

Virtual Reality

Sommer 2012

5 Echtzeitanimation und -simulation

Versionsdatum: 18. Juni 2012

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 5-1-

Virtual Reality

5 Echtzeitanimation und -simulation ...

Ziele:

Realitätsnahe Bewegung: Beobachter und anderer Objekte

Systemreaktion: Korrektes Verhalten bei Ausnahmesituationen, insb. Kollision

Weitergehend: O physikalisch basierte Interaktion, z.B. Greifen O physikalische Simulation, z.B. Strömungsvisualisierung

Simulationsschleife: Darstellung und Animation in Echtzeit gekoppelt.

- Sensoren einlesen: Beobachterposition in CAVE, Mausposition bei Desktop-VR
- 2. Simulation: Neue Positionen und Orientierungen aufgrund
 - 2.1. dynamischer Bewegung (z.B. fahrendes Auto mit Fahrrichtung und Geschwindigkeit)
 - 2.2. Sensoren-Information (z.B. veränderter Beobachter)
 - 2.3. Reaktion auf Kollision
- 3. Szenengraph aktualisieren und rendern

5.1 Einfache Bewegungsmodelle

Ziel:

Einfaches Bewegungsmodell für Beobachter (Desktop-VR)

Interaktions device: 2D-Maus. Umsetzung: Manipulation von

- O Beobachterposition V
- O Bewegungsrichtung \vec{d} bzw. Lookat-Punkt L
- O up-Vektor $\hat{\mathbf{u}}$ ist fix



Ansatz: Walk-Bewegung

Bewegung auf einer Ebene (*ground*; hier z - x-Ebene)

Interaktion: Horizontale bzw. vertikale Mausbewegung; Interaktionsdaten:

1. $\alpha \in [-1,1]$ Geschwindigkeit in Blickrichtung

 $eta \in [-1,1]$ Rotation der Blickrichtung (eta < 0 math. negativ=rechts)

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 5-3-

Virtual Reality

5.1 Einfache Bewegungsmodelle ...

Ansatz: Walk Bewegung (Forts.)

Integration: Annahme einer konstanten Geschwindigkeit über das Interval $\Delta t \Rightarrow$ Euler-Integration

Linearbewegung: aktuelle Richtung (normiert): \hat{d} , $L = V + \hat{d}$

max. Geschwindigkeit: v_{max} in $\left[m/s\right]$

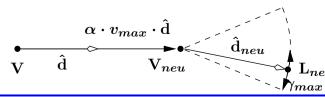
akt. Geschwindigkeit: $\vec{v}(\alpha) = \alpha v_{max} \hat{d}, \ \alpha \in [-1, 1]$

Zeitschritt: $V_{neu} = V_{alt} + \vec{v}(\alpha)\Delta t$, $L_{neu} = V_{neu} + \hat{d}$

mit Orientierung: max. Winkelgeschwindigkeit: γ_{max} in $[\operatorname{Grad}/s]$

akt. Winkelgeschwindigkeit: $\gamma(\beta) = \beta \gamma_{max}, \ \beta \in [-1, 1]$ Zeitschritt: $V_{neu} = V + \vec{v}(\alpha) \Delta t, \ \hat{d}_{neu} = R_{v,\gamma(\beta) \cdot \Delta t} \hat{d},$

und
$$L_{neu} = V_{neu} + \hat{d}_{neu}$$



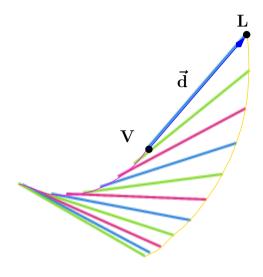
5.1 Einfache Bewegungsmodelle ...

Beispiel: Walk-Bewegung

Ausgangssituation (z - x-Ebene):

$$\begin{aligned} \mathbf{V} &= \begin{pmatrix} 300 \\ 300 \end{pmatrix} \quad \vec{\mathbf{d}} &= \begin{pmatrix} 100 \\ 100 \end{pmatrix} \quad \mathbf{L} &= \begin{pmatrix} 400 \\ 400 \end{pmatrix} \\ v_{max} &= 200 \quad \gamma_{max} = 100 \quad \Delta t = 0.1 \end{aligned}$$

α	β	$ec{ m v}(lpha)$	$\gamma(eta)$	$ m V_{neu}$	$ec{ ext{d}}_{neu}$
		$(v_{oldsymbol{z}},v_{oldsymbol{x}})$		(d_z,d_x)	$(v_{oldsymbol{z}},v_{oldsymbol{x}})$
-1.00	-1.00	(-141,-141)	-100	(285,285)	(115,81)
-0.99	-0.99	(-162,-113)	-99	(269,274)	(128,59)
-0.96	-0.96	(-173,-81)	-96	(252,266)	(136,37)
-0.91	-0.91	(-175,-48)	-91	(234,261)	(140,15)
-0.84	-0.84	(-166,-18)	-84	(218,259)	(141,-4)
-0.75	-0.75	(-149,5)	-75	(203,260)	(139, -23)
-0.64	-0.64	(-126,21)	-64	(190,262)	(136, -38)
-0.51	-0.51	(-98,27)	-51	(180,265)	(132, -50)
-0.36	-0.36	(-67,25)	-36	(173,267)	(128, -58)
-0.19	-0.19	(-34,15)	-19	(170,269)	(126,-63)
0.00	0.00	(0,0)	0	(170,269)	(126,-63)



Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 5-5-

Virtual Reality

5.1 Einfache Bewegungsmodelle ...

Weitere Bewegungsarten

Walk: Kollision führt u.U. zu Anpassung der y-Werte ("erklettern").

Fly: Wie Walk, nur ohne Schwerkraft, d.h. $\vec{\mathbf{v}}$ hat "echte" y-Komponente

Examine: Lookat-Punkt L bleibt fixiert, Variation des Beobachterpunktes:

Orientierung: max. Winkelgeschwindigkeit: $\gamma_{max}(x ext{-Achse}), \ \delta_{max}(y ext{-Achse})$

in $[\operatorname{Grad}/s]$

akt. Winkelgeschwindigkeit: $\gamma(\alpha) = \alpha \gamma_{max}, \; \delta(\beta) = \beta \delta_{max}$

Zeitschritt: $\hat{\mathbf{d}}_{neu} = R_{y,\delta(\beta)\cdot\Delta t}R_{x,\gamma(\alpha)\cdot\Delta t}\hat{\mathbf{d}}$

 $V_{neu} = L - \hat{d}_{neu}$

Problem: Rotation jeweils in Weltkoordinaten (besser in VC)

5.2 Keyframebasierter Ansatz

Einsatz: Vorgabe deterministischer Positionspfade (keine/eingeschränkte Interaktion)

Gegeben: Zeitpunkte $t_i, i = 1, ..., N$, sowie *Key-Parameter*, z.B. Positionswerte P_i , aber auch Farben oder andere Attribute

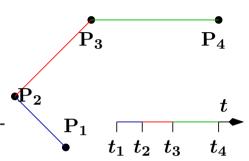
Gesucht: Kurve C, die bei t_i die vorgegebenen Werte interpoliert: $\mathrm{C}(t_i) = \mathrm{P}_i$

Ansatz: Lineare Interpolation

Sehr einfache Möglichkeit zur Interpolation:

$$\begin{split} \mathbf{C}(t) &= & (1-s)\mathbf{P}_i + s\mathbf{P}_{i+1}, \\ s &= \frac{t-t_i}{t_{i+1}-t_i}, \text{ falls } t \in [t_i,t_{i+1}[\end{aligned}$$

- O konstante Geschwindigkeit zwischen Positionen
- O keine glatte Bewegung (Geschwindigkeits-Sprung)



CG

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 5-7-

Virtual Reality

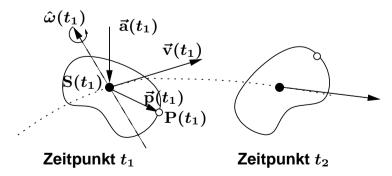
5.3 Rigid Body Simulation

Ansatz: Betrachte Bewegung starrer Objekte; später: Kollisionsbehandlung

Zerlegung der Objektgeschwindigkeit in

Lineare Bewegung: Bewegung des Schwerpunkts ${f S}$

Rotationsbewegung: Relative Bewegung zum Schwerpunkt: Rotation um Achse $\hat{\omega}$

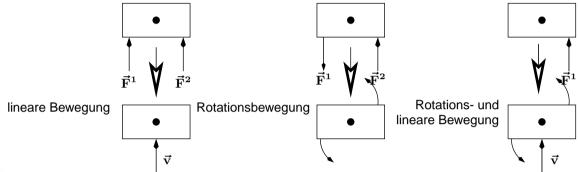


Schwerpunkt S Ortsvektor \vec{p} Lineare Geschw. \vec{v} Partikel P
Beschleunigung \vec{a} Drehachse $\hat{\omega}$

Rigid Body Simulation ... 5.3

Voraussetzung: Starrkörper

- O Objekt besteht aus Partikeln P^i (Massepunkte ohne Ausdehnung)
- O Attribute des Partikels P^i
 - \square Masse m^i
 - \Box feste Position bzgl. des Schwerpunkts \mathbf{S} mit Ortsvektor $\vec{\mathbf{p}}_0^i$ bzgl. Objektkoordinaten
- O Krafteinfluß: Kräfte versetzen ein Objekt in Bewegung:



Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 5-9-

Virtual Reality

Rigid Body Simulation ... 5.3

Lineare Bewegung

Physikalische Größen:

Masse:

m, Einheit [kg]Position: P, Einheit [m]

Geschwindigkeit: \vec{v} , Einheit: [m/s] Beschleunigung: \vec{a} , Einheit: $[m/s^2]$

 $\vec{\mathbf{F}}$, Einheit: $\left[\frac{kg \cdot m}{e^2}\right]$ Impuls: Kraft:

 $\vec{\mathcal{P}}$, Einheit: $\left[\frac{kg \cdot m}{s}\right]$

Grundsätzliche Zusammenhänge:

 $\vec{F} = m \cdot \vec{a}$ ("Kraft ist Masse mal Beschleunigung")

O $ec{\mathcal{P}}=m\cdotec{\mathrm{v}}$ ("Impuls ist Masse mal Geschwindigkeit"), $\dot{ec{\mathcal{P}}}=rac{d\ ec{\mathcal{P}}}{d\ t}=ec{\mathrm{F}}$

Zeitliche Abhängigkeit mit Euler-Integration über Zeitintervall $\Delta t = t_1 - t_0$

$$\vec{\mathrm{v}}(t_1) = \vec{\mathrm{v}}(t_0) + \int_{t_0}^{t_1} \vec{\mathrm{a}}(t) \; dt \qquad \stackrel{\vec{\mathrm{a}} \equiv const}{=} \quad \vec{\mathrm{v}}(t_0) + \Delta t \cdot \vec{\mathrm{a}}$$

$$\mathrm{P}(t_1) = \mathrm{P}(t_0) + \int_{t_0}^{t_1} ec{\mathrm{v}}(t) \; dt \qquad \stackrel{ec{\mathrm{v}} \equiv const}{=} \quad \mathrm{P}(t_0) + \Delta t \cdot ec{\mathrm{v}}$$

Bewegung in 2D

Betrachtung eines Partikels P auf dem Körper (in WC)

$$P(t) = S(t) + R(t)\vec{p}_0 = S(t) + \vec{p}(t)$$

mit Schwerpunkt S, Ortsvektor \vec{p}_0 , \vec{p} von P in MC bzw. WC relativ zu S und Rotationsmatrix R(t).

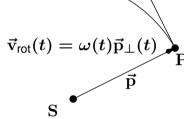
Winkelgeschwindigkeit $\omega(t)$ des Körpers: P auf Kreisbahn um S

- Winkelgeschwindigkeit: Ableitung des Drehwinkels
- O Partikelgeschwindigkeit relativ zu S(t):

$$\vec{\mathbf{v}}_{rot}(t) = \omega(t) \vec{\mathbf{p}}_{\perp}(t) = \omega(t) \, \|\vec{\mathbf{p}}_0\| \, \hat{\mathbf{p}}_{\perp}(t)$$

O Gesamtgeschwindigkeit eines Partikels:

$$egin{array}{lll} ec{ ext{v}}(t) &=& ec{ ext{v}}_S(t) + \omega(t) ec{ ext{p}}_ot(t) \ ec{ ext{v}}(t) &=& \dot{ ext{P}}(t) = ec{ ext{v}}_S(t) + \dot{R}(t) ec{ ext{p}}_0 \end{array}$$



Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 5-11-

Virtual Reality

5.3.1 Die 2D-Situation ...

Masse, Drehmoment, Drehimpuls eines Partikels

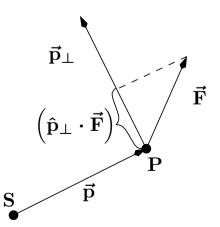
Zunächst: Betrachte nur ein Partikel ${\bf P}$ mit Masse m

Drehmoment M: Rotationsanteil einer auf P wirkenden Kraft \vec{F} bzgl. S:

$$M(t) = \left(ec{\mathbf{p}}_{\perp}(t) \cdot ec{\mathbf{F}}
ight) = (ec{\mathbf{p}}_{\perp}(t) \cdot m ec{\mathbf{a}}(t)), \qquad M(t)$$
 ist skalar

Drehimpuls L: Rotationsanteil des linearen Impulses \vec{P} von P relativ zum Schwerpunkt S:

$$egin{array}{lll} L(t) & = & \left(ec{\mathbf{p}}_{\perp}(t) \cdot ec{\mathcal{P}}
ight) = \left(ec{\mathbf{p}}_{\perp}(t) \cdot m ec{\mathbf{v}}(t)
ight) \ \\ & \Rightarrow & M(t) = \dot{L}(t), & L(t) ext{ ist skalar} \end{array}$$



Masse, Drehmoment, Drehimpuls eines Körpers

Jetzt: Körper bestehend aus Partikel \mathbf{P}^i mit Masse m^i

Masse und Schwerpunkt:

$$m = \sum_i m^i$$
 $\mathbf{S} = \frac{1}{m} \sum_i m^i \mathbf{P}^i$ (Ursprung Modell-Koordinaten)

Gesamt Drehimpuls L: ergibt sich als

$$L(t) = \sum_i L^i(t) = \sum_i \left(\vec{\mathbf{p}}_\perp^i(t) \cdot \vec{\mathcal{P}}^i \right) = \sum_i m^i \left(\vec{\mathbf{p}}_\perp^i(t) \cdot \vec{\mathbf{v}}^i(t) \right)$$

$$\mathrm{Aus}\left(\vec{\mathbf{p}}_{\perp}^{i}(t)\cdot\vec{\mathbf{v}}^{i}(t)\right)=\left(\vec{\mathbf{p}}_{\perp}^{i}(t)\cdot\vec{\mathbf{v}}_{rot}^{i}(t)\right)\,\mathrm{und}\left\|\vec{\mathbf{p}}_{0}^{i}\right\|=\left\|\vec{\mathbf{p}}_{\perp}^{i}(t)\right\|\,\mathrm{folgt:}$$

$$L(t) = \sum_i m^i ig(ec{ ext{p}}_\perp^i(t) \cdot \omega(t) ec{ ext{p}}_\perp^i(t)ig) = \omega(t) \underbrace{\sum_i m^i \left\| ec{ ext{p}}_0^i
ight\|^2}_{=:I}$$

Lheißt *Massenträgheit*.

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 5-13-

Virtual Reality

5.3.2 Die 3D-Situation

Bemerkung: Hinweise zum Kreuzprodukt

Für Vektoren $\vec{a}, \vec{b} \in \mathbb{R}^3$ gilt:

$$\vec{a} \times \vec{b} \in \mathbb{R}^3, \quad \vec{a} \times \vec{b} \perp \operatorname{span}\{\vec{a}, \vec{b}\}$$

$$\vec{a} \times \vec{b} = \vec{a}^* \vec{b} \text{ mit } \vec{a}^* = \begin{pmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{pmatrix}$$

$$\|\vec{a} \times \vec{b}\| = \text{Fläche des Parallelogramms}$$

$$\Rightarrow \vec{a} \times \vec{b} = \vec{a}_\perp \times \vec{b} = \vec{a} \times \vec{b}_\perp$$

Eigenschaften von a*:

O $\vec{\mathbf{a}}^*$ ist schiefsymmetrisch, d.h. $\vec{\mathbf{a}}^* = -(\vec{\mathbf{a}}^*)^T$

Bewegung in 3D

Bewegung eines Partikels des Körper (in WC): Mit 3D-Rotationsmatrix R(t)

Position:
$$P(t) = S(t) + \vec{p}(t) = S(t) + R(t)\vec{p}_0$$

Winkelgeschwindigkeit: $\hat{\omega}(t)$ $\hat{=}$ Rot.-Achse, $\|\vec{\omega}(t)\|$ $\hat{=}$ Rot.-Geschwindigkeit

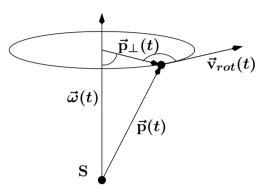
$$\vec{\mathbf{v}}(t) = \vec{\mathbf{v}}_S(t) + \dot{R}(t)\vec{\mathbf{p}}_0$$

= $\vec{\mathbf{v}}_S(t) + \vec{\omega}(t) \times \vec{\mathbf{p}}_{\perp}(t)$

Rotationsgeschwindigkeit $\vec{\mathbf{v}}_{rot}$ von \mathbf{P} ist

- 1. tangential zum Rotationskreis, also $\vec{\mathrm v}_{rot}(t) \perp \{\vec\omega(t), \vec{\mathrm p}_\perp(t)\}$
- 2. proportional zu $\| \vec{\omega}(t) \|$ und $\| \vec{\mathbf{p}}_{\perp} \|$

$$R(t) = \vec{\omega}(t)^* \cdot R(t)$$



$$ec{\mathbf{p}}(t) = R(t) ec{\mathbf{p}}_0 \ ec{\mathbf{v}}_{rot}(t) = ec{\omega}(t) imes ec{\mathbf{p}}(t)$$

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 5-15-

 \mathbf{S}

Virtual Reality

5.3.2 Die 3D-Situation ...

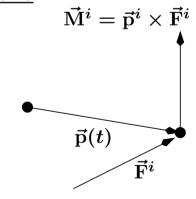
Drehmoment und Drehimpuls eines Partikels (3D)

Drehmoment $\vec{\mathbf{M}}^i(t)$: (vektoriell!) Kraft

 $\vec{\mathbf{F}}^i$ auf \mathbf{P}^i bewirkt Drehmoment $\vec{\mathbf{M}}^i$:

$$ec{\mathbf{M}}^i(t) = ec{\mathbf{p}}^i(t) imes ec{\mathbf{F}}^i$$

- O $\hat{\mathbf{M}}^i \hat{=}$ Drehachse um \mathbf{S} aufgrund von $\vec{\mathbf{F}}^i$
- $\bigcirc \ \left\| ec{\mathbf{M}}^i
 ight\| \hat{=} \ \mathsf{Betrag} \ \mathsf{des} \ \mathsf{Drehmoments}$



Drehimplus $\vec{\mathbf{L}}(t)$ des Partikels \mathbf{P}^i (vektoriell!)

- O entspricht wie in 2D dem Rotationsanteil des Impulses:
 - $\vec{\mathbf{L}}^i = \vec{\mathbf{p}}^i \times \vec{\mathcal{P}}^i = m^i \cdot \vec{\mathbf{p}}^i \times \vec{\mathbf{v}}^i_{rot}$
- \bigcirc unter Verwendung der Massenträgheitsmatrix I^i

$$\vec{\mathbf{L}}^i = m^i \cdot \vec{\mathbf{p}}^i \times \vec{\mathbf{v}}_{rot}^i = m^i \cdot \vec{\mathbf{p}}^i \times (\vec{\omega}(t) \times \vec{\mathbf{p}}^i) = \underbrace{m^i \cdot (\vec{\mathbf{p}}^i)^* (-\vec{\mathbf{p}}^i)^*}_{=:I^i} \cdot \vec{\omega}(t)$$

Drehmoment und Drehimpuls eines Partikels (3D) (Forts.)

Drehimplus $\vec{\mathbf{L}}(t)$ (Forts.): Ausrechnen der Massenträgheitsmatrix:

$$\boxed{ I^i = m^i \begin{pmatrix} (p_y^i)^2 + (p_z^i)^2 & -p_y^i p_x^i & -p_z^i p_x^i \\ -p_x^i p_y^i & (p_x^i)^2 + (p_z^i)^2 & -p_z^i p_y^i \\ -p_x^i p_z^i & -p_y^i p_z^i & (p_x^i)^2 + (p_y^i)^2 \end{pmatrix} }$$

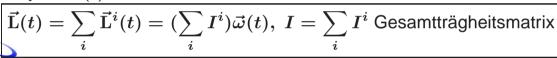
Drehmoment und Drehimpuls (3D)

Objekt bestehend aus Partikel \mathbf{P}^i

Drehmoment $\vec{\mathbf{M}}(t)$:

$$\vec{\mathrm{M}}(t) = \sum_i \vec{\mathrm{M}}^i(t) = \sum_i \vec{\mathrm{p}}^i(t) imes \vec{\mathrm{F}}^i$$

Drehimplus $\vec{\mathrm{L}}(t)$:



3

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 5-17-

Virtual Reality

5.3.2 Die 3D-Situation ...

Beispiel: Würfel

Würfel $[0,1]^3$ mit $(n+1)^3$ Partikel P^{ijk} $i,j,k\in\{0,\ldots,n\}$:

Position: $P^{ijk} = (i/n, j/n, k/n)$, Masse: $m^{ijk} = m/(n+1)^3$

Gesamtmasse: $\sum_{ijk} m^{ijk} = \sum_{ijk} \frac{m}{(n+1)^3} = m$

 $\text{Schwerpunkt: } \mathbf{S} = \frac{1}{m} \cdot \sum_{ijk} m^{ijk} \mathbf{P}^{ijk} = \frac{1}{(n+1)^3 n} \sum_{ijk} \binom{i}{j} = \binom{1/2}{1/2}$

Trägheitsmatrix:

$$I_{MC} = m \cdot egin{pmatrix} rac{1}{6} - rac{1}{3n} & 0 & 0 \ 0 & rac{1}{6} - rac{1}{3n} & 0 \ 0 & 0 & rac{1}{6} - rac{1}{3n} \end{pmatrix} \stackrel{ op}{\underset{x o \infty}{\longrightarrow}} m \cdot egin{pmatrix} rac{1}{6} & 0 & 0 \ 0 & rac{1}{6} & 0 \ 0 & 0 & rac{1}{6} \end{pmatrix}$$

 \Rightarrow Drehimpulsachse $\hat{\mathbf{L}}(t)$ und Rotationsachse $\hat{\omega}(t)$ sind identisch

Ein Simulationsschritt

1. Ermittle äußere Kräfte und Momente (Interaktion, Kollision, etc.):

$$ec{\mathbf{F}} = \sum_i ec{\mathbf{F}}^i \qquad ec{\mathbf{M}} = \sum_i ec{\mathbf{M}}^i = \sum_i ec{\mathbf{p}}^i imes ec{\mathbf{F}}^i, \; \mathsf{Angriffspunkt} \; ec{\mathbf{p}}^i$$

2. Neue Position und Rotation (hier: Euler-Integration):

$$S(t + \Delta_t) = S(t) + \Delta_t \vec{v}_S(t)$$
 $R(t + \Delta_t) = R(t) + \Delta_t \vec{\omega}(t)^* R(t)$

3. Ermittle neue Impulse (hier: Euler-Integration):

$$ec{\mathcal{P}}(t+\Delta_t) = ec{\mathcal{P}}(t) + \Delta_t ec{\mathrm{F}} \qquad ec{\mathrm{L}}(t+\Delta_t) = ec{\mathrm{L}}(t) + \Delta_t ec{\mathrm{M}}$$

4. Neue Geschwindigkeiten:

$$\vec{\mathrm{v}}_S(t+\Delta_t) = \vec{\mathcal{P}}(t+\Delta_t)/m \qquad \vec{\omega}(t+\Delta_t) = I^{-1}(t+\Delta_t)\vec{\mathrm{L}}(t+\Delta_t)$$

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 5-19-

Virtual Reality

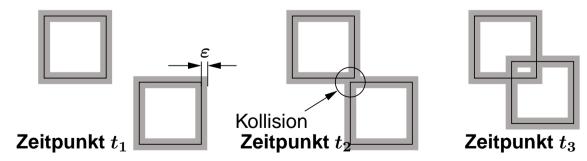
5.4 Kollision

Ziel: Reaktion auf Berührung/Durchdringung geschlossener, bewegter Körper

Unterschiedung: 1. Kollisionserkennung: Kollidieren zwei gegebene Objekte? Ja \Rightarrow ermittle *Kollisionspunkt* \mathbf{P}^K und *Kollisionsnormale* $\hat{\mathbf{n}}^K$.

2. Kollisionsreaktion: Wie wird auf eine Kollision reagiert?

Kollisionsebenen: Kollision ist ein Grenzfall einer Durchdringung



Initial: Anfangs kollidieren/durchdringen sich keine Objekte

Schrittweite so klein, dass Kollision innerhalb einer vorgegebenen Toleranz ε immer erkannt wird

5.4.1 Kollisionserkennung

Grundsätzlich können für Rendering und Kollision unterschiedliche Geometrien verwendet werden

Kollisionserkennung hängt von Repräsentation des Kollisionsgeomentrie ab

- O Rendergeometrie = Kollisionsgeomentrie: i.a. aufwändig
- O vereinfachte Kollisionsgeomentrie: Fehler bei Kollision

Häufige Situation: Rendergeometrie ist polygonal

- O Kollisionstest gegen komplexe Polygongeometrie aufwändig
- verwende einfachere Boundig-Geometrie, z.B. axis-aligned oder object-aligned Bounding-Box

Sonderfälle: Für manche Objekte (z.B. Kugel) kann Kollision exakt bestimmt werden.

Weitere Details siehe CG-II

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 5-21-

Virtual Reality

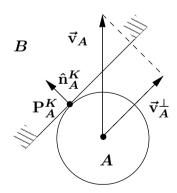
5.4.2 Kollisionsreaktion

Aufgabe: Verarbeitung einer Kollision im Rahmen der Bewegungssimulation

Einfache Ansätze: (siehe CG-II)

- O Bewegungsunterbindung: Letzte Nicht-Kollisionsposition wird beibehalten
- O Enlanggleiten: Geschwindigkeitsanteil $\vec{\mathbf{v}}^{\parallel}$ in Kollisionsrichtung unterdrücken Geschwindigkeitskorrektur für A:

$$\vec{\mathbf{v}}_A^{\perp} = \vec{\mathbf{v}}_A - (\vec{\mathbf{v}}_A \cdot \hat{\mathbf{n}}^K) \hat{\mathbf{n}}^K$$



Elastische Kollision: Stoß entspr. schlagartiger Änderung des Impulses in Richtung Kollisionsnormale

Beachte: Umwandlung lineare in Rotationsbewegung i.w. durch Reibung

Elastische Kollision - elastischer Stoß

Idee: Stoß entspr. schlagartiger Impulsänderung in Richtung $\hat{\mathbf{n}}^K$:

Kollisionsimplus:
$$\vec{\mathcal{P}}^K = \alpha \hat{\mathbf{n}}_A^K$$

Impuls für Objekte $A, B: -\vec{\mathcal{P}}^K$ bzw. $\vec{\mathcal{P}}^K$ (Impulserhaltung!).

Wirkung auf B: Zerlegung in lineare und Rotations-Komponente:

$$ec{\mathcal{P}}^K = ec{\mathcal{P}}_{\perp}^K + ec{\mathcal{P}}_{\parallel}^K$$
 bzgl. Schwerpunkt von B

Anpassung der Geschwindigkeiten ($\vec{\mathbf{p}}_A^K$ Ortsvektor von \mathbf{P}^K bzgl. A):

linear:
$$\vec{\mathcal{P}}_B \leftarrow \vec{\mathcal{P}}_B + \vec{\mathcal{P}}_\parallel^K$$
, $\vec{\mathbf{v}}_S \leftarrow \vec{\mathbf{v}}_S + \vec{\mathcal{P}}_\parallel^K/m_B$
Rot.: $\vec{\mathbf{L}}_B \leftarrow \vec{\mathbf{L}}_B + \vec{\mathbf{L}}_\perp^K = \vec{\mathbf{L}}_B + \vec{\mathbf{p}}_B^K \times \vec{\mathcal{P}}^K$, $\vec{\omega} \leftarrow \vec{\omega} + I_B^{-1}(\vec{\mathbf{p}}_B^K \times \vec{\mathcal{P}}^K)$

Analoges Vorgehen für A, nur anderes Vorzeichen

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 5-23-

Virtual Reality

5.4.2 Kollisionsreaktion ...

Satz: Ermittlung von $\vec{\mathcal{P}}^K$

Einschränkungen: Zunächst nur lineare Geschwindigkeiten

Relative Geschwindigkeit der Objekte zueinander bei Kollision in Normalenrichtung

$$\vec{\mathbf{v}}_{rel} = \vec{\mathbf{v}}_B - \vec{\mathbf{v}}_A, \vec{\mathbf{v}}_{rel}^{neu} = \vec{\mathbf{v}}_B^{neu} - \vec{\mathbf{v}}_A^{neu}, \; \mathrm{dann} \; \left(\hat{\mathbf{n}}_A^K \cdot \vec{\mathbf{v}}_{rel}^{neu}\right) = -\varepsilon \left(\hat{\mathbf{n}}_A^K \cdot \vec{\mathbf{v}}_{rel}\right)$$

Stoßzahl $arepsilon \in [0,1]$ kontrolliert Elastizität der Kollision

Berechnung der Geschwindigkeitsanpassung durch Impuls:

$$\begin{split} \vec{\mathbf{v}}_A^{neu} &= \vec{\mathbf{v}}_A - \frac{\alpha \hat{\mathbf{n}}_A^K}{m_A}, \quad \vec{\mathbf{v}}_B^{neu} = \vec{\mathbf{v}}_B + \frac{\alpha \hat{\mathbf{n}}_A^K}{m_B} \Rightarrow \vec{\mathbf{v}}_{rel}^{neu} = \vec{\mathbf{v}}_{rel} + \left(\frac{\alpha \hat{\mathbf{n}}_A^K}{m_A} + \frac{\alpha \hat{\mathbf{n}}_A^K}{m_B}\right) \\ &\Rightarrow -\varepsilon (\hat{\mathbf{n}}_A^K \cdot \vec{\mathbf{v}}_{rel}) = \left(\hat{\mathbf{n}}_A^K \cdot \vec{\mathbf{v}}_{rel}^{neu}\right) = \left(\hat{\mathbf{n}}_A^K \cdot \left(\vec{\mathbf{v}}_{rel} + \left(\frac{\alpha \hat{\mathbf{n}}_A^K}{m_A} + \frac{\alpha \hat{\mathbf{n}}_A^K}{m_B}\right)\right)\right) \\ &\Rightarrow -(1+\varepsilon) (\vec{\mathbf{v}}_{rel} \cdot \hat{\mathbf{n}}_A^K) = \frac{\alpha}{m_A} + \frac{\alpha}{m_B} \iff \alpha = \frac{-(1+\varepsilon) \left(\vec{\mathbf{v}}_{rel} \cdot \hat{\mathbf{n}}_A^K\right)}{\frac{1}{m_A} + \frac{1}{m_B}} \end{split}$$

5.4.2 Kollisionsreaktion ...

Satz: Ermittlung von $\vec{\mathcal{P}}^K$ (Forts.)

Allgemeiner Fall: Berücksichtigung der Rotation liefert:

$$\alpha = \frac{-(1+\varepsilon)\left(\vec{\mathbf{v}}_{rel}\cdot\hat{\mathbf{n}}_{A}^{K}\right)}{\frac{1}{m_{A}} + \frac{1}{m_{B}} + \left(\hat{\mathbf{n}}_{A}^{K}\cdot\left(\left(\boldsymbol{I}_{A}^{-1}\left(\vec{\mathbf{p}}_{A}^{K}\times\vec{\mathbf{n}}_{A}^{K}\right)\right)\times\vec{\mathbf{p}}_{A}^{K}\right)\right) + \left(\hat{\mathbf{n}}_{A}^{K}\cdot\left(\left(\boldsymbol{I}_{B}^{-1}\left(\vec{\mathbf{p}}_{B}^{K}\times\vec{\mathbf{n}}_{A}^{K}\right)\right)\times\vec{\mathbf{p}}_{B}^{K}\right)\right)}$$

wobei $ec{\mathbf{p}}_A = \mathbf{P}_A^K - \mathbf{S}_A$ Ortsvektor des Kollisionspunktes rel. zum Schwerpunkt

Hinweis: In diesem Fall bestimmt sich α mittels:

- O Ermittlung der Geschwindigkeiten $\vec{\mathbf{v}}_A(\mathbf{P}^K), \vec{\mathbf{v}}_A(\mathbf{P}^K)$ unter Berücksichtigung der Rotation
- Anwendung des Kollisionsimpluses auf lineare und Rotationsgeschwindigkeit

