

Seite 1 von 2

Übung zu Computergraphik II

- Übungsblatt 10 -

Lehrstuhl für Computergraphik und Multimediasysteme

Peter Marchel, Julian Bader

Aufgabe 1 [1 Punkt] Komplexe Zahlen

- 1. Gegeben sind zwei komplexe Zahlen p=3+2i und q=-3+3i. Berechnen Sie p+q und $p\cdot q$.
- 2. Geben Sie den Real- und den Imaginärteil für folgende Terme an:

$$\frac{3+i\sqrt{7}}{4}$$

$$e^{1+i\pi}$$

- 3. Vereinfachen Sie so weit wie möglich den Term $i + i^2 + i^3 + i^4 + i^5$.
- 4. Finden Sie alle (komplexen) Lösungen der folgenden quaratischen Gleichung:

$$z^2 - 2z + 10 = 0, \quad z \in \mathbb{C}$$

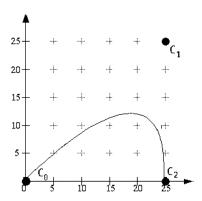
5. Formen Sie 1+i in Polarkoordinaten um.

Aufgabe 2 [1 Punkt] Komplexe Zahlen (Bonusaufgabe)

Zeigen Sie, dass für das Produkt zweier komplexer Zahlen $c_1, c_2 \in \mathbb{C}$ mit $|c_1| = |c_2| = 1$ gilt: $|c_1 \cdot c_2| = 1$.

Aufgabe 3 [1 Punkt] Rotation

Rotieren Sie den Vektor $\mathbf{w} = \begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix}$ um den Winkel π um die z-Achse


- 1. mit Hilfe einer Rotationsmatrix in \mathbb{R}^3 ,
- 2. mit Hilfe von Quaternionen.

Anmerkung: Bitte geben Sie jeweils den vollständigen Lösungsweg an.

Aufgabe 4 [1 Punkt] Spline-basierte Animation

Gegeben sei die in der Abbildung dargestellte Bézier-Kurve $\mathbb{C}(u)$ mit den Kontrollpunkten

$$\mathbf{C}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \mathbf{C}_1 = \begin{pmatrix} 25 \\ 25 \end{pmatrix} \text{ und } \mathbf{C}_2 = \begin{pmatrix} 25 \\ 0 \end{pmatrix}.$$

Gegeben seien außerdem folgende Kurvenpunkte für $u_1=0.2,\ u_2=0.4,\ u_3=0.6,\ u_4=0.8$:

$$\mathbf{C}(u_1) = \binom{9}{8}, \ \mathbf{C}(u_2) = \binom{16}{12}, \ \mathbf{C}(u_3) = \binom{21}{12}, \ \mathbf{C}(u_4) = \binom{24}{8}.$$

Im folgenden sollen zwei Lookup-Tabellen mit Pfadlängen ergänzt werden:

u_i	Bogen
$u_0 = 0$	$l_0 = 0$
$u_1 = 0, 2$	$l_1 =$
$u_2 = 0,4$	$l_2 =$
$u_3 = 0,6$	$l_3 =$
$u_4 = 0,8$	$l_4 =$
$u_5 = 1,0$	$l_5 =$

Bogen	u_i^*
$l_0^* = 0$	$u_0^* = 0$
$l_1^* =$	$u_1^* =$
$l_2^* =$	$u_2^* =$
$l_3^* =$	$u_3^* =$
$l_4^* =$	$u_4^* =$
$l_5^* =$	$u_5^* =$

- 1. Berechnen Sie zu den Parametern u_0, \ldots, u_5 jeweils eine Annäherung der Bogenlänge l_i zwischen $\mathbf{C}(u_0)$ und $\mathbf{C}(u_i)$. Tragen Sie die entsprechenden Werte in die Tabelle ein.
- 2. Teilen Sie die Gesamtkurvenlänge in fünf äquidistante Abschnitte auf, und tragen Sie die fünf Zwischenwerte l_1^*, \dots, l_5^* in die Tabelle ein.
- 3. Gesucht sind nun zu den Bogenlängen l_1^*, \dots, l_5^* die entsprechenden Parameter u_1^*, \dots, u_5^* , um Kurvenpunkte in äquidistanten Abständen zu erhalten.

Hinweis: Führen Sie für jede Bogenlänge eine Suche in der linken Tabelle durch. Falls der gesuchte Wert zwischen zwei Tabelleneinträgen liegt, dann berechnen Sie einen neuen Parameter durch lineare Interpolation der Bogenlängen.

Abgabe: 18.12.2012, zu Beginn der Übung oder bis 8:30 Uhr im Postkasten des Lehrstuhls (gegenüber Raum H-A 7107)