

# **Virtual Reality**

**Sommer 2012** 

# 6 Mesh-Optimierung und -Übertragung

Versionsdatum: 18. Juni 2012



Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 6-1-

Virtual Reality

# 6 Mesh-Optimierung und -Übertragung ...



**Motivation: Mesh-Reduktion** 

**Polygonmodelle** sind je nach Herkunft sehr hoch aufgelöst (> 1 Mio. Tri.)

Reduktion: Verringerung der Modellkomplexität

- O möglichst geringe (visuelle) Fehler im Modell
- O steuerbar je nach Zielsetzung, z.B. max. Dreieckzahl oder max. Fehler
- O ggf. Entfernung unsichtbarer Objektteile (vgl. Culling)

Fragen: O Wie wird Modell vergröbert?

O Wie misst man den entstandenen Fehler?

**Motivation:** Mesh-Übertragung

VR-Anwendungen sind häufig verteilte Systeme bei evtl. schmalbandigen Netzen

Fragen: O Wie kann ein Modell komprimiert übertragen?

Wie kann ein Modell streamingfähig gemacht werden?

#### 6.1 Edgebreaker



**Zielsetzung:** Komprimierte Übertragung von Dreieckesnetzen

Naiver Ansatz: Speicherung als indiziertes Dreiecksformat

O Vertex-Koordinaten:  $3 \times 32$  bit (float)

O Konnektivität:  $3 \times 32$  bit pro Dreieck (int)

Pro Vertex zwei neue Dreiecke ⇒ Konnektivitättabelle doppelt so groß

**Grundgedanke:** O Trenne *Geometrie* (Vertexdaten) und *Topologie* (Konnektivität)

O Effiziente Speicherung der Konnektivität

Randbedingungen: O Mannigfaltiges Dreiecksnetz (siehe CG2)

O Das Mesh hat Genus 0, d.h.

□ es ist geschlossen und "kugelähnlich", oder

□ einen durchgängigen Rand



Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 6-3-

**Virtual Reality** 

# 6.1 Edgebreaker ...



# Half-Edge Datenstruktur

Ansatz: Zwei Halbkanten pro Kante

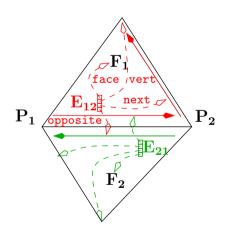
**Daten** für Halbkante h:

h.v Verweis auf Eckpunkt (vert)

h.o Verweis auf andere Halbkante (opposite)

h.f Verweis auf zugehöriges Polygon (face)

h.n Verweis auf nächste Halbkante (next)



Spezifisch für Edgebreaker: h.v.m Vertex h.v markiert (boolsch)

Weitere Operatoren auf Halbkante h

Startpunkt: h.s = h.n.v Endpunkt: h.e = h.n.n.v Vorige Halbk.: h.p = h.n.n

Vorige Randkante: h.P Nächste Randkante: h.N (nur bei Rand-Vertex)





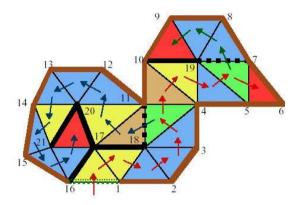
#### Algorithmus im Überblick

Grundsätzlich: Traversierung des Meshes

- O Abarbeitung (Entfernung) der Dreiecke in bestimmter Reihenfolge
- O Active Gate g: Übergangskante in aktuelles Dreieck
- O Active Boundary bezeichnet die aktuellen Randkanten

Datenstruktur: O Vertexliste: Initial Randvertices; neue Vertices anhängen

O Konnektivität: Speichern des "Weges" durch das Mesh





Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 6-5-

**Virtual Reality** 

# 6.1 Edgebreaker ...



**Encoding: Fallunterscheidungen** 

Ansatz: "Weg" durch das Mesh anhand lokaler Situation

Case 'C': Vertex g.v noch nicht besucht, d.h. g.v.m = false

- O Speichere g.v in Vertexliste; speichere 'C' in Historie;  $g.v.m \to \texttt{true}$
- O Active Gate  $g \leftarrow g.n.o$

Case 'L': Vertex g.v vorlaufend zu Gate g auf Rand: g.p = g.P

- O Speichere 'L' in Historie
- O Active Gate  $g \leftarrow g.n.o$



#### 6.1 Edgebreaker ...



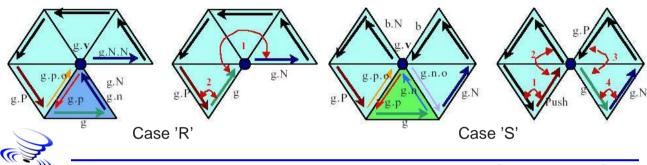
#### **Encoding: Fallunterscheidungen (Forts.)**

Case 'R': Vertex g.v nachlaufend zu Gate g auf Rand: g.n = g.N

- O Speichere 'R' in Historie
- O Active Gate  $g \leftarrow g.p.o$

Case 'S': Vertex g.v weder vor- noch nachlaufend zu Gate g auf Rand

- O Speichere 'S' in Historie
- O Active Gate  $g \leftarrow g.n.o$
- O Push *g.p.o* auf Kantenstack



Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 6-7-

**Virtual Reality** 

# 6.1 Edgebreaker ...

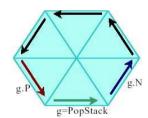


#### **Encoding: Fallunterscheidungen (Forts.)**

Case 'E': Vertex g.v vor- und nachlaufend zu Gate g auf Rand: g.v = g.P.s = g.N.e

- O Speichere 'E' in Historie
- O Pop Kantenstack
- Active Gate: Oberstes Element auf Kantenstack (sonst Ende des Algorithmus)





Case 'E'

#### 6.1 Edgebreaker ...



#### **Algorithmus: Encoding**

```
g = pickInitialEdge();
                            // on boundary if any
if ( hasBoundary ) vertexList.appendBoundaryVertices(g.p.v)
edgeStack.push(g);
while ( (g = edgeStack.pop()) != NULL ) // still an element
  while ( true ) {
                            // loop "forever"
    if ( g.v.m == false ) handleCase('C');
    else
      if (g.p == g.P)
                            // left is boundary
        if (g.n == g.N) {
          handleCase('E');
          break:
        }
        else handleCase('L');
        if ( g.n == g.N ) handleCase('R');
        else handleCase('S');
```



Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

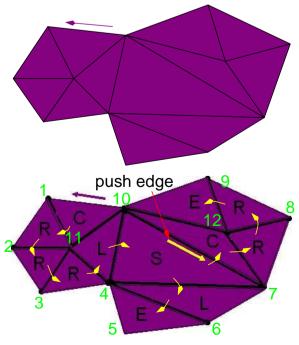
-Folie 6-9-

**Virtual Reality** 

# 6.1 Edgebreaker ...



#### Beispiel:



- 1. Initiales Gate auf Boundary
- 2. Boundary Vertices an Vertex-Liste anhängen
- 3. Codierung (Fall 'C': g.v an Vertex-Liste anhängen)
- 4. einmaliges edgeStack.push im Fall 'S'
- Ergebnis: CLERS-String: CRRRLSLECR-RE





#### **Kodierung & Dekodierung**

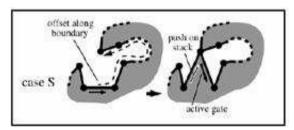
Kodierung der Konnektivität: Jedes Dreieck durch C,L,E,R oder S kodiert

O Naiv: 5 Zeichen  $\rightarrow$  3 bit pro Dreieck

O Besser: Neuer Vertex  $\Leftrightarrow$  'C'  $\Rightarrow$  50% Wahrscheinlichkeit für 'C' 'C' 1 bit, 'L','E','R','S' jeweils 3 bits  $\Rightarrow$  im Mittel 2 bit/Dreieck

**Dekodierung:** Umwandlung der Vertexliste & CLERS-String in indiziertes Dreiecksnetz

**Problem:** Bei der 'S' Operation ist der dritte Vertex in der Vertexliste versetzt und muß erst aufwendig ermittelt werden



Case 'S': Offset-Problem



Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 6-11-

**Virtual Reality** 

# 6.1 Edgebreaker ...



#### Wrap & Zip

Eingabedaten: Vertexliste und CLERS-String

Wrapping: O Jedes CLERS-Symbol erzeugt ein Dreieck

O Fälle 'C','L','E' und 'R' kennen alle beteiligten Punkte

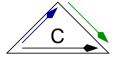
O für Fall 'S' muß dritter Eckpunkt ausfindig gemacht werden

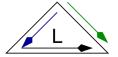
Idee: O Erzeuge im Fall 'S' zunächst nur die Topologie ("freie Punkte")

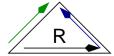
O Rekonstruiere 'S'-Vertex wenn Topologie (lokal) vollständig ist

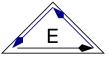
 Freie Kanten zeigen an, wie doppelte Kanten zusammengefasst werden

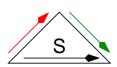
Gerichtete, freie Kanten: Kanten, die bei Dekodierung nicht active gate sind











Active Gate (schwarz), nächstes Active Gate (grün) und freie Kante (blau)

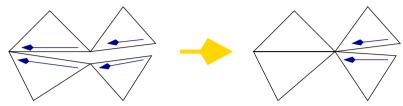
Bei 'S' wird die rote Kante auf einen Stack gelegt



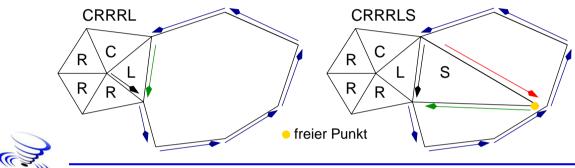
#### Wrap & Zip (Forts.)

Randkanten erhalten frei Kanten im Gegenuhrzeigersinn

**Zipping:** Zusammenführung zweier Kanten in einem Punkt mit Zipping-Richtung auf diesen Punkt (nur nach 'L' und 'E')



#### Beispiel: Wrap & Zip



Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

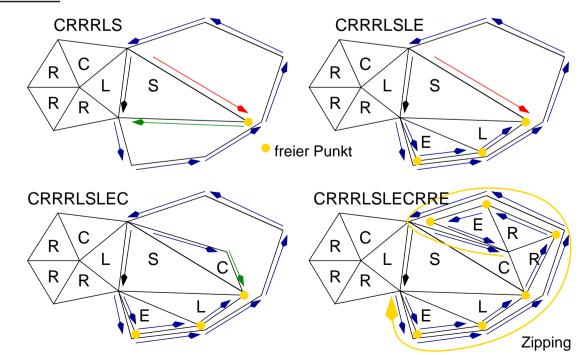
-Folie 6-13-

**Virtual Reality** 

# 6.1 Edgebreaker ...



#### Beispiel: Wrap & Zip (Forts.)





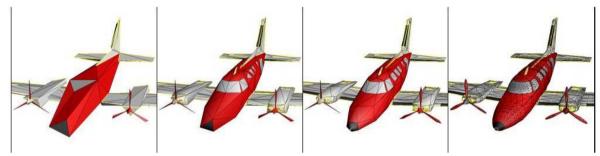


**Motivation:** Progressive Meshes

#### **Edgebreaker Algorithmus:**

- + Kompression für Dreiecksnetze
- + Streamingfähiges Format
- kein progressives Format, d.h. Übertragung der Daten bzgl. der feinsten Auflösung und damit kein LOD

Progressive Meshes: Progressiv, streamingfähig, keine Kompression



Grobe Auflösung  $\mathcal{M}^{75}$  (links) und weitere Verfeinerungen  $\mathcal{M}^{175}$ ,  $\mathcal{M}^{425}$ ,  $\mathcal{M}^{6500}$ 



Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 6-15-

**Virtual Reality** 

# 6.2 Progressive Meshes (PM) ...



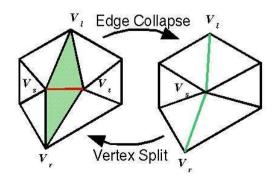
Idee: PM-Ansatzes

**Ausgangslage:** Hochaufgelöstes Polygonmodell  $\mathcal{M}^n$  mit n Vertices

Reduktion: Sukzessives Entfernen von Vertices durch Edge-Collapse

Es entstehen Modelle  $\mathcal{M}^k,\;k=n-1,n-2,\ldots,m$ 

**Verfeinerung:** Umkehrung des Edge-Collapse (*vertex-split*), d.h.  $\mathcal{M}^{k+1}$  aus  $\mathcal{M}^k$  restaurierbar.





# 6.2 Progressive Meshes (PM) ...



#### **PM-Datenstruktur**

Struktur zur Speicherung eines PM besteht aus:

- 1. einfache Struktur zur Speicherung von  $\mathcal{M}^m$
- 2. Differenzdaten  $D_k$  für den k-ten Split  $k=m,\ldots,n-1$ :

*i*<sup>k</sup> Index des zu splittenden Punktes

 $i_l^k, i_r^k$  Indizes der angrenzenden Punkte

 $\mathbf{V}_{s}^{k}, \mathbf{V}_{t}^{k}$  Koordinaten des gesplitteten Punkts

Damit entsteht eine Sequenz:

$$\mathcal{M}^m \overset{D_m}{\overset{D_m}{\longrightarrow}} \mathcal{M}^{m+1} \overset{D_{m+1}}{\overset{D_{m+1}}{\longrightarrow}} \mathcal{M}^{m+2} \dots \mathcal{M}^{n-1} \overset{D_{n-1}}{\overset{D_{n-1}}{\longrightarrow}} \mathcal{M}^n$$

Erzeugung erfolgt durch n-m Edge-Collapse Operationen aus  $\mathcal{M}^n$ 



Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 6-17-

**Virtual Reality** 

# 6.2 Progressive Meshes (PM) ...



#### Algorithmus zur Mesh-Reduktion

Kostenfunktion bewertet die Verformung aufgrund von Edge-Collapse

Input: Fein aufgelöstes Dreiecksmodell

Algorithmus: Erzeugung der PM-Datenstruktur

- 1. Ermittlung der Kostenfunktion  $E(\mathcal{M}_e^n), \ \forall e \in \mathcal{M}^n$
- 2. Sortierung der  $E(\mathcal{M}_e^n)$  in einer Priority-Queue  $Q^n$
- 3. Mesh-Reduktion:
- 3.1. Edge-Collapse für die erste Kante  $e^{st}$  in  $Q^k$
- 3.2. Neue Kosten: In Nachbarschaft von  $e^{st}$  neu berechnen, sonst

$$E(\mathcal{M}_e^{k-1}) = E(\mathcal{M}_e^k)$$

3.3.  $Q^{k-1}$ = Neusortierung von  $Q^k$ 



#### **Quadric Error Metrics (Garland & Heckbert '97)** 6.2.1



**Ziel:** Kostenfunktion anhand des Abstandsfehler von V

**Initial:** Vertex V ist Schnittpunkt der umliegenden Dreiecksebenen, wenn

$$E_i : a_i \cdot x + b_i \cdot y + c_i \cdot z + d_i = 0$$
  $\Leftrightarrow [a_i, b_i, c_i, d_i] \cdot egin{bmatrix} x \ y \ z \ 1 \end{bmatrix} = 0$ 

Alle umliegenden Ebenen mit  $\vec{p}_i = [a_i, b_i, c_i, d_i]$ 

$$E(\mathrm{V}) = \sum_i \left( ec{\mathrm{p}}_i \cdot \mathrm{V} 
ight)^2 = 0$$

 $E(V) = V^T Q V$ 

**Kostenfunktion** Q ist eine quadratische Funktion, d.h.

Visualisierung von Vertexpositionen mit konstanten Kosten



Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 6-19-

**Virtual Reality** 

#### Quadric Error Metrics (Garland & Heckbert '97) ... 6.2.1



#### Herleitung der Kostenfunktionsmatrix Q

Umformulierung des quadratischen Ebenenabstands

$$\begin{split} E(\mathbf{V}) &= \sum_{i} \left( \vec{\mathbf{p}}_{i} \cdot \mathbf{V} \right) \cdot \left( \vec{\mathbf{p}}_{i} \cdot \mathbf{V} \right) \\ (\mathbf{V} \cdot \vec{\mathbf{p}}_{i}) \cdot \left( \vec{\mathbf{p}}_{i} \cdot \mathbf{V} \right) &= \left( \mathbf{V}^{T} \cdot \vec{\mathbf{p}}_{i} \right) \cdot \left( \vec{\mathbf{p}}_{i}^{T} \cdot \mathbf{V} \right) = \mathbf{V}^{T} \underbrace{\left( \vec{\mathbf{p}}_{i} \cdot \vec{\mathbf{p}}_{i}^{T} \right)}_{=Q_{i}} \mathbf{V} \end{split}$$

mit

$$Q_i = ec{\mathbf{p}}_i \cdot ec{\mathbf{p}}_i^T = egin{bmatrix} a_i^2 & a_i b_i & a_i c_i & a_i d_i \ b_i a_i & b_i^2 & b_i c_i & b_i d_i \ c_i a_i & c_i b_i & c_i^2 & c_i d_i \ d_i a_i & d_i b_i & d_i c_i & d_i^2 \end{bmatrix} \quad ext{und} \quad E(\mathbf{V}) = ec{\mathbf{V}}^T \left(\sum_i Q_i
ight) \mathbf{V}$$

Beachte:  $Q_i$  ist symmetrisch bzgl. Diagonale, damit auch  $\sum_i Q_i$ .



# 6.2.1 Quadric Error Metrics (Garland & Heckbert '97) ...



#### Kosten eines Edge-Collapse

**Gegeben:** Kante e zwischen  $\mathbf{V}_s, \mathbf{V}_t$  mit Kostenmatrizen  $Q_s, Q_t$ 

**Gesucht:** Position des gemergten Punktes  $\mathbf{V}_s^*$  und zugehörige Kosten  $E(\mathcal{M}_e^k)$ 

Vertex-Position: Kostenfunktion für gemergten Vertex

$$Q_s^* = Q_s + Q_t \Rightarrow E(\mathbf{V}_s^*) = (\mathbf{V}_s^*)^T (Q_s + Q_t) \mathbf{V}_s^*$$

O positioniere  ${
m V}_s^*$ , so dass  $E({
m V}_s^*)$  minimal: Mit  $Q_s^*=(q_{ij}^*)_{i,j=1,...,4}$ ,  $q_{ij}^*=q_{ji}^*$ 

$$rac{\partial E(\mathrm{V}_s^*)}{\partial \mathrm{V}_s^*} = 0 \quad \Leftrightarrow \quad egin{bmatrix} q_{11}^* & q_{12}^* & q_{13}^* & q_{14}^* \ q_{12}^* & q_{22}^* & q_{23}^* & q_{24}^* \ q_{13}^* & q_{23}^* & q_{33}^* & q_{34}^* \ 0 & 0 & 0 & 1 \end{bmatrix} \mathrm{V}_s^* = egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix}$$

O Kostenfunktion:  $E(\mathcal{M}_e^k) = E(\mathbf{V}_s^*)$  für optimale Position

Beachte: Addition der Kostenmatrizen bewertet angrenzende Dreiecke doppelt

Bewertung: Das Verfahren ist sehr schnell, aber tendenziell ungenau

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 6-21-

**Virtual Reality** 

# 6.2.2 Kostenfunktion nach Campgna etal. '98



#### Kostenfunktion

**Ansatz:** Durch Edge-Collapse soll möglichst wenig verändert werden ⇒ Bewertung durch eine Kostenfunktion

Quantitative Größen: Entferne eine Kante e "auf Probe"  $\Longrightarrow \mathcal{M}_e^k$ 

**Abstand**  $E_{dist}(\mathcal{M}_e^k)$ : Räumlicher Abstand zwischen  $\mathcal{M}^k$  und  $\mathcal{M}_e^k$ 

Farbe  $E_{col}(\mathcal{M}_e^k)$ : Farbabstand korresponierender Punkte

**Normalen**  $E_{norm}(\mathcal{M}_e^k)$ : Normalenabweichung korresponierender Punkte

**Diskontinuitäten**  $E_{disc}(\mathcal{M}_e^k)$ : Veränderungen entlang scharfer Kanten Gesamtfunktion:

$$E(\mathcal{M}_{e}^{k}) = E_{dist}(\mathcal{M}_{e}^{k}) + \alpha_{col}E_{col}(\mathcal{M}_{e}^{k}) + \alpha_{normal}E_{normal}(\mathcal{M}_{e}^{k}) + \alpha_{disc}E_{disc}(\mathcal{M}_{e}^{k})$$

Beachte: Bestimme Koordinaten des gemergten Punktes, so dass  $E(\mathcal{M}_e^k)$  minimal wird.



# 6.2.2 Kostenfunktion nach Campgna etal. '98 ...

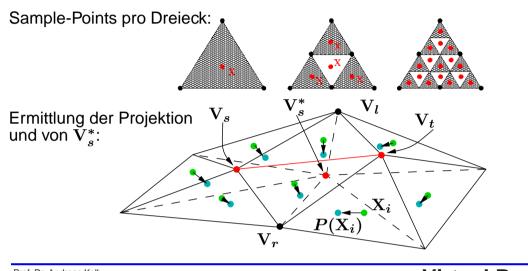


#### Kostenermittlung: Distanz

Sample-Punkte X<sub>i</sub>: Schwerpunkte einer regelmässigen Dreiecksunterteilung

**Abstandsbestimmung:** Lokal Projektionen  $P(X_i)$  auf  $\mathcal{M}_e^k$ 

Abstandskosten für  $\mathrm{X}_i$  und  $P(\mathrm{X}_i)$ :  $E_{dist}(\mathcal{M}_e^k) = \sum_i \left\| \mathrm{X}_i - P(\mathrm{X}_i) \right\|^2$ 





Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 6-23-

**Virtual Reality** 

# 6.2.2 Kostenfunktion nach Campgna etal. '98 ...



#### **Kostenermittlung: Distanz (Forts.)**

**Exakte Berechnung:** Gleichzeitige Berechnung von  $P(X_i)$  und des gemergten Punktes  $V_s^*$  ist nicht-linear und schwierig!

**Linearisierung** der Berechnung von  $V_s^*$ : Sequentielle Arbeitsweise:

- 1. ermittle Projektionen für fixes  $\mathbf{V}_s^*$
- 2. variiere  $\mathbf{V}_s^*$  für fixe Projektionen  $P(\mathbf{X}_i) \in \Delta(\mathbf{V}_s^*, \mathbf{V}_i^1, \mathbf{V}_i^2)$ :

$$P(X_i) = a_i^s V_s^* + a_i^1 V_i^1 + a_i^2 V_i^2, \ a_i^s + a_i^1 + a_i^2 = 1$$

**Variation** von  $\mathbf{V}_s^*$ :  $E_{dist}$  ist quadratisch in  $\mathbf{V}_s^*$ , denn:

$$\sum_{i} \left\| \underbrace{\mathbf{X}_{i} - (a_{i}^{1}\mathbf{V}_{i}^{1} + a_{i}^{2}\mathbf{V}_{i}^{2})}_{=\mathbf{Y}_{i}} - a_{i}^{s}\mathbf{V}_{s}^{*} \right\|^{2} = \sum_{i} \left\| \mathbf{Y}_{i} \right\|^{2} - 2a_{i}^{s} \big(\mathbf{Y}_{i} \cdot \mathbf{V}_{s}^{*} \big) + a_{i}^{s} \left\| \mathbf{V}_{s}^{*} \right\|^{2}$$

 $\Rightarrow$  Optimumssuche ergibt lineares Gleichungssystem



# 6.2.2 Kostenfunktion nach Campgna etal. '98 ...



#### Kostenermittlung: Andere Anteile

Nach Ermittlung von  $V_s^*$ ,  $P(X_i)$  werden andere Kostenanteile berechnet:

#### Farbe $E_{col}(\mathcal{M}_e^k)$ :

- 1.  $X_i, P(X_i)$  erhalten Farben via linearer Interpolation aus Farben der Ecken
- 2. Farbe von  $\mathbf{V}_s^*$ : Projektion auf  $\mathcal{M}^k$  & lineare Interpolation
- 3. Kosten für Farben  $C_1, C_2$  im HSV-Modell:

$$E_{col}(C_1, C_2) = |h_1 - h_2| + |s_1 - s_2| + 2 \cdot |v_1 - v_2|$$

# Normalen $E_{norm}(\mathcal{M}_e^k)$ :

- 1. Normalen bei  $\mathbf{X}_i, P(\mathbf{X}_i)$  durch lineare Interpolation
- 2. Normale von  $\mathbf{V}_s^*$ : Projektion auf  $\mathcal{M}^k$  & lineare Interpolation
- 3. Kosten für Normalen  $\hat{\mathbf{n}}_1, \hat{\mathbf{n}}_2$ :



$$E_{normal}(\hat{\mathbf{n}}_1, \hat{\mathbf{n}}_2) = 1 - (\hat{\mathbf{n}}_1 \cdot \hat{\mathbf{n}}_2)$$

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 6-25-

**Virtual Reality** 

# 6.2.2 Kostenfunktion nach Campgna etal. '98 ...



#### **Kostenermittlung: Andere Anteile (Forts.)**

### Diskontinuitäten $E_{disc}(\mathcal{M}_e^k)$ :

- 1. Flag für Ecken auf Kanten
- 2. ist  $\mathbf{V}_s$  oder  $\mathbf{V}_t$  eine Kanten-Ecke, so wird  $\mathbf{V}_s^*$  ebenso Kanten-Ecke und Abstand zwischen Kantenecken wird gemessen