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This paper is concerned with the problem of reconstructing the surfaces of three-dimensional
objects, given a collection of planar contours representing cross-sections through the objects. This
problem has important applications in biomedical research and instruction, solid modeling, and
industrial inspection.

The method we describe produces a triangulated mesh from the data points of the contours
which is then used in conjunction with a piecewise parametric surface-fitting algorithm to
produce a reconstructed surface.

The problem can be broken into four subproblems: the correspondence problem (which contours
should be connected by the surface?), the tiling problem (how should the contours be connected?),
the branching problem (what do we do when there are branches in the surface?), and the
surface-fitting problem (what is the precise geometry of the reconstructed surface?). We describe
our system for surface reconstruction from sets of contours with respect to each of these
subproblems. Special attention is given to the correspondence and branching problems. We
present a method that can handle sets of contours in which adjacent contours share a very
contorted boundary, and we describe a new approach to solving the correspondence problem
using a Minimum Spanning Tree generated from the contours.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling-—boundary representations; curve, surface, solid, and object representations;
geometric algorithms, languages and systems; 1.3.8 [Computer Graphics]: Applications; J.3
[Computer Applications]: Life and Medical Sciences—biology; health

General Terms: Algorithms

Additional Key Words and Phrases: Branching problem, branching surfaces, correspondence
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1. INTRODUCTION

The problem of reconstructing a three-dimensional (3-D) surface from a set of
planar contours is an important problem in diverse fields. For example,
biologists try to understand the shape of microscopic objects from serial
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sections through the object. In clinical medicine, the data generated by
various imaging techniques such as computed axial tomography (CAT), ultra-
sound, and nuclear magnetic resonance (NMR) provide a series of slices
through the object of study. In Computer Aided Design (CAD), lofting tech-
niques specify the geometry of an object by means of a series of contours.

There are two basic approaches to the problem: volume based and surface
based. Volume-based approaches assume that data are available as a 3-D
grid. Surface-based approaches assume the data define the intersection of a
surface and a plane of sectioning. Which approach is most applicable depends
on the nature of the data. When the available data are a dense 3-D lattice of
values, as is the case with NMR and other radiological methods, a volume-
based approach such as the marching cubes algorithm of Lorensen and Cline
[15] or the geometrically deformed models of Miller et al. [19] may be best. If
the available data are a set of closed contours denoting the surfaces of the
objects to be reconstructed, as would be available from manual tracing of the
objects by a trained observer, then a surface-based approach may be pre-
ferred. If the spacing between slices is comparable to the resolution within
the plane of the contours, a volume-based approach can be used by superim-
posing a sampling grid on the contour data and by assigning a different value
to grid points falling inside a contour than to grid points falling outside a
contour. The grid values can then be used with a volume-based method.

A large separation between the planes of adjacent sections causes problems
for volume-based approaches, since they rely on overlap of projected contours
for their solution to the problem of determining the adjacency topology of
contours in the data set (i.e., which contours should be connected by a
surface; see the Correspondence Problem discussed below). If widely spaced
sections slice obliquely through an object, there may be no overlap between
contours representing the object. In such cases, a method that uses more
global information to determine topological adjacency relationships is pre-
ferred. We concentrate on surface-based approaches and work aimed at
solving some of the problems with such approaches.

The input data to a surface-based approach are a series of sections each
containing one or more contours. For example, Figure 11 shows two data sets,
one of which was constructed to illustrate our discussion, while the other was
obtained from anatomical slices through an arterial network.

The following definitions will be used:

—A contour is a simple polygon representing the intersection of the surface
of an object and the plane of a section.

—A section is the set of contours formed by one slice through an area of
interest. The contours in a section do not necessarily come from the same
object, and an object may be represented by more than one contour in a
section. We assume that contours are simple polygons and do not intersect
other contours of the data set.

—A canyon is a region between two contours that merge in an adjacent
section. Canyons are formed when two contours are close together along an
extended portion of their perimeters.
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The problem of generating a surface from a set of contours can be broken
into several subproblems (see Figure 1).

—The correspondence problem is solved by determining the topological adja-
cency relationships between the contours of a data set. A solution to the
correspondence problem determines the coarse topology of the final sur-
face.

—The tiling problem is solved by generating the “best” topological adjacency
relationships between the points on pairs of contours from adjacent sec-
tions by constructing a triangular mesh from their points. A commonly
chosen metric for determining what is “best” is minimization of the result-
ing surface area.

—The branching problem arises when an object is represented by a different
number of contours in adjacent sections, in which case the standard
method for solving the tiling problem cannot be used directly. A solution to
the tiling and branching problems determines the topology of the surface
and its coarse geometry.

—The surface-fitting problem is solved by fitting a “best” surface to the mesh
computed by solving the above problems. A solution to the surface-fitting
problem produces a detailed description of the geometry of the recon-
structed surface.

In this paper, we describe work that improves upon existing methods for
solving the correspondence and branching problems. We describe a new
solution to the correspondence problem, which computes the minimum span-
ning tree of a graph constructed from the contours in a data set. We also
describe a solution to the branching problem, which avoids introducing extra
points into the data.

2. SUMMARY OF PREVIOUS WORK

2.1 Correspondence Problem

The correspondence problem arises whenever there are multiple contours in a
section. When this is the case, the contours must be organized into groups
representing individual objects. In general these slices are widely spaced, and
there is no information other than the contour boundary.

Automatic solution of the correspondence problem in its general form is
difficult. Due to the underconstrained nature of the problem considerable
ambiguity can exist. For example, consider a set of slices taken through a
tangled cord or the connections between neurons in nerve tissue. Tracking
the individual strands may be impossible if the spacing between slices is
large. Assumptions about the nature of the objects to be reconstructed are
used often by automated solutions to help constrain the problem, allowing a
“reasonable” solution where no single “correct” solution is possible.

The difficulty of an instance of the correspondence problem depends on the
resolution of the available data. In the simplest case, the spacing between
adjacent sections allows unambiguous solution of the correspondence problem
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by examining overlap between contours on adjacent sections. Many current
solutions to the correspondence problem make the assumption that the
available data allow this approach. If the available data are not dense enough
to overlap between contours of the same object on adjacent slices, these
methods will construct multiple objects.

When available data are insufficient for the overlap method, methods that
use a more global view of the data set and incorporate some assumptions
about the objects to be reconstructed have been used. Soroka [27] used the
concept of a “generalized cylinder” for extracting high-level shape information
from a set of contours. He used a special class of generalized cylinder, the
“elliptical cylinder,” in which the contours are elliptical and the parameters
of successive contours vary linearly (within error limits). This approach
involves assembling contours into elliptical cylinders, then assembling the
elliptical cylinders into objects.

Bresler et al. [2] addressed the correspondence problem for objects that can
be described by generalized cylinders. They partitioned a set of contours into
“feasible objects” subject to certain constraints that depend on the presumed
nature of the objects to be reconstructed. Their use of domain knowledge to
group contours into feasible objects helped reduce the exponential complexity
of the problem.

2.2 Tiling Problem

The tiling problem has been the subject of most of the previous work on
reconstructing surfaces from contours.

Keppel [14] first reduced the problem of matching points in successive
contours to a search problem on a toroidal graph (see Figure 2). Fuchs et al.
[11] provided an extensive analysis of the search problem and developed an
efficient search method. They formalized Keppel’s approach and applied a
“Divide-and-Conquer” technique to speed the search. In this method contours
are represented by ordered lists of data points. Edges connecting neighboring
points in the same contour are called contour segments. Edges connecting a
point from one contour to a point from another contour are called spans. The
method involves associating a graph node with each span. The graph is a
dense two-dimensional (2-D) grid, overlaid on a torus. Arcs are allowed only if
the spans represented by the connected nodes share an endpoint, and the
pair of unshared span vertices are connected by a contour segment. With
these constraints, an arc defines a triangle consisting of an edge from one
contour connected by two spans to one point from the other contour. Costs are
associated with the arcs by using a metric computable from the triangle they
define. A surface connecting the two cross-sections is a cycle on the torus
(with certain natural restrictions on the type of cycle). See Figure 2 for a
depiction of a typical tiling problem and its translation into a search problem.

The key to the divide-and-conquer algorithm for searching the toroidal
graph is that once a minimum-cost cycle passing through a given node is
found, that cycle can be used to limit the amount of the graph that must be
searched when looking for lower cost cycles not constrained to pass through
the node [11].
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Fig. 2. The problem of tiling two contours can be expressed as a graph search. Contours are
represented by ordered lists of data points. Edges connecting neighboring points in the same
contour are called Contour Segments. Edges connecting a point from one contour to a point from
the other contour are called Spans. Spans are represented by nodes in the graph. Tiles are
represented by arcs between nodes in the graph. Finding a tiling is done by finding a minimal-cost
cycle in the graph.
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The tiling problem is severely underconstrained. Many surfaces could give
rise to the observed cross-sections. In order to choose one “correct” surface,
we optimize with respect to some objective function. The chosen objective
function should capture some notion of what a “good” surface is and should
be easy to compute.

Virtually every conceivable metric function has been used to distinguish
good surfaces from bad. Sloan and Painter [25, 26] addressed the choice of
metric for the graph cost function and described a few improvements to the
divide-and-conquer algorithm. A brief summary of some of the more impor-
tant metrics follows:

Volume. Keppel [14] used “Maximize Volume.” It is an obvious metric for
convex objects, but difficult to use. Indeed, a major contribution of [14] was
the demonstration that one could, in fact, calculate the contribution of a
single tile to an objective function related to the total volume of an object.
Keppel apparently felt that “Maximize Volume” is wrong for the concave
regions of an object and designed a multistage algorithm to deal separately
with the concave and convex parts of individual contours.

Area. Fuchs et al. [11] used “Minimize Area” for illustration purposes. It
is intuitively appealing and probably as good as any metric. However, special
care must be taken to handle certain pathological cases (see below). Since
“Minimize Area” is easy to compute and produces good results when used in
conjunction with normalization of the contours for position and radius, this is
our metric of choice.

Match direction. Cook et al. [6] used a metric based on matching the
directions of points from their respective contour’s center of mass. It is
intuitively appealing for concave and museum-viewable objects, but there are
problems with severely concave (or convoluted) objects, which Cook et al.
went to some lengths to handle.

Span length. Christiansen and Sederberg [5] described a “greedy” method
based on “Minimizing Span Length,” which does not use the graph search
method to construct a tiling. The method incorporated normalization of size
and position and was extended to handle some branching structures. The
normalization step involved mapping a contour from its bounding rectangle
to a unit square, translating the squares for each contour so that they are
centered at the origin of the (x, y) plane prior to computing the tiling, and
then applying the computed tiling to the original contours. A possible exten-
sion to handle complex branching situations, which is similar to the imple-
mentation we describe here, was suggested in [5].

Match normalized arc length. Ganapathy and Dennehy [12] described
another “greedy” method in which the length of contours being tiled is
normalized and in which the positions of the contour vertices along the
contour are expressed relative to the normalized length. The spans that
constitute the tiling are chosen then so that they are as “nearly vertical” as
possible (i.e., the span is chosen which results in the least difference in
normalized arc length between the current points on the two contours).
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Nonlocal metrics. The metrics discussed above are local metrics, since
they assign costs to arcs by considering only the individual tile that corre-
sponds to that arc. As an example of a nonlocal metric, Wang and Aggarwal
[28] assigns an initial figure of merit to individual triangles (using “Inverse
Span Length”) and then uses a relaxation procedure to improve these cost
assignments by considering the merit of neighboring triangles. Some trian-
gles have their merit driven to zero and are removed from the graph.

All of the above metrics exhibit poor performance with carefully con-
structed pathological examples. Some fall prey to rather common cases. For
example, consider two identical, circular cross-sections, positioned in parallel
planes, with their centers offset by one diameter. Some of the metrics listed
above, in particular “Minimize Area” and “Minimize Span Length,” will
produce something similar to a double cone, joined at a line, rather than the
(obvious?) skewed cylinder. Note that this effect is present, but often difficult
to see, even when the circular cross-sections are displaced by a small amount.
The resulting surfaces are topologically cylinders, but there are creases.

The solution to this problem is to normalize the two cross-sections so that
their centers lie on an axis perpendicular to the plane of section, solve the
tiling problem to find lines joining points on the two contours, and then use
this correspondence to construct a surface from the original contours. See [5],
{241, and [25] for details.

Sloan and Hrechanyk [24] considered the problem of “sparse data” and
described methods (based on normalization and shape matching) that recog-
nize cases where straightforward tiling is unlikely to be correct. Normaliza-
tion for position, size, and small rotations were shown to handle many
problems correctly. Large rotations were handled by hallucinating interme-
diate cross-sections.

Here, we do not address possible improvements to solution of the tiling
problem; we use the “One Column” method of Sloan and Painter [25, 26],
normalize for scale and translation (but not rotation), and optimize for
“Minimum Surface Area.” This method has proven sufficient for all of the
naturally occurring tiling problems we have encountered.

2.3 Branching Problem

An instance of the branching problem exists when an object represented by m
contours in one section is represented by n contours in an adjacent section
where m # n and m, n > 0. Figure 3 shows a simple instance of the branch-
ing problem. Figure 4 shows a more complex example.

Previous solutions to the branching problem have required that compli-
cated instances of the problem be solved interactively. For example, [5]
describes a method that will handle some branching structures but which
requires user intervention in complex cases. The key idea is to form compos-
ite contours, adding fabricated vertices between the adjacent contours to
model the saddle surface implied by the contours. In more complex boundary
regions, Christiansen and Sederberg [5] resort to user interaction to guide a
solution.

ACM Transactions on Graphics, Vol. 11, No. 3, July 1992,
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Fig. 3. Upper: A simple case of the branching problem. Two contours in one slice merge into
one contour in an adjacent slice. A possible tiling is shown by the light lines; the contours are
represented by the heavy lines. The two contours are merged to allow use of the graph search
tiling algorithm. Lower: The same example, but the contours are merged as suggested by [5].
Note that a data point has been fabricated between the pair of contours in the upper slice. This
new data point improves the piecewise planar surface, but unnecessarily limits a later smooth-
surface fitter.

Boissonnat [1] proposed an approach to construct surfaces from contours
and that computes the Delaunay triangulation of the set of vertices of the
contours in two sections. Extra vertices are added so that the contour edges
are contained in the resulting triangulation. This is required because the
edges of a polygon are not necessarily present in the Delaunay triangulation
of its vertices. Computing the triangulation in three dimensions forms a set of
tetrahedra. In most cases, a solid remains after removal of tetrahedra which
have a face or edge in the plane of one of the sections that is not contained
within the contour. The surface of this solid is used in the reconstruction. The
method is capable of handling some branching structures without user inter-
vention.

ACM Transactions on Graphics, Vol. 11, No. 3, July 1992.
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Related to the branching problem is the problem of tiling a pair of contours
with very different shape. O’'Rourke and Subramanian [21] has recently
shown that, in general, it is not possible to construct a simple polyhedron
from two planar simple polygonal faces in parallel planes, using only the
vertices of the polygons as the polyhedron vertices. See Ekoule et al. [8] for an
approach to this problem.

2.4 Surface Fitting

Solution of the correspondence, branching, and tiling problems results in a
triangulated mesh in three-space. The surface-fitting problem involves find-
ing a smooth surface that either interpolates or approximates the vertices of
the mesh and maintains the same topology. The choice of interpolation versus
approximation depends to a large extent on the intended use of the resulting
surface and on the nature of the input data. If the data are noisy or otherwise
imprecise, an approximating method would be preferable. If the data are the
precise specifications of an object, then an interpolating method is preferable.
Current approximating schemes produce smoother and prettier surfaces than
the available interpolating schemes.

One possible solution to the surface-fitting problem is to use the triangular
faces of the mesh as the surface. Unless the contours sample the original
surface very finely, this piecewise planar approximation will not be very good.
The triangular mesh contains connectivity information that is important in
guiding a fitting method to a reasonable surface, but alone it is not usually a
satisfactory solution.

Currently, there are a number of methods in use for solving the problem of
fitting a smooth surface to a mesh in three-space. The general method is to
use a series of parametric surface patches in which the vertices of the mesh
are the control points of the surface patches, and the topology of the mesh
determines which vertices are used in each patch.

The surface-fitting problem is the subject of much current research, a
complete summary of which is beyond the scope of this paper. For a general
reference see Farin [9]. Mann et al. [17, 18] compare the properties of various
interpolating surface-fitting methods and examine the effects of methods for
choosing various free parameters on the quality of the resulting surface.

3. CURRENT WORK

What follows is a discussion of our current system, describing the methods we
use for solving each of the problems mentioned in the Introduction. This
discussion will assume that the contours given as input are planar contours.
We will discuss methods for relaxing this restriction in the conclusions.

3.1 Correspondence Problem

To maximize the flexibility of a system, a method for specifying a solution to
the correspondence problem that is suitable for either automated or manual
methods should be used. We have developed a section description language,
which allows the description of a solution to the correspondence problem for a
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set of sections and their associated contours and is suitable for either method
of solving the correspondence problem.

As a concrete example of the section description language, Figure 5 shows
an abbreviated description of the set of contours shown in Figure 1. The
following discussion refers to these figures.

The contour set contains three sections named S0, S1, and S2. The first two
sections each contain two contours named CO and C1l. The third section
contains one contour named C. Since sections SO and S1 both contain a
contour named CO, those contours will be tiled together, similarly for con-
tours C1. Section S1 contains two contours, while section S2 contains one
contour. Three possibilities exist in such a case:

(1) The two contours of S1 and the single contour from S2 represent three
separate objects, and the contours should not be connected.

(2) One of the contours of S1 represents the last slice through its object, and
the other contour of S1 joins the single contour of S2.

(3) The two contours of S1 merge into the single contour of S2.

In the example, the information within the contours of section S1 indicates
that they are adjacent and merge in the next section. Absence of the informa-
tion indicating merging of contours would mean that case 1 applies. If case 2
applied, then one of the contours in section S1 would have been given the
same name as the single contour in section S2. The adjacency information
gives the name of the adjacent contour and indices into the list of points of
the local and adjacent contours. This information is used in constructing
composite contours, the details of which will be found in Section 3.2.1.
Associated with contour C of section S2 is information indicating that this
contour can be tiled to a contour of a different name. Since CO and C1 of
section S1 merge into C of section S2, contour C is given pseudonyms
indicating that it can be tiled with contour CO and C1 of the previous section
(the “ALIAS” entry).

This section description language is capable of handling branching struc-
tures with any number of branches from one section to the next. There are
cases that are not handled; of most importance is the inability to handle
“holes” in an object, unless the plane of section is oriented so that no contour
is contained within another contour.

3.1.1 Automated Solutions. We have implemented two solutions of the
correspondence problem: One method, based on Soroka’s object-understand-
ing system [27], uses a production system to assemble elliptical cylinders
from contours one section at a time. An elliptical cylinder (or simply cylinder)
consists of a set of elliptical cross-sections (contours fitted with ellipses) on
adjacent sections whose centers lie along a linear axis. The lengths of the
elliptical axes also vary linearly and independently along the cylinder. A
second method uses a minimum-cost spanning tree (MST) of a graph con-
structed from the contours of the data set to compute most of the correspon-
dences simultaneously. The output of both of these implementations is a
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{ SECTION S0 2 % Section SO has 2 contours
{ CONTOUR Co0 9 % Contour CO has 9 points
{zow 20 }
{zsye 22}

}
{ CONTOUR C1 11
{zowv 20}

{ z10 v10 210 }

}

{ SECTION S1 2
{ CONTOUR CO 17

{zov0 20 }

{ z16 116 216 }
{ADJNEXT {C178}} % BridgefromC0-7toC1-8

}
{ CONTOUR C1 17
{ zo o 20 }

{ z16 v16 216 }
{ ADJNEXT {C0214}} % Bridge from C1-2to CO- 14

}
}

{ SECTION S2 1
{ CONTOUR C 18
{zovo 20 }

{z17 n17 217 }
{ALIAS 2 {C0} {C1}} % Tile with CO or C1

}
}

Fig. 5. An abbreviated section description language description of the example contour set
shown in Figure 1.

ACM Transactions en Graphics, Vol. 11, No. 3, July 1992.
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solution to the correspondence problem described using the section descrip-
tion language discussed above.

3.1.2 Contour Analysis. Both methods for solving the correspondence
problem involve computing a best-fitting ellipse for each contour. This re-
duces each contour to a set of five ellipse parameters: center x and y, major
and minor half-axes A and B, and orientation #, the angle that the major
axis makes with the x axis. In addition, the Cylinder-Growing method [27]
requires that contours be classified as either elliptical or complex.

Ellipse parameters are computed by the following methods: The major-axis
inclination, 8, is computed by finding the direction of maximum dispersion of
the contour points using the method of principal axes [7]. Using the dot
product space method [23], we compute A and B for a contour by finding a
rectangle with maximum aspect ratio that only surrounds the contour. The
center (x, y) is the centroid of the points defining the contour boundary.

Classification of contours as elliptical or complex is done by computing the
standard deviation of the distance from a contour point to the fitted ellipse. If
the standard deviation is sufficiently small,' the contour is classified as
elliptical. Contours that cannot be classified as elliptical are classified as
complex and are treated specially during elliptical cylinder assembly.

3.1.3 Cylinder Growing. Solving the correspondence problem using the
cylinder-growing method is a three-step process:

(1) Assemble elliptical cylinders from the contours.
(2) Assemble objects from the elliptical cylinders.
(3) Analyze the intercylinder connections within objects to find branches.

Major differences between Soroka’s system [27] and ours include the
following: Soroka assumes the availability of contours obtained by region
growing on sections perpendicular to all three axes, and we assume contours
perpendicular to only one axis. In Soroka’s system, a complex contour may be
shared among several cylinders, while, for simplicity, we limit its use to just
one cylinder.

We have implemented Soroka’s suggestion of using a second production
system to discover connectivity between cylinders, and we have subsequently
used the connectivity to compute branching information.

Cylinder assembly. After classifying contours, we assemble contours into
cylinders by adding contours to the end of existing cylinders or by creating
new cylinders. The goal is to produce a small number of cylinders, each one
containing as many contours as possible. A contour is said to support a
cylinder if its ellipse parameters satisfy that cylinder’s linear constraints
within user-defined error limits.

A cylinder is described by its name, the contours supporting it, their
minimum and maximum section numbers, their average orientation, and by

" A value of 0.5 yields satisfactory results in practice.
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the slopes and intercepts of the linear functions A(z), B(z), x(z), and y(z)
that were found using least squares fitting? to the ellipse parameters A, B,
x, and y. The contours that support a cylinder are stored in a contour list for
that cylinder in order of decreasing z.

To model a set of contours as a simple piecewise collection of cylinders, we
also require that 6 be nearly constant within a cylinder. Otherwise, a
grouped set of contours having perceptibly varying orientations may form a
twisted cylinder. A cylinder with nearly constant 8 that also satisfies the
above linearity conditions is said to be valid.

The production system consists of a database of contours and cylinders,
three rules, and a control cycle that selects an unexplained contour and
attempts to apply the first rule to the contour in conjunction with each
existing cylinder. Each rule is tried in this fashion until the contour is
explained or until all rules have been tried.

The first rule succeeds if the selected contour is elliptical, if it lies on a
section adjacent to one end of an existing cylinder, and if appending it to this
cylinder would yield a valid cylinder. In this case the contour is incorporated
into the cylinder. Cylinders are tested in order until one is extended or until
they have all been found to be unextendible using the selected contour. The
second rule succeeds if the contour is elliptical. Since no cylinder could be
extended, a new (singleton) cylinder is created and given a unique name.

If the first two rules both fail, the selected contour is complex, so we
attempt to create an elliptical subcontour that can be used to extend some
existing cylinder. For each nonsingleton cylinder, we extrapolate the cylinder’s
elliptical parameters onto the section of the complex contour to form a
temporary elliptical contour. If the temporary contour intersects the complex
contour sufficiently (70% works well in practice), it becomes a subcontour
that we append onto the appropriate end of the cylinder.

We use sampling to estimate the area of intersection as follows. First, we
find a rectangle that surrounds the union of both contours (complex and
extrapolated) to use as a base bitmap. We discretize each contour into a
separate bitmap and use a polygon-filling algorithm to fill each contour. The
AND of the resulting bitmaps gives an estimate of the intersection.

If the current cylinder is a singleton, we simply append to it a copy of the
ellipse that best fits the complex contour. When this process terminates, all
contours have a unique name within their section. This information will later
be used to describe a solution to the correspondence problem using our
section description language.

Object assembly. The purpose of the second step of the algorithm is to
assemble the cylinders found by the first step into objects by finding connec-
tions between cylinders.

Intercontour connections are found using a second production system. This
production system consists of only 2 rules. At each cycle it selects an

2 The use of a minimum correlation coefficient of 0.8 produced reasonable results.
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Fig. 6. An illustration of the types of connections between cylinders. Upper: An end-to-end
connection is illustrated. LLower: An interior connection is illustrated.

unexplained cylinder and attempts to use it to extend an existing object.
When all cylinders have been explained, this production system terminates.

The first rule searches exhaustively for all connections between the se-
lected cylinder and each cylinder in every currently existing object and
succeeds if any connections are found that explain the selected cylinder.

There are two types of connections: End to end and interior. An end-to-end
connection joins end contours of two cylinders. An interior connection joins an
end contour of one cylinder to an interior contour of another cylinder.

We use the following criterion to determine if a connection exists: If a
contour C1 is an end contour of cylinder CYL1 and if C2, in CYL2, is on a
section adjacent to C1, then a link (C1, C2) is said to exist between CYL1 and
CYL2 when the orthographic projection (along z) of C1 onto C2 overlaps C2
(or if C2 overlaps C1), by a given amount (70% works well in practice). Figure
6 illustrates the connection types.

Whenever a connection (C1, C2) is found to connect an unexplained cylin-
der to a cylinder from an existing object, we add the unexplained cylinder to
the existing object. The connection is stored in a list associated with each
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contour and in a global connection list to be used in later analysis. We also
maintain a list of the contours involved.

The second rule of the connection-finding production system is applied
whenever no connection is found between the selected cylinder and any
existing object. In this case the selected cylinder is used to create a new
singleton object.

Finding branches. In the third step, we analyze the connections between
cylinders found in the second step to locate branch points. We currently
only check for bifurcations. The extension to higher-degree branching is
straightforward.

Branch locations are found by examining the list of connections created for
each contour in the previous step. There are three cases to consider: A
three-cylinder branch is formed when the end contours of two cylinders
merge into the end contour of a third. A two-cylinder branch is formed by the
connection of an end contour of one cylinder with a non-end contour of
another cylinder. A pair of simply connected cylinders occurs when the end
contours of two cylinders are connected only to each other. Figure 7 illus-
trates the various types of branches.

A pair of simply connected cylinders is recognized by a connection between
the top of one cylinder and the bottom of another. An additional constraint is
that the two contours must not be connected to any other cylinders. When
this case is recognized the two cylinders are merged. This is accomplished by
adding a pseudonym (“ALIAS”) to the section description language represen-
tation of one of the end contours involved.

A two-cylinder branch is recognized by a connection between an internal
contour of one cylinder and an end contour of another, with the added
constraint that there are no other connections involving the two contours.
When this case is recognized, the required adjacency information is written
into the records for the two contours involved.

A three-cylinder branch is recognized by connections between the end
contours of two cylinders to the end contour of a third cylinder. This case
requires that adjacency information and pseudonym information be added to
the contour records involved.

The quality of the results produced by this production system method
depend to a large extent on the order in which contours are specified within a
section. This is due in part to the use of singleton cylinders. As long as the
contour orientations are sufficiently similar, a valid cylinder will always
result from appending any adjacent contour to a singleton cylinder. Because a
contour only supports one cylinder, a wrong choice will invalidate further use
of that contour by another, potentially better, cylinder. If an error occurs
there is no chance of it being corrected, since backtracking is not utilized.
Thus, one error may easily be propagated. A single unexplained contour and
a singleton cylinder alone simply do not provide sufficient information to
determine whether the contour should be used to extend the cylinder. Fur-
ther, it may be too limiting to require that a contour support only one
cylinder.
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To deal with these shortcomings, we have considered a modification to the
cylinder-growing algorithm: One requiring that cylinders be of length three
or greater to be retained in a list of candidate cylinders. Rather than being
based on a production system, this modification would work sequentially, as
follows: We can consider a window of three consecutive sections at a time,
hypothesizing all cylinders of length two between the first two sections and
keeping only those cylinders that can be extended to length three or more.
Cylinders that cannot be extended beyond two contours are deleted. As the
window is advanced, cylinders are extended sequentially. Variations on this
method might involve changing such things as the number of passes made
through the sections, when the cylinders can be hypothesized, which cylinder
end(s) can be extended, and whether contours can explain multiple cylinders.

We have not implemented these improvements to the cylinder-growing
approach because we feel that the Minimum Spanning Tree approach, which
we discuss next, is a more promising method for solving the correspondence
problem.

3.1.4 Minimum Spanning Tree. In view of the difficulties involved with
the cylinder-growing approach to solving the correspondence problem, we
investigated a more global technique of finding correspondences. The method
we have developed computes the minimum spanning tree (MST) of a graph
constructed by linking each contour to all contours in adjacent sections. Costs
are associated with the edges by computing distance in the four-space defined
by the ellipse center coordinates and major and minor axis lengths.

To solve the correspondence problem using the MST method, we use the
following process:

(1) Compute edge costs for a graph G, compute an MST in G, and break the
MST into segments.

(2) Use G to find intersegment connections.

(3) Analyze the intersegment connections for branches, computing the re-
quired adjacency information between branching contours.

As in the first method, we begin by fitting each contour with an ellipse. The
MST method considers, however, all contours to be elliptical, so that classifi-
cation as elliptical or complex is not required.

Having fitted the contours, we then build an undirected graph G = (V,E)
with nodes V and edges E. We create initially an edge (i, j) between each pair
of nodes i and j for which contours C(i),C(j), represented by nodes i, j, lie
on adjacent sections.

By associating each node of G with the ellipse fitted to its corresponding
input contour, we embed the nodes in the 4-D space (x, y, 4, B) defined by
the ellipse center and major and minor axes.

To compute the cost c(i,j) of an edge (i,j), we use the square of the
Euclidean distance between the nodes. That is, the cost of an edge (i, )
between nodes i and j having ellipse parameters (A,, B,, x,, y,), k = i,J is
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defined as:
e(i,j) = (A, —A)* + (B, —B)* + (x, - x))* + (3, — 5,)° (1)

This metric is desirable because c(i,j) decreases as the centers of the
ellipses fit to contours C(i) and C(j) become closer and as their elliptical axes
become more similar in size. Once G is initialized, a free minimum-cost
spanning tree in G is computed. If edge (i, j) is in the MST, then we say that
the contours C(i) and C(j) correspond.

Tree segmentation. To determine correspondences between contours, the
MST is broken into segments at the branch points of the tree. To accomplish
this, we convert the free MST into a rooted tree by choosing any leaf node as
the root. To build a segment, we begin at a leaf node and traverse up the tree
toward the root, adding each unvisited node to the segment until we either
pass the root, reach a branch point (a node with two or more children), or
change direction in z.

After the root is passed, we repeat the traversal, starting with another leaf
node. We repeat until all the nodes are visited. At a branch point, we close
the current segment, initialize a new segment with the current node, and
continue to traverse up the tree. Whenever a visited node would cause the
segment to be nonmonotonic in z, a new segment is started.

All contours in a segment of the MST are now considered to be a tube and
are given the same name so that they will be tiled together. We use the edge
information inherent in the MST to locate connections between tubes: a pair
of contours (on adjacent sections) from two different tubes that should be
tiled together.

In our current implementation, we require that two connected tubes must
be joined end to end. With this restriction, we need only examine the MST for
edges that connect two tubes to assemble tubes into objects. In general, it will
be necessary to remove this restriction, especially when we extend to nontree
topologies.

Branch finding. Finally, the connections found in the previous step are
analyzed for branching using the algorithm described in Section 3.1.3. Here,
branches between the segments (rather than cylinders) are analyzed and
used to produce a section description file, as before.

Comparison of MST and cylinder growing. Figure 8 compares results
obtained using the cylinder-growing and MST methods.

The MST method is well suited to data from a single naturally branched
(acyclic) object, such as an artery. Since the computation of a minimum
spanning tree is a global process, the method is not subject to the propagation
of local errors as is the cylinder-growing method.

Unfortunately, because it generates a tree rather than a more general
graph, not all edges (representing connections between contours) will
be found for an object having one or more cycles (e.g., a torus). Likewise,
one or more incorrect edges will be found that join a set of disjoint objects.
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7/

Fig. 8. Biological structures obturator artery contours. Upper: Elliptical cylinders found using
the elliptical cylinder-growing algorithm are indicated by lines surrounding groups of adjacent
contours. Lower: Segments found using the minimum spanning tree correspondence algorithm.
The final solution is almost identical with the actual correspondence determined at the time the
data were collected.
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Postprocessing methods can be used to eliminate or add edges as required to
alleviate these problems.

3.2 Branching Problem

3.2.1 Composite Contour Construction. Our first attack on the branching
problem is to construct a composite contour from the set of contours that
define the branches, following Christiansen and Sederberg [5]. The composite
contour is treated as a single contour and tiled with the corresponding
prebranch contour from an adjacent section.

The top portion of Figure 3 shows a set of contours in which the construc-
tion of a composite is straightforward; the adjacent contours approach closely
at a single point on each. In this case, we construct a composite contour that
connects the adjacent contours at the close points. This composite contour is
then tiled with the single contour from the adjacent section.

The lower portion of Figure 3 shows the same set of contours merged by the
method of [5]. A vertex is added between the contours of the upper section.
This has the effect of improving the piecewise planar approximation to the
surface formed by the triangular tiling.

The difference between the composite generated by [5] and the one we
generate is the added vertex between the pair of contours. Without more
global knowledge of the surface from which the contours were obtained, it is
difficult to know where this vertex should be inserted. Faced with this
difficulty, we choose to avoid insertion of non-data manufactured vertices. We
take the point of view that the mesh produced by the tiling algorithm is not
the final surface. A subsequent surface-fitting step will determine where the
saddle between the contours should fall. An added point forces the saddle to
fall in a particular place, and it unnecessarily constrains the final surface
fitter. Added vertices suffer from an additional problem: the original data
points may have associated properties other than position {such as surface
normal) that influence the subsequent surface-fitting step. These properties
may be difficult to generate for the manufactured data points.

Figure 4 shows an example in which the construction of a composite
contour is more difficult. We define a canyon to be an extended region of close
adjacency between two contours, such as in Figure 4. If adjacent contours
that form a canyon are linked into a composite at a single point, the resultant
tiling is not often a good representation of a likely surface. In many cases,
some of the tiles constructed will intersect. In cases such as Figure 4, we form
composite contours by linking the contours across the openings into the
canyon between them. This approach was suggested by [5]. One problem that
remains is that of determining where the cross-links between contours should
be. Christiansen and Sederberg [5] required user intervention to solve this
problem. Our approach to this problem will be discussed in Section 3.2.2.

In the preceding discussion, we have focused on cases in which two
contours merge to form one. Our method is more general than this, i.e.,
handling the general case in which m contours in one section merge into n
contours in an adjacent section. If branching is sufficiently complex, an object
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may yield a set of contours in which the branch involves multiple contours
from each of the sections involved. In cases such as this, our method produces
composite contours for both sections involved and then uses the standard
tiling algorithm to construct the tiling between them.

3.2.2 Canyon Tiling. We now discuss the problem of tiling canyons be-
tween contours such as shown in Figure 4. One way to approach the problem
of tiling a canyon is to treat the two walls of the canyon as contours to be tiled
together and use the same graph search method used for tiling contours from
separate sections.

As shown in Figure 9, it is not always possible to construct a tiling of a
canyon that satisfies the constraint required by use of the graph search tiling
algorithm. A more general approach is needed. Since canyons are simple
polygons, the most straightforward approach is to use an algorithm that
triangulates the interior of a simple polygon.

Triangulation of a simple polygon has been extensively studied, and effi-
cient algorithms exist [3, 10, 13]. The advantages of general triangulation
algorithms are their efficiency and that they handle all simple polygons.
Their disadvantage is the difficulty of controlling the nature of the triangula-
tion, particularly with respect to favoring the use of cross-canyon tiles.

Most simple polygon triangulation methods produce many high-aspect-ratio
triangles; for example see [10]. Such triangles are not desirable if the
triangulation is used to define a set of surface patches to be used in construc-
tion of a smooth surface, since the influence of a data point on the shape of
the surface is not restricted to its local area. Rather, it is desirable to have a
set of triangles in which the vertices are in some sense “nearest neighbors” on
the surface. The Delaunay triangulation of a set of points in the plane is a
triangulation that has this property [22]. We cannot simply use the Delaunay
triangulation of the vertices of the polygon, since we must restrict the edges
of our triangulation to fall within the original polygon. The Delaunay triangu-
lation would only satisfy this criterion for convex polygons. We use a simple
method for creating an initial triangulation of a polygon and then modify it in
a later optimization step.

The method we use for creating the initial triangulation, though not
optimally efficient, is easily implemented. The initial polygon is triangulated
by examining three adjacent points on its perimeter. If the two distal points
can be connected to form a triangle interior to the polygon, containing none of
the vertices of the polygon, the connection is made, and the original polygon
is split into a triangle and another polygon, containing one fewer vertices
than the original. This process is repeated until the remaining polygon is a
triangle. Although this algorithm is best-case #(n?) and worst-case #(n?),
performance has been acceptable for the size polygons we normally en-
counter. If performance becomes a problem with this step, a more efficient
algorithm could easily replace this one. A candidate algorithm that also
addresses the issue of constraints on the final triangulation is given in [4].

Given an initial triangulation, we improve it by examining cases in which
the edge shared by two triangles could be switched so that it connects the two
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Fig. 9. It is not always possible to construct a tiling in the plane using only Spans and Contour
Segments. In such cases a general-purpose polygon triangulation algorithm must be used. Two
possible tilings are shown. Upper: A tiling that seeks to minimize the sum of span lengths.
Lower: A tiling that seeks to minimize the number of intracontour spans.
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vertices opposite the edge. This can be done only when the vertices of the
triangles that share the edge under consideration form a convex quadrilat-
eral. Swapping the edge in other cases results in a pair of nondisjoint
triangles. We replace the shared edge with one connecting the vertices
opposite the shared edge if the new configuration results in a smaller
minimum radius for the inscribed circles defined by the pair of triangles. This
is the criterion used in computing the Delaunay triangulation. Our algorithm
proceeds as follows:

(1) Identify all edges shared by two triangles that form a convex quadrilat-
eral. Place these edges on a “suspects list.”

(2) While the suspects list is not empty,
(a) Remove the old edge from the suspect list.

(b) If swapping the edge reduces the minimum radius of the circum-
scribed circles defined by the pair of triangles, swap and place each of
the four nonshared edges of the two new triangles on the suspect list
(if it is shared by a pair of triangles forming a convex quadrilateral).

The method of optimizing an initial triangulation according to a given
metric also can be used to control the final triangulation in a fashion similar
to the use of a metric to guide the graph search algorithm. By starting from a
valid triangulation of the canyon polygon and only allowing modifications
that preserve the validity of the triangulation, we can control the characteris-
tics of the triangulation computed by general polygon triangulation algo-
rithms, although at some loss of efficiency. We have described the use of one
such criterion: minimize circumscribed circle radius. More control over the
characteristics of the final triangulation could be obtained by designing a
more complex evaluation function. For example, one could favor cross-canyon
tiles by modifying the minimization of circumcircle radius test to consider the
radius computed for cross-canyon tiles to be smaller than it actually is.
Figure 10 shows a canyon with its initial tiling, the tiling resulting from
minimization of circumscribed circle radius and that obtained by favoring
cross-canyon tiles.

In the preceding discussion of canyon tiling, we have assumed that the
boundaries defining the ends of the canyons are known. In general, it is
difficult to determine these boundaries automatically. We now discuss a
method that works reasonably well in many cases.

The first step is to construct the convex hull of the vertices of the contours
defining the canyon (C1 and C2). A key observation is that the convex hull
will consist entirely of points from either C1 or C2 but not both, or it will
contain two sequences of points, one entirely from C1 and the other entirely
from C2. In the second case, there exist two and only two edges in the convex
hull that connect a point from C1 to a point from C2. We choose these as
candidate canyon boundaries. These boundaries may not be very good. For
example, if the contours are two circles, the boundaries chosen will likely be
the tangents connecting the two circles, making an undesirably large canyon
region. For this reason, we propose improving the boundaries by considering
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Fig. 10. Upper: A canyon polygon shown with an initial triangulation. Center: The canyon
after optimization using the minimize circumcircle radius metric. Lower: The canyon after
optimization using a metric which favors cross-canyon tiles by decreasing the circumcirele radius
used when comparing with tiles composed of three vertices from the same canyon boundary.

ACM Transactions on Graphics, Vol. 11, No. 3, July 1992



254 D. Meyers et al.

<~ D

Fig. 11.

Two sets of contours. Upper: A single large object splits into two smaller objects. The
intermediate slice is just above the point of separation, and the two parts are still very close
together along a moderately complex border. Lower: An artery and several branches. Notice
especially the lack of data near the branch point closest to the center of the image.
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the corresponding prebranch contour. Consideration of the shape of this
contour can be used to improve the candidate canyon boundaries. We are
currently investigating possible methods to do this.

3.3 Surface Fitting

As part of a study of the problem of fitting a smooth surface to a triangulated
mesh in three-space, we have been involved with the production and use of
a flexible software testbed implementing several surface-fitting methods
{16, 18]. The contour-fitting system described above produces a mesh suitable
for input to this testbed.

The surface-fitting testbed is composed of a number of modules, each of
which handles a specific part of the task of producing an image from the
input mesh. The modules are:

—A Fitter, which produces a stream of Bézier patches from the input mesh.

—A Tessellator, which samples Bézier patches, producing a number of planar
triangles that approximate each surface patch.

—A Colorer, which assigns material properties to the triangles produced by
the Tessellator.

—A Renderer, which produces a final image from the stream of triangles
produced by the Colorer.

The modular structure of this testbed allows easy modification of the
properties of the modules involved. Thus, we can use any of a number of
implemented surface-fitting methods for the final surface construction step.

Several interpolating as well as approximating methods have been imple-
mented [16, 18]. No one scheme has proven to be perfect; our main point is
that the flat, triangular tiling should not necessarily be viewed as the final
product. It is useful for previewing, but there are subtle details (such as
the precise shape of a saddle surface) that are best left to a global surface
fitter. Figure 12 illustrates various choices of surface-fitting and rendering
techniques.

4. CONCLUSIONS

We have described a method for reconstructing surfaces from sets of contours
that extends previous results by allowing for surfaces in which branching
occurs. The key idea is to separate the problem into those parts already
handled well by existing methods and to concentrate on posing and attacking
the problems that require new approaches.

Previous methods for solving the correspondence problem have either
relied on sufficient data resolution to allow for a solution by overlapping of
contours or have used approaches such as elliptical cylinder growing. We
have developed a new method for solving the correspondence problem that
does not depend on overlapping of contours. This MST method works well for
objects with tree topology, but does not recognize connections required for
objects with more general topologies, such as a torus. A postprocessing step
could be used to remedy this deficiency.
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Fig. 12. Reconstructed surface. Part a: A flat-shaded rendi-
tion of a piecewise planar mesh generated from the data in the
upper part of Figure 11. Part b: The same mesh, Gouraud
shaded to give the illusion of a smooth surface. Part c: An
interpolating surface, generated by the side-vertex method of
[15]. The mesh is shown as red balls and blue sticks. Part d: A
flat-shaded piecewise planar mesh generated from the data in
the lower part of Figure 11. Part e: The mesh from Part d,
Gouraud shaded. Except for the branch point closest to the
center of the image, this approximation is adequate. Part f: An
interpolating surface, generated from the mesh of Part d by
the side-vertex method of [ 15].

Previous methods for solving the tiling problem have either not allowed for
branching surfaces or have required substantial user interaction in all but
the simplest cases. In most of these methods, vertices are added to the data
during the reconstruction process. We present a method that can handle
complex branching structures without user intervention and that avoids
adding vertices to the construction.

Previous work in this area has generally assumed that the triangular mesh
computed will be used as the final surface and has often added vertices to the
construction for the purpose of improving the quality of this piecewise planar
surface. We assume a final surface-fitting step independent of the steps
required to generate a triangulated mesh from the input contours. This step
produces the final detailed geometric description of the reconstructed surface.
Because we feel that a surface fitter is a better way to improve the final
constructed surface, we are careful to avoid introduction of vertices into the
mesh we construct, so that the surface computed by the surface-fitting
algorithm is not influenced by arbitrary manufactured vertices. We use a
surface-fitting testbed that allows easy testing of the suitability of various
surface-fitting methods for reconstruction of surfaces from contours.

Our discussion so far has assumed that contours are planar and that the
plane of all contours in any section is the same. These restrictions simplify
the presentation, but may be too restrictive in practice. We explicitly use the
restriction of planarity only when handling the tiling of canyons between
branching surfaces. If a pair of adjacent contours form a canyon, we triangu-
late the canyon region assuming that the polygon which defines the canyon is
planar. If the data are not planar, we can proceed by finding an average
plane for the points involved by a least-squares method, projecting the points
onto this plane, and triangulating as before. We expect that this will be
sufficient for most practical problems where the concept of a “plane of
section” has any meaning. The more general problem of scattered 3-D data
does not fall into this class and will require entirely different methods.

4.1 Future Work

We are interested in extending the spanning tree algorithm to handle objects
with general topologies better.
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We have developed a method for locating the openings of narrow canyons
between branching contours that works reasonably well in many cases. We
are extending this method to handle more complicated cases. A related
problem arises when two corresponding contours on adjacent sections have
very different shape. Recent work on this problem does not handle large
differences in shape well. The problem can be seen as a nonbranching
canyon-tiling problem. We are extending our canyon-tiling work in this
direction.

Our current system cannot handle sets of contours in which one contour is
enclosed within another contour with the object interior between them. Such
contour sets require a provision for reversing the direction of tiling for one of
the contours. We are currently working on extending our system to handle
this important class of branching problem.
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