

Computergraphik II

Winter 2012/2013

12 Bidirectional Reflectance Distribution Function (BRDF)

Versionsdatum: 3. Januar 2013

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 12-1-

Computergraphik II

12 Bidirectional Reflectance Distribution Function (BRDF

Grundlegendes

Ziel: Realistische Szenendarstellung auf Basis physikalisch-basierter Lichtmodelle

Bislang: Phong-Modell, d.h. ausschließlich lokale Beleuchtung

- 1. vereinfache, punktförmige Lichtquellen
- 2. Farbe eines Oberflächenpunktes berechnet durch
 - O Geometrische Größen: Flächennormale, Richtungen zu Lichtquelle und Beobachter
 - O Intensität der Lichtquelle(n) und Reflexionsparameter der Fläche

Probleme des Phong-Modells: Nur diffuser Term ist physikalisch motiviert

- O Ambienter Term: Approximation von indirekten Beleuchtungseffekten wie Schatten (\Rightarrow CG-III, VR) und Inter-Objekt-Reflexionen (\Rightarrow CG-III)
- O Spekularer Term: Ist phänomenologisch ähnlich zu Plastik

Vergleich Phong zu realer Rückstreuung

Erinnerung: Phong-Modell

 $\mathbf{I}_{\text{gesamt}} = \mathbf{k}_a * \mathbf{L}_a + \max\{\left(\hat{\mathbf{n}} \cdot \hat{\mathbf{l}}\right), 0\} \cdot \mathbf{k}_d * \mathbf{L}_d + \max\{\left(\hat{\mathbf{v}} \cdot \hat{\mathbf{r}}_l\right)^n, 0\} \cdot \mathbf{k}_s * \mathbf{L}_s$

 $I_{a,d,s}$ ambienter, diffuser, spekularer Beleuchtungsanteil

 $L_{a,d,s}$ amb., diff., spek. Licht der Lichtquelle

 $\mathbf{k}_{a,d,s}$ amb., diff., spek. Reflexionskoeffizienten des Materials

Vergleich: SpiegeInder Anteil des Phong-Modells und von Aluminium

12.1 Physikalische Grundlagen

Steradiant/Raumwinkel: Analog zum Bogenmaß als 2D-Winkelmaß

- O "Raumbereich" den eine Fläche bzgl. eines Zentrums ausfüllt
- O Bezug ist die Einheitskugel \Rightarrow Projektion der Fläche auf Einheitskugel
- \bigcirc Dimension: [*sr*] (im Grunde aber dimensionslos)

Berechnung des Raumwinkels für differentielle Fläche (Strahlensatz):

Computergraphik II

Strahlungsphysikalische Größen

Radiant Flux (Strahlungsfluß, Strahlungsleistung): Lichtenergie durch Fläche pro Zeit: $\Phi = \frac{dQ}{dt}$, $\left[W \doteq \frac{J}{s}\right]$

Radiant Flux Density (Strahlungsflußdichte): Radiant Flux pro Fläche:

$$u = \frac{d\Phi}{dA}, \ \left[\frac{W}{m^2}\right]$$

- O Irradiance (Bestrahlungsstärke): E = "einfallende Strahlungsflußdichte"
- O Radiosity (Spez. Ausstrahlung): B = "ausgehende Strahlungsflußdichte"

Radiance (Strahldichte): Radiant Flux Density bzgl. Raumwinkel:

12.2 Definition der BRDF

Annahme: 1. es wird nur Reflexion betrachtet, keine Transmission

- 2. Einfallende Radiance L_i teilweise in outgoing Richtung ω_o reflektiert
- 3. unmittelbare Reflexion (keine Phosphoreszenz) in einer Wellenlänge (keine Fluoreszenz)
- 4. es gibt keine Streuung (Nebel, semi-transparentes Material (Haut))
- **Definition:** Relation von ausgehender zu eingehender Radiance für Wellenlänge λ :

$$f_r(\mathbf{P}, \hat{\omega}_i \to \hat{\omega}_o, \lambda) = \frac{d\mathbf{L}_o(\mathbf{P}, \hat{\omega}_o, \lambda)}{d\mathbf{L}_i(\mathbf{P}, \hat{\omega}_i, \lambda) \cos(\theta_i) \ d\hat{\omega}_i}$$

- Lambertsches Gesetz: $\mathbf{L}_i(\hat{\omega}_i) \cos(\theta_i)$ wandelt Radiance in Flächen-Irradiance
- **BRDF Beleuchtung:** Sammeln der einfallenden Radiance über Halbkugel $\Omega(\hat{\mathbf{n}})$:

$$\mathbf{L}_{o}(\hat{\omega}_{o},\lambda) = \int_{\Omega(\hat{\mathbf{n}})} f_{r}(\mathbf{P},\hat{\omega}_{i}\to\hat{\omega}_{o},\lambda) \mathbf{L}_{i}(\hat{\omega}_{i})\cos(\theta_{i}) \, d\hat{\omega}$$

 $\mathbf{L}_{o}(\hat{\omega}_{o})$

 $\mathbf{L}_{o}(\hat{\omega}_{o})$

Eigenschaften der BRDF

Reziprozität (Helmholtz): Vertauschen der Richtungen ändert nicht:

 $f_r(\mathbf{P}, \hat{\omega}_i \to \hat{\omega}_o) = f_r(\mathbf{P}, \hat{\omega}_o \to \hat{\omega}_i)$

Energieerhaltung: BRDF ist *konservativ*, wenn für eine Punktlichtquelle aus Richtung $\hat{\omega}_i^*$ gilt:

$$\underbrace{\mathbf{L}_{i}(\hat{\omega}_{i}^{*}) \cdot \cos(\theta_{i})}_{\text{Irradiance bzgl. }\hat{\mathbf{n}}} \geq \underbrace{\int_{\Omega(\hat{\mathbf{n}})} \mathbf{L}_{o}(\hat{\omega}_{o}) \cos(\theta_{o}) \ d\hat{\omega}_{o}}_{\text{Radiance bzgl. }\hat{\mathbf{n}}}$$

$$\Leftrightarrow \mathbf{L}_{i}(\hat{\omega}_{i}^{*}) \cdot \cos(\theta_{i}) \geq \int_{\Omega(\hat{\mathbf{n}})} \left(\int_{\Omega(\hat{\mathbf{n}})} f_{r}(\mathbf{P}, \hat{\omega}_{i} \to \hat{\omega}_{o}) \mathbf{L}_{i}(\hat{\omega}_{i}) \cos(\theta_{i}) \ d\hat{\omega}_{i} \right) \cos(\theta_{o}) \ d\hat{\omega}_{o}$$

$$\overset{\text{Punktl.}}{\Leftrightarrow} \mathbf{L}_{i}(\hat{\omega}_{i}^{*}) \cdot \cos(\theta_{i}) \geq \int_{\Omega(\hat{\mathbf{n}})} f_{r}(\mathbf{P}, \hat{\omega}_{i}^{*} \to \hat{\omega}_{o}) \mathbf{L}_{i}(\hat{\omega}_{i}^{*}) \cos(\theta_{o}) \ d\hat{\omega}_{o}$$

$$\Leftrightarrow 1 \geq \int_{\Omega(\hat{\mathbf{n}})} f_{r}(\mathbf{P}, \hat{\omega}_{i}^{*} \to \hat{\omega}_{o}) \cos(\theta_{o}) \ d\hat{\omega}_{o}$$

$$\overset{\text{Folie 12-7-}}{\overset{\text{Folie 12-7-}}{\overset{\text{Folie 12-7-}}{\overset{\text{Computer graphics & Multimedia Systems}}}$$

12.2 Definition der BRDF ...

Ú

Eigenschaften der BRDF (Fort.)

Isotropie und Anisotropie: BRDF-Reflexionsfaktor kann invariant unter Rotation um \hat{n} sein (*isotrop*) oder nicht (*anisotrop*)

Isotropie: $f_r(\mathbf{P}, \hat{\omega}_i \to \hat{\omega}_o) = f_r(\mathbf{P}, \hat{\omega}_i + \Delta \phi \to \hat{\omega}_o + \Delta \phi)$

Verschiebungsinvariant: Wenn BRDF an jedem Punkt identisch ist

$$f_r(\mathbf{P}, \hat{\omega}_i \to \hat{\omega}_o) = f_r(\mathbf{Q}, \hat{\omega}_i \to \hat{\omega}_o), \text{ für } \mathbf{P} \neq \mathbf{Q}$$

Isotropes Material Anisotropes Material Nicht verschiebungsinv. Verschiebungsinvariant

Vereinfachung der BRDF

Initial hat die BRDF 7 Dimensionen: 2 für Position auf Fläche, 2x2 für Winkel $\vec{\omega}_i = (\phi_i, \theta_i), \vec{\omega}_o = (\phi_o, \theta_o)$ und die Wellenlänge λ

RGB-Primitive reduziert $\lambda \Rightarrow 6$ Dimensionen

Verschiebungsinvariant reduziert Position \Rightarrow 4 Dimensionen

Isotrope Materialen reduziert einen $\phi \Rightarrow 3$ Dimensionen

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 12-9-

Computergraphik II

12.3 Modifiziertes Phong-Modell

Das klassische Phong-Modell

Erinnerung: Definition der BRDF

$$f_r(\mathbf{P}, \hat{\omega}_i \to \hat{\omega}_o, \lambda) = \frac{d\mathbf{L}_o(\mathbf{P}, \hat{\omega}_o, \lambda)}{d\mathbf{L}_i(\mathbf{P}, \hat{\omega}_i, \lambda)\cos(\theta_i) \ d\hat{\omega}_i}$$

Ambienter Term: "Unphysikalisch" und nicht als BRDF darstellbar Perfekt diffuses Material entspricht einer konstanten BRDF

$$f_r(\mathbf{P}, \hat{\omega}_i \to \hat{\omega}_o) = k_d$$
, denn $\mathbf{L}_o(\mathbf{P}, \hat{\omega}_o) = k_d \cdot \cos(\theta_i) \cdot \mathbf{L}_i(\mathbf{P}, \hat{\omega}_i)$

Perfekt spiegeIndes Material entspricht folgender BRDF ($(-\hat{\omega}_i \cdot \hat{\mathbf{n}}) = \cos \theta_i$,)

$$f_r(\mathbf{P}, \hat{\omega}_i \to \hat{\omega}_o) = k_s \frac{\left(-\hat{\omega}_i \cdot \hat{\mathbf{r}}_{\hat{\omega}_o}\right)^n}{\left(-\hat{\omega}_i \cdot \hat{\mathbf{n}}\right)}, \text{ denn } \mathbf{L}_o(\mathbf{P}, \hat{\omega}_o) = k_s \cdot \left(-\hat{\omega}_i \cdot \hat{\mathbf{r}}_{\hat{\omega}_o}\right)^n \cdot \mathbf{L}_i(\mathbf{P}, \hat{\omega}_i)$$

 \Rightarrow Das Phong-Modell ist isotrop, aber weder reziprok noch konservativ!

Das modifizierte Phong-Modell

Energieerhaltung: Bedingung (s.o.): $\int_{\Omega(\hat{\mathbf{n}})} f_r(\mathbf{P}, \hat{\omega}_i \to \hat{\omega}_o) \cos(\theta_o) \ d\hat{\omega}_o \le 1$

Diffus:
$$\int_{\Omega} f_r(\mathbf{P}, \hat{\omega}_i \to \hat{\omega}_o, \lambda) \cos(\theta_o) \ d\hat{\omega}_o = k_d \cdot \int_{\Omega} \cos(\theta_o) \ d\hat{\omega}_o = k_d \cdot \pi \le 1$$

Normierung mit $1/\pi \Rightarrow$ Energieerhaltung

Spekularer Anteil: Weglassen von $1/(-\hat{\omega}_i \cdot \hat{\mathbf{n}})$ (\Rightarrow Reziprozität) & Normierung $(\Rightarrow$ Energieerhaltung)

$$\int_{\Omega} f_r(\mathbf{P}, \hat{\omega}_i \to \hat{\omega}_o, \lambda) \cos(\theta_o) \ d\hat{\omega}_o = k_s \cdot \int_{\Omega} \left(-\hat{\omega}_i \cdot \hat{\mathbf{r}}_{\hat{\omega}_o} \right)^n \cos(\theta_o) \ d\hat{\omega}_o = k_s \cdot \frac{2\pi}{n+2}$$

Modifiziertes Phong-Modell: Mischung aus diffusem und spekularem Term,

$$f_r(\mathbf{P}, \hat{\omega}_i \to \hat{\omega}_o) = \frac{k_d}{\pi} + \frac{k_s(n+2)}{2\pi} (-\hat{\omega}_i \cdot \hat{\mathbf{r}}_{\hat{\omega}_o})^n, \text{ energieerhaltend für } k_d + k_s \le 1$$

Visueller Eindruck des Phong-Modell bleibt unverändert ("Plastik-Shader")

Prof. Dr. Andreas Kolb Computergraphik II -Folie 12-11-Computer Graphics & Multimedia Systems

Physikalisch basierte BRDFs 12.4

Grundsätzliche Ansätze

Messung realer Materialien: Approximation der realen Daten

Physikalisches Modell: Beschreibung physikalischer Phänomene in einem (Rechen-)Modell & Auswertung.

- O **Oberflächenstruktur:** Licht interagiert mit Mikrostrukturen, die nicht geometrisch modelliert werden können.
- O Fresnel-Term: Zusammenhang zwischen Spiegelung und Transmission/Absorption vom Einfallswinkel
 - Flacher Winkel: Kaum Transmission, viel Spiegelung
 - Steiler Winkel & transp. Material: Viel Transm., wenig Spiegelung

Idee der Mikrofacetten

Im Überblick

Cook-Torrance BRDF: $f_r(\mathbf{P}, -\hat{\omega}_i \to \hat{\omega}_o) = \frac{k_d}{\pi} + k_s \frac{F \cdot G \cdot D}{\cos(\hat{\mathbf{n}}, -\hat{\omega}_i)\cos(\hat{\mathbf{n}}, \hat{\omega}_o)}$

Bestandteile des Cook-Torrance Modells

- O F: Fresnel-Term (s.o.)
- O D: Verteilungsfunktion der Mikrostrukturen
- O G: Geometrie-Term: Berücksichtigt die Verschattung der Mikrofacetten

Vergleich :

12.4.1 Das Cook-Torrance Modell ...

Fresnel Term

Erinnerung CG-I: Lichtbrechung an Materialübergang abhängig von

- O Brechungsindex $n = \frac{\text{Lichtgeschw. im Vakuum } c}{\text{Lichtgeschw. in Materie } v}$
- **O** Einfallswinkel Θ_1

Brechungsgesetz und Gesamtbrechnungsindex

$$\eta = \frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1}$$

Beispiele: Luft
$$n \approx 1$$
, Wasser $n = 1.333$, Flintglas $n = 1.613$

Fresnel-Term: Reflektivität für Brechungsindex η und Halfway-Vektor $\hat{\mathbf{h}} = \frac{-\hat{\omega}_i + \hat{\omega}_o}{\|-\hat{\omega}_i + \hat{\omega}_o\|}$ (Beachte: Beim Phong-Modell ist $\hat{\mathbf{l}} = -\hat{\omega}_i$)

$$F = \frac{1}{2} \left(\frac{g-c}{g+c} \right)^2 \left(1 + \left(\frac{c(g+c)-1}{c(g-c)+1} \right)^2 \right), \ c = \left(-\hat{\omega}_i \cdot \hat{\mathbf{h}} \right), \ g = \sqrt{\eta^2 + c^2 - 1}$$

eflexion

h (Facetten-Normale)

t Transmission

 $\hat{\omega}_i$

 n_1

 n_2

Bemerkung: Fresnel-Term

Das Cook-Torrance Modell ... 12.4.1

Computer Graphics & Multimedia Systems

Mikrofacetten

- Modell: Oberfläche besteht aus symmetrischen, V-förmigen, perfekten Mikrospiegeln (*Mikrofacetten*), Reflexion findet nur in der idealen Richtung statt
- **Wahrscheinlichkeitsverteilung** D legt fest, wieviele Mikrospiegel von $\hat{\omega}_i$ nach $\hat{\omega}_o$ reflektieren

Halfway-Vektor:
$$\hat{\mathbf{h}} = \frac{-\hat{\omega}_i + \hat{\omega}_o}{\|-\hat{\omega}_i + \hat{\omega}_o\|}$$
, Abweichung von Normale: $\gamma = \angle(\hat{\mathbf{n}}, \hat{\mathbf{h}})$
Bsp. Gaußverteilung: $D(\gamma) = \frac{1}{m\sqrt{2\pi}}e^{-\frac{\gamma^2}{2m^2}}$, *m* beschreibt Rauigkeit

-Folie 12-15-

Alternative: Beckmann-Verteilungsfunktion

$$D(\gamma) = \frac{1}{4m^2 \cos^4 \gamma} e^{-\left(\frac{\tan \gamma}{m}\right)^2}$$

Shadowing und Masking

Mikrofacetten verschatten u.U. einfallendes Licht (Shadowing) oder ausfallendes Licht (Masking)

Relativer Anteil reflekt. Lichts: $G_m = \frac{l-m}{l}$ (Masking), $G_s = \frac{l-s}{l}$ (Shadowing) **Geometrie-Term** *G* beschreibt beide Verschattungseffekte

$$G = \min\{1, G_m, G_s\} = \min\{1, \frac{2(\hat{\mathbf{h}} \cdot \hat{\mathbf{n}})(\hat{\omega}_o \cdot \hat{\mathbf{n}})}{(\hat{\mathbf{h}} \cdot \hat{\omega}_o)}, \frac{2(\hat{\mathbf{h}} \cdot \hat{\mathbf{n}})(\hat{\omega}_i \cdot \hat{\mathbf{n}})}{(\hat{\mathbf{h}} \cdot \hat{\omega}_i)}\}$$

Prof. Dr. Andreas Kolb Computer Graphics & Multimedia Systems

-Folie 12-17-

Computergraphik II

BRDFs für reale Materialien 12.4.2

Annahme im Folgenden: Verschiebungsinvariant BRDF

Ziel: Messung realer Materialien und Verwendung in Beleuchtungsberechnung

Messung mittels Gonio-Reflektometer

- **O** Punktlichtquelle $\hat{=} \hat{\omega}_i$
- O Lichtdetektor (Photozelle) $= \hat{\omega}_o$
- O Diskrete Abtastung auf Hemisphäre $\Rightarrow (N_{\phi} \cdot N_{\theta}) \cdot (N_{\phi} \cdot N_{\theta})$ Messwerte

Direkte Speicherung als 4D- (anisotrop) bzw. 3D-Array (isotrop) sehr aufwändig

Ansatz: Approximation der BRDF-Werte mittels Texturen

$$f_r(\mathbf{P}, \hat{\omega}_i \to \hat{\omega}_o) \approx \sum_{j=1}^J g_j(\hat{\omega}_i) \cdot h_j(\hat{\omega}_o)$$

Exkurs: Singulärwertzerlegung (singular value decomposition, SVD)

Gegeben: Matrix $M \in \mathbb{R}^{n \times n}$

SVD liefert Zerlegung von *M* in folgender Form:

$$M = U \cdot \Sigma \cdot V^T$$

	(:	:	÷		:)	$\begin{pmatrix} \sigma_1 \\ 0 \end{pmatrix}$	$0 \\ \sigma_2$	0 0	· · · ·	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	($\hat{\mathbf{v}}_1^T \ \hat{\mathbf{v}}_2^T$	· · · · · · ·
=	$\hat{\mathbf{u}}_1$.	$\hat{\mathbf{u}}_2$.	$\hat{\mathbf{u}}_3$.	•••	$\hat{\mathbf{u}}_n \mid \cdot$:	• •	·.	•		•	• •	÷
	(:	•	•	•••	:)	$\int 0$	0	0	•••	σ_n	$\left(\ldots \right)$	$\hat{\mathbf{v}}_n^T$)

 $\sum_{i=1}^{n} \sigma_i \hat{\mathbf{u}}_i \cdot \hat{\mathbf{v}}_i^T \text{ ist für } n' < n \text{ ist beste Approximation an } M \text{ aus } 2n' \text{ Vektoren}$

-Folie 12-19-

wobei $\{\hat{\mathbf{u}}_k\}_{k=1}^n$ und $\{\hat{\mathbf{v}}_l\}_{l=1}^n$ jeweils orthonormale Vektoren sind und $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n$

Umformulierung ergibt: $M = \sum_{i=1}^{n} \sigma_i \hat{\mathbf{u}}_i \cdot \hat{\mathbf{v}}_i^T$

omputer Graphics & Multimedia Systems

Computergraphik II

BRDFs für reale Materialien ... 12.4.2

BRDF-Faktorisierung

Prof Dr Andreas Kolb

Gegeben: Gemessene BRDF $f_r(\hat{\omega}_i \to \hat{\omega}_o)$ für $\hat{\omega}_i^k, \hat{\omega}_o^l, k, l = 1, \dots, N = N_\phi \cdot N_\theta$ **Gesucht:** Texturen $g_i(\hat{\omega}_i), h_i(\hat{\omega}_o), j = 1, \dots, J$, die $f_r(\hat{\omega}_i \to \hat{\omega}_o)$ gut approx.

Ansatz: Löse das Problem mittels SVD; *M* beschreibt Messwerte

$$M = \begin{pmatrix} f_r(\hat{\omega}_i^1 \to \hat{\omega}_o^1) & f_r(\hat{\omega}_i^1 \to \hat{\omega}_o^2) & f_r(\hat{\omega}_i^1 \to \hat{\omega}_o^3) & \cdots & f_r(\hat{\omega}_i^1 \to \hat{\omega}_o^N) \\ f_r(\hat{\omega}_i^2 \to \hat{\omega}_o^1) & f_r(\hat{\omega}_i^2 \to \hat{\omega}_o^2) & f_r(\hat{\omega}_i^2 \to \hat{\omega}_o^3) & \cdots & f_r(\hat{\omega}_i^2 \to \hat{\omega}_o^N) \\ \vdots & \vdots & \ddots & \vdots \\ f_r(\hat{\omega}_i^N \to \hat{\omega}_o^1) & f_r(\hat{\omega}_i^N \to \hat{\omega}_o^2) & f_r(\hat{\omega}_i^N \to \hat{\omega}_o^3) & \cdots & f_r(\hat{\omega}_i^N \to \hat{\omega}_o^N) \end{pmatrix} \\ = \sum_{i=1}^N \sigma_i \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{pmatrix}_i \cdot (v_1, v_2, \cdots, v_N)_i$$

Zeilen $\hat{\mathbf{u}}_i = \hat{\mathbf{u}}_i$ konst. Lichtrichtung, Spalten $\hat{\mathbf{v}}_i = \hat{\mathbf{v}}_i$ Prof. Dr. Andreas Kolb

BRDF-Faktorisierung – Vorgehen

- 1. Diskretisierung der Hemisphäre und BRDF-Messung $f_r(\hat{\omega}^k_i
 ightarrow \hat{\omega}^l_o)$ für $\hat{\omega}_{i}^{k} = (\phi_{i}^{r_{i}}, \theta_{i}^{s_{i}}), \hat{\omega}_{o}^{l} = (\phi_{o}^{r_{o}}, \theta_{o}^{s_{o}}), r_{i}, r_{o} = 1, \dots, N_{\phi}, s_{i}, s_{o} = 1, \dots, N_{\theta}$
- 2. Aufstellen der Matrix $M = (f_r(\hat{\omega}_i^k \to \hat{\omega}_o^l)) \in \mathbb{R}^{N \times N}, \ N = N_\phi \cdot N_\theta$ Achtung: Es gibt $N_{\phi} \cdot N_{\theta}$ viele Richtungen die sequentiell notiert werden: $\hat{\omega}_i^k = (\tilde{\phi_i^{r_i}}, \theta_i^{s_i}), \ k = r_i \cdot N_\theta + s_i \text{ bzw. } \hat{\omega}_o^l = (\phi_o^{r_o}, \theta_o^{s_o}), \ k = r_o \cdot N_\theta + s_o,$
- 3. Ermittlung der SVD und Approximation durch Abbruch nach J Summanden

$$M \approx \sum_{i=1}^{J} \sigma_i \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{pmatrix}_i \cdot (v_1, v_2, \cdots, v_N)_i = \sum_{i=1}^{J} \sigma_i \hat{\mathbf{u}}_i \cdot \hat{\mathbf{v}}_i^T$$

4. Aufstellen der Texturen $g_i(\hat{\omega}_i)$ und $h_i(\hat{\omega}_o)$ aus $\hat{\mathbf{u}}_i$ bzw. $\hat{\mathbf{v}}_i$.

Achtung: Texturen ergeben sich durch "Re-Sequentialisierung" der $\hat{\mathbf{u}}_i$ und

 $\hat{\mathbf{v}}_i$, die Texture-Koordinaten entsprechen $(\phi_i^{r_i}, \theta_i^{s_i})$ bzw. $(\phi_o^{r_o}, \theta_o^{s_o})$ Prof. Dr. Andreas Kolb

Computergraphik II -Folie 12-21-

BRDFs für reale Materialien ... 12.4.2

Computer Graphics & Multimedia Systems

Beispiel: Ergebnis der BRDF Approximation

Beispiel für Daten aus synthetischen BRDFs, oben korrekte BRDF, unten Approximation mit J = 1 (Quelle: Jan Kautz)

-Folie 12-22-

Beispiel: Ergebnis der BRDF Approximation

CG

Beispiel für Daten aus gemessenen BRDFs, oben korrekte BRDF, unten Approximation mit J = 1 (Quelle: Jan Kautz)

