Real Time Volume Graphics

Volume Deformation
and Animation

P

-

Christof Rezk Salama

Computer Graphics and
Multimedia Group
University of Siegen, Germany

Motivation

Deformable Volumetric Objects

® Applications in Science
@ Medicine
® Engineering
@ Natural Science

® Applications in Aris
@ Translucent Objects
with true volumetric
deformation
@ Keyframe Animation
® Procedural Animation

- i) ™ =0 far (ramhicre at I I e =Ta b '-. Riviare ;: e f D o T

Modelling

® Traditional Modelling:
Separation of Shape from Appearance

* Deformation of the Shape (Gedmefry) only

* Appearance (Materials, Textures etc.) remains unchanged

- f) By ttar Crachices ame 1 l#15

Texture Based VR

Shape and Appearance

@® Proxy geometry does not define the shape of object
@ Both shape and appearance are defined by 3D textures

Should we deform the proxy geometry or the textures?

Mathematical Models

Deformation Models for Texture-Based VR
® Deforming the proxy geometry

First Idea:
Simply displace the 8 corner vertices

of the bounding box (betfore slicing it)
Mathematical Description:

1,J,k€{0,1}

Trilinear interpolation
weights of point x in

Translation vectors
given at the corner

Mathematical Models

Deformation Models for Texture-Based VR

® Deforming the proxy geometry

First Idea:

Simply displace the 8 corner vertices
of the bounding box (betfore slicing it)
Mathematical Description:

1,J,k€{0,1}

Difficulties: The inverse transformation is not
again a trilinear function!

| REAL-TIME VOLUME GRAPHICS
(G Christof Rezk Salama

~ T
|

:1_) Computer Graphics and Multimedia Group, University of Siegen, Germany

Mathematical Models

® What do we need the inverse fore

It we displace the vertices, but
keep the texture coordinates constant,

Tessellation into triangles
produces undesired results.

Rasterization:
For the desired bilinear/trilinear
mapping,
the inverse transtormation is required
to determine the correct texture
coordinates.

~ } REAL-TIME VOLUME GRAPHICS (

Christof Rezk Salama ~ ~ 1000 '
« ke)) Computer Graphics and Multimedia Group, University of Siegen, Germany SIGGRAPHZ2004)

Mathematical Models

® What do we need the inverse fore

.._-"
.-l..'.-.-..
- i
i
/
]
[
i
i
')

It we displace the vertices, but
keep the texture coordinates constant,

Tessellation into triangles
produces undesired results.

Rasterization:
For the desired bilinear/trilinear

mapping,

the inverse transtormation is required
to determine the correct texture
coordinates.

In 3D: polygons also become
non-planar in texture space!

\:) REAL-TIME VOLUME GRAPHICS
- Christof Rezk Salams:z o, . %
r" : | | I..,"' JE | W -yl g ._"',,:r.]‘ll!ti Fa™ = Ny \ .I
C - S TICIORGIS TS i, o NG P Irilkirsachia Erains Ve re 1 SR A o i t?EGGnﬂpéi)= :
L '.-Ej‘i;_-".t-' =" ‘3l i-:;.‘:::-.‘. s and |:'1.'1'i.1:n[:1-.“.!!-;: '.'~=-_='.!E.-_],|;1!~.-'--,-i ;-Ei'_-.' of -'_-l-:--.ﬂ.;-:iiz_ Lag| h‘;-::::_-,'

Mathematical Models

Deformation Models for Texture-Based VR
® Deforming the proxy geometry ”

Second Idea:

Use tetrahedra as proxy geometry
Displace the 4 corner vertices.
Mathematical Description:

—

O(7) = AT+ b

caling
ST,

Rotation and ! Translation

\é > REAL-TIME VOLUME GRAPHICS

: Christof Rezk Salama
ke | 2004
o)) Computer Graphics and Multimedia Group, University of Siegen, Germany S]GG RﬁPH_)4

Mathematical Models

Deformation Models for Texture-Based VR
® Deforming the proxy geometry

Second Idea:

Use tetrahedra as proxy geometry
Displace the 4 corner vertices.
Mathematical Description:

O(T)= AT+ b

Fully determined by 4 displacement vectors

Difficulties: Tessellation, Depth Sorting

- REAL-TIME VOLUME GRAFPHICS
§ Christof Rezk Salama e
(E— : Irstc VBZK DT [18]_-'_1
k= ,_1_) Computer Graphics and Multimedia Group, University of Siegen, Germany SiGG RAPHL M)A .

Tetrahedra Deformation

@ Available in SGI's Volumizer API

Main Difficulties:

® Smooth Deformation requires high tessellation

® Depth sorting arbitrary tetrahedra meshes is a
ditticult problem

@ Especially true for non-convex ’re’rrahedrq meshes

@ Sorting not always possible
(Visibility Cycles!)

® Slice Decomposition
@ Mainly performed on CPU

)

Mathematical Models

Deformation Models for Texture-Based VR

® Deforming the appearance (textures)

Piecewise Linear Transformation:

Subdivide into hexahedra cells (3D patches)
Displace the texture coordinates at the corners.
Mathematical Description:

1,J,k€{0,1}

Vertex
coordinates

(x now refers to the texture coordinate)

Texture
coordinates

9

- f) By ttar Crachices ame 1 l#15

Piecewise Linear Patches

Advantages:

® Geometry (vertices) is static,
only texture coordinates change

@ Slice decomposition is easy

® No expensive recomputation or
real-time tessellation necessary

Vertex
coordinates

@ No depth sorting required!
@ Adaptive subdivision possible

Difficulties:

® How can we circumvent or approximate

' ' Text
the inverse deformation¢ exture

coordinates

- f) By ttar Crachices ame 1 l#15

9

Piecewise Linear Patches

Rendering

@® Store the volume as a 3D texture

@ Static Geometry:
use object aligned slices to preserve this benefit!

3 stacks of slices

plus a 3D texture

How do we compute
texture coordinates?

—

Piecewise Linear Patches

What do | need the inverse fore
® Texture Interpolation

ﬂ‘||]

|

shiffed texcoord.

_....““‘

[

/

bad bad ok

Piecewise Linear Patches

What do | need the inverse fore
® Texture Interpolation

Approximate the correct
bilinear interpolation by

4 interpolations in barycentric
coordinates

Use higher tessellation it quality
is not good enough

Geometry is static!
No depth sorting required!

ok

Piecewise Linear Patches

What do | need the inverse fore
® Texture Interpolation
® Intuitive Modelling

@ The user does not want to manually specify texture
coordinates

@ |nstead: Picking and dragging of control points

@ Only coarse approximation to the correct inverse
function is required:

simply negate the displacement vectors

—

)

Examples

Piecewise Linear Patches

High Flexibility
@ requires high subdivision
evel

_> nigh number of

free vertices

Al TInALC e I AEODADLL e
.:-?'.::I...-. L=1 'I!'-':':'.‘. Yl .'!'..I- I-"-".f.'. S A :....:?|. L
(;- . LINsior neZK oalaima
amputel wraphics and wiuikimeadia roup, University ol 1I2den, ‘sefmany

Piecewise Linear Patches

High Flexibility
@ requires high subdivision
level

}high number of

free vertices

@ can be reduced by
Adaptive Subdivision

@ Refine only where
higher tlexibility is required

@ Octree structure

@ Constraints required to prevent gaps in texture space!

> =

-

)

o

Adaptive Subdivision

QO Free Vertices
e Vertices with constraints

REAL-TIME VOLUME GRAPHICS
: Christof Rezk Salama =
« g tistof Regh SIGGRAPH2004)

D) Computer Graphics and Multimedia Group, University of Siegen, Germany

Edge Constraints

® Vertices on edges
between different
subdivision levels must
stay collinear

1
2

1 - S
Vo = §%+—V1

REAL-TIME VOLUME GRAPHICS

@ Christof Rezk Salama SIGGRAPH2004

D)) Computer Graphics and Multimedia Group, University of Siegen, Germany

o

Face Constraints

® Vertices on faces
with different subdivision
levels must stay
coplanar

—

Ve

REAL-TIME VOLUME GRAPHICS

@ Christof Rezk Salama SIGGRAPH2004

D)) Computer Graphics and Multimedia Group, University of Siegen, Germany

o

Local lHlumination

Local lllumination

@® Pre-computed gradient vectors become invalid
after the deformation

@ Use on-the-fly gradient estimation techniques OR
@® Adapt pre-computed gradient vectors to the deformation

ldea: Approximate trilinear mapping by affine matrix

- —
@ (ﬂj) — A_I (in homogenous coordinates)

Use this equation to approximate the inverse
mapping and to adapt pre-computed gradient
vectors

«F

o

Examples

\\é ? RE;‘_&L-TIME VOLUME GRAPHICS .
@ Christof Rezk Salama SIGGHAPH2004 (’

) Computer Graphics and Multimedia Group, University of Siegen, Germany

Volumetric Deformation

Deformation Models for Texture-Based VR

® Deforming the appearance (textures)

Dependent Textures /Offset Textures
Specity a deformation field as an additional
3D texture.

(SﬁathTU)

Dependent Textures

® Basically the same mathematical model as

tfor piecewise linear patc

NES

® |nverse mapping is avoic

ed by 3D texture lookup

® Works both with object- and viewport-aligned slices

@ Resolution of offset texture is independent ot volume

texture

@® No adaptive subdivision

@® Gradient adaptation difticult
@® Runs completely within GPU (except slicing)

® Deformation field can be moditied using
render-to-3D-texture (“Uber-bufters”)

Offset Textures

// Cg fragment shader for
// texture-space volume deformation

half4 main (float3 texcoords : TEXCOORDO,
uniform sampler3D offsetTexture,
uniform sampler3D volumeTexture) : COLORO

float3 offset = tex3D(offsetTexture, uvw);

uvw = uvw + offset;

return tex3D(volumeTexture, uvw) ;

Volume Animation

® Keyframe Animation/Blend Shapes:

@ Easy with piecewise linear patches (simple vertex shader)

® Offset textures: interpolate between ditterent offset
textures in fragment shader

@® Skeleton Animation:

@ Use piecewise linear patches with matrix skinning
in the vertex shader.

@ Dependent textures: Read the skin weights from 3D
texture and caluclate offset in fragment shader.

@ Procedural Animation:
Calculate 3D oftsets on-the-fly in the fragment shader

Texture Deformation

® Deformation field does not need to be stored in a texture

@® Use procedural animation instead!

Example: Tripod Creature

Texture offsets
parameterized in cylinder
coordinates

Animation procedure
moves 3 legs

independently
REAL-TIME VOLUME GRAPHICS
(@ 3 Christof Rezk Salama 20NA
k-)) Computer Graphics and Multimedia Group, University of Siegen, Germany SiGGRAPHL’ A :

Texture Deformation

® Deformation field does not need to be stored in a texture

® Use procedural animation instead! i e sy

half modulo(half a, half b) {

a -= floor(a/b)*b;
if (a < 0) a+=b;
return a;

}

half4 main{ half3 uwvw : TEXCOORDO,
uniform sampler3D volumeTexture,
uniform halft3 movel,
uniform half3 movez,
unitform half3 move3) : COLOR

half3 P = uvw - half3(0.32,0.5,0.5):

const half starangle = 2.0%PI/3.0;

half angle = PI +_atan2(P,z,P.X);

half whichLeg = floor(angle/starangle);
half A = modulo(angle, starangle)*3.0/2.0;|
half weight = sin(a);

half movey = 1.2-uvw.y;
moveyY = movey;
moveyY *= movey,

weight *= movey;

if (whichLeg < 1) {

uvw -= movel * weight:
¥ else if (whichLeg < 2)

uvw -= move2 * weight;
¥ else {
) uvw -= move3 * weight;

half4 color = tex3D{volumeTexture, uvw);

o

return half4(color):

- REAL-TIME VOLUME GRAPHICS
G § Christof Rezk Salama SIGGRAPH ;_::f:'_:?['f"il

)) Computer Graphics and Multimedia Group, University of Siegen, Germany

Thanks

| ’<') Thanks fo
= Mark Kilgard and Nick Triantos
trom NVidia tor providing the

GeForce 6800 demo machine

Thanks to my students:
Christoph Bastuck

Timo Hamburger

>

