Seminar Visual Computing: Introduction

Computer Vision Group and Computer Graphics Group

University of Siegen

April 8, 2020

4 D > 4 A >

M. Lambers

Seminar Visual Computing: Introduction

Overview

- Structure of a scientific paper
- Finding good literature
- Writing the report
- Preparing the presentation
- LATEX, BIBTEX remarks
- Final remarks

Structure of a scientific paper

All following information is specific to Computer Vision and Computer Graphics!

Other disciplines and fields have different cultures, norms, and practices!

The structure of almost all scientific papers:

- Abstract
- Introduction
- Related Work
- METHOD
- Results
- Conclusion
- References

4 D > 4 A >

M. Lambers

Seminar Visual Computing: Introduction

▶ ◀ 🗇 ▶

Structure of a scientific paper

- Abstract
 - Short pre-reading summary
- Introduction
 - Description of problem area
 - Rough outline of own approach (in contrast to other approaches)
 - Contributions of this paper
- Related Work
 - Discussion of related publications
 - Categorization of existing approaches
 - Short analysis / listing of shortcomings

Structure of a scientific paper

- METHOD
 - Detailed description of own method
 - Section structure depends on topic
- Results
 - Meaningful results
 - Comparison with competing approaches
 - Discussion of parameters
 - Analysis including limitations / failure cases
- Conclusion
 - Short post-reading summary
 - General remarks on achieved results
 - Mention limitations and future work

◆□▶ ◆□

M. Lambers

Seminar Visual Computing: Introduction

4 Dr F

Structure of a scientific paper

- References
 - List of cited publications
 - Journal papers: Author(s), Title, Journal, Volume, Issue, Month, Year, DOI (or pages)
 - M. Lambers, S. Hoberg, and A. Kolb. Simulation of time-of-flight sensors for evaluation of chip layout variants. IEEE Sensors Journal, 15(7):4019-4026, July 2015. doi:10.1109/JSEN.2015.
 - Conference papers: Author(s), Title, Conference, Month, Year, DOI (or pages)
 - M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb. Real-time 3D reconstruction in dynamic scenes using point-based fusion. In Proc. 3D Vision (3DV), pages 1-8, June 2013. doi:10.1109/3DV.2013.9.
 - Other types: books, book chapters, theses, technical reports, online resource (beware)
 - Papers should cite the original publication of a relevant idea or concept, not secondary literature!

Finding good literature

Recommended search engine: scholar.google.com

- Search a specific paper via its title
- Search papers about a specific topic
 - Refine search terms iteratively, start with buzzword variants
 - Pay special attention to high quality papers (see next section)
 - Pay special attention to surveys
- Search forward from a specific paper:
 "Cited by" on scholar.google.com
- Search backwards from a specific paper:
 Scan list of references
- Search for author: search term author: "m lambers"
- Many papers are behind a paywall, but access is free from within the University network (at home: use VPN)

◆□ → ◆₱

M. Lambers

Seminar Visual Computing: Introduction

Finding good literature

Estimate the quality/reliability of a paper

- Quality of publication channel (journal, conference)
 - Know the top journals / conferences in the field
 - Graphics Journals: ACM Transactions on Graphics, IEEE
 Transactions on Visualization and Computer Graphics, Computer
 Graphics Forum
 - Graphics Conferences: SIGGRAPH, Eurographics, Pacific Graphics, IEEE Visualization, IEEE Virtual Reality

Proceedings of these top conferences are published as special issues of these top journals (this is probably a Graphics specialty)

- Estimate the quality of a publication channel you do not know
 - scholar.google.com → Menu → Metrics. Then choose a category (e.g. Engineering & Computer Science), and then a subcategory (e.g. Computer Graphcis).
 - Less accessible alternatives to scholar.google.com exist
 - Manual checklist: Double blind review? How many reviewers per submission? Acceptance rate? Professional typesetting quality? ...

◆□ ▶ ◆♂ ▶

Finding good literature

Estimate the quality/reliability of a paper

- Number of citations of the paper (beware!)
 - Numbers from different fields not comparable!
 - Popular topics generate more citations than others!
 - Not meaningful for "young" papers
- Author list (beware!)
 - Known authors sometimes appear on unconvincing papers!
 - Newcomers may publish very good papers!

M. Lambers

Seminar Visual Computing: Introduction

Finding good literature

Reading a paper

- Do a quick scan of abstract, figures, key results
 Do not try to understand yet, just get an overview
- Read Abstract and Introduction sections Judge whether this paper is relevant for your task
- Oetailed reading Be sure you know enough about related work Understand the methods

Goal: quick assertion whether and how the paper is relevant

Writing the report

Proposed approach:

- Draft the Introduction section to establish "storyline"
- Write the structure top-down
 - Section titles (see typical paper structure!)
 - How much space for each section (there is typically a space limit)
- Write the text bottom-up
 - Fill sections with all content you want to put there
 - Refine, restructure, improve
 - Use alternative forms of content presentation where it makes sense
 - Diagrams
 - Flow charts
 - Tables
 - Algorithm / pseudo code
 - Overview image
 - ...
- Refine Introduction section
- Write Conclusion, Abstract sections

M. Lambers

Seminar Visual Computing: Introduction

44

Preparing the presentation

Presentation structure:

- Cover (1 slide)
- Outline (1 slide)
- Motivation (short)
- METHOD
- Results
- Conclusion (short)
- "Thank you" slide (optional, 1 slide)

First rough estimate: one slide per minute.

Preparing the presentation

Presentation hints

- As with report: structure top-down, contents bottom-up
- Add slide numbers
- Use large sans-serif font
- Avoid long sentences, use bullet points
- Use animations sparingly or not at all
- Remember that projectors have notoriously bad contrast
- Do not read speech; practice a free presentation
- Keep the time limit
- Practice! Practice! Practice!

◆□ → ◆₱)

M. Lambers

Seminar Visual Computing: Introduction

12

LATEX, BIBTEX remarks

Why LATEX, BIBTEX?

- Professional typesetting quality
- Automatic generation of
 - Table of contents
 - List of figures
 - Index
 - List of references
- Separation of layout and content
- → Well suited for large, complex documents (e.g. thesis)

Your supervisor can help you set up and use LATEX! Tips:

- Do not fiddle with layout while writing, finish content first
- Use a simple LATEX setup
 - Editor, .tex, .bib, maybe .sty file. That's it.
 - There is seldom need for complex packages or build systems
- Make sure your BIBTEX entries are complete and in good shape. *Never* just copy them from Google Scholar, IEEE Xplore, ACM digital library or similar sources!

Final remarks

Start now!

- Reading and understanding a paper takes a lot of time
- Writing a high-quality report takes a lot of time
- Preparing a high-quality presentation takes a lot of time
- → Make a rough schedule and discuss it as soon as possible with your supervisor

Style hints (for those who want to write in English):

- Strunk and White, The Elements of Style
- John Owens, Common Errors in Technical Writing: http://www.ece.ucdavis.edu/~jowens/commonerrors.html
- Michael L. Littmann, Sylistic Comments: http://cs.brown.edu/~mlittman/etc/style.html
- Douglas E. Comer, How To Write A Dissertation: https: //www.cs.purdue.edu/homes/dec/essay.dissertation.html

M. Lambers

Seminar Visual Computing: Introduction

15