I
IS

Maya Character Creation

MODELING AND ANIMATION CONTROLS

=

L

CHAPTER |

ey

CHARACTER SKELETON SETUP

HIS CHAPTER SHOWS YOU how to create complex controls for
animating cach of the main parts of your character model. Creating
such controls involves many of the tasks that a character setup artist
does on a daily basis, including such things as drawing skeletons,
creating Inverse Kinematics (IK) handles, constraining objects, using
control icons, and parenting objects into a complex hierarchy. After
completing this chapter, you should have a good understanding of
all the basic techniques that a character setup artist frequently uses
to create good character controls.

The skeleton controls shown in this chapter create a good general-
purpose character rig (see Figure 3.1). The basic hierarchy was based
on a rig shown by a Blue Sky animator who taught at the School of
Visual Arts back in 1996. (I have unfortunately forgotten that ani-
mator’s name.) I've been developing and adding to the rig function-
ality since that time. Although nothing on this rig was taken directly
from any other rig, ideas for controls have come from a variety of
sources. [have gotten inspiration from colleagues, students, industry
presentations, and Alias | Wavefront master classes by people such as
Jason Schleifer at SIGGRAPH (who used controls similar to the
ones shown for the advanced backbone on the Lord of the Rings
characters). The complete rig presented in this chapter incorporates S
a sampling of all the basic kinds of controls that you would be

required to create for a production-ready character.

1=

-1

]—[MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

T ———
S&sso&wcmm SRR
e

n this chapter, you create a general-
purpose rig with controls for each part
of your character’s body.

Keep in mind that there is no perfect all-purpose skeleton rig that will
work well in all situations. In a real production, character setup artists
create rigs for particular purposes. It is not uncommon for the main
character in an animation to have a variety of rigs, with controls
designed for particular actions in a scene. For instance, there might be
separate rigs for walking, tumbling, lifting, and lip-syncing. However, an
understanding of how to build all the controls in a general-purpose rig
better prepares you to create more production-specific rigs.

CREATING BASIC ANIMATION CONTROLS

This section shows you how to create basic skeleton controls for your
character. You learn to draw skeletons with precisely placed pivot points
so that the joints rotate accurately. Polygon reference bones are used as
guides for drawing Maya skeletons, and are later parented to the skele-/
tons to use as animation reference. Drawing, manipulating, and editing
skeletons is covered in detail. Then, a rigging method that involves
adding curve-based control icons is shown to make it easier to manipu-
late the skeletons. Finally, all skeletons and control icons are parented
into a hierarchy used as a functional character control rig.

UNDERSTANDING SKELETAL ANATOMY

Creating believable character motion requires that you create controls
based on how real bodies work. Therefore, you need to place carefully
the joints in your models so that the skin bends like it has a real skeleton
inside of it. Your skeleton creates a 3D structure for your body, and
enables you to move around. Without a skeleton, your body would be
Jjust a flat lump of muscle and skin. You wouldn’t even be able to stand
up! Skeletal joints are therefore very important for defining how your
character moves.

Be aware, however, that some important differences exist between how a
real organic body works and how a computer-generated 3D character is
set up. In a recal body, muscles contract and stretch to move the bones in
a skeleton. Normally this process works in the reverse way for a 3D
character, where the bones are the main movers, and the muscles deform
in response. Because both work together very closely, the difference is
hardly noticeable, but doing it this way makes setting up the character a
lot casier.

[CHAPTER 3 = CHARACTER SKELETON SETUP 1

Another important difference is that you can simplify some areas of the
body in a 31 character. The backbone, for instance, doesn’t usnally
require the number of bones in a real backbone. Because Maya smooth-
ly blends the effects of the bones on the deformed skin, using fewer
joints is usually desirable, because the use of fewer joints simplifies your
setup tasks.

It is a good idea for anyone who wants to design, model, or set up 3D
characters to have a good understanding of the skeletal anatomy of the
human body (see Figure 3.2). Most characters are based on the same
basic structure. Even other mammals, such as horses and dogs, have a
similar structure. One of the best references a character artist can have is
a variety of anatomy books to use when creating 3D characters.

One thing to notice carefully is how a particular joint moves. Although
joints have a lot of subtleties in a real body, the joints in a 3D character can
be simplified into two kinds: ball joints and hinge joints (see Figure 3.3).

Ball joints can rotate in all three directions, whereas hinge joints can rotate in
only one direction. Examples of ball joints can be found in the backbone,
shoulder, and legs where they attach to the hips. Examples of hinge joints
can be found in the elbows and knees.

——

3.2 Character setup artists must have
a good understanding of skeletal
anatomy.

99

100 b———— MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.3 The two main kinds of joints in the
human body are ball joints and hinge
joints.

PLACING POLYGON REFERENCE BONES

One thing that many animators use today is a low-resolution reference
skeleton—a 31D skeleton made from polygons or NURBS bones—as a
guide for drawing Maya skeletons. The advantage to using a 3D skeleton
as reference is that you can see exactly where the joints are, which
makes it easier to place your pivot points correctly.

Toward the end of this chapter, you make the reference bones child to
your Maya joints so that it is easier to see whether your skeleton con-
trols work properly. You can then hide your deforming skin when you
are ready to animate, to speed up your system, and show only the refer-
ence bones while animating. Traditionally, animators often used a nonde-
torming proxy of their skin to animate in real time. To do this, you
duplicate your skin models, convert them to low-resolution polygons,
and detach the skin at the skeletal joints. Then you make the skin pieces
child to the appropriate Maya joints. More often today, however, anima-
“tors use a low-resolution reference skeleton for the same purpose.

[CHAPTER 3 = CHARACTER SKELETON SETUP] { 101

i PLACING POLYGON REFERENCE BONES

Now that you have your model finished, it time to start creating controls for
animating your character. In this exercise, you create a polygon reference skele-

ton that fits correctly inside your character’s skin.

1. Open the scene that contains your character model from the previous
chapters. Make sure the scene contains only your final character models,
and doesn’t contain any creation curves, instances, or history connections.
Your models don’t need to be in any particular hierarchy, but you do want
to organize them so that you can display or hide them easily. To do this,
group your models under a node that you name MyModels. Then create a
new layer by clicking the Create a New Layer icon in the Layer Editor and
name the layer Models by double-clicking it to enter the new name in the
layer options box. Select the MyModels group node, and place it on the
layer by right-clicking the layer, and choose Add Selected Objects (see
Figure 3.4). Finally, import into your scene the ReferenceBones.mb file
from the download site.

3.4 Create a new layer for your models.

i

S
S
=

2. After you import the file that contains the polygon reference bones, set
the Models layer to Template by clicking the layer box until a T appears.
Template enables you to use your models as a guide for placing the refer-
ence bones. You want to manipulate the transforms on the reference bones
to make them fit inside your mode! (see Figure 3.5). To make the polygon
bones fit well, you will probably have to manipulate their components to

102 b———J MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS |

some degree. You can use all the tools you used in Chapter 2, “Modeling
the Skin of a Biped Character,” to refine your models, including lattice
deformers. You may also want to create special features if your character
model is more surreal. If your character is a devil, for instance, you can pull
out horns on the skull bone. Or if it has wings and a tail, duplicate some of
the bones from the backbone or arms and make wing and tail bones. B

3.5 Template your model, and use itas a
guide for placing your polygon refer-
ence bones.

DRAWING SKELETONS

Skeletons are a special kind of deformer found in the Animation module
(press F2) and are specifically designed for animating characters. Like
other deformers, skeletons affect the component structure of your mod-
els. By assigning and animating the skeletons, vertices on the skin move,
and your character models change shape over time. Skeletons usually
have length, which you create by drawing a skeleton from point A to
point B. Most skeletons have at least two joints: a root joint and an end
Joint. A bone connects each joint. Although you can create single-joint
skeletons, multiple-joint skeletons are most common in characters.

The most basic way to manipulate skeletons is to rotate their joints,
which is called Forward Kinematics (FK) (see Figure 3.6). It is not desirable
to translate any joints other than the root joint. Translating a joint in the
skeleton chain causes the previous joint’s center to no longer be oriented
down the length of the bone, which can cause rotation problems on your

[CHAPTER 3 = CHARACTER SKELETON SETUP] |
- @@ 3.6 The most basic way o animate 2

skeleton, called Forward Kinematics,
is to rotate the joints.

=
S
o

i
e e
T S
S5 S
i
e e
S S
ST e

s S

e
A

i i 3 s

o G]

e
S W&XWW

- -
S e L S S

. e . e

S e

controls. By rotating the joints, you can avoid this problem. Rotating the
joints also enables you to animate the skeletons to bend in any direction.
As the name implies, you animate with FK by starting at the root joint,
and progressively rotate each joint down the skeleton chain.

The other way to manipulate skeletons is to use Inverse Kinematics (IK),
which constrains the skeleton to bend in a single direction by assigning
it an 1K solver. You manipulate the skeleton by translating an IK handle,
which is created when you assign the solver. Translating the handle caus-
es all the joints to rotate that are constrained by the solver. Usually the
IK handle is on the last joint in the skeleton chain, so that translating it
affects the joints higher up in the chain—hence the name Inverse
Kinematics.

Understanding skeletons is important if you want to create effective
character controls. If you display the center on a skeleton joint by
choosing Display, Component Display, Local Rotation, notice that the
local center of a joint is not set to the global orientation. When using
the default joint creation settings, the X-axis always points down the
bone to the next joint (see Figure 3.7), enabling you to rotate casily
around a joint’s local center to twist a bone.You will want to do this in
several parts of your character (to make a forearm twist, for example).

Also notice that the Z-axis points toward you in the view in which you
created the skeleton, because the Z-axis is the preferred rotation axis if the local X-axis pointing toward the
IK is attached to the skeleton. next joint in the skeleton chain.

+ }———{ MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.8 Draw the IK leg skeletons with a slight
bend toward the front of the knee to
set the preferred angle.

3.9 A swinging motion on the limb joints
is not possible when IK is constraining
a skeleton.

You can set the skeleton joint creation options to create IK automatical-
ly when you draw a skeleton, or you can add the IK manually after you
have drawn the skeleton. In either case, draw your skeletons in a particu-
lar way when you know they will be constrained with an IK solver. IK
bends in only one direction, which is based on the preferred angle of
the joints. The preferred angle is the direction the joints are pointing
when they are initially drawn. Draw your leg skeletons in the side view
with a slight bend toward the front of the knees, for instance, to ensure
that they have the correct preferred angle when their IK is activated (see
Figure 3.8). Usually this requires you to draw the skeletons in a particu-
lar orthographic view, which is perpendicular to the axis that the joint
should rotate in. The main axis of rotation on a normal TK skeleton 1s
always the Z-axis.

There are some obvious advantages and disadvantages to using IK or FK
on your skeletons. One advantage of IK is that it 1s faster to set and edit
translation keys on a single IK handle, than to set and edit rotation keys
on multiple joints. It also is easier to target the end of a limb in 3D
space when you are animating (to make the feet target the floor, for
instance). On the other hand, IK is constrained to bend in only one
direction, whereas FK can bend in any direction. This makes IK more
suitable for hinge joints, such as the elbows and knees. FK, on the other
hand, is more suitable for joints that move more like ball joints, such as
the backbone vertebrae.

Another limitation of IK is that all the joints in a solver move when the
IK handle is animated, making it impossible to isolate the rotation of a
single joint in the chain.You must be able to rotate a child joint without
rotating the parent if you want to create a swinging-type motion on the
arms or legs (see Figure 3.9). This motion type usually occurs only as an
unconscious movement while walking, throwing, or kicking. Because
many limb motions are conscious, however, it is still better to use IK on
the arms and legs most of the time. For the times when you need to
create a swinging motion, however, you must have controls for switching
between IK and FK in the middle of your animation.

All the tools for drawing skeletons and creating IK are under the
Skeleton menu in the Animation module. Before you create a skeleton,
check the settings in the Joint Tool options box by choosing Skeleton,
Joint Tool Q. Here you can constrain a skeleton to rotate in a specific
way, by turning off the Degrees of Freedom for a particular axis. You
also can change the way Maya orients the local centers on joints by

[CHAPTER 3 = CHARACTER SKELETON SETUP] { 103

setting the Auto Joint Orient to something other than XYZ. For most
skeletons, however, it is best to use the default settings. The only setting you
will frequently change is the Create IK Handle option (see Figure 3.10).

You can add IK to your skeleton automatically when you draw it, or
you can add it later after you draw the skeleton by choosing IK Handle
Tool in the Skeletons menu. The available options are the same in either
case. The main difference is that 1K, if added automatically, always con-
strains the entire skeleton with the solver; if added manually, however, IK
enables you to specify what joints will be constrained.You also can add
more than one IK handle to different parts of the same skeleton if you

add the IK manually. Like the joint options, you usually use the default
IK handle option settings. Keep in mind that you also can adjust most of 310 Open the Joint Tool options box to
the joint and IK handle options in the Attribute Editor after you create a turn on or off the automatic creation
joint or IK handle. of an IK handle on a skeleton.

One IK handle option you will occasionally change is whether the cur-
rent solver is a Single Chain (SC) or a Rotate Plane (RP) solver. The
difference between these two solvers is how they control the overall
twist orientation of the skeleton. The SC solver forces the skeleton to
twist when the IK handle is rotated. The RP solver, on the other hand,
has a separate twist channel for twisting the skeleton, and the IK handle
affects the skeleton only through translation (see Figure 3.11).You get
more flexibility by separating the Tivist attribute from the Rotation
attributes of the IK handle, and the separation enables you to control the
twist channel with a separate object by using a pole vector constraint.
Because of this, you will be using an RP solver most of the time. The
arms and leg skeletons of your character, for instance, will use RP solvers
so that you can control where the elbows and knees point by using pole

vector constraints.

3.11 When you create an IK handle with an
RP solver, a separate twist channel
controls the overall orientation of the
skeleton.

16]—[MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

When drawing skeletons, it is best to click and drag with the left mouse
button held down, This action enables you to place joints precisely while
drawing them. Correct placement is important, because modifying skele-
tons after they have been drawn creates values in the joint’s rotation
channels, which can be undesirable. If you place a joint in the wrong
place while drawing the skeleton, you can press the Z key to undo, and
proceed to redraw the joint. When all the joints are drawn, press the
Enter key to set the skeleton.

One thing to consider when drawing skeletons is whether you want to
attach multiple branches to a single joint. Do this by first clicking a joint
within an already existing skeleton when drawing a new skeleton. When
you finish drawing the new branch, notice that rotating the joint you
clicked rotates both branches together (see Figure 3.12). This joint rota-
tion occurs because the two joints have merged into one joint. Although
you can create an entire character skeleton as one piece this way, this
method provides limited flexibility for animation because it prevents you
from being able to animate branches separately from each other.

e

H
i
H
i

e

e i
wmwxwwwmmfﬁﬁ%;

Frostsei o

3.12 Attaching two skeletons creates a single parent joint for two separate branches. You
cannot rotate the two branches separately from one another.

[CHAPTER 3 ® CHARACTER SKELETON SETUP

Instead of attaching skeleton branches, draw the joints separately, and
parent the branches to a single joint or control object. Doing this
enables you to animate the branches together by animating the parent
object, or separately by animating the child joints, giving you more flex-
ibility when animating. To draw a skeleton branch so that it starts on a
joint but is not attached to the joint, avoid directly clicking the already
existing joint. Instead, after clicking, drag the new joint on top of the
previously created joint, and continue drawing the branch.You can then
parent the joints under a control object or group node.

When parenting joints, notice that a bone is always drawn between the
parent joint and the root joint of the branch. Keep in mind this can
sometimes clutter your interface with crisscrossing joints on a complex
skeleton. To keep this from happening, you have to put two group nodes
between the joints. Do this by parenting the two joints, and then select
the child root joint and press Cerl+G twice. After doing this, notice that
the connecting bone disappears. Also be aware that this hasn’t changed
the functionality of the skeletons.

EDITING SKELETONS

The Skeleton menu contains all the tools and commands for editing
skeletons. Use the Insert Joint tool to add joints to a skeleton chain. Just
click any parent joint, and drag to place the new joint. Delete joints in
a skeleton chain by selecting any joint but the root joint, and choose
Remove Joint. Some other useful commands are Disconnect Joint,
Connect Joint, and Mirror Joint. Using the Mirror Joint tool speeds up
your workflow by enabling you to more easily duplicate skeletons to the
opposing side of your character’s body (see Figure 3.13).This command
is based on your character’s position in global space, so make sure your
character is centered on the global axis in a symmetrical manner. A new
option in Maya 5 is the ability to replace naming conventions on the
mirrored joints. For instance, you can specify that all joints that begin
with Lt to begin with Ret.

Ideally, you want to draw your skeletons with the correct preferred
angle. Sometimes, however, that won't be possible, and you will have to
reset the preferred angle on a skeleton. Do this by removing any IK that
may be on the skeleton, rotate the joints to their new preferred angle,
and with the joints still selected, choose Skeleton, Set Preferred Angle.
You can also set this by right-clicking the skeleton. You then have to
reassign the TK to the skeleton. If you ever have any question what the
preferred angle of a joint is, select the joint and choose Assume Preferred
Angle. Finally, in the Skeleton menu you can disable or enable all IK
solvers in your scene, or specific IK handles as needed.

1

—=

1

108 b———] MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS | .

3.13 Mirroring a skeleton in a particular
plane is one of the most useful com-
mands for editing skeletans.

T

| DRAWING AND EDITING YOUR SKELETONS

1.

2

Using the polygon reference bones as a guide, you now draw the basic
Maya skeletons for your character, Before you start to draw the joints, how-
ever, place all the polygon reference bones on a layer, and set the layer to
Template. Because the skin models are not needed at this time, hide them
by turning off their layer’s visibility. In addition, if you need to adjust the
display size of the joints, because your model is too large or too small, do
so in the Display menu under Joint Size.

. Begin by drawing an IK leg skeleton in the side view. Do this by choosing

Skeleton, Joint Tool 1, and turn on the Create IK Handle option. Make
sure the Current Solver 1s set to IKRP Solver, and close the options box.
Starting at the hips and ending at the ankle, click four times to create the
joints. In the knee area, create a small joint that will mimic the flat of the
knee. This will make the knee bend nicely when the character is bound to
the skin. Make sure the skeleton is bent slightly toward the front of the
knee so that you get the correct preferred angle, and then click Enter.

[CHAPTER 3 = CHARACTER SKELETON SETUP] [109

3. Open a floating hypergraph view by choosing Window, Hypergraph on
the top menu bar. You will use the Hypergraph view to name and
organize your skeletons. Size the Hypergraph window so that you can still
see your character in the perspective view. Then place your curser in the
Hypergraph window, and click the A key to Frame All Notice that you
have a four-joint skeleton displayed as a hierarchy of graphical nodes, with
a hidden effector node, and a separate K handle node. The TK handle is
forced to stick to the effector, which is usually placed on the last joint of an
1K skeleton. This changes as soon as you parent the IK handle under an
object. Try selecting the IK handle in the hypergraph view, and translate it
in the perspective view. You should see your leg skeleton bend. Press 7 to
undo the movement, and then name each of the leg joints LtLegRoot,
LtLegKnee, LtLegLow, and LtLegEnd. Name the IK handle LtLegIK
(see Figure 3.14). It is not necessary to name the effector.

R
S

= 3.4 Nameallyour skeleton leg joints and
——— - — leg IK handle.
3 / : i . 5

S
S

S

*%gﬁgmgmmw%w
- -

e e
SRR R S

S S
S

110 }——— MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.15 Using your polygon bones as refer-
ence, finish drawing the lower-body
skeletons for the hips, legs, and feet.

Rotate and translate the LtLegRoot joint in the front and side views so
that it sits right on top of your polygon leg bones. Make sure you do not
translate any joints except the root joint. Also make sure the LtLegKnee
and LtLegLow joints rotate correctly around the left knee’s pivot point,
When you get the left leg placed correctly, select the LtLegRoot joint, and
choose Skeleton, Mirror Joint (. Set the Mirror Across option to the YZ
plane, and the Mirror Function to Behavior. This creates a right-leg skele-
ton and associated TK handle that is a mirror copy of the left-leg skeleton.
Use the new joint renaming option to name the right-leg joints the right-
leg joints and TK handle RtLegRoot, RtLegKnee, RtLegLow,
RtLegEnd, and RtLegIK.

. Draw a three-joint skeleton for the left foot in the side view. This time,

however, turn off the Create IK Handle option in the Joint Tool options
box. Start the skeleton at the ankle pivot, going down to the ball of the
foot, and then out to the end of the toe. When vou are drawing the foot
root, make sure you don't click the end of the leg skeleton, because doing
so would attach the two skeletons. You will be parenting the foot skeletons
to control objects, so they don’t need to be attached. After drawing, adjust
the skeleton as needed, and name the joints LtFootRoot, LtFootBall, and
LtFootEnd. When vou are done with the left foot, mirror it to create the
right foot with the appropriate name changes.

One consideration to note is that if your character has bare feet, you may
want to create individual toe skeletons. Do this easily by drawing them as
FK skeletons in the side view. Later, when parenting your skeletons into a

rig, just make the individual toe skeletons child to the LtFootBall joint.

. Even though the hips move as a single unit, you create two separate hip

skeletons for skin-weighting purposes. Again, these skeletons should not
be attached, but will later be parented to give you more flexibility when
animating them. Begin by drawing a skeleton from the center of the hips
out to the edge of the pelvis, and down to the top of the lefi-leg skeleton.
Be careful not to place the pivot for your character’s hip skeletons too low.
Each hip skeleton should have the pivot point for the root joint in the
middle of the pelvis slightly below the belt line. Name the joints for the
left-hip skeleton LtHipRoot, LtHipSide, and LtHipEnd. When your
left-hip skeleton is complete, mirror and rename it appropriately to create
the right-hip skeleton. This completes your lower-body skeletons (see
Figure 3.15).

1

[CHAPTER 3 ® CHARACTER SKELETON SETUP |

s

6. The part of the body that connects the lower- and upper-body skeletonsis =& ==
the backbone, which begins at the center of the hip and ends at the base
of the neck. The backbone should be a separate skeleton from the hips,
because you want to be able to animate the spine without moving the hips,
and vice versa. To ensure this is the case, make sure you do not directly
click the hip root joints when you begin drawing the backbone. Instead, in
the front view, click away from the character and drag the backbone root
over the hip roots. Then hold down the Shift key as you draw three joints
straight upward, without any preferred angle (sce Figure 3.16). The joints
should go from the hip’s pivot to around the belly button, then to the solar
plexus, and finally to the top of the sternum. Be sure to also check the
placement of the skeleton in the side view to make sure it is inside your
character’s torso. If necessary, translate the root joint in the Z-axis to posi-

tion the skeleton correctly.

This is obviously a simpler version of the backbone than what exists in a
real body, as it has fewer joints and doesn’t follow the contour of the spine.
The reason you are simplifying this skeleton is because it is going to be
used as a control for a more complex backbone skeleton you create later in
this chapter. You draw the skeleton straight, because it 1s going to be using
only FK, and this gives you a smooth arc when the backbone bends in any
direction. Keep in mind, however, that a simplified backbone such as this is
acceptable as-is for a simple character. Finish the backbone skeleton by
naming the joints BackRoot, Back2, Back3, and BackEnd.

7. To begin the upper-body skeletons, create two IK skeletons for the clavi-
cles. Make sure you turn on Create IK Handle in the Joint Tool options
box, and then draw the left-clavicle skeleton in the front view, using the ferred angle.

polygon bones as a guide. It should originate at the middle of the chest and

end at the top of the shoulder. After you have created the left skeleton,

select the root joint, and transform it as needed to position it correctly over

the polygon clavicle. Name the joints LtClavicleRoot, LtClavicleEnd,

and LtClavicleIK. When completed, mirror the skeleton to create the

right clavicle and rename the joints as needed.

*

Create a left IK scapula joint in the same way as you created the clavicle
joint. Draw it in the front view so that it goes from the inner edge of the
scapula to the top of the shoulder, where the clavicle and scapula meet. The

finished scapula skeleton should follow the raised area at the top of the

—

3.16 Draw a simplified FK backbone skele-
ton straight upward, without any pre-

112]———[MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.17 Add an FK jaw skeleton after drawing
skeletons for the clavicles, scapulas,
and skull.

10.

11.

polygon scapula bone. Transform it in all the views to make it fit properly,
and name the joints LtScapulaRoot, LtScapulaEnd, and LtScapulalK.

Mirror the result to the other side, and rename the Jjoints appropriately.

The neck skeleton will be simplified to a two-joint FK skeleton. The reason
for this is that the neck really doesn’t bend much in a real body, but instead
serves mostly as a pivot for shifting the head around. On a simple character,
this kind of neck works fine. Later in this chapter, you refine the neck to be
more complex. In the side view, draw the neck joint from the end of the
backbone skeleton to the base of the skull. Because this should be an FK
skeleton, make sure to turn off the Joint tool’s Create IK Handle option
before drawing. Also be careful to not attach the neck skeleton to the back
skeleton. Name the resulting neck joints NeckRoot and NeckEnd.

To create the head and jaw skeletons, you also use FK, so leave the Joint
tool’s IK option turned off. In the side view, begin the head skeleton at the
base of the skull, and end it at the top of the skull. Be sure not to attach it
to the end of the neck joint. The pivot point for the head root joint should
be slightly below the ear, from where your character tilts its head. Name
the two head joints HeadRoot and HeadEnd. You also should draw the
Jaw in the side view, from close to the same pivot point as the head root.
Make the jaw a three-joint chain that goes down and out to the end of the
chin (see Figure 3.17). Contouring the shape of the jaw creates better
weighting when the skin is bound. Name the jaw joints JawRoot,
JawLow, and JawEnd.

The last joints you are going to draw for your basic skeleton controls are for
the arm and hand. Draw the arm with a slight bend toward the elbow. This
means that you will draw the arm skeleton in the top view if your charac—
ter’s elbow faces backward and the hand faces downward. Or draw it in the
front view if your character’s elbow faces downward and the hand faces for-
ward. Make sure IK is turned off in the Joint Tool options box, and begin by
clicking close to the left shoulder socket. Draw the arm skeleton from the
shoulder to the clbow, from the elbow to midway down the forearm, and
finally to the wrist. Name the joints LtArmRoot, LtArmLow,
LtArmTurn, and LtArmEnd.

The reason you turn off IK when drawing the arm skeleton is that the IK
for the arm should not be placed on the entire skeleton. As mentioned pre-
viously, TK always constrains all the joints within the solver to rotate in one

direction. For the elbow joint, which works as a hinge joint, this is fine. But

[CHAPTER 3 = CHARACTER SKELETON SETUP

in addition to the clbow joint, you have drawn a LtArmTurn joint that will
be used to twist the lower arm of your character. To make sure the arm IK
doesn’ interfere with the rotating of this joint in X, leave this joint out of
the solver. Do this by selecting the IK Handle tool, and click the arm root
joint, and then click the LtArmTurn joint (see Figure 3.18). Name the
resulting IK handle LtArmIK.

S e s i A A D
e =
-

-

.

.
-

.
-

-
..
e
.
.
.
SR e e
-

B e
e G G
.
P
e e ww:vﬁw
e e o
.
o -
Car e . B Ak S i i
= =
. e = .
e e s R - R
R .

Place the arm IK from the shoulder to the middle of the forearm so that the arm turn
joint is outside the RP solver. Then move the pivot of the arm effector to the wrist.

When the IK is added, notice that you can still bend the arm using the IK
handle, while still being able to select the LeArmTurn joint to rotate it freely
in X.To make the IK act more like it controls the whole arm, you can
move the effector to sit over the wrist joint. Do this in the hypergraph view
by selecting the arm joint’s hidden effector node, and then click the Insert
key to move the cffector’s pivot. Notice that the IK handle sticks to the
effector when it is moved. Hold down the V key to snap the effector on top
of the LtArmEnd joint. When finished, click the Insert key again to go out
of pivot point mode. Now when you translate the TK handle, it behaves as if

it controls the arm from the wrist, rather than from the forearm.

114 }—-————-—{ MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

Finally, draw a two-joint FK arm skeleton for the left hand. You can draw this
in the front view, from where the wrist rotates to where the finger bones
begin. Do not attach the hand skeleton to the end of the arm. Name the
hand joints LtHandRoot and LtHandEnd. When finished, mirror the lefi-

arm and left-hand skeletons to the right side, and rename them appropriately.

12, After you have drawn the last skeleton, go back and parent all the polygon
reference bones under the appropriate skeleton joints. For instance, make
the left femur child of the LtLegR oot joint. The left patella should be
child of LtLegKnee, and both the left tibia and fibula should be child of
LtLegLow (see Figure 3.19). Make the many back vertebrae children of
the closest backbone joint, and make the rib cage child to the Back3 joint,

Avoid parenting any of the polygon bones under IK handles or control

icons, except the pelvis bone, which should be made temporarily child of
the Hips box. #

3.19 After you have finished drawing all
your skeletons, parent the polygon
bones to the appropriate Maya
joints, as seen here with the leg
skeleton. '

CREATING CONTROL ICONS

You may have noticed while you were naming your joints and IK han-
dles that they are not that easy to select in the interface. Some joints

are sitting on top of each other, and IK handles look just like locators.
Traditionally, character setup artists have dealt with this problem by cre-
ating control icons. A control icon can be any casily selectable 3D shape,
such as spheres, boxes, arrows, dials, and so forth, that will be parented to
your skeletons and TK handles (see Figure 3.20).You create these shapes

[CHAPTER 3 ® CHARACTER SKELETON SETUP |

]
o

3.20 Controlicons are made from curves
that can be in a variety of 3D shzapes

from curves so that they will not be visible when the surfaces are ren-
dered. When the control icons are created, you place their centers direct-
ly over the pivot points of the joints they are meant to control. Once
the icons are created and placed, they must then be parented over the
appropriate joints and IK handles. Some control icons may control only
a single skeleton or IK handle, whereas others may control many skele-
tons. By using control icons, you make your controls more efficient and

useful.

i CREATING AND PLACING CONTROL ICONS

1. Character setup artists often use a variety of shapes when crcating. control
icons out of curves. It doesn't really matter which shapes you use, as long
as the shapes are easy to select in all the views. Before you begin creating
some control icons, select all your skeletons and 1K handles, and plai:e them
on a layer named Skeletons. Make sure your Models, Polygon Reference

Bones, and Skeletons layers are all set to Template.

One shape that is easy to create with a curve is a box. Begin by creating a
polygon cube by choosing Create, Polygon Primitives, Cube on the top
menu bar. Scale the cube so that it is not too small in relation to your char-
acter. Make the perspective view full screen, and use the Alt key to orbit

" around so you can clearly see all the corners of the cube. Then choose
Create, EP Curve tool 1 on the top menu bar. Inside the EP Curve Tool
options box, set the Curve Degree to Linear, and close the options box.
Hold down theV key as you click the corners of the cube (see Figure
3.21). It is important to make your control box from a siﬁglc: curve, so you

“need to make the curve overlap itself to cover all the edges of the cube.
Keep clicking until you think the box is complete. When finished, select
the polygon cube in the hypergraph view, and delete it. You should now

have a 3D box made from a curve!

116 J————- MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.21 Snap the points of a linear EP curve
to the edges of a polygon cube to
create a box icon,

rpu

e

One thing you might want to do for creating more boxes in the future is

create a shelf button for the creation of a box. Open the Script Editor, and
in the gray History ficld, find the line of Maya Embedded Language (MEL)
code that was used when you created your box icon. Tt will look some-

thing like this:

curve -d 1 -p -3.511352 3.511352 3.511352 -p 3.511352
3.511352 3.511352 -p 3.511352 -3.,511352 3.511352 -p -
3.511352 -3,511352 3.511352 -p -3.511352 3,511352
3.511352 -p -3.511352 3.511352 -3.511352 -p -3.511352 -
3.511352 -3.511352 -p -3.511352 -3.511352 3.511352 -p -
3.511352 3.511352 3.511352 -p 32.511352 3.511352 3.511352
-p 3.511352 3,511352 -3.511352 -p -3.511352 3.,511352 -
3.511352 -p -3.511352 -3,511352 -3.511352 -p 3.511352 -
3.511352 -3.511352 -p 3.511352 3.511352 -3,511352 -p
3.511352 3.511352 3.511352 -p 3.511352 -3.511352 3.511352
-p 3.511352 -3.511352 -3.511352 -k 0 -k 1 -k 2 -k 3 -k 4
-k 5 -k6 -k 7 -k8 -k 9 -k 10 -k 11 -k 12 -k 13 -k 14 -
k 15 -k 1s

-k 17 ;

Highlight this line of code in the Script Editor, and using the middle
mouse button drag it to your shelf (sce Figure 3.22). This action produces a
shelf button that creates a new curve box every time you click it. Open the

Shelf Editor, and name the new button Box.

3.22 One way to make a shelf button is to
highlight MEL code in the History
field of the Script Editor, and then
use the middle mouse button to drag

it to the shelf. /-

2.

P

[CHAPTER 3 = CHARACTER SKELETON SETUP

Now you should create and position all the control boxes for controlling
your character’s limbs. Place your new control box directly on top of the
LtHandR oot joint, and scale it so it is easily selectable. Then either dupli-
cate the left-wrist box or click your Box shelf button to create more con-
trol boxes for the right wrist and both ankles. Place the leg boxes so their
centers are directly on top of each foot root joint. When the boxes are
placed appropriately, reset their transform channels by choosing Modify,
Freeze Transformations, and name them LtArm, RtArm, LtLeg, and
RtLeg.

Create two new control boxes, and name them Hips and Head. If you
want to change the shape of any control boxes to make them look different
from the others, just go into component mode, and transform the vertices.
Scale the Hips box so that it is slightly larger than, and contours, your char-
acter’s hips. In insert mode, place the pivot point for the Hips box where
your character’s hip root joints are located. Place the Head box so it fits
around your character’s head, and move the pivot point so it sits on top of

your head root joint.

Another kind of control icon you can use is a text curve. These icons are
easy to create, and arc also easy for the animator to recognize. Create a text
curve by choosing Create, Text 1 on the top menu bar, and make sure the
type is set to Curves. Avoid using multiple letters, or letters that require
multiple curves, such as e, a, p, or d. If you do use these letters, delete the
inner curve that creates the hole. You can use letters that have no holes,

such as u, z, v, 1, y, [, and s, without modifications.

Create a letter U, and move it so that it sits right on top of the Hips box.
In the hypergraph view, notice that the U curve has a couple of parent
group nodes. Select the curve node, disconnect it from its parent, and
delete the group nodes (see Figure 3.23). Name the U curve UpperBody.
Finally, in component mode, select all the vertices of the curve, and trans-
form them to the left and in front of your character. In addition, to make
the curve easier to sce in the side view, rotate the vertices in'Y about 35
degrees. The reason you make these adjustments by moving points in com-
ponent mode, instead of adjusting the transforms of the UpperBody curve,
is that you want the center of the curve to remain in the middle of your
character’s torso. This will ensure that your character’s torso can be rotated
around the correct pivot point. When the UpperBody icon is in the correct

place, freeze its transforms.

Create an S text curve, and name it Shoulders. Move the Shoulders curve
so that it sits in the middle of your character’s shoulders. Then, in compo-
nient mode, select all its vertices, and transform them to the right and in
front of your character. Also rotate them inY counterclockwise about 35

degrees. Freeze the Shoulders icon when you are finished.

—

|

118]—[MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.23 Separate and delete the two group
node parents of the U text curve that
will be used as the upper-body icon.

S

s
S

6. Another kind of icon frequently used by character setup artists is an arrow.
You can make multidirectional arrows for your elbow and knee controls.
Do this in the top view by turning on Snap to Grid, and draw an EP curve
on the grid in the shape of an arrow. When drawn, name the arrow
LtElbow, and transform it behind the left elbow. Make sure that the lefi-
elbow icon is sitting several grid units away from the arm, and not right on
top of the elbow. When positioned, duplicate the icon, and create three
more arrows named RtElbow, LtKnee, and RtKnee. Move the icons into
place, making sure the knee icons are sitting several grid units in front of

each knee (see Figure 3.24). When positioned correctly, freeze all the icons.

For the elbow and knee controls to work, you must assign them to the arm
and leg skeletons with a pole vector constraint. This constraint controls the
overall orientation of each skeleton by forcing the elbows and knees to
pomnt at the appropriate arrow icon. This is possible because the arm and
leg TK skeletons use an AP solver, which has a twist channel that controls
the rotate plane of the skeleton. This twist channel will be constrained
using the pole vector constraint. Do this by selecting the lefi-elbow arrow,
and then Shift-select the left-arm TK handle, and choose Constrain, Pole
Vector on the top menu bar. A line should display connecting the 1K to the
left-elbow arrow in the 3D views. Move the arrow up and down to see it
rotate the arm skeleton. Then create pole vector constraints on the IK for

the right arm and knees. ®

[CHAPTER 3 ® CHARACTER SKELETON SETUP |

CREATING A BASIC CHARACTER RIG

Up until now, you have been creating all the elements you will use to
control your character while animating. They are currently not very usec-
ful, however, because they are not connected in any way to each other.
To use all your controls effectively, you must make them into a character
rig. A rig is created when you parent all your skeletons, IK handles,
group nodes, and control icons into one big hierarchy. This hierarchy
organizes all your controls into a logical setup that is easy to use, and
easy to import into multiple scene files. :

Keep in mind while you are going through the rigging process that if
objects need to move independently of one another, they must be on
separate branches in a hierarchy. They cannot be child of each other. The
feet, for instance, should be able to stay on the ground when the upper
body moves. The upper body should also be able to stay still when a foot
is raised. To accomplish this, you must place these two parts of the body
on completely separate branches in the hierarchy. Although variations in
rig structures will always exist, keep in mind that most basic rigs are
built under these same principles.

1

119

—

3.24 In front of your character’s legs,
place arrow icons that control where
the knees point through the use of
pole vector constraints.

SEEEERESERRE ‘,Nfﬁﬁmggmmwa&mmwam 25 W TR
fe e b .
S 4

PARENTING SKELETONS AND CONTROL ICONS INTO A CHARACTER RIG

1. It may be casiest to do all your parenting in the hypergraph view. If you

haven’t done so already, changc your hypergraph to freeform layout by
choosing Options, Layout, Freeform Layout on the Hypergraph window’s
top menu bar, Keep in mind that an easy way to parent nodes in the
hypergraph is to drag the child on top of the parent with the middle
mouse button. Use the middle mouse button to drag an already parented
node over an cmpty space in the view to unparent it. Qther things to be
aware of when working in the hypergraph is that you want to keep every-
thing organized neatly. If shape nodes are showing up in your window, turn
them off by choosing Options, Display, Shape Nodes. You can also collapse
hierarchies, expand hierarchies, and create bookmarks by right-clicking in

the hypergraph.

Begin creating the lower-body hierarchy by parenting the leg and hip root
joints under the Hips box. Then make the leg IK handles, the root joints
for the feet, and the knee icons child to the appropriate leg boxes. For
mstance, the LiLeg box should be the parent of LtLeglK, LtLegRoot, and
LtKnee. Parent the right-leg controls in the same way. You should be able
to translate the Hips box, and the legs will bend, while the feet remain sta-
tionary. You should also be able to translate a leg box, and the foot will
move with the leg, while the hips remain stationary.

Then, create a locator by choosing Create, Locator. Name the locator Feet,
and translate it so it sits dircctly between the two leg boxes. When in place,
freeze the locator, and make it the parent of both leg boxes (see Figure 3.25).
This locator is occasionally used to move the feet together, such as to make

your character jump.

Begin creating the upper-body hierarchy by making the UpperBody icon
the parent of both the Hips box and the backbone root. Moving the
UpperBody icon should move the hips and backbone together. It is impor-
tant to make the hips and backbone on separate branches, so they can be
moved independently of each other. In this basic rig sctup, the Hips box
should not be translated, because it separates the hips from the backbone.
Instead, you should only rotate the Hips box to move the hips, and use the

UpperBody icon to move the torso.

. Create another locator and name it Rig. Translate this locator so that it sits

directly on the pivot point of the UpperBody icon.You can ecither try to
hold the V key to snap it into place, or you can use a point constraint to
move it, and then delete the constraint. Do this by selecting the UpperBody

E
I=
M
]
(.S
L]
™
=
)
T
M
-1

i
P

[a—
|

3.25 The Feet locator is the parent of botn
leg boxes, which have the indivicuz
foot skeletons, IK handles, and kne=
icons child to them.

i “’ﬁox«”‘““? S
o -
3 &wau P

A Y
| Rk oo

f‘%}’ﬂﬁéﬁe;x e

e ;:ﬁ:;&:k«

a

““gm*“*”\m,ﬁ
toter
s———
%W@%ﬁaﬂmw

[i &
&

icon, and then Shift-select the Rig locator, and choose Constraint, Point on
the top menu bar. The locator should move mnto place. Then, in the hyper-
graph view, just delete the constraint node connected to the locator. When
the Rig locator is in place, freeze it, and make it the parent of the Feet loca-
tor and the UpperBody icon (sce Figure 3.26). The Rig locator will be the
top of your character hierarchy, and can be used to move your entire charac-

ter around in your scenc.

3.26 Create a locator named Rig as the
top node of your hierarchy. Make the
Rig locator the parent of the feet anc
upper body branches.

4. All the parts of your character’s upper torso should move when the back-

bone bends. This includes the shoulders, neck, head, and arms. For this to

work correctly, all these body parts will be made the indirect children of the

122]—[MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.27 Make all the nodes that should move
with the backbone child to the
BackPadz group node.

BackEnd joint. The only part of the body that is sometimes made to not
follow the backbone is the hands. If you don’t want your hands to follow
the backbone’s movement, make the arm boxes child to the UpperBody
icon. Otherwise, they should be child to the end of the backbone, which is
how you should do it for now. Later in this chapter, you learn how to

switch this.

Begin creating the upper-body hierarchy by making the NeckRoot joint
child of the BackEnd joint. Before continuing, create two group nodes that
will be between the backbone and all the child nodes. Do this by selecting
the NeckRoot joint, and press Ctrl+G twice. Name the two group nodes
from top to bottom BackPad1 and BackPad2. Because there will be sev-
eral joints child to the end of the backbone, creating a couple of group
nodes will keep unnecessary bones from being displayed. Then make the
following nodes child to BackPad2: clavicle roots, scapula roots, neck root,

Head box, Shoulders icon, arm boxes, and clbow icons (see Figure 3.27).

5. You need to parent several more nodes before you will be finished con-

structing your basic character rig. First, instead of parenting, you need to
use a constraint to connect the Head box to the neck skeleton. This con-
straint causes the head to follow the neck movement, while keeping a ver-
tical orientation. Select the NeckEnd joint, hold the Shift key down to also
select the Head box, and constrain it by choosing Constrain, Point. Finally,
make the Head box the parent of HeadRoot and JawRoot. When this is

[CHAPTER 3 ®= CHARACTER SKELETON SETUP] [123

dorie, rotating the NeckRoot joint should move the Head box, and rotat-

ing the Head box in turn should also rotate the head and jaw skeletons.

Make both clavicle TK handles children of the Shoulders icon. And make
each scapula IK handle child of the clavicle TK that is on the same side of
the body. For instance, LtClaviclelK should be the parent of LeScapulalK.
Once parented, translating the Shoulders icon up inY should make both

shoulders shrug, and make both scapula bones rotate outward slightly.

The clavicle IK handles are the main controls for each shoulder. The two
things that should follow the clavicle IKs when they move are the scapula
and the arm roots. To achieve this, make each arm root child of the appro-
priate clavicle IK. Then continue down the arm, making each arm IK child
of the appropriate arm box, and each hand root child of the appropriate
arm end joint (sec Figure 3.28). The reason you make the arm end joint
the parent of the hand rather than the arm box is to keep the hand orient-
ed with the arm as the wrist box moves. This is usually what a real arm
does most of the time, so it makes sense to make this the default hand ori-
entation. Otherwise, if you were to make the hand child of the arm box,
you would have to be constantly rotating it into place, which is not very
efficient. In the next section, you create controls for moving the hand

around as needed.

3.28 Parenting the hand root joint under
the end of the arm skeleton com-
pletes the basic arm hierarchy.

S

e

S

124 }——[MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

6. This completes the basic skeleton setup. Check your basic hierarchy in the
hypergraph view to make sure everything is parented (see Figure 3.29). Try
moving your controls around to make sure everything is parented correctly.
For instance, moving the UpperBody icon up and down should make your
character crouch. All your polygon reference bones should move with your
skeleton joints, Be aware that there are currently no limits set on your con-
trols, and translating a control too far may pull your rig aparc. Make sure
you undo after testing your controls to get your character back into its

default position before going on to the next section. B

3.2¢ Check to make sure all the nodes in
your basic rig hierarchy are parented
correctly.

INCREASING RI1G FUNCTIONALITY

You can animate the basic rig you created in the preceding section as it
15, but it would lack efficiency. You would have to manually animate
every control, and some skeletons and TK handles would still not have
easily selectable control icons associated with them. The backbone joints,
tor instance, must be selected and animated individually. In this section,
you refine the basic rig that you created in the preceding section, and
add new controls that make it easier for you to animate your character.
This process primarily involves connecting channels using constraints,
mathematical expressions, and setting driven keys.

[cHAPTER 3 ® CHARACTER SKELETON SETUP

UsING CONSTRAINTS TO CREATE EYE CONTROLS

One of the few body parts of your character that won'’t be bound to
skeletons 1s the eye geometry. Eyeballs usually don’t deform much and
need to be able to move around freely in their sockets. Even on a
cartoon character that squashes and stretches, the eyeballs should be
deformed with a lattice rather than skeletons. This is because skeletons
lock the transforms of the geometry bound to them. So if you bind your
eyeballs, you won’t be able to move them around to make your character
look in different directions. Instead, you should parent the eyeballs into
your rig hierarchy, and use constraints to make controls for moving your
character’s eyes around.

CrREATING EYE CONTROLS

1. Create a new layer named UnDeformed for all models in your character
that won't be deformed. Place your eyeball models on this layer, as well as
any other models such as armor, jewelry, hats, and glasses. In addition, all
such objects should be made parent to the joint they should follow—in the
same way you parented the polygon reference bones to the appropriate
joints. Make sure all the parts of each eyeball can be moved together by
parenting them under the white part of the eyeball. Then, to make sure the
eyeballs follow the head motion, make the white part of each eye child to
the HeadR oot jont.

I~

. To make a control icon for the eyeballs, choose Create, NURBS
Primitives, Circle on the top menu bar. In the resulting options box,
make sure the circle is facing forward by setting the Normal Axis to Z.
Click the Create button, and translate the circle so that it sits directly in
front of the character’s eyes. Then, create two locators by choosing Create,
Locator, and move them so each sits close to the edge of the circle, while
also being directly in front of each eyeball. Freeze the circle and locators,
and name them EyesLook, LtEyeLook, and RtEyeLook. Make the
EyesLook circle the parent of both locators and the child of the Head box.

After you have made the eye controls, you need to constrain the eycballs to
them with an Aim constraint. Do this with the left eye by selecting the

_ LtEyeLook locator, Shift-select the model for the white part of the left eye,
and choose Constrain, Aim Q. In the Constraint options box, set the Aim
Vector based on the center orientation of your eye model. Unless you
made your eyeball model with the X-axis pointing forward, the default set-
ting will not work correctly. If you made the eycball parent so that its cen-

ter is oriented according to the global axis, where Z 1s pomnting forward, it

—_
rtn
J
J

126 J———{ MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.30 Create eye controls by aim-constrain-
ing each eyeball to a locator.
Manipulating the parent circle icon
makes the eyes move around.

is the Z-axis that should be constrained. Change the Aim Vector fields so
they read 0, 0, 1. This will constrain the Z-axis of the eye model to always
point at the locator in front of it. Leave the rest of the fields in their default
settings, and click the Add/Remove button. Then constrain the other eye-
ball to the locator in front of it.

When both eyeballs are constrained, test your controls by translating the
circle around. Your character’s eyes should track the circle icon (see Figure
3.30). In addition, you can scale and rotate the circle to get more cartoon-
ish effects, such as crossing the eyes or making the eyes wobble.You can
cven animate the locators themselves to create a wandering-eye effect. In
addition, some character sctup artists make cone icons in front of their
character’s eyes to more easily see where the character is looking. Do this

by just creating two cones from EP curves, and make each cone child to

the white of each eye. &

REFINING THE LOWER ARMS AND HANDS

Although the basic controls are there, your rig still needs a little work to
finish the arms and hands. In a real arm, the rotation of the radius and
ulna bones makes the forearm twist. You add two IK joints in your lower
arm hierarchy to get closer to how this works. In addition, you set an
order to the wrist rotations by creating parented group nodes, and create
some finger joints to finish your character’s hand.

[CHAPTER 3 = CHARACTER SKELETON SETUP |} [127

& ADDING FOREARM, HAND, AND FINGER CONTROLS

1. To create a radius and an ulna bone for your character’s left arm, use your
polygon reference bones as a guide, and draw two skeletons with TK turned
on. The radius should go from slightly below where the inside of the arm
bends and down to the thumb side of the wrist. The ulna should begin
shightly below the elbow and end on the outside of the wrist. After drawing
the skeleton, translate and rotate the root joints as needed to place them
correctly. Make sure both skeletons are on either side of the main arm skele-
ton, because the LtArmTurn joint will be the axis they need to turn around
(sce Figure 3.31). Name the joints for the skeleton that is on the elbow side
of the arm LtUIlnaRoot and LtUlnaEnd. Name the joints for the skeleton
on the other side of the arm LtRadiusRoot and LtRadiusEnd. Name the
IK handles LtUInalK and LtRadiusIK,

3.31 Create a radius and ulna skeleton on
each side of the main arm skeleton.

2. In the hypergraph view, parent the radius and ulna root joints under the

LtArmLow joint. This makes the two new skeletons follow the main arm
skeleton whenever the left-arm box is moved. Not only do the radius and
ulna joints need to move with the arm, they also need to move with the
LtArmTurn joint when it rotates in X. To make this work the way it works
in your own body, the radius should turn all the way up its axis, whereas
the ulna should turn only at the wrist.

In a real body, the radius bone rotates all the way up its axis when the fore-

arm twists. This is the reason the bicep’s muscle, which 1s attached to the

128 }‘—[MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

radius bone, elongates and contracts when the forearm is rotated. You can
easily do this on your character by making the left radius TK handle child
to the LtArmTurn joint. Make the polygon radius bone child to the radius
root joint to better sce the effect.

If the ulna turned all the way up its axis, however, the joint where the ulna
attaches to the elbow would break. To avoid this, you cannot just make its
IK handle child to the arm turn joint. Instead, you must filter out the rota-
tion information to use only the translation information, by using a point
constraint. Create a locator to do this, and move it right on top of the ulna
IK by snapping or constraining, as shown earlier. Name the new locator
LtUlnaConstrain.

To finish the forearm, constrain the ulna IK to the LtUlnaConstrain locator
by selecting the locator, Shift-select the ulna IK handle, and choose
Constrain, Point. Once constrained, make the LtUlnaConstrain locator
child to the LtArmTurn joint, and make the LtUlnalK child to the
LtArmLow joint (see Figure 3.32). To see the effect on the ulna, parent

the polygon ulna bone under the ulna root joint, and try rotating the
LeArmTurn joint in X, Notice the radius turns completely, whereas the

ulna only turns at the wrist.

3.32 To keep the ulna from breaking at the
elbow joint, constrain the UlnalK to a
locator that is made child of the arm
turn joint.

e

Ulbatsia |

S

[CHAPTER 3 = CHARACTER SKELETON SETUP

3. Create all the FK finger skeletons for the left hand. Draw the skeletons in

the view that enables you to fit them properly into the finger geometry. All
the fingers can be four-joint skeletons except the pinky. The pinky should

have an extra fifth joint that starts close to the wrist, and represents the

pinky metacarpal. The metacarpals for the other three fingers do not
require skeletons because they don’t move much, and the hand bone can
represent them for animation. However, an extra bone for the pinky
metacarpal enables you to create a cupping pose on the palm of the hand

(see Figure 3.33). The thumb skeleton should also start close to the wrist,

but only has four joints. When drawn, rotate and translate the thumb root

joint into place. Name the thumb joints LiThumbRoot, Lt Thumb?2,
LtThumb3, Lt ThumbEnd, and then name all the other finger joints

appropriately.

All the finger roots will be child to the end of the hand joint. Begin this by _
parenting the thumb root under the LtHandEnd joint. Notice that 2 bone 3.33 Creating an extra finger joint for the
is drawn going from the end of the hand skeleton to the start of the thumb pinky metacarpal enables you to cup
skeleton. To keep this from happening, with the thumb root selected, group the hand.

twice. Name the parent group node LtFingerPad1, and the child group
node LtFingerPad2. Again, this is just to keep a lot of unnecessary bones
from being drawn. Parent all the rest of the finger roots under
LtFingerPad2.

4. After parenting all the finger skeletons, make sure that all the polygon ref-
erence bones for the left hand are made child to the appropriate joints. The
small bones of the hand, as well as the metacarpals for the index, middle,
and ring fingers, can all be made child to the hand root joint. When you
are done, try rotating the LtArmTurn joint in X.You should see all the

fingers rotating with the wrist.

Although rotating the LtArmTurn joint in X is the main rotation for the
wrist, two other rotations can still be done at the wrist. You obviously do
not do these movements by rotating the LtArmTurn joint, but by rotating
the hand root joint in Z and Y. Even though you can do both these rota-
tions on the same joint, however, it is a better idea to create two group

nodes between the end of the arm and the hand root to do the wrist rota-

tions. Do this by selecting the LtHandRoot joint and group twice. Name

3.34 Create two group nodes between the
end of the arm and the hand’s root
joint.

the top group node LtWristWave and the bottom group node
LtWristShake (see Figure 3.34).

130 b———] MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS |

3.35 Set the rotation tool to Gimbal mode
to see how rotation order affects an
object.

When rotating an object in more than one axis, you must consider some-
thing called the rotation order. Create a cube, and open the Attribute Editor
to see what is set under Rotate Order in the transform node. The default
rotation order on an object is always XYZ, which sets the Z-axis as the
most important rotation axis, followed by Y and then X.You should set the
rotation order so it reflects how you will be animating a particular object
and to reduce a rotation problem called Gimbal lock. Gimbal lock occurs
when you rotate an object in all three axes until it stops being able to
rotate in the least-important axis, as set by its rotation order.You can also
get variations on this problem when your object doesn't rotate cleanly in

an axis but wobbles in a weird way when you set keyframes.

To reduce the problem of Gimbal lock, character setup artists often set the
order of rotation on objects according to how that object usually moves. To
see how this works, double—click the Rotation tool to set it to Gimbal
mode (see Figure 3.35). This is a special rotation mode that shows you how
each axis moves in relation to cach other. With your cube set to an XYZ
rotation order, try rotating each axis. Notice that rotating the Z-axis rotates
all the other axes. Then notice that rotating the Y-axis only rotates’ Y and X,
while the Z stays still. Rotating the X-axis doesn’t rotate the X or Z. If you
rotate the Yeaxis 90 degrees, notice that the local X-axis of the cube is no
longer available. This problem is commonly referred to as Gimbal lock. To
get a better idea of how rotation order works, try switching the Rotate
Order setting, and rotate the cube in Gimbal mode some more. Be aware

of the rotation order on your controls when setting up your rig so that you

can reduce Gimbal lock occurrences on your controls.

=l
L

[CHAPTER 3 = CHARACTER SKELETON SETUP]

Another way of setting an order of rotation 1s through parenting. Separating
all the rotations of a control onto different nodes sets the rotation order by
making the parent nodes more important than the child nodes. This keeps
the rotations from conflicting with each other. For instance, use the two
group nodes you created between the end of the arm and the hand joint to
separate the wrist rotations. Rotating the LtArmTurn joint already does the
most important rotation on the wrist, which twists the hand and forearm.
Rotating the LtWristWave node in Z does the next important rotation,
making the hand flap up and down. Whereas rotating the LtWristShake
node inY does the least important rotation, which is a small side-to-side
rotation (see Figure 3.36). Make sure that the pivot points are correctly
placed in the wrist for each rotation. Use insert mode if they need to be

adjusted.

When finished with the left arm, do the same for the right-forearm and
right-hand setup. If you try to mirror the entire arm hierarchy to the other
side, make sure you first disconnect all polygon reference bones. Using the
Joint Mirror command on geometry does not work well. In addition, mir-
roring a hierarchy often causes the IK to get disconnected on the new
hierarchy, so you may have to reset all the IK. Sometimes it is better just to
mirror individual skeletons and TK handles as you create them, and then

parent them all again on the other side. &

. e . . N
.. 3.36 By doing the hand rotations on sepa

. rate group nades, you can reduce the

S

. . -
L
- - ;
6mm§: . »“m;;‘, - problern of Gimbal lock.

-
.

S

e
=

e
e
SRS

132 ————] MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS |

3.37 Load two objects in the Connection
Editor to connect their channels.

CONNECTING CHANNELS

Throughout this chapter, you learn several ways to control the channels
of objects with the channels of other objects. You have already done

this through the use of constraints, such as point and aim constraints.
However, these kinds of constraints do not enable you to constrain indi-
vidual channels of different types, such as constraining a single transla-
tion channel to a single rotation channel. To do this, you must use either
the Connection Editor, the Expression Editor, or set driven keys.

The most basic way to connect channels is to use the Connection
Editor. Open the Connection Editor by choosing Window, General
Editors, Connection Editor. You use the Connection Editor by loading
the constraining object in the left Outputs side, and loading the object
to be constrained in the right Inputs side (see Figure 3.37). The two
objects have all their channels listed, and to connect two channels, all
you have to do is click them in each window. Keep in mind that the
constraint does not go both ways. Only the channel on the object
loaded into the right side of the Connection Editor is constrained. Once
constrained, the channels have a one-to-one connection based on their
values displayed in the channel bar. This kind of connection is pretty
simple. To make a more complex connection, where you can vary how
the objects are connected, you have to insert utility nodes into the
connection. -

Parent Inverse Matrix

Yisibility Caching
Intermediate Object Mode Stale
Template Vigibility

Ghasling Intermediate Object
|rst Obj Groups Template

|Ize Object Calar £ Ghosting

Object Calor Ingt Ohj Groups
Draw Overnide Use Object Calar
Lod Vizibility Object Color
Render Info Draw Ovemde
Translale Lod Visihifity
Rotate Rendey info

Rotale & Translale
Rotate ™y Transkate X

Aotate Order “: Translate 2

[CHAPTER 3

Another way to create connections between channels is by writing math-
ematical expressions in the Expression Editor, located under Window,
Animation Editors.You type your math expressions in the white text
field in the lower half of the Expression Editor (see Figure 3.38).
Expressions can constrain channels in the exact same way as the
Connection Editor, but are written using math signs. Some of the basic
signs used are: + (plus), — (minus), * (multiply), and / (divide).

Object names must be correctly written in each expression, and their
channels must be specified. It is a good idea, therefore, to name your
objects with short, logical, descriptive, names. Everything in an expres-
sion is case sensitive; so make sure you are consistent in how you use
capitalization in the names of your objects. All channel names are also
case sensitive. In fact, you should be aware that the default names in the
channel bar are not how the actual channel names should be written. If
you choose Channels, Channel Names on the channel bar, three choices
display. The default setting of Nice is not accurate. It capitalizes the first
letter in the name, and puts a space between parts of the channel name.
Using this syntax in your expressions will give you an error message.
Instead, switch the Channel Names setting to either Long or Short (see
Figure 3.39). The syntax for both of these settings is accurate, and will
work in your expressions. If you want to speed up your workflow by
typing less, use the short versions of the channel names. After you create
the expression, however, Maya converts the names to the long versions.

reszion Editor
S S
s e
i Wmamvﬂ%mgx%wmw”m%&ﬁ
e s L ey
e
9

1 s
B
S i
S L
s =
e R s s i
..
A
S

T

S
SR
e o

.

-
. L -
e
-
...

.
. .

Cube.r ut.abiun2|

=
WN» MWMW S SR e S ERR
S i%mmﬁéommowwawsmwwmwgw

- e e

S e
R e
S
S e
S LS R i
e

e
R

R

s CHARACTER SKELETON SETUP | L

. -
..

sm

i 1
e
=

] |

L
o

3.38 To connect channels in the
Expression Editor, write math expres-
sions in the white text field that
specify how to connect the objects.

134 }F——— MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS |

The syntax for writing a basic expression that creates a one-to-one con-

 Repebcted |
e S S
o

straint between channels is written like this:

ConstrainedObject.charmel = ConstrainingObject.channel

Keep in mind that only the object on the left side of the equals sign is
constrained. The other object’s channels are not affected at all. This kind

P
| Hiesk Conrection:

Hi

of expression 1s extremely simple, but adding some simple math symbols
can refine it.

e
S e S
mermmmﬁﬁﬁmam

e b L

» . CREATING Basic CHANNEL CONNECTIONS

= I Names]
g &!&i@
i
S]
S
S
e s
R

e e
Gt
e e R P PR

1. To get some experience connecting channels, in this exercise you constrain

3.39 In the Channel box, change the chan- channels using both the Connection Editor and Expression Editor. First,

nel names to either the long or short
versions when writing expressions. the Create menu. Name the objects Cube and Sphere, and translate the

in a new empty scene, create a polygon cube and NURBS sphere under

cube in X so that it is not sitting on top of the sphere. Then open the
Connection Editor by choosing Window, General Editors, Connection
Editor. Select the cube and load it into the left Qutputs side of the
Connection Editor by clicking the Reload Left button. When loaded, find
the channel named Rotate and click the arrow beside it to show the indi-
vidual rotation channels. Click the Rotate Z channel. -

Next, select the sphere and load it into the right Inputs side of the
Connection Editor by clicking the Reload Right button. To connect the
channels between the two objects, click the arrow beside the channel
named Translate, and then click Translate Y. Notice in the Channel box that
the Y channel for the sphere becomes colored. This means the channel is
being constrained (see Figure 3.40). If you select the cube, however, notice
that none of the channels are constrained. Rotate the cube in Z to see the
sphere move up and down inY. Also notice that when you rotate the cube
in a negative direction, the sphere moves negative in Y. It also moves the

AT
5 e
Channels Bbect

Espﬁamtr\::;;‘:,.ggggm

exact same amount of grid units that the cube rotates in degrees. This is a

R

one-to-one connection between channels.

The kind of connection you just made between the cube and the sphere
has limited uses as it is. In most cases, you would have to adjust this con-
nection either in amount or direction. Notice, for instance, how far the
e sphere goes when the cube rotates. This is because you are controlling
ESEE e

translation, which is based on grid units, with rotation, which is based on

3.0 Connecting two channels in the degrees. A quarter turn of the cube, which is 45 degrees, makes the sphere
Connection Editor creates a con- translate 45 grid units. Such a distance is going to be way too much for
straint on the channel of the object most character controls. Even on a large character, most controls do not

in the Inputs field. move more than a few grid units.

[CHAPTER 3 ® CHARACTER SKELETON SETUP |

2. To change the amount that a channel constrains another channel in the
Connection Editor, you must use a utility node. Open a hypergraph view,
and with both the cube and sphere sclected, click the window icon for
Input and Output Connections. Then choose Rendering, Create Render
Node in the Hypergraph window menu bar. In the Render Node options
box, click the Utility tab, and choose the Multply Divide node under
General Utilities (see Figure 3.41). Load the cube into the left Inputs side
of the Connection Editor, and select the Multiply Divide node in the
hypergraph to load it into the right Outputs side of the Connection Editor.
Connect the Rotate Z channel of the cube to the Inputl X channel on
the Multiply Divide node. Then load the Multiply Divide node into the
left side of the Connection Editor, and load the sphere into the right side.
Connect the output of the Multiply Divide node’s Qutput X channel to

the inputs of the sphere’ Translate Y channel. &

If you refresh the hypergraph view, you will see connection arrows
going from the cube node to the utility node to the sphere node. Right-
click the Multiply Divide node, and choose Attribute Editor. The way
the Multiply Divide node works is that the value in Input2 is performed
on Inputl. So if you set the operation to Divide, for instance, and you
set the value of Input2 to 10, the rotation of the cube is divided by 10
(see Figure 3.42). If you then rotate the cube 45 degrees, the sphere
translates in the Y-axis only 4.5 grid units, rather than 45 grid units. Try
experimenting with other utility nodes, such as the Reverse node, which
enables you to reverse the direction of the control.

You can create the same kind of connection between the cube and
sphere using a mathematical expression. First, delete the Multiply Divide
node in the hypergraph view, which deletes the constraint on the
sphere’s Translate Y channel. Then open the Expression Editor and type
the following in the Expression field:

1

e

3.41 In the hypergraph view, create a utili-
ty node to adjust a constraint created
in the Connection Editor.

3.42 Use the Multiply Divide node to
increase or decrease the result of the
connected channels.

| 3¢

43

J————— MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

n the Expression Editor, change the
selection filters to edit an expression.

Sphere.translateY = Cube.rotateZ

After you have written this, click the Create button in the lower-left

of the Expression Editor. Select the cube and rotate it in Z to see the
sphere move. Notice that the connection is exactly the same as the basic
connection that you previously did in the Connection Editor. If the
expression disappears from the Expression field, you can locate it again
by switching the Select Filter setting from By Object/Attribute Name
to By Expression Name, and choose it in the List field (see Figure 3.43).
In general, it is better to work in the By Expression Name filter because
changing selections on objects will not affect the current expression you
are writing. Your new expression should have the default name
Expressionl.You can then edit the expression to change the name, and
adjust how the cube affects the sphere.

You can do several simple things to fine-tune your expression. For
instance, the preceding expression implies the following:

Sphere.translateY = 0 + Cube.rotateZz

This expression reads “the sphere’s translation inY is equal to zero plus
the cube’s rotation in Z.” The zero in the expression represents the start
number or the current value in the spheresY channel. Change this
number so that the expression looks like this:

Sphere.translateY = 5 + Cube.rotateZ

When you click the Edit button in the Expression Editor, notice that
the sphere moves 5 units up in'Y. Nothing else is changed about the
expression except the start position of the sphere. If you change the
number to -5, the sphere will be set to =5 in'Y as its start position. The
other thing you could change is the direction of the constraint. Change
the expression to read as follows, and then click the Edit button:

Sphere.translate¥Y = 0 - Cube.rotateZ

When you rotate the cube, notice that the sphere goes in the opposite
direction than it did before. Changing the plus to a minus makes the
sphere move in a negative direction when the cube rotates in a positive
direction, and vice versa. If you want to reduce the amount of the con-
straint effect, as done previously with the Multiply Divide utility node,
use a division symbol like this:

Sphere.translateY = 0 - Cube.rotatezZ / 10

[CHAPTER 3 ® CHARACTER SKELETON SETUP

Or you could multiply the amount like this:
Sphere.translateY = 0 - Cube.rotatez * 10

The expression syntax for a basic channel constraint can be summarized
as follows:

ConstrainedObject.channel = Default#(Start) +-
(Direction) ConstrainingObject.channel */#(Amount)

As you can see, it is relatively easy to create a very specific constraint
using mathematical expressions. I personally prefer using expressions to
using the Connection Editor with utility nodes to constrain channels.
Utility nodes do evaluate a little faster than expressions, however, and
some professionals prefer using them for their controls. For the rest of
this chapter, you use expressions for doing all constraints that involve
math operations. Keep in mind, however, that in most cases you could
also use utility nodes and the Connection Editor to do the same kind of
constraints. It would just take you a little longer to set up.

CONTROLLING THE BACKBONE WITH MATH EXPRESSIONS

You may have noticed that the basic FK backbone on your character
cannot be selected very easily. To animate it bending, you have to manu-
ally select and rotate each one of its three main joints. Because this is not
very efficient, you create some controls to make animating the backbone
easier. Instead of rotating each joint individually, you use math expres-
sions to constrain the rotation of all the joints to a single control icon.

This is much easier for you to select and animate.

* MAKING BASIc BACKBONE CONTROLS

1. Open the scene that contains the basic character rig you have been build-
ing. To create some control icons for rotating the backbone joints, choose
Create, NURBS Primitives, Circle 0. In the Circle options box, set the
Object Normal to Z, and click Create. Scale the circle so that it is slightly
larger than the width of your character’s torso, and then freeze its trans-
forms. Name this circle BackBend. Then duplicate the BackBend circle,
and name it BackBow. Rotate the BackBow circle 90 degrees inY,
and also freeze it. Finally, duplicate the BackBow circle, and name it
BackTwist. Rotate the BackTwist circle 90 degrees in Z, and freeze it.

1

I

138 F————{ MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS |

At this point, you should have three circles sitting at the global origin.
Select all three circles and group them, naming the parent group node
BackControls. In the hypergraph view, parent the BackControls
node under the UpperBody icon.You may also want to translate the
BackControls to better position them in relation to your character (see
Figure 3.44).

3.44 Place three circle icons around the
middle of your character’s torso to
control the backbone skeletons.

2. When you have some control icons for the backbone, you can begin connect-

ing channels in the Expres?sion Editor. Keep in mind that your expressions
must be based on how the centers of your backbone joints are oriented. If
you created your backbone in the front view, Z should be pointed forward,Y
to the side, and X oricnted toward the next joint in the skeleton. With this
orientation, BackBend controls the Z-axis, BackBow controls the Y-axis, and
BackTwist controls the X-axis on the joints,

To check how the centers on your backbone joints are oriented, select
them and choose Display, Component Display, Local Rotation Axes.
Specifically, look to see whether all the centers have the same orientation.
If you didn'’t draw the backbone perfectly straight, some of the centers on
the joints may be flipped 180 degrees in X. This occurs whenever you
change directions when drawing a skeleton. Because this changes how your
expressions affect the joints, it is a good idea to sct all the centers so that
they have the same orientation. Do this by switching to component mode,
and after turning on the question mark (?) symbol, select a center axis that

needs to be fixed. Do not type any values in the transform channels to

[CHAPTER 3 = CHARACTER SKELETON SETUP }—

rotate the center. Instead, activate the Rotation tool, and manually rotate
the center a little in X.You won'’t be able to tell how far the center was
rotated, but that doesn’t matter. Open the Script Editor and find the last
line in the gray History field. It should look like this:

rotate -r -os 23 0 0;

Highlight this line in the Script Editor, and use the middle mouse button
to drag it down into the white scripting field. Then change the first num-
ber in the code to 180. It should look like this:

rotate -r —os 180 0 0;

After you have done this, highlight the code again, and use the middle
mouse button to drag it to your shelf. This action creates a shelf button to
flip your centers around 180 degrees in X.You can open the Shelf Editor
to give the button a short name such as RotX. Close the Script Editor, and
press Z to undo the preceding rotation. Then, with the center still selected,
click your new shelf button to rotate the center exactly 180 degrees in X.
You can use the button to rotate any other centers. Then turn off the ques-
tion mark symbol, and switch back to object mode. When all the centers
are oriented correctly, begin connecting your backbone controls by typing

the following expression into the Expression Editor:

BackRoot.rz = 0 + BackBend.rz;

Name the expression BackRotate and click the Create button. Notice
that this expression uses the short versions of the channel names, and ends
with a semicolon. The semicolon terminates a line in an expression, and is
necessary if you are going to write more than one line. After you create the
expression, try rotating the BackBend circle in Z.You should see the first

joint of the backbone rotating side to side in Z.

Switch to the Expression Name selection filter if you have not already
done so, and click the BackRotate expression to edit it. Highlight the line
you just wrote, and copy it by pressing Cerl+C. Then click the Enter key to
go to the next line. Paste the line down by pressing Ctrl+V. Copying and
pasting makes it easier for you to create new lines when you need to make
similar expressions. Do this twice, and then change the backbone names so

that you have the following three lines in your expression:

BackRoot.rz = 0 + BackBend.rz;
Back2.rz = 0 + BackBend.rz;
Back3.rz = 0 +: BackBend.rz;

. After you click the Edit button, try rotating the BackBend circle again. You

should see all the backbone joints rotating in the same direction as the cir-
cle. This should make the backbone bend in a smooth manner from side to

side. To fine-tune this motion, you can divide the effect on some of the

140]—[MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS }

3.45 Set the BackBend circle’s rotation
limits in the Attribute Editor under
the Transform tabh.

joints. The lower part of a real backbone doesn’t bend as much as the upper
part, so you may want to adjust your expressions in a similar way to the
following:

BackRoot.rz = 0 + BackBend.rz / 4;
Back2.rz = 0 + BackBend.rz / 3;
Back3.rz = 0 + BackBend.rz;

You can divide or multiply your expressions as needed for your character.
Keep in mind that you deo not have to get the rotations perfect at this stage.
Try to get them close to how they should rotate, and then you can fine--
tune them after you bind the models to your character, when you can better
see the effect of the rotations on the skin. To finish your backbone connec-
tions, type expression lines for the rest of your backbone channels, and click
the Edit button. Your final expressions will look similar to the fo]lm;ving:

BackRoot.rz = 0 + BackBend.rz / 4;

BackZ.rz = 0 + BackBend.rz / 3;

Back3.rz = 0 + BackBend.rz;

BackRoot.ry = 0 - BackBow.rx / 4;

Back2.ry = 0 - BackBow.rx / 3;

Back3.ry = 0 - BackBow.rx;

BackRoot.rx = 0 + BackTwist.ry / 4; T
Back2.rx = 0 + BackTwist.ry / 3;

Back3.rx = 0 + BackTwist.rvy;

Notice that the second set of expressions for the backbone’s rotation in'Y
uses a minus sign rather than a plus sign. If vour backbone centers are fac-
ing negative rather than positive in'Y, you must adjust your expression
accordingly. You can start by just using a plus sign, and if your joints are
rotating in the opposite direction from your circles, just change the plus
sign to a minus sign. Use this trial-and-error method when writing all your

expressions.

. One last thing you should do is set some rotation limits on your circle

icons. A general rule to keep in mind when setting up your rig is to put
Limits only on the objects you are going to animate directly. So in this case,
you should place limits on the citcle icons, and not on the joints they con-
trol. Right-click the BackBend circle, and choose the Attribute Editor. In
the Transform tab named BackBend, click the Limit Information drop-
down arrow to see the rotation limit channels. The BackBend circle should
rotate only in Z, so click the arrows beside the Min and Max for X and,
which should set their values to 0. Click the empty boxes to set the limits.
Then rotate your BackBend circle positive in X until it is as far as you
want your character’s backbone to bend to the side, and click the arrow
next to Max in the X limits. Copy the Max value, turn on the Min limit,

and paste the same value with a negative sign added (see Figure 3.45). In

[CHAPTER 3 = CHARACTER SKELETON SETUP] — 14

addition, make sure you click all the empty boxes to turn on the limits for
each axis. Test your BackBend circle to make sure it rotates only in Z the

anmount you set.

Follow this same process to set limits on the other two circles. The
BackBow circle should rotate only in X, and should rotate more to the
front than to the back (see Figure 3.46). The BackTwist circle should rotate
only in Y. When you have finished setting the limits, you may do one more
thing to the circles. You may want to color the icons to cue the animator
how they should be animated. For instance, you could make each circle the
color of the channel it should be rotated in. Do this in the Shape tab of the
Attribute Editor for each circle, by turning on Enable Overrides in the
Object Display, Drawing Overrides section. Adjust the Color slider to set
the color. Make BackBend blue, BackBow red, and BackTwist grecn. B

3.46 Set the limits so that rotating the
BackBow circle makes the backbone
hend more forward than backward.

SETTING DRIVEN KEYS FOR SHOULDER MOTION

The third main way of connecting channels in Maya is to set driven

keys. These are special keys that are not based on the timeline, but
instead are based on the connected channels’ relationship to each other.
The object with the constraining channel is the driver, and the object
with the channel constrained is the driven. Setting driven keys has some
distinct advantages over other methods for creating basic constraints
between channels. Driven keys are easy to set, and are extremely flexible.
If you need to do math operations in your controls, however, you will
still have to use expressions or the Connection Editor.

142 J——— MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.47 Set driven keys to connect channels
by loading objects into the Driver
and Driven sections of the Set Driven
Key options box.

3.48 A driven key connection creates
spline-based animation curves that
you can edit in the Graph Editor.

To set driven keys, choose Animate, Set Driven Key, Set . In the Set
Driven Key options box, you load the driver and driven, and click the
channels you want to connect (see Figure 3.47). Press the Shift key to
select multiple driven channels. Once loaded, you manipulate the chan-
nels in relation to each other, and click the Key button for each new
position. After the keys are set, whenever the driver’s channel changes,
the driven channel responds.

One main difference between setting driven keys and other connection
methods is that driven keys create animation curves that can be edited
in the Graph Editor. This enables you to adjust the timing of a constraint
in ways that would be difficult using other methods. An expression
constraint occurs in a constant mannet, for instance, which would be -
equivalent to a linear animation curve in the Graph Editor. A driven
object, however, can respond at a variety of rates to a driver’s motion.

A driven object can speed up or slow down over the course of a move,
which is equivalent to a spline-based animation curve in the Graph
Editor (see Figure 3.48).

An additional difference from other constraint methods is that driven
objects can have multiple drivers. The driven key’s channel is con- _
strained, so you can'’t set regular animation keys on it manually, or attach
another kind of constraint to it. But you can connect additional drivers
to it. Being able to connect multiple drivers to a single driven allows

Graph E ditor

[CHAPTER 3 = CHARACTER SKELETON SETUP

you a great amount of flexibility when setting up your character con-
trols. For instance, in the next exercise, you control the raising of your
character’s individual shoulders with three drivers. This creates automatic
shoulder movement based on the position of the arm box and elbow
icon, and allows you to use a custom channel for manually controlling
the raising of each shoulder.

SETTING DRIVEN KEYS ON THE SHOULDER

The first driven keys you are going to set make the left shoulder rise automati-
cally when the left-arm box translates in'Y. The shoulder in a real body is where
the clavicle, scapula, and humerus bones come together. This area rises automat-
ically when the elbow moves above shoulder level. This occurs because there is
a notch on the ball joint of the humerus that clicks into place on the clavicle
when the arm rises, which then pushes the clavicle up.You set driven keys to
make this happen on your character whenever the arm box is raised past the

level of the shoulders.

1. Begin by opening the Set Driven Key options box, and with the left-arm
 box selected, click the Load Driver button. Choose the Translate Y channel

of the arm box in the Driver Channels list. Then load the LtClavicleIK as

the driven object, and also choose its Translate Y channel. Before continu-

ing, select the arm box and press the S key to set keys for its default posi-
tion at frame 1 on the timeline. Keep in mind that this key on the arm box

has nothing to do with the driven key connection. You move the arm box
around a lot while setting driven keys, and this enables you to easily get the

arm back to its default pose when you have finished.

_ The first driven key to set is the default position of the clavicle. Place the
arm box on the same level inY as the clavicle, and click the Key button in
the Set Driven Key options box. Then translate the arm box above your
character’s head until the elbow locks out. Select the clavicle IK and trans-
late it up inY slightly. The arm should bend a little as the clavicle is raised.
Set another driven key. To check the control, translate the arm box up and
down to see whether the clavicle moves smoothly inY (see Figure 3.49).
Afterward, click the timeline to force your arm box back into its default
position. '

2. Select the elbow arrow icon, and load it as a second driver for the clavicle
IK. Choose its translation inY as the driving channel. To see how this con-
trol should affect your character, rotate your own elbow forward and

upward, so your palm faces behind you. Notice your clavicle goes up.

1

]

—

(]

144 J————] MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.49 Set driven keys on the clavicle IK to
make the shoulder move up and
down when an arm is raised.

3.50 Create a custom channel on the
Shoulders icon to manually drive the
clavicle IK up and down.

Before setting driven keys, as with the arm box, press the S key to set a key

for the elbow icon’s default position. Make sure the elbow icon is directly
behind the lower arm joint,-and set a driven key. Then raise the elbow icon
inY so the arm rotates about 80 degrees forward. Also raise the clavicle IK
a little bit, and set another driven key. When your keys are set, test the con-
trol, and then click the timeline to reset your arm controls into their
default position. After testing the automatic shoulder controls, remove the
keys you set on the arm and elbow controls by selecting their channels in
the channel bar, and right-click to break the connections.

. You may have noticed a problem after setting your automatic controls for

the left shoulder. After you set driven keys, you cannot manually set transla-
tion keys on the clavicle IK. This can still be done, however, by creating a
channel that manually drives your left shoulder. The best place to create
such a channel is on the Shoulders icon. Select the Shoulders icon and
choose Modify, Add Attribute on the top menu bar. In the Add Attribute
options box, name the new channel ltShoulder (see Figure 3.50). Make
sure that you are using a Float data type, which gives you smooth transi-
tions in your new channel. Then set the Minimum field to =3, the
Maximum field to 10, and the Default field to 0. Setting the Numeric
Attribute Properties creates the limits on the channel. The reason you set
the minimum to a smaller amount than the maximum limit is because a

shoulder mostly moves up, rather than down.

[cHAPTER 3 ® CHARACTER SKELETON SETUP

After you have a leftshoulder channel on your Shoulders icon, you can
make it drive the manual translation in’Y of your character’ clavicle IK.
Load the Shoulders icon into the Driver section of the Set Driven Key
options box, and choose the new ltShoulder channel. Make sure the driven
channel is set to the translation in'Y of the left—clavicle TK. Make sure the
driver channel is at 0, and the clavicle IK is in its default position, and click
Key. Then change the driver channel to 10, raise the clavicle IK in'Y, and
click Key again. Finally, change the driver channel to =3, and lower the
clavicle IK to slightly below its default position, and key it.

When all the driven keys are set, select the ltShoulder channel in the chan-
nel bar, use the middle mouse button as a virtual slider, and scrub through
the driven keys. As the channel changes, you should see your character’s left
shoulder moving up and down accordingly. Try out all three of the shoul-
der controls to see how they work together. Keep in mind that you can set
more driven keys to refine this motion. You may want to drive some X
translation channels in addition to the Y translation.You may also want to
drive the arm root joint’s translation to make it rise with the clavicle IK.
‘When the left shoulder is working well, set similar driven keys on the right
shoulder. &

CREATING ADDITIONAL SDK CONTROLS

In the preceding exercise, you made a custom channel to control the
translation inY of the clavicle IK. Doing this enabled you to set manual
translation keys on a channel that was already being controlled by driven
keys. Even if there were no other driven keys on the clavicle IK, how-
ever,creating a custom channel on the Shoulders node would still be

desirable.

You may have noticed that some objects in your rig do not have ecasily
selectable controls. If you made icons for every control in your character,
your interface would soon get cluttered. Some objects in your rig that
are difficult to select are the individual shoulder IK handles, the arm
turn joints, wrist pivots, finger joints, and the jaw joint. The best place to
put control channels for these objects is on the closest main control
icon. For instance, arm, finger, and hand channels can be placed on the
appropriate arm box, and jaw controls can be placed on the Head box.
You can then connect all these channels to the objects they should con-
trol by setting driven keys.

1

1

F———{ MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

SETTING DRIVEN KEYSs oN OTHER PARTS OF THE BoDy

1. Another automatic motion you can add to your shoulder is movement in Z
when the arm moves forward and backward. This involves the Z translation
of the clavicle 1K, and some X and Z translation of the scapula root joint.
Load the translation in Z of the arm box as driver, and load the Z transla-
tion of the clavicle IK as driven. Set driven keys with the arm box out in

front of your character, and back behind your character about 30 degrees.

Driving the clavicle TK in Z rotates the scapula a little because the scapula TK
is child to the clavicle IK. When a real arm moves forward and backward,
however, the scapula actually floats around the rib cage to some degree.You
can best experience this motion by stretching both your arms backward, and
then notice how your scapulas press together. To make the scapula translate
around the rib cage, load the scapula root joint as driven, with the translation
in 7 of the arm box still as the driver. Hold down the Ctrl key to select the
translation in X and Z of the scapula root joint. Then key the translations of
the scapula to make it move in a small arc around the rib cage as the arm

box moves forward and backward (see Figure 3.51).

2. You can add several channels to each arm box to control your character’s
forcarms, hands, and fingers. Begin by making three custom channels on
the lefi-arm box named wristTurn, handWave, and handShake. Set the
minimum for these channels to —10, and the maximum to 10. Open the
Set Driven Key option box and load the wristTurn channel of the arm box
as the driver. Load the LtArmTurn joint’s X rotation channel as driven.
Then set a driven key with the arm turn joint in its default position, and
the wristTurn channel at 0. Then change the channel to 10, rotate the arm
turn joint forward in X about 45 degrees, and set a driven key. Keep in
mind that the degree to which a real forearm turns is very little. Most of
the turning on the arm occurs from the shoulder, and should be done by
translating the elbow icons. Change the wristTurn channel to —10, rotate
the arm turn joint backward in X about 100 degrees, and set a key. Scrub

the wristTurn channel to see the forearm turning.

Next, use the same method to make the other two custom channels on

the arm box drive the two group nodes that are parent to the hand joint.
Make the handWave channel drive the up-and-down rotation of the
LiWristWave node, and the handShake channel drive the side-to-side rota-
tion of the LtWristShake node. Depending on which way the hands of your
character are facing, the two driven channels will probably be Z andY. Keep
in mind when setting driven keys that the wave rotation is larger than the
shake rotation. After you have all the driven keys set, you should be able to

use the three custom channels to place your character’s hand into any pose.

[CHAPTER 3 = CHARACTER SKELETON SETUP] {14

To set driven keys for the fingers, create five channels on the arm box

named indexFinger, midFinger, ringFinger, pinkyFinger, and thumb
(see Figﬁre 3.52). Because fingers only go in one direction, you may not
need much of a minimum value on the channels. This depends on whether
your character’s fingers are straight or relaxed in its default pose. If they are
relaxed, you will have to put a minimum value that 15 large enough to

straighten them out. Set the maximum value for each finger channel to 10.

Then load the indexFinger channel of the arm box as the driver. Hold
down the Shift key in the hypergraph view to select LtIndexRoot,
LtIndex2, and LtIndex3, and then load all three index finger joints i as the
driven. Select with the Shift key all the finger joints in the Set Driven Key
options box, and choose their rotation in Z as the driven channel. Set a key
in their default position, with the driving channel at (0. Then change the
driving channel to 10, rotate all the index finger joints into a closed posi-
tion using the Up and Down Arrow keys to move through the finger hier-
archy, and set another key. Set the driving channel to the minimum value,
rotate all the index finger joints until they are straight, and set a final key.
Repeat this process with all the finger joints. In addition, you can create
fingerClosed and fingerSpread channels on the arm box that drives all the
fingers at once. The fingerClosed channel should drive the Z rotations of
all the finger joints, and the fingerSpread should drive the Y rotations of

the finger root joints to spread the fingers away from each other.

3.51 Also use driven keys to make the
scapula translate around the rib cage
in an arc when the arm is moved for-
ward and backward.

3.52 Create several custom channels on
each arm box to control the forearm,
hand, and finger motions.

148 }———] MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.53 It is easier to make your character
push a heavy object if the hands do
not follow the backbone.

3. Create a few custom channels on the Head box to move the jaw and
neck. Name the channels jawOpen, jawGrind, jawJut, neckBend, and
neckTilt. The jawOpen channel should rotate the jaw joint in Z so the
mouth opens and closes. The jawGrind and jaw]ut channels should translate
the jaw from side to side, and translate the jaw forward and backward. Set
the minimum and maximum values to the appropriate values to achieve
these movements. Then load the jaw joint in as driven, and key the appro-
priate channels. The neckBend and neckTilt channels should make the
NeckR oot joint rotate side to side and forward and backward. &

MAKING A HANDS-FOLLOW SWITCH

Currently your hands should be following your backbone when it
moves. The reason this occurs is because the arm boxes are child to
BackPad2. If your hands were parented under the UpperBody icon,
however, they would move with the torso, and not move with the back-
bone. At times while animating, both of these parenting solutions will
prove useful. If your character was pushing a heavy object, for instance,
it would be easier to animate if the hands did not move with the back-
bone (see Figure 3.53). On the other hand, if the character was walking,
it would be easier to animate if the hands follow the backbone. Actually,
both these solutions are possible if you use constraints.

W

§X§*§‘X§ﬁ**w

T
. z%gﬁz%g%g?

i
i
i
i
i

1.

[SS]

[CHAPTER 3 ® CHARACTER SKELETON SETUP |

e

SRR
e
.

S
e

Create a locator named Hands, and make the Hands locator the parent

of both arm boxes. Create two other locators named BackFollow and
TorsoFollow. Make sure all three locators are sitting directly on top of
each other. The BackFollow locator should be the child of BackPad2, and
the TorsoFollow locator should be the child of the UpperBody icon. The
trick to creating a switch for how the arms follow the backbone is to cre-
ate two constraints that make the Hands locator switch between following

BackFollow and TorsoFollow.

Select the BackFollow locator, Shift-select the Hands locator, and choose
Constraint, Point on the top menu bar. With both still selected, go to the
Constraint menu again and choose Orient. This places both a point and
orient constraint on the Hands locator. Select the TorsoFollow locator,
Shift-select the Hands locator again, and create both point and orient con-
straints. If you select the Hands locator, you should see two point con-
straints and two orient constraints in the Inputs section of the Channel box
(see Figure 3.54). Having these two constraints is the key to creating a
switch. Notice that each constraint has a weighting that goes from 0 to 1.
When the channel is at 0, the constraint is turned off, and when 1t 1s at 1,

the constraint 1s fully turned on.

To create a way of switching the constraints, you must create a custom
channel that will be connected to the weight channels of each constraint.
Do this by selecting the UpperBody icon, and choose Modify, Add
Attribute. Create a custom channel called armsSwitch, with limits from 0
to 1, and a default value of 0. You can use the Connection Editor, expres-
sions, or set driven keys to create a connection between the armsSwitch

channel and the constraint channels.

The armsSwitch channel should make one of the constraint channels fol-
low it exactly, and make the other constraint channel follow it in the oppo-
site direction. This has the effect of turning one constraint on, while the
other constraint turns off. For example, you can do this with an expression
like this:

Hands pointConstraintl.BackFollowW0 =
w1 - UpperBody.armsSwitch;

Hands pointConstraintl.TorsoFollowWls=
w0 + UpperBody.armsSwitch;

Hands _orientConstraintl.BackFollowW0=
w] - UpperBody.armsSwitch;

Hands orientConstraintl.TorscFollowWl=
w(+ UpperBody.armsSwitch;

1

3.54 Use a custom channel to control the

weight channels of two point con-
straints to make the arms appear
switch parents.

——
i

150 b————{ MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS |

3.55 You can find a list of the advanced
expression functions on the menu
bar in the Expression Editor.

3. When the channels are constrained, try rotating the BackBend circle, and
then scrub the armsSwitch channel on the UpperBody icon. You should
see your hands smoothly switching between staying still and following the
backbone. The hands should still follow the upper body, even when they
don’t follow the backbone. If you didn’t want the hands to follow anything,
you would do the same process, only using a locator that is child to the

Rig node, rather than the UpperBody node. &

ADVANCED ANIMATION CONTROLS

In this section, you add some more complicated controls to your charac-
ter rig. This process involves using math functions to create automatic
torso motions, setting driven keys to create a rolling foot control, creat-
ing an advanced backbone with spline IK and clusters, and creating color
indicators that warn when a control has been moved too far. Although
these controls require more time to set up, they make it casier and faster
for you to animate your character.

Some of the expressions used in this section use expression functions.
An expression function is a predefined command that can be used in an
expression instead of explicitly writing the complicated math associated
with the command. Some common expression functions used in Maya
are abs, trunc, cos, rand, and time. You can view a list of functions in the
Expression Editor under the Insert Functions menu (see Figure 3.55). To
view a complete list with detailed explanations of each function, look in
the Expressions section in the online documentation of the Help menu.

CONSTRAINING THE TORSO TO THE FEET

One thing that can be useful for easily moving your character around in
a scene is to connect the torso to the feet with an average expression.
This always keeps the UpperBody icon between the two leg boxes
whenever they move in X and Z. In addition, you create an expression
to make the torso automatically dip in'Y each time a foot takes a step.
The amount of the dip is based on the size of the step (see Figure 3.56).

Keep in mind that although these expressions make certain actions easier
to animate, they may not be appropriate for all scenes. Sometimes you
will want to disable these expressions and animate these motions manu-
ally. This is especially true if your character is going to rotate extensively
from the Rig node, such as to perform a 360-degree flip. This is because
the Rig and Feet nodes, which are parents of the nodes involved in the

—_—
—le
—
(]]
—

[CHAPTER 3 = CHARACTER SKELETON SETUP

expressions, cannot be affected by the upper body and leg boxes. The
reason for this is that having a child node affect a parent node causes a
cycle, which generates an error message from Maya. Because this is
undesirable, using the expressions causes the Rig and Feet nodes to get

left behind as soon as you begin moving your character around using
the average expressions. In turn, this causes the pivot points to be off for
any kind of body rotation using these nodes.

3.56 Add expressions to make your char-
acter’s torso automatically move
when each foot takes a step.

. CReATING TORSO AVERAGES AND DIP

1. The first step in constraining the torso to automatically move when the legs
move is to create a couple of group nodes that are sitting directly on top of,
and are the parents of, the UpperBody icon. If you constrain the channels of
the UpperBody icon directly with these expressions, you will no longer be
able to manually animate the upper body of your character. Instead, you
constrain the channels on some parent group nodes that propagate the
movement to the upper body through the parent child relationship. You can
then manually add keyframes to the UpperBody icon in addition to the
automatic movements. The term often used for keeping the channels of a
child node open for setting manual keyframes is a_freedom node.

|2

]—[MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

In the hypergraph view, select the UpperBody icon, and press Cerl+G
twice. Name the top group node UpBodAutol, and the lower group
node UpBodAuto2 (see Figure 3.57). If your UpperBody icon was origi-
nally placed right on top of the Rig node, your two group nodes should be
sitting right on top of the UpperBody icon. If not, go into insert mode and
move accordingly. Because you are going to write expressions, you want
the channels of your group nodes to have 0 values in translation and rota-
tion, and 1 in scaling. If they are sitting right on top of the Rig and
UpperBody nodes, this should be the case. Keep in mind that in versions of
Maya before 4.5, you should not freeze the transforms of nodes that are
parented in your skeleton hierarchy. Doing so changes the orientations

of your skeleton centers and dislocates any 1K handles that are child to
these nodes. This problem seems to be fixed in the latest version of Maya,

however.

3.57 Making two group nodes as parents SbEES
of the UpperBody icon creates extra ‘ TALH
channels that can be constrained in
your expressions,

'"asékiwéé&é'ﬁaomox«‘z

xxoowiM»&M»M&owssa»swowgw @ﬁ?}l?

2. After you have some channels to constrain on the UpBodAuto nodes, you
can begin writing the expressions for averaging the torso between the leg
box positions. One important thing to check before writing the expressions
is that the Feet node is directly between the leg boxes. Keep in mind that
the information in the channels of the leg boxes is based on the parent
node’s position. You want, therefore, to make sure that the Feet node is
directly between the leg boxes in X, and lined up with the center of the
boxes in Z. In addition, before writing the expressions, check the channels
of the objects involved for any irregularities in the rotation or scaling chan-
nels. They should not, for instance, have Scaling values other than 1, or
Rotation values other than 0. The first expression you write should con-
strain the X translation of the UpBodAuto1 node with an average. Adding
a number of values, and dividing the result by the same number of values,

creates an average. Use the following syntax:

(B + B) / 2

[CHAPTER 3 ® CHARACTER SKELETON SETUP

Replace the letters A and B in the preceding expression with each leg
box’s X translation to average the X translation of the UpBodAutol node.
Do this on your rig by opening the Expression Editor, and type the follow-

ing expression:
UpBodAutol.tx = (LtLeg.tx + RtLeg.tx) / 2;

Name the expression Averages, and click Create. Test the control by trans-
lating one of the leg boxes in X.Your character’s torso should remain
directly in between both leg boxes. To constrain the Z translation in the
same way, edit the expression by copying the first expression, and paste it
on the next line, changing each X-axis to Z.The second line in your

expression should look like this:

UpBodRutol.tz = (LtLeg.tz + RtLeg.tz) / 2;

One other average constraint that you may want to use on your character

is placed on theY rotation channel. It is written like this:

UpBodAutol.ry = (LtLeg.ry + RtLeg.ry) / 2;

. One thing you may notice when you test your average constraints is the

leg boxes tend to pull the feet out of their sockets when a foot steps. The
reason this happens is because the torso doesn’t dip when your character
steps in X or Z. In a real body, when you take a step, your torso dips. The
bigger you step, the more your torso dips. If your torso didn't dip, your feet

would come out of your sockets too!

So to make your character’s torso automatically dip when your character
takes a step, you can just create another expression. In the Expression
Editor, click the New Expression button, and type in the following:

UpBodRAutol.ty = 0 - ((abs(LtLeg.tx - RtLeg.tx)
wi agbs(LtLeg.tz - RtLeg.tz)) / 6);

This expression finds how far the distance is between the feet by subtract-
ing one foot from the other in X and Z.The absolute function removes
negative signs from the expression, because there is no such thing as a neg-
ative distance. Dividing is needed because you don’t want your character to
dip as far as it steps. Name the expression Dip, click the Create button, and

move your leg boxes to test the dip.

You probably need to divide the effect by more than 6 to produce less of a
dip. In addition, your character has probably moved out of its default position
inY (see Figure 3.58). This is because the expression is activated when the
feet move apart, and the feet are already apart in their default pose.You can
type in a number greater than 0 as the start number to adjust the character

back up in'Y. Another way you can make adjustments to your character’s

1

]

]

o
[

154 }———— MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS |

default position is by just translating your freedom nodes. The only channel
that will be constrained on UpBodAuto2 is the X translation channel. So
you can make any needed adjustments to the Z orY translation of your char-
acter on this node. Also notice that although the expressions force the torso
to move with the feet automatically, you can animate the UpperBody icon to
compensate or add to the movement as needed. This enables you to animate
basic movement of your character quickly, while adding subtle variations to

the movement by manually animating the freedom node. &

3.58 Check to see whether the expres-
sions constraining the torso caused
your character to move out of its
default position.

WRITING CONDITIONAL EXPRESSIONS

Another kind of advanced expression is a conditional expression, which
uses the if and else commands. These commands enable you to set up a
condition of some kind, and do one of two expressions depending on
whether the condition evaluates as true or false. This is a good way, there-
fore, to have your character controls switch between two opposing actions.
The automatic controls you create with conditional expressions on your

[CHAPTER 3 = CHARACTER SKELETON SETUP

character simulate the torso shifting weight when a foot is raised, and
cause the hips to rotate in Y when a foot steps forward and backward. The
general syntax for a conditional expression in Maya is as follows:

if (condition) Expression evaluated if the condition is true;
else Expression evaluated if the condition is false;

The condition used can be any mathematical statement that evaluates as
true or false; for the examples in this book, however, you use greater
than (>) or less than (<) statements. If the condition evaluates as true,
the If expression runs. If it evaluates as false, on the other hand, the
Else expression runs. Keep in mind that you can use the If command
without the Else command, but the Else command always requires
the Tf command be used before it. If you don’t use an Else command,
the expression does nothing if the condition evaluates as false.

l UsING CONDITIONAL EXPRESSIONS ON YOUR RiG

1. To make the torso automatically shift from side to side when a foot is
raised, the translation in X of the UpBodAuto2 node must be constrained
with a conditional expressior. You must place this cxpression on the
UpBodAuto2 node because the X translation channel on the UpBodAutol
node is already being used by the average expression. This expression also
uses the absolute function, because it involves calculating the distance each
foot is raised to set the shifting amount. This amount is then divided at the
end of the expression to make the movement subtler. In the Expression

Editor, create the conditional expression in the following way:

~if (LtLeg.ty > RtLeg.ty)
UpBodauto2.tx = 0 - (abs (LtLeg.ty - RtLeg.ty) / 2);
else
UpBodAutoZ.tx

0 + (abs (LtLeg.ty - RtLeg.ty) / 2);

It’s okay to separate the expressions onto different lines by pressing the reg-
ular Enter key, if this makes them easier to read. Maya still sees only one
expression command until it reaches a semicolon. The above expression can
be read, “If the left leg rises above the right leg, shift the torso to one side;
otherwise, shift it to the other side” Name the expression Conditionals,
and click Create. If you then raise one of the leg boxes, you should see the
torso translate over the opposite leg as if its weight shifted to keep the
character balanced (see Figure 3.59). Notice that the only difference
between the If and Else expression is the plus and minus signs. If you
find your character shifting in the wrong direction, reverse the signs.

1

1

—hea

(o1

(]

156 }————] MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.59 Use a conditional expression to
make your character shift its torso
over the opposite foot when a leg is
raised.

2. A similar conditional expression can be done to make the Hips box rotate

inY when a foot steps in Z.To do this, and still be able to manually ani-
mate the Hips box, you must make a group node parent to the Hips box.
Do this by selecting the Hips box, press Ctrl+G, and name the new node
HipsAuto. In insert mode, move the pivot of HipsAuto to sit on top of
the Hips center. It doesn’t matter whether the HipsAuto node has any
numbers in its translation channels, but make sure the number in the rota-
tion channels is (0. When finished, copy the previous conditional expression,
and paste a second conditional expression in the same window. Then

change the second expression to look like the following:

if (Ltleg.tz > Rtleg.tz)
HipsAuto.ry 0 - (abs (LtLeg.tz - RtlLeg.tz) * 3);
else

Hipshuto.ry 0 + (abs (LtLeg.tz - RtlLeg.tz) * 3);

When finished, click Edit to update the Conditionals expression. If you
then move a leg box in Z, you should see the hips rotating in the same
direction. Adjust the plus and minus signs if necessary to get the correct
rotation. The reason the division should be changed to multiplication in the
second expression is because the translation of the legs is affecting the rota-
tion of the hips. For instance, 5 units of translation on the leg boxes makes
the hips rotate only 5 degrees, which is not very noticeable. Multiplying

the expression makes the hips rotate a noticcable amount. &

[CHAPTER 3 = CHARACTER SKELETON SETUP]

—
o

OTHER ADVANCED MATH FUNCTIONS

A couple of other interesting expressions you can use on your character
involve creating a breathing control, an eye-jitter control, and a tail-whip
control. The breathing expression involves using a cosine function and a
time function that references the timeline. The eye-jitter control involves
using a randomize function and custom channels. Finally, the whipping
tail expression also involves referencing the timeline, and introduces the

use of MEL commands in an expression to create a delay cffect.

UsinGg FuncTiONS To CREATE ADDITIONAL CONTROLS

1. To create some breathing controls, in the top view draw a two-joint FK
skeleton in the left chest area of your character. The skeleton should start
inside the chest and end at the surface of the chest (see Figure 3.60).
Translate and rotate the root joint as needed to place the skeleton correctly
in the chest area. Name the joints LtBreathRoot and LtBreathEnd.

3.60 Draw two skeletons in the chest area
of your character to use as breathing
controls.

158 }———{ MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

Mirror the skeleton to the right side, and name the right skeleton appro-
priately. Select both root joints and group twice, naming the group nodes
BreathPad1 and BreathPad2. For now, make BreathPad!1 child to Back3,
so the breath joints move with your character’s backbone. You usc an
expression to control the X scaling of the skeletons. This causes the front

of the chest to move forward and backward.

On the UpperBody icon, create two custom ch annels named breathSpeed ;
and breathSize. Set the minimum and maximum limits of both channels
to .1 and 10, with a default of 1. In the previous expressions shown in this
chapter, you divided and multiplied your expressions by specific numeric
values to control the amount of movement produced. Doing this sets a stat-
ic amount of control that cannot change during your animation. In this
expression, you divide by a channel that can be animated to change over

time. This enables you to vary the movement produced by the expression

over the course of your animation. Type the following lines in the

Expression Editor to create the breathing effect:

LtBreathRoot.sx = 1 + (cos (time / Uppech;c’iy‘breathSpeec.‘l}|
w/ UpperBody.breathSize);
RtBreathRoot.sx = 1 + (cos (time / UpperBody.breathSpeed)
w/ UpperBody.breathSize);

Name the expression Breathing, and click Create. This expression uses the
cosine function in conjunction with the time function. A cosine function
creates a wave, which is useful for making the X scaling of the breath joints
go up and down. Using the time function makes the scaling happen auto-
matically whenever the timeline is played. Scrub or play the timeline to see
the breath joints scaling continuously. Change the breath speed and size
channels to change the rate and scale of the breathing. Try setting the
UpperBody.breathSpeed channel to .5, for instance, and the
UpperBody.breathSize channel to 8.

You may want to create an additional breath skeleton in the stomach cavire
to simulate deep breathing. This skeleton should be drawn from the middle
of the abdomen to the belly button, and named LowBreathRoot. Use the
same kind of expression as used on the chest skeletons to create the breath-
ing effect. Bear in mind that these skeletons will later be bound to the skin
of the torso to make it deform in a subtle manner as the joints scale con-

tinuously in X,

2. To create an eye-jitter control, you must first parent two group nodes in
between the EyesLook circle and the locators constraining each eye. Select

the LtEyeLook locator, and press Ctrl+G twice. Name the top group nods

[CHAPTER 3 s CHARACTER SKELETON SETUP]

EyeJitterPad, and bottom group node EyeJitter. Then make the
RiEyeLook locator child to EyeJitter. The translation channels on the
EyeJitter node should all be at 0, and they should be sitting directly on top
of the center of the EyeControl circle. Freeze the nodes if necessary to set

the translation channels to 0.

After you have created the two new nodes, make three custom channels
that will control the jitter. On the EvyeJitter node, create a jitterMin and
jitterMax channel. The jitterMin channel should go from —10 to 0, with a
default setting of (0. The jitterMax channel should go from 0 to 10, with a
default setting of 0. Then on the EyesLook icon, create a jitterControl
channel that goes from 0 to 10, with a default setting of 0. After you have
made all the channels, type the following expression into the Expression
Editor:

EyeJitter.jitterMax = 0 + EyesLook.jitterContrcl;

EyeJitter.jitterMin 0 - EyesLook.jitterControl;

EyeJitter.tx = 0 + rand (EyeJitter.jitterMin,
wEyeJitter.jitterMax) / 8;
EyeJitter.ty = 0 + rand (EyeJitter.jitterMin,
mEyeJitter.jitterMax) / 8;

Name the expression JitteryEyes, and click the Create button. The way
this expression works is that the jitterControl channel controls both the
jitterMin and jitterMax channels. When the jitterControl channel is set to
5, for instance, the jitterMin channel is set to —5, and the jitterMax channel
is set to 5. These two channels are then used to define the minimum and
maximum amounts that the randomize function requires, which is then
used to control the translation channels of the Eyefitter node. Try mncreas-
ing the jitterControl channel and notice that the eyes start to shake. The

shaking continues as long as the timeline is played.

. The next expression creates a delay on the rotations of the joints in a tail to
create a whipping effect (see Figure 3.61). Because Maya doesn’t have a
delay function, you have to use some MEL scripting to make the expres-

sion work.

Draw an FK skeleton for a tail in the top view, starting in the middle of the
hips and going straight back behind your character. For this example, the
tail has five joints. Name the joints TailRoot, Tail2, Tail3, Tail4, and
TailEnd. Point-constrain the root joint of the tail skeleton to the Hips

box. When the tail skeleton is placed so that it starts in the Hips box and
goes straight back behind the character, type the following lines in the delay on the rotation of joints to
Expression Editor: make a whipping effect on a tail.

160 J————] MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

int $time = 'currentTime -query';

int $delayl0 'getAttr -time ($time - 10) Hips.ry';
int $delay20 tgetAttr -time ($time - 20} Hips.ry';
int $delay30 tgetAttr -time (Stime - 30} Hips.ry';
int S$delavy40 'getAttr -time ($time - 40) Hips.ry';
TailRoot.rotateZ = 0 + Hips.rotateY;

n

Tail2.rotateZ = 0 + Sdelayl0;
Tail3.rotateZ = 0 + S$delay20;
Taild .rotateZ = 0 + $delay30;
TailEnd.rotateZ = 0 + Sdelay40;

4. Name the expression TailWhip, and click Create. This expression uses
MEL scripting to create a delay effect on the tail joints. Because this
expression references the timeline, it is necessary to set keyframes on the
Y rotation channel of the Hips box to see the whipping effect. Rotate the
Hips box in'Y, and right-click the'Y channel in the channels box to set keys
at several frames. If you then scrub or play the timeline, you should see a

whipping effect on the tail.

This expression uses two MEL commands: The currentTime command
finds out what frame the timeline is on; the getAttr command enables
you to get the value for the hips’ rotation in'Y at a particular frame. Both
of the results for these commands are being placed in the variables $time,
sdelay10, $delay20, and so on.These variables are then used in the
expressions to constrain each tail joint to rotate with an increasing delay.
This creates the whipping effect on the tail. Don’t worry if you don’t
entirely understand the MEL scripting used in this expression. You learn
more detail about creating variables and using MEL commands in
Chapter 6, “Scripting MEL Character Controls.” &

CREATING A ROLLING FooT

Next you create a more complicated foot hierarchy and set driven keys
to drive a rolling foot control. The new foot setup involves creating
group nodes that are used as pivot points for your current foot skeletons.
A custom roll channel is created on each leg box to drive the pivot
points so that each foot can roll forward and backward. When a foot rolls
backward, it should pivot back on the heel. When it rolls forward, it
should pivot up on the ball of the foot and then up onto the toe.

[CHAPTER 3 & CHARACTER SKELETON SETUP |} [161

ADDING FooT CONTROLS

1. Open a hypergraph view, and zoom in on the feet section of your charac-
ter rig hierarchy. Hide the visibility of the RtLeg box, so the right foot 1sn't
in the way when you are working on the left foot. Disconnect the left-leg
TK handle and polygon reference bones from your hierarchy by selecting
them and pressing Shift+P. Be careful not to disconnect or change the par-
enting on the LtLeg box, or your torso may be affected through the
expression connections. Then make sure your left-foot root joint is child to
the ankle box. To create the new pivot points, select the foot root joint, and
group three times. In the hypergraph, this creates three group nodes in the
hierarchy that arc between the lefi-leg box and the left-foot root joint.

Name the three new group nodes from top to bottom as LtHeel, LtToe,
and LtFoot. Press the Insert key, and move cach group node’s pivot to the
appropriate place on the foot. The heel pivot should be where the heel
touches the ground, the toe pivot should be where the toe touches the
ground, and the foot pivot should be at the ball of the foot (sce Figure 3.62).
Then constrain the foot joints with TK twice. Using the IK handle tool,
create IK from LtFootRoot to LtFootBall, and then create another IK from
LtFootBall to LtFootEnd. Name the two new IK handles LtFootIK and
LtToelK. If your joints moved a little when you added the TK handles,
translate the handles to put them back in place.

3.62 Create three new group nodes for
each foot to use as the pivot points
in a foot roll.

3.0

3 Make all the foot skeletons and 1K
handles child to the new group
nodes.

(S8

“]—[MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

To finish the lefi-foot sctup, parent the IK handles. Make the LtLeglK handle
child to LtFoot, and make both the LtFootlK and LtToelK child to LtToe.
Then reparent the polygon foot bones under the foot root jomt, and the
polygon toe bones under the LtFootBall joint (see Figure 3.63). When every-

thing is parented, test the three new pivot pomts by rotating them in X,

Fooical

To create a single control that drives all three of the foot pivots, create a
custom channel on the left-leg box named roll. (Channel names are nor-
mally not capitalized.) Make the minimum and maximum limits on the
channel go from —5 to 10, with a default setting of 0. Then load the LtLeg
box into the Set Driven Key options box, and choose the roll channel as
the driver. Load the X rotation of the LtHeel node as the driven channel.
Set a driven key with the roll channel at 0, and the heel node in its default
position. Then change the roll channel to =5, rotate the heel node back-
ward about 23 degrees in X, and set another key. This should create the

backward rotation on the heel part of the foot roll.

Sct the roll channel to 0 again, and load in the X rotation of the LtFoot
node as the driven channel. Key them both in their default positions. Then

[CHAPTER 3 = CHARACTER SKELETON SETUP | { 163

change the roll channel to 5, rotate the LtFoot node forward in X about
30 degrees, and set a driven key. This should make the foot roll up on the
ball of the foot (see Figure 3.64). Finally, set the roll channel to 5, load in
the X translation of the LtToe node, and set a driven key for its default
position. It is important to do this at 5 on the roll channel, so the foot
doesn’t start at 0 to roll forward onto the toe. Then change the roll channel
to 10, and rotate the toc node forward about 30 degrees in X, and set
another key. Also at 10, load the LtFoot node in again, and rotate it back-
ward about 20 degrees, and set a final key. This causes the foot to uncom-

press at the ball of the foot when it rolls up on the toe.

3.64 Set driven keys on the group nodes
to make the foot roll from the heel
up onto the ball of the foot, and then
onto the toe.

3. When all the driven keys arc set, test the roll channel. You should see your
character’s foot rolling backward when the roll channel goes in a negative
direction and roll forward when the roll channel goes in a positive direc-
tion. One thing you should add to this setup is a node for manually ani-
mating the toes’ rotation. Do this by sclecting the toe IK, and press Ctl+G.
Name the group node LtToeRot, and move its pivot point to the ball of
the foot. Then create a custom toeRotate channel on the left-leg box, and
connect it with driven keys to the X rotation of the LeToeRot node. Keep
in mind that you can still manually rotate your whole foot by just rotating
the leg box. &

1 MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS |

BUILDING A FLEXIBLE BACKBONE

Although the current FK backbone skeleton in your rig can bend in all
directions, it has some limitations. It lacks fine controls for posing the
backbone in more arched positions. It is also not easy to shift areas of
the back—tfor instance, to stick your chest out—without causing prob-
lems to the joint centers. To upgrade your character’s backbone controls
to be more flexible, you create a new backbone skeleton that contains
spline IK.This new backbone structure is added to your original back-
bone skeleton, so that you have two levels of backbone controls. In addi-
tion to this, you create a stretching quality to the backbone that can be
used for both subtle or cartoon effects,

CREATING A SPLINE IK-BASED BACKBONE

1. Begin by creating two new box icons named MidBack and UpperBack.
Move and scale the MidBack box so it is right above the Hips box and
covers the abdomen area of your character. Move and scale the UpperBack
box so that it surrounds the upper chest and shoulders area of your charac-
ter (see Figure 3.65).You can also go into component mode and scale ver-
tices to create a better shape. When in place, freeze the transforms on both

boxes.

2. To create a more flexible backbone, you must draw a new backbone skele-
ton, with joints that follow the curve of the back. This doesn’t mean, how-
ever, that you have to creatc as many joints as exist in a real backbone. You
can create half the number of joints in a real backbone and still get enough
flexibility. The fewer joints you have, the easier itis for you to add controls
for each joint. Before drawing any joints, however, hide the BackPadl node
and the thorax polygon bone. This should give you a clear view of your
polygon backbones in the side view. Also, make sure that IK is turned off in

the Joint Tool options box before drawing joints.

Draw the new backbone skeleton starting where the waist bends up to
where the neck starts to bend. On real skeleton vertebrae, this is from
between L2 and L3 to between T'1 and C7. Use vour polygon reference
bones as a guide, drawing straight up the middle of the bones, placing each
Joint between every second vertebrae. In addition, do not draw a joint for
every backbone, but instead draw one for every other backbone. This
should create about eight backbone joints. When finished, name the joints
B1 through B8S.

[CHAPTER 3 ® CHARACTER SKELETON SETUP |- —{ 165

3.65 Place a couple of new curve boxes to
control the middle and upper areas
of the new backbone skeletons.

It is-important for all the joint centers to be oriented correctly on your

backbone skeleton. Show the centers on your joints, and check to see
whether any are flipped 180 degrees in X (see Figure 3.66). This happens
when _3’7]:)11 change directions when dmﬁing a skeleton. If this 1s the case,
use the same method described carlier in this chapter to rotate the joints to
the correct orientation. This involves using the question mark (?) symbol in
component mode to select the center and clicking the shelf button you
created for rotating the center 180 degrees in X (the shelf button should
execute the MEL code rotate -r -os 180 0 0.

When your joint centers are all oriented in the same way, finish your new

backbone skeleton by parenting all the appropriate polygon vertebrae to o B
3.66 Check to see whether any of the cen-

ters on your new backbone joints zre
flipped around 180 degrees in X.

the new Maya joints. Each backbone joint should be parent to two poly-
gon vertebrae. The polygon thorax bone should be made child to B3 or
B6.You can adjust chis later.

166 }———{ MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS |

3.67 Create cluster handles on each point
in your backbhone curve.

3.

Spline IK uses the shape of a curve to control the orientation of joints in a
skeleton. Assign the spline IK to your character’s new backbone by choos-
ing Skeleton, TK Spline Handle Tool L. Set the spline IK options to the
following:

Root on Curve: On Number of Spans: 1
Auto Parent Curve: Off Root Twist Mode: Off
Auto Create Curve: On Tawist Type: Linear

Auto Simplify Curve: On

Using these options creates a simple curve that follows the shape of the
backbone skeleton. It also creates an TK handle that contains a twist chan-
nel used to rotate the joints in X with a linear falloff, so the top twists
more than the bottom. Closc the options box, and click your backbone
skeleton’s root joint, and then click its end joint. In the hypergraph view,
notice that a new curve and 1K handle are created. Spline IK differs from
regular IK in that you do not animate the transforms of the TK handle.
Instead, select the new curve and switch to component mode. The curve
should have four points, and moving the points causes the backbone skele-

ton to flex. Name the new curve and IK handle BackCurve and BackIK.

To make controlling the points on the backbone curve easier, create cluster
handles for cach point. Select the lowest point on the curve, and choose
Deform, Create Cluster L. Make sure the options are at their default set-
tings, with Relative turned off, and click Create (see Figure 3.67). Repeat
the process for cach point, and then name the clusters from lowest to high-
est Bel through Bed.

. Repeat the same process for the hips of your character. Starting around the

L1 vertebrae, in the side view draw a four-joint skeleton to the bottom of
the pelvis. Because there are not many hipbones, you can draw a joint for
cach bone. When drawing, make sure you do not connect your hips skele-
ton to your backbone skeleton. To ensure this doesn’t happen, click out to
the side of the character, and drag the root joint of the hips over the back-
bone root joint. Name the hips joints from top to bottom H1 through H4.
Once created, assign spline IK from the root to the end of the hi ps skele-
ton. Use the same settings as used previously. This action results in a curve
with four points, and an IK handle, which you should name HipsCurve
and HipsIK respectively. Create four cluster handles on the hips curve, and
name them from top to bottom Hel through Hed. Parent the polygon

lower vertebrac and pelvis bone to the appropriate Maya joints.

-

[CHAPTER 3 = CHARACTER SKELETON SETUP

6. Yet again, repeat the same process for the neck. Start your new neck skeleton
where the backbone skeleton ends, but don't attach it. Create joints for cach
neck vertebrae, from around C7 to C1. Name the joints N1 through N7.
Then assign spline TK to the neck skeleton from the root joint to the end
joint, with the same settings as used previously. Name the new curve and
IK handle NeckCurve and NeckIK. Finally, create clusters on the points

of the neck curve from bottom to top, and name them Ncl through Ned.

7. To integrate the new backbone into your current rig hicrarchy, you must
make the clusters children of the control boxces, and the control boxes chil-
dren of the original backbones. Do this by making Bel and Bc2 child to the
MidBack box, and make Be3 and Be4 child to the UpperBack box. Create
two group node parents for each back box, naming the group nodes from
top to bottom MidBackPad1, MidBackPad2, UpBackPad1, and
UpBackPad2. This keeps the rotation channels on the boxes at 0 when you
parent them to the original backbone joints. Then make Back2 the parent of
MidBackPad1, and Back3 the parent of UpBackPad1 (see Figure 3.68).

3.68 Parent the MidBack and UpperBack
boxes under the original backbone
joints.

ﬂ%’é@:u

To make sure everything on the limbs and head moves with the new back-
bone, make BackPad1 child to the last joint in your new backbone.
Depending on how many new backbone joints you made, this will proba-
bly be BS. If there are any other children of the original backbones, such as
the breathing skeletons, be sure to parent them under the appropriate new
backbone joints. In addition, parent the neck clusters under the Head and
UpperBack boxes. Make Nel and Ne2 child of the UpperBack box, and

168 ——— MAYA CHARACTER

3.69 Check the hierarchy of your new
backbone controls to make sure all
the boxes and clusters are parented.

TION: MODELING AND ANIMATION CONTROLS]

make Ne3 and Ne4 child of the Head box. Rotating the original neck
joint moves the Head box, whereas rotating the box flexes the neck as the

head and jaw rotate.

After parenting the neck clusters, make the hip clusters child to the
MidBack box and Hips box. Hel should be child to the MidBack box, and
Hc2, He3, and He4 should be child to the Hips box. Also make
LtLegRoot, RtLegRoot, LtHipRoot, and RtHipRoot child to H3 so that
they will move with the new hip joints. When finished, check the parent-
ing of the new backbone controls (see Figure 3.69).

Before testing your new backbone, make sure the pivor points of the boxes
are in the correct places. The pivot point for the UpperBack box should sit
on the top back curve cluster handle named Be4. The MidBack box pivot
should be in the middle of the stomach, and the Hips box pivot should be
directly on top of Bel and Hel. Move the pivot points in insert mode as
needed.

After you parent all the boxes and clusters, you should have three levels of

controls for your character’s back and neck, and two levels of controls for
your character’s hips. The first Jevel of controls on the back and neck are
the original FK skeletons. On the backbone, for instance, rotating the
BackBend circle creates a basic side-to-side bend on the backbone. The

next level of controls, namely the boxes, enables you to adjust the bend on

[CHAPTER 3 ® CHARACTER SKELETON SETUP] [169

three main sections of the backbone (sec Figure 3.70). The finest level of
controls is reached by translating individual clusters. You can animate the
clusters manually, or set driven keys to control them with custom or trans-
form channels on the boxes. This level of detail may not always be neces-
sary, but is available when needed. On the hips, you do not have the FK

level of control, but instead just the box and cluster levels.

3.70 Rotate your circle controls to create 2
basic bend in the backbone, and
then adjust the boxes to create more
specific poses, such as an arched
back.

9. When testing your back controls, you may have noticed a problem. The

controls that bend the character to the side, forward, and backward should
all work fine, but the controls that twist the back in'Y are no longer work-
ing right (see Figure 3.71). The character doesn’t actually twist, but just
wobbles slightly. The reason this is the case is that the spline TK is con-
straining the twist of the backbone, neck, and hip skeletons. After you put
spline IK on a skeleton, you must control the twisting of the skeleton
through the twist channel on the spline IK handle.

170 b————] MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

3.71 When using spline IK, your character
will no longer twist in'Y by just rotat-
ing the controls, as seen here,
Instead, you must use a separate
twist channel.

You can use an expression or set driven keys to control the twist channel

on the spline IK handles. To make the rotation inY of the UpperBack box
control the BackIK.twist channel with an expression, for example, type the
following line in the Expression Editor:

BackIK.twist = 0 + UpperBack.zry;

Name the expression Twists, and click Create. Aftér creating the expres-
sion, try rotating the UpperBack box inY. If the back is rotating in the
wrong direction, change the plus sign to a minus sign. Although you could
have made the green BackTwist circle constrain the twist channel, it makes
more sense to do it on the level of the boxes that affect the spline 1K.
Because the BackTwist circle is no longer needed, just delete it. In addi-
tion, the Y rotation of the Hips box should control the HipsIK.twist chan-
nel, and the Y rotation of the Head box should control the NeckIK. twist
channel. These expressions will look something like this:

HipsIK..twist = 0 - Hips.ry;
NeckIK.twist = 0 + Head.ry;

[CHAPTER 3 & CHARACTER SKELETON SETUP |

e
I

10. One other channel on the spline TK that you must set controls for is the
roll channel. If you try rotating the UpperBody node inY, you will see a
problem similar to the previous twisting problem. The difference between
the twist and roll channels is the twist channel has a falloff when rotating
the joints, whereas the roll channel rotates all the joints evenly. To fix this,
set driven keys on the roll channels of the spline 1K for the back, hips,

and neck.

The reason you should use driven keys is because you may want to create
more than one driver. Load theY rotation channel of the UpperBody icon
as the driver, and usc the Shift key to load all the spline TK handles as dri-
ven. Again, use the Shift key to select all the spline IK handles in the Set
Driven Key options box, and choose the roll channel as the driven channel.
Rotate the UpperBody icon inY, adjust the roll channels as needed to
make the skeletons line up with the boxes, and set driven keys. If you are
using the Y rotation average expression on the UpBodAutol node, load

that node as a second driver, and set driven keys in a similar manner.

11. Your character’s backbone should be working correctly at this point. There
are still, however, several stray nodes that are not parented into your rig hier-
archy. Sclect the root joints for the new backbone, neck, and hips, and press
Ctrl+G. Name the parent group node NewUpBody. Also select all the
spline IK curves and TK handles, create a group node parent named
SplinelK, and make it child to the NewUpBody node. Finally, create a
group node parent of the Rig node named DoNotMove, and make
NewUpBody and SplinelK child to it (see Figure 3.72). The spline IK
curves and handles should never be transformed or animated. Because they

are being controlled by constraints, if you move them directly they force a

3.72 Finish your rig hierarchy by parenting
all stray nodes. Make sure you par-
ent the spline IK nodes and curves
under a node that will never be ani-
mated.

172 b————{ MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS |

(& Attribute Editor: curvelnfol
L=t Selcled Focur Al

3.73 Make a note of the arcLength value
of the curvelnfo1 node in the
Attribute Editor.

12.

double transform on the skeletons. Because this will cause the pieces of your
rig to separate, avoid it! There are times, however, when you will need to
parent spline TK-controlled skeletons under a control object. This sometimes
1s required when using spline TK on appendages like ears or a tail. If your
character has spline IK on some large rabbit ears, for example, you might see
the skeletons twist when the Head box is rotated. This occurs independently
of the roll and twist values in the spline 1K handle. Parenting the spline TK

constrained skeletons under the Head box will fix this problem.

To make the backbone be able to stretch, you must get information on the
length of the back curve. Do this by selecting the back curve, and type in
the following MEL command on the command line or in the Script
Editor:

arclen -ch 1;

Press the Enter key on the numeric keyboard to run the MEL code. Then,
with the back curve still selected, graph the node in the hypergraph by
clicking the icon for Input and Qutput Connections. You should see a
node called curvelnfol. Right-click this node to open the Attribute Editor,
and make a note of the value in the arcLength attribute (see Figure 3.73).
This number is the default length of the back curve and is based on the
size of your character.

To make the backbone stretch, you will use expressions to make the joints
translate in their local X-axis according to the length of the back curve.
Translating all the joints except the root joint according to their local
X-axis causes the skeleton to get larger or smaller. In the following expres-
sions, you divide the current curvelnfol.arcLength channel value by the
original length, as noted previously in the Attribute Editor. When the
expression is evaluated, if the lengths are the same, the result is 1, which
causes no stretching. If the curve is longer or shorter, however, a result
other than 1 1s generated to make the backbone stretch. In the expression,
the results generated by the curve length are multiplied by each joint’s start
value. It 1s important that this number reflect the default X Translation
value of each joint. You must, therefore, select each joint to find out which
numbers to use in your expression. Based on your character’s backbone,
your expressions should look something like this:

B2.tx = .954 * (curveInfol.arcLength / 7.714);
B3.tx = .823 * (curvelnfol.arcLength / 7.714);
Bd.tx = .9 * (curveInfol.arcLength / 7.714);
B5.tx = .87 * (curvelInfol.arclength / 7.714);
B6.tx = .854 * (curveInfol.arcLength / 7.714);
B7.tx = .8 * (curveInfol.arclength / 7.714);
B8.tx = .792 * (curvelnfol.arcLength / 7.714):

[CHAPTER 3 ® CHARACTER SKELETON SETUP] [173

Name this expression Backstretch and click Create. Because this is meant
to have the effect of stretching the backbone joints, it is not necessary to
write a line for the root joint. Make sure you use the default X Translation
value for each joint as its start number. Look in the channels to get the

correct value. After creating the expression, try translating the UpperBack

box inY to see the stretch effect on the backbone skeleton (see
Figure 3.74). &

CREATING WARNING SIGNS

Many controls in your character rig have defined limits. These have been
done through setting actual transform limits in the Attribute Editor, or by
how you set the minimum and maximum settings on the custom chan-
nels of your control icons. Sometimes, however, it is better not to limit
the controls, but instead make some kind of warning that tells animators
that they have moved a control past its normal settings. Then the anima-
tor has the choice of how far to manipulate a control. Occasionally, the
animator may want to go beyond the normal limits of a control to create
dramatic effects. Such a warning can be done in a variety of ways, from
making some text or symbol appear, to making your polygon reference

3.74 Create an expression that makes the
backbone stretch when the backbone
boxes are moved.

174 }—[MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS]

bones change color. In the next exercise, you place some of these warn-
ing signs on your character when the backbone is stretched too far, or
when an arm or leg is hyperextended.

R
§° i T e
MAKING TEXT AND COLOR WARNINGS

1. A warning can be any kind of indication to the animator that a control has
been moved too far. For instance, you could create a text message that is
revealed whenever the backbone is stretched or compressed too far. Choose
Create, Text U to create something to use as a warning message, such as

12

“Whoa buddy, vou're going a bit too far!” Make sure you use curves, and
scale or translate the text as needed. Place it beside your character where it
will be easy to see. In the hypergraph, name the top group node for the text
WarningText1. Make the WarningTextl node child to the UpperBack box.
The following expression sets the visibility of the warning text based on the
length of the back curve. The expression contains an Or symbol, known as a

double pipe (| |}, which can be found on the Backslash key. Your expression

will look similar to the following:

if (curveInfol.arclLength > 8 || curveInfol.arcLength < 7)
WarningTextl.visibility = 1;
else WarningTextl.visibility = 0;

Name the expression Warnings, and click Create. The expression reads: “Tf
the back curve gets stretched beyond 8 or gets compressed smaller than 7,
reveal the warning text by setting its visibility to 1. Otherwise, hide the
warning text by setting its visibility to 0.” The values used in the expression
should be based on the length of your character’s back curve, and may dif-
fer from the example. When finished, test the warning by translating the
UpperBack box inY (see Figure 3.75).You should see the text warning

appear whenever the back is stretched beyond the lengths specified.

You can use the same kind of expression to make your polygon reference
bones change color when the back curve is stretched too far. Just constrain
the incandescence channels on the Bonecolor material node rather than
the text visibility. Open a hypershade view to select the Bonecolor materi-
al, and notice three incandescence channels are not being used. To have
your bones turn red when the back is stretched, create a similar expression

to the following:

if {curveInfol.arcLength > 8 || curveInfol.arcLength < 7)
wmBonecolor.incandescenceR = 1;
elzge Bonecolor.incandescenceR = 0;

[CHAPTER 3 = CHARACTER SKELETON SETUP]

2. Another warning you can create is for when an arm or leg box is translated

too far. To do this effectively, you need to calculate the distance between
the shoulder and the hand. Keep in mind that the shoulder is the main
pivot for the arm, while the hand moves around it in an arc. You want to
have Maya calculate when the hand reaches the limit of that arc. To do this,
you use the Distance tool by choosing Create, Measure Tools, Distance
Tool. Then in the front view, click once above your character’s left shoul-
der, and once above your character’s left-arm box. This creates two locators
that have a distance connection. Name the shoulder locator Loel, and the

wrist locator Loc2.

To calculate the distance on the left arm, you need to point-constrain the
locators to the arm root and arm box. Select Locl and Loc2 and group
them, naming the parent node LimbDistances. When created, point-
constrain Locl to the LeArmRoot joint, and point-constrain Loc2 to the
LtArm box.

Also notice that a distanceDimension node has been created in the hyper-
graph. Right-click the node to open it in the Attribute Editor, and note

the distance listed under the Shape tab. This distance can be used to create
a warning for when the left arm is translated too far.You can write such a

warning by creating an expression similar to the following:

if (distanceDimensionShapel.distance > 9.2)
Bonecolor.incandescenceG = 1;
else Bonecolor.incandescenceG = 0;

1

—
~.]
'

3.75 Create a control that shows a text
warning whenever the backbone is
stretched too far.

176 b———] MAYA CHARACTER CREATION: MODELING AND ANIMATION CONTROLS |

This expression makes the Bonecolor turn green whenever the left arm is
translated too far (see Figure 3.76). The best way to create warning colors
on your character is to create multiple copies of the Bonecolor material
and place them on specific areas of your polygon reference bones. This
process enables you to specify a material that affects only a single limb, or
Jjust the backbone, in your warning expressions. Also keep in mind that you
can do all these warnings by setting driven keys, instead of using expres-

sions. This can produce a gradual changing of color on the polygon bones,

instead of the color being full on or off. @

3.76 You also can use a
distanceDimension node to create a
warning color for when a limb is
translated too far.

WRAPPING IT UP

Congratulations! If you made it this far, you should now have a fully
functional skeleton rig. You have successfully used many of the skills and
techniques that a professional character setup artist uses to create charac-
ter controls. But wait, the rig is not finished. Although you have created
lots of controls for animating the main parts of your character, you still
have some important things to add. In the next few chapters, you create
some muscle controls, face controls, and scripted MEL controls. Before
you get to that, however, in the next chapter you bind your models to
your current skeletons to see how they deform your skin.

