Real Time Volume Graphics [’

Volume Rendering from
Difficult Data Formats

A
f‘.:;)
)
te)
Aaron E. Lefohn

Institute for Data Analysis
and Visualization

University of California, Davis

Overview

® What is a Difticult Data Format?
® Why Difficult Data Formats?
@ The “Ditticult Data” Rendering Pipeline

@ Reconstruction of volume data
® Filtering
@ Transter function and lighting

@ Conclusions

Motivation

® What is a Difficult Data Format@

@ A data tormat that ditters from the 3D domain on
which the volume rendering algorithm is detfined

@ Examples
® Compressed data
® Sparse data
® Set of 2D slices

Difficult-Data Volume Rendering

Compressed Data Format Interactive VolumeRendering

QP
&3 o)

Motivation

@® Why Difficult Data Formats?

® Data compression

® On-the-fly decompression of large data sets

® Acceleration of volume rendering

® Store only the “important” data in a packed format

@® GPU-generated data (GPGPU computation)
® Set of 2D dynamic textures (pbuffers)

>
&9

Rendering Pipeline Overview

Reconstruct

— =t Filter
S Light
“Difficult Data” Format Volume Rendering Space Apply Transfer Function

eb
a3 o

Overview

@
@
@ The “Ditticult Data” Rendering Pipeline

@ Reconstruction of volume data
()

@
@

Rendering: Reconstruction

@® |dea:

@ Map data from “difficult-data space” to volume rendering space

Reconstruction

o
L1
-+t

“Difficult Data” Format Volume Rendering Space

e»
&5

Rendering: Reconstruction

@ Three Basic Types of Mappings

@® Analytic
® Mapping is procedurally computed on-the-fly

® Ex: Heirarchical bricking

Difficult Data Format Reconstruct
Slice with f(x,y,z)

Figure Courtesy of Klaus Engel

2
%2
&9

Rendering: Reconstruction

@ Three Basic Types of Mappings
>

@ Table-Based
® Mapping is stored in GPU-based table(s)

® Ex: Vector quantization, adaptive texture maps, etc.

Lookup Table

Difficult Data Format Reconstruct
Slice From Table(s)
[)
6>
&9

Rendering: Reconstruction

@ Three Basic Types of Mappings
>
>

@® Geometry-Based
® Mapping is pre-computed and stored. in texture coordinates

® Ex: 2D texture volume rendering with a single data set

Reconstruct
Slice with Lines

>
&9

Reconstruction Conclusion

® Data reconstruction is the first step in all ditticult-
data volume rendering algorithms
@® Mapping from rendering-space to data-space
@ Analytic, table-based, or geometry-based

Overview

® The “Difficult Data” Rendering Pipeline

@

® Filtering
@

Rendering: Filtering

@ Construct Continuous Signal from Discrete Data

G LS
N SRR
Ao e
ﬁ‘"’“;— e R
57 A ki]
f s i i |
e E {

Figuure .Courfesy of Klaus Engel
@ Achilles’ heal of ditticult-data volume rendering

® Native GPU filtering cannot be used in many cases
® Many difficult-data techniques provide no filtering

o, |
a3 o

Rendering: Filtering

@ In Which Space Should We Filter?

® Difficult-data domain

® Data format must contain contiguous regions of the
original volume (e.g. sub-volume bricks, etc.)

_Brick1-__~Brick2-.

B P No overlap
B W One voxel overlap

N
n N

® Over-represent data by width of filter kernel

@ Use native GPU trilinear filtering Figure Courfesyailienenes

Qb
a3 o

Rendering: Filtering

@ In Which Space Should We Filter?
@
@ Reconstructed rendering domain
® Required it data is not “over-represented sub-volumes

® Must reconstruct a data point for each filter sample

@ Problem: Too expensive--No one does this!

/"

/] pa's = -~
/' V.. .4 P it o
7 ,:{ [i r
/1 7 / A
M /. j ; Reconstructions
i = Filter Evaluation
“Difficult Data” Format Volume Rendering Space Transfer Function

Lighting

@”;} @

Solution: Deferred Filtering

® |dea

@ Similar to deferred shading and separable convolution

@ Separate reconstruction and filtering steps
® Step 1: Reconstruct original discrete data

® Step 2: Filter reconstructed data

Reconstruct
= ==
; : ' N,
. e Z : " Filter
1 Z :
“Difficult Data” Format Volume Rendering Space

P
&

Deferred Filtering: Why?

@ Fast
@ Avoid redudant data reconstruction computations
@ Use native GPU filtering

® Modular

@® Works with any reconstruction algorithm

Deferred Filtering

@ Algorithm
® Pass 1:

® Reconstruct data for two adjacent slices

® Save results to textures/pbuffers

O

- = L/ =
£ = =
“Difficult Data” Format Volume Rendering Space

2o
&

Deferred Filtering

@ Implementation

@ Pass 2:

@ Read data from saved slices
® Both samples are bilinearly filtered by GPU

® Compute z-interpolation in fragment program

Slice A e

Direction -
= ~ ; £
;_// // . Color
: —— g & Opacity
= =
i =

Bilinear Filtered

Vol Rendering S
olume Rendering >pace Reconstructed Slices

e»
&5

o

Deferred Filtering: Cost Analysis

@® lLet's Run Some Numbers...

@ Nr = Number instructions to reconstruct one value 4

@ Nt = Number of samples in filter 8

@ Ni = Number of instructions for trilinear interp 14

® Nd= Number of elements in data space 2563

@® Nv = Number of elements in rendering space 5123
® Non-Deterred Filtering Deterred Filtering

(Nr* Nf + Ni) * Nv = 6.2 Billion (Nr* Nd) + Nv = 0.6 Billion

® Deferred filtering gives nearly ~10x fewer instructions!

® Real-world example shows ~7x speedup (Nathan Fout)

ab
%3 o

Deferred Filtering Conclusions

@® Pros

@ Enables filtering with any data reconstruction algorithm
® Avoids redundant data reconstruction (fast)
® Leverages GPU’s native bilinear filtering (fast)

@ Cons
@ Partitioning shader at reconstruction/tilter call

@ Overhead of extra render pass (2¢)

® Reference

@ “A Streaming Narrow-Band Algorithm: Interactive Computation and Visualization of
Level Sets,” Lefohn, Kniss, Hansen, Whitaker, TVCG July/August 2004

ab
%3 o

Filtering Conclusions

® |t Data Stored as “Over-Represented Sub-Volumes”

® Reconstruct and filter data simultaneously
@ GPU’s native trilinear filtering
® Other filtering methods discussed in this course

® Else

@ Use deferred filtering
®Pass 1: Reconstruct data for two adjacent slices

® Pass 2: Filtering

@ Trilinear
® GPU’s native bilinear filtering with in-shader z-interpolation

@ Other filtering methods discussed in this course

ab
a3 o

Overview

® The “Difficult Data” Rendering Pipeline

@
@

® Transfer function and lighting

Transfer Function and Lighting

@ Nothing Changes!

@ Exactly the same techniques discussed throughout course
@ Difficult data formats simply add two steps to the pipeline

@ Reconstruction

® Deferred filtering 2 -
Reconstruct S e
P —
e = Blend
H / <, Filter
- - - Light
Difficult Data’ Format Volume Rendering Space Apply Transfer Function

e» :
a3 o

Rendering

® Putting it all together
@® Reconstruction
@ Filtering
@ Transfer function and lighting

Conclusions

® Volume Rendering tfrom Ditticult Data Formats

@® Adds two steps to volume rendering pipeline
@® Reconstruction
® Deferred filtering

® Enables
@ Acceleration strategies
® Data compression: Rendering large data sets
® Interactive rendering of 3D GPGPU computations

@ Increasingly important as more powerful GPUs permit
more complex on-the-tly reconstruction schemes

P
&

o

Acknowledgements

Joe Kniss, Ph.D. student, SCI Institute, Univ. of Utah
The other Real-time Volume Graphics course presenters
Nathan Fout, Ph.D. student, Univ. Of California Davis

% %9 9

9

Ross Whitaker, M.S. advisor, SCI Institute, Univ. of Utah
John Owens, Ph.D. advisor, Univ. of California Davis
Evan Hart, Mark Segal, Jason Mitchell at ATl Technologies, Inc.

% 9

National Science Foundation Graduate Fellowship
Office of Naval Research grant #N000140110033
National Science Foundation grant #ACI008915 and #CCR0092065

Pixar Animation Studios, summer internships

ALIENIWARE® [nterchangeable mobile GPUs

%> %9999

ab
a3 o

Questions?

@ Thank youl

® For more information

® Google “Letohn GPU”
® http://graphics.cs.ucdavis.edu/~letohn/

