6. Procedure tocalculate node location from shuflled zyx key.

Fig. 7.

*
haahindex

The hash function, where “@” denotes “exclusive or”

Each edge in the volume is given a unique key. Assume the edgeis from
(x,y, z)to apoint one greater insome coordinate direction. Then the offsetof
(.x, y,z) in the volume array (viewed now as one-dimensional) isthe basis for
the key. The ’’direction-code” assignedis lforx,2for y,or3forz. The keyis
then

4.0ffset+ direction.code

The ’’null’’ keyis O.
As an example, consider theedgefrom (3, 3,3) to(3,4,3)in a320 x320X

40volume. Theoffset of(3,3,3)is 308,163, andthis isa y edge, soits key is
1,232,654.

Our experience showed that a good size for the hash table is eight times the
square root of the number of data points in the volume, rounded up to a
power of two. We wanted a fast hash function that would distribute edges in
the same cell. We settled on one shown diagrammatically in Figure 7; its
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mathematical form is

(K\F) @ 8(Kmod F)

where @ denotes exclusive or, K is the key and F, the “fold point”, is 1/8 the
size of the hash table. (This function relies on K being less than 8F2.) Upon
collision, we rehashed by adding 1 mod table size.

We tracked utilization of the hash table, and found that it normally got
about one quarter full, and averaged about one collision per operation.
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