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® What is a Difticult Data Format?
® Why Difficult Data Formats?
@ The “Ditticult Data” Rendering Pipeline

@ Reconstruction of volume data
® Filtering
@ Transter function and lighting

@ Conclusions




Motivation

® What is a Difficult Data Format@

@ A data tormat that ditters from the 3D domain on
which the volume rendering algorithm is detfined

@ Examples
® Compressed data
® Sparse data
® Set of 2D slices




Difficult-Data Volume Rendering
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Motivation

@® Why Difficult Data Formats?

® Data compression

® On-the-fly decompression of large data sets

® Acceleration of volume rendering

® Store only the “important” data in a packed format

@® GPU-generated data (GPGPU computation)
® Set of 2D dynamic textures (pbuffers)
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Rendering Pipeline Overview
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Overview

@
@
@ The “Ditticult Data” Rendering Pipeline

@ Reconstruction of volume data
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Rendering: Reconstruction

@® |dea:

@ Map data from “difficult-data space” to volume rendering space

Reconstruction
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Rendering: Reconstruction

@ Three Basic Types of Mappings

@® Analytic
® Mapping is procedurally computed on-the-fly

® Ex: Heirarchical bricking

Difficult Data Format Reconstruct
Slice with f(x,y,z)

Figure Courtesy of Klaus Engel
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Rendering: Reconstruction

@ Three Basic Types of Mappings
>

@ Table-Based
® Mapping is stored in GPU-based table(s)

® Ex: Vector quantization, adaptive texture maps, etc.

Lookup Table

Difficult Data Format Reconstruct
Slice From Table(s)
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Rendering: Reconstruction

@ Three Basic Types of Mappings
>
>

@® Geometry-Based
® Mapping is pre-computed and stored. in texture coordinates

® Ex: 2D texture volume rendering with a single data set

Reconstruct
Slice with Lines
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Reconstruction Conclusion

® Data reconstruction is the first step in all ditticult-
data volume rendering algorithms
@® Mapping from rendering-space to data-space
@ Analytic, table-based, or geometry-based




Overview

® The “Difficult Data” Rendering Pipeline

@

® Filtering
@




Rendering: Filtering

@ Construct Continuous Signal from Discrete Data
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Figuure .Courfesy of Klaus Engel
@ Achilles’ heal of ditticult-data volume rendering

® Native GPU filtering cannot be used in many cases
® Many difficult-data techniques provide no filtering
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Rendering: Filtering

@ In Which Space Should We Filter?

® Difficult-data domain

® Data format must contain contiguous regions of the
original volume (e.g. sub-volume bricks, etc.)

_Brick1-__~Brick2-.

B P No overlap
B W  One voxel overlap
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® Over-represent data by width of filter kernel

@ Use native GPU trilinear filtering Figure Courfesyailienenes
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Rendering: Filtering

@ In Which Space Should We Filter?
@
@ Reconstructed rendering domain
® Required it data is not “over-represented sub-volumes

® Must reconstruct a data point for each filter sample

@ Problem: Too expensive--No one does this!
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Solution: Deferred Filtering

® |dea

@ Similar to deferred shading and separable convolution

@ Separate reconstruction and filtering steps
® Step 1: Reconstruct original discrete data

® Step 2: Filter reconstructed data
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Deferred Filtering: Why?

@ Fast
@ Avoid redudant data reconstruction computations
@ Use native GPU filtering

® Modular

@® Works with any reconstruction algorithm




Deferred Filtering

@ Algorithm
® Pass 1:

® Reconstruct data for two adjacent slices

® Save results to textures/pbuffers
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Deferred Filtering

@ Implementation

@ Pass 2:

@ Read data from saved slices
® Both samples are bilinearly filtered by GPU

® Compute z-interpolation in fragment program
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Deferred Filtering: Cost Analysis

@® lLet's Run Some Numbers...

@ Nr = Number instructions to reconstruct one value 4

@ Nt = Number of samples in filter 8

@ Ni = Number of instructions for trilinear interp 14

® Nd= Number of elements in data space 2563

@® Nv = Number of elements in rendering space 5123
® Non-Deterred Filtering Deterred Filtering

(Nr* Nf + Ni) * Nv = 6.2 Billion (Nr* Nd) + Nv = 0.6 Billion

® Deferred filtering gives nearly ~10x fewer instructions!

® Real-world example shows ~7x speedup (Nathan Fout)
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Deferred Filtering Conclusions

@® Pros

@ Enables filtering with any data reconstruction algorithm
® Avoids redundant data reconstruction (fast)
® Leverages GPU’s native bilinear filtering (fast)

@ Cons
@ Partitioning shader at reconstruction/tilter call

@ Overhead of extra render pass (2¢)

® Reference

@ “A Streaming Narrow-Band Algorithm: Interactive Computation and Visualization of
Level Sets,” Lefohn, Kniss, Hansen, Whitaker, TVCG July/August 2004
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Filtering Conclusions

® |t Data Stored as “Over-Represented Sub-Volumes”

® Reconstruct and filter data simultaneously
@ GPU’s native trilinear filtering
® Other filtering methods discussed in this course

® Else

@ Use deferred filtering
®Pass 1: Reconstruct data for two adjacent slices

® Pass 2: Filtering

@ Trilinear
® GPU’s native bilinear filtering with in-shader z-interpolation

@ Other filtering methods discussed in this course
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Overview

® The “Difficult Data” Rendering Pipeline

@
@

® Transfer function and lighting




Transfer Function and Lighting

@ Nothing Changes!

@ Exactly the same techniques discussed throughout course
@ Difficult data formats simply add two steps to the pipeline

@ Reconstruction

® Deferred filtering 2 -
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Rendering

® Putting it all together
@® Reconstruction
@ Filtering
@ Transfer function and lighting




Conclusions

® Volume Rendering tfrom Ditticult Data Formats

@® Adds two steps to volume rendering pipeline
@® Reconstruction
® Deferred filtering

® Enables
@ Acceleration strategies
® Data compression: Rendering large data sets
® Interactive rendering of 3D GPGPU computations

@ Increasingly important as more powerful GPUs permit
more complex on-the-tly reconstruction schemes
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Questions?

@ Thank youl

® For more information

® Google “Letohn GPU”
® http://graphics.cs.ucdavis.edu/~letohn/




