Real-Time Volume Graphics [14] Large Volume Data

Motivation

Long-leg study
 512x512x3172
 @16bit ~ 1.7GB

Large Volumes - Motivation

Visible Male cryosection RGB data:
 2048x1216x1877@24bit ~ 14GB

Large Volumes - Motivation

4D cardiac data:
 512x512x240@16 bit, 20 frames ~ 2.5GB

Large Volumes - Caches

REAL-TIME VOLUME GRAPHICS

Large Volumes - Caches

Large Volumes - Introduction

- Problems with large volumes on GPUs
 - Each Voxel is accessed multiple times
 - Filtering
 - Gradient Computation
 - Oversampling
 - => Huge memory bandwidth required
 - Limited memory bandwidth:

GPU: >30GB/s

AGP8x: 2GB/s

Limited GPU memory: typically 256/512 MB

Large Volumes - Bricking

- Subdivide volume into smaller blocks
- Allocate memory for one block on GPU
- Copy in GPU mem. and render one block at a time
- One voxel overlap for contiguous interpolation

Large Volumes - Bricking

- Subdivide volume into smaller blocks
- Allocate memory for one block on GPU
- Copy in GPU mem. and render one block at a time
- One voxel overlap for contiguous interpolation

Large Volumes - Bricking

- Performance mainly limited by AGP transfer
 - Subsampled copy of data in GPU mem. for interaction
 - Bricking only for final quality image

Level 3 cache

Eurographics 2006

Large Volumes - Multi-Resolution VR

LaMar et al., Multi-Resolution techniques for interactive texture-based volume visualization, IEEE Visualization'99

Octree-based decomposition of volume into bricks

- Render bricks at different resolution:
 - Distance to viewer
 - Focus point

Large Volumes - Multi-Resolution VR

- Weiler et al., Level-of-Detail volume rendering via 3D textures, In Volume Visualization and Graphics Sympsium 2000
 - Extension to fix boundaries

Large Volumes - Compression

- Texture Compression OpenGL extensions:
 - 2D: EXT texture compression s3tc.
 - 3D: NV_texture_compression_vtc
 - Hardware implementation in several graphics chips, e.g. NVIDIA GeForce series, ATI Radeon Series.
- Disadvantages of S3TC:
 - Moderate compression ratios,
 - Block-artifacts, inappropriate for non-smooth data
 - Fixed compression scheme
 - Only for RGB(A) data
- 3Dc: ATI only, normals

- Volume data
 - Mostly smooth
 - Fine high-frequency detail in certain regions
- Wavelets
 - Analyze data at different resolutions and frequencies
 - Many coefficient very small=> compression
 - Hierarchy of signals
 - => Multi-res reconstruction

- Guthe et al., Interactive Rendering of Large Volume Data Sets, Visualization'02
- Hierarchical Wavelet Representation
 - Divide data into blocks of $(2k)^3$ voxels (k=16)
 - Apply wavelet filters
 - => lowpass filtered block
 - => wavelet coefficients
 - Group 8 blocks
 - Repeat until 1 block left
- 2 encoding schemes

- Decompression of blocks during rendering on CPU
- Rendering of block on the GPU
- Caching Strategy

- Adjust resolution of data to screen resolution
 - Project voxel-space to screen
 - Refine if above screen res.
- View-dependent priority schedule
- Interactive walkthrough of visible female/male
- Still AGP bandwidth bound
 => GPU decompression
 possible ? Google "dwtgpu"

TWO LEVELS OF THE DATA REPRESENTATION:

- Index data (upper level):
 - Each cell/texel of a coarse grid corresponds to one data block.
 - Each cell/texel specifies coordinates and scaling factors of the corresponding data block.
- Packed data (lower level):
 - All data blocks packed into one uniform grid/texture.

Kraus et al., Adaptive Texture Maps, Graphics Hardware Workshop'02

TWO STEPS OF SAMPLING ADAPTIVE TEXTURES:

- Read index data and calculate coordinates for the second step.
- Read and interpolate actual texture data from packed data.
- Decoding in fragment stage

Wei Li et al. — Texture Partitioning and Packing for Accelerating Texturebased Volume Rendering, GI 2003

- Partition texture space with box-growing algorithm
- Based on similar densities and non-zero gradient magnitudes

- Determine gradient sub-textures with non-zero magnitude
- Pack sub-textures into a single smaller texture
- Decoding in vertex stage using texture coords.

Image formats with palettes specify for each pixel one index into a color palette (= codebook).

Schneider/Westermann – Compression Domain Volume Rendering, IEEE Visualization 2003

- 3 Level Hierarchical decomposition:
 - Partition data into blocks of size 4³
 - Downsample to 2³, store difference vector (64 vector)
 - Downsample to 1, store difference vector (8 vector)

- Codebooks: 256x64 + 256x8 images, dependent texture lookup
- Codebook generation: modified LGB-Algorithm (Linde, Buzo and Gray)
- Series of PCA-Splits (Principle component analysis) determine initial codebook

- With a codebook of length 256, a 1024³ volume is reduced to 3*256³ bytes = 48 MBytes, i.e. it fits easily into texture memory.
- Compression of 4D sequences: store complete sequence in GPU memory (shockwave sequence original: 1.5 GB, compressed: 70 MB).
- currently: only nearest-neighbor filtering
 decouple decompression and rendering

Really Huge Volume Data

- Data/compressed Data larger than main memory (e.g. Geological data)
 - Out-of-core techniques
 - Keep data on disk
 - Use main memory as another cache level
 - Multi-resolution techniques
 - Rendering Clusters

Circumvent Large Volumes

Ebert et al.: Texturing and Modeling:

A Procedural Approach, Academic Press, 1998

coarse volume for macrostructure

procedural noise for microstructure

Circumvent Large Volumes

- Kniss et al., Interactive Translucent Volume Rendering and Procedural Modeling, Visulization'02:
 - perturb data access (instead of data)
 - good for distortion of boundaries
 - implemented using offset-textures

original texture

multiple scaled
versions of
perturbation texture

summed offset vectors

result of dependent fetch

Conclusions

- It's possible to render Large Volumes with GPUs (larger than texture memory)
- Compression and adaptive Algorithms required for interactive Performance
- Lots of Optimizations required
 - Early-Z/Stencil
 - Multi-Resolution
 - Compression Domain
 - ...

